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Microscopic theory of superconducting phase diagram in infinite-layer nickelates
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Since the discovery of superconductivity in infinite-layer nickelates RNiO2 (R = La, Pr, Nd), great research
efforts have been made to unveil its underlying superconducting mechanism. However, the physical origin of the
intriguing hole-doped superconductivity phase diagram, characterized by a superconductivity dome sandwiched
between two weak insulators, is still unclear. Here we present a microscopic theory for the electronic structure of
nickelates from a fundamental model-based perspective. We found that the appearance of weak insulator phase in
lightly and heavily hole-doped regime is dominated by Mottness and Hundness, respectively, exhibiting a unique
orbital-selective doping originated from the competition of Hund interaction and crystal field splitting. Moreover,
the superconducting phase can also be created in the “mixed” transition regime between Mott-insulator and
Hund-induced correlated state, exactly reproducing the experimentally observed superconducting phase diagram.
Our findings not only demonstrate the orbital-dependent strong-correlation physics in Ni 3d states but also
provide a unified understanding of superconducting phase diagram in hole-doped infinite-layer nickelates, which
are distinct from the well-established paradigms in cuprates and iron pnictides.
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I. INTRODUCTION

To decipher how superconductivity (SC) emerges from
normal state is a crucial step towards the physical under-
standing of unconventional superconductor [1–8]. In early
paradigms, the charge-transfer insulator [5] and bad metal [9]
is used as parent compounds for cuprates [2,4] and iron
pnictides [9,10], respectively. Since the exotic SC mech-
anism is rooted in different origins of the correlation in
normal state, the exploration of new paradigm for SC is of
great importance, which could further enrich the zoology
of unconventional SC in strongly correlated materials. The
discovery of SC in infinite-layer nickelates RNiO2 (R = La,
Pr, Nd) [11–19] offers a new platform for investigating the
mechanism of unconventional SC. Especially, there are two
key features in its experimental SC phase diagram, which
are absence in cuprates and iron pnictides: (i) weak insula-
tor in both lightly and heavily hole-doped regimes [12–16]
and (ii) SC dome. sandwiched between two weak insulator
regimes [12–14]. Currently, the origin of this anomalous SC
phase diagram remains outstanding. It is highly desirable to
explore the strong-correlation physics behind this SC phase
diagram and make a possible connection to or distinction
from the well-established SC mechanisms in cuprates and iron
pnictides.

Although the SC mechanism in infinite-layer nickelates
is a controversial topic, there have been several theoretical
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proposals regarding its electronic structures. The normal state
is more proximate to a Mott-Hubbard insulator [20–24]. The
correlation in the Ni 3dx2−y2 orbital is relevant to SC because
of the structure analogy to cuprates [25,26]. The Ni 3d states
are influenced by a self-doping rare-earth-orbital band (served
as a charge reservoir) through a hybridization effect [27–30].
However, the appearance of itinerant electronic band cannot
interpret the weakly insulating phase in heavily hole-doped
regime [31–33]. Very recently, intensive studies have also
demonstrated the importance of multi-Ni-orbital nature and
concomitant Hund’s interaction [34–51]. Nevertheless, the
role of multiorbitals in the SC phase diagram is still elusive.
Taken as a whole, despite various works on normal state
properties, a complete and unified physical understanding of
the experimental SC phase diagram on hole-doping remains
unexplored.

In this work, driven by recent x-ray experimental ob-
servations [52] and first-principles calculations, we build a
microscopic two-band Hubbard model with Ni {3dx2−y2 , 3dxy}
orbitals. Based on mean-field calculations and interplay anal-
ysis of Hund interaction (JH ) and crystal field splitting (η),
we directly identify a theoretical SC phase diagram with re-
markable features: (i) weakly insulator phase dominated by
orbital-selective Mottness-like physics in a lightly hole-doped
regime, (ii) weakly insulator phase dominated by moderate
JH selected Hundness-like physics in a heavily hole-doped
regime, and (iii) a SC phase with d-wave paring symmetry be-
tween two weakly insulators in an optimal hole-doped regime.
Our results provide a microscopic model and unified physical
picture for describing the electronic structures and under-
standing the SC phase diagram in nickelates [11–19], that
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FIG. 1. Crystal field splitting for Ni 3d orbitals in infinite-layer nickelates. (a) Data from RIXS experiment [52]. The “bare” 3d orbital
sequence from (b) Refs. [20,60] and (c) Ref. [53]. Onsite energies of “effective” 3d orbitals from (d) the crystal method (see text), (e) the
cluster method, (f) DMFT calculation. (g) The density-functional theory (DFT) band structure and Wannier fitted effective bands within the
crystal method. Maximally localized Wannier functions for (h) “effective” Ni 3d orbitals, compared with (i) “bare” Ni 3d and O 2p orbitals.
(j) Momentum-resolved spectral function from DFT+DMFT calculations for LaNiO2 at 116 K.

is, being a moderately correlated system, the combined effect
of orbital-selective Mottness and Hundness makes nickelate-
family a bridge connecting cuprates and iron pnictides.

II. FIRST-PRINCIPALS ANALYSIS

To construct a reliable microscopic model of nickelates, an
accurate description of its crystal field splitting (CFS) is the
first step, which will shed lights on its bonding nature and put
strong constraints on the model. Recently, Rossi et al. [52]
exploited the resonant inelastic x-ray scattering (RIXS) of
nickelates and obtained an orbital sequence of dx2−y2 (0 eV)
> dxy (−1.39 eV) > dxz/dyz (−2.0 eV) > dz2 (−2.7 eV) [see
Fig. 1(a)] by comparing the RIXS data with atomic multiple
calculation. Although the role of Nd 5d cannot be excluded
among the dd excitations, it is believed that the hybridization
between Ni 3d and Nd 5d gives excitations with much smaller
energy [52,60]. Therefore the above sequence reflects the CFS
of Ni 3d orbitals. However, this significant observation cannot
be simply explained by the “bare” Ni 3d orbitals (which are
close to atomic orbitals) in previous first-principles calcula-
tions. For example, the result from Botana et al. [20] and
Hepting et al. [60] is shown in Fig. 1(b) and that from Jiang
et al. [53] is shown in Fig. 1(c), both of which significantly
deviate from that shown in Fig. 1(a).

Due to such a disagreement between theory and experi-
ment, we use three different methods to inspect the CFS in
detail. First, the CFS is calculated through Wannier downfold-
ing, dubbed the “crystal” method. Using five effective Ni 3d
orbitals to fit the first-principles band structures [Fig. 1(g)],
crucially, the obtained orbital sequence is consistent with
experiment [Fig. 1(d)]. The spatial distribution of these Wan-
nier functions (WFs) has contributions from both “bare” Ni
3d orbitals and O 2p orbitals [Fig. 1(h)]. Since the WFs
carry more information from high-energy orbitals [61,62],
the associated Wannier Hamiltonian is similar to an effec-
tive one. As a comparison, if more orbitals are included in
the fitting process (see Fig. S2 and Fig. S3), the WFs are
closer to atomic orbitals [Fig. 1(i)], making the associated
Wannier Hamiltonian similar to a “bare” one. Second, the

CFS is calculated through the cluster method [81] (please
see details in Appendix A 3). The obtained sequence of “ef-
fective” orbitals (that are made of “bare” Ni 3d and O 2p
orbitals) is also consistent with experiment [Fig. 1(e)]. Im-
portantly, this method allows us to quantitatively analyze
the components of effective orbitals. Taking 3dx2−y2 as an
example, the weight of the O 2p orbital in this effective
orbital of NdNiO2 is ∼23.8%, which is nearly half of that in
CaCuO2 (∼44.8%) (see the Appendix). This analysis, com-
plementarily with the “crystal” method, well explains the
components of effective Ni 3d orbitals observed in experi-
ment. Third, the CFS is calculated through density-functional
theory (DFT)+dynamical mean-field theory (DMFT), which
is comparable to a recent many-body quantum chemistry
method [63]. Figure 1(j) shows the momentum-resolved
spectral function of DFT+DMFT, where the extracted or-
bital sequence is dx2−y2 (0 eV) > dxy (−1.21 eV) > dzx/zy

(−1.31 eV) > d2
z (−2.21 eV) [Fig. 1(f)]. This result not only

has qualitatively the same sequence as but also is numerically
close to the experiment [Fig. 1(a)]. Last, the above CFS can
be understood in a simple picture. Due to D4h symmetry of
nickelates, the out-of-plane orbitals {dz2 , dxz, dyz} have lower
energies by extending orbital along the c axis, leaving in-
plane orbitals {dx2−y2 , dxy} more relevant to Fermi level [40],
akin to the case in the infinite-layer cuprate CaCuO2 (see the
Appendix for more details).

The above three different methods give the same CFS
with the experimental observations [52], indicating that the
in-plane Ni {3dx2−y2 , 3dxy} orbitals are more relevant to the
Fermi level. With these considerations, we propose a two-
band microscopic model as:

ĤTB =
∑
i,α,σ

ε(α)d̂†
iασ d̂iασ +

∑
〈i, j〉,ασ

[t (α)d̂†
iασ d̂ jασ + H.c.]

+
∑

〈〈i, j〉〉,ασ

t ′(α)d̂†
iασ d̂ jασ + H.c.

where σ is spin index, i and α is site- and orbital-index for
3dx2−y2 and 3dxy WFs, and 〈. . . 〉 and 〈〈. . . 〉〉 represent the
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TABLE I. Two-band model parameter for RNiO2 (R = La, Pr,
Nd). ε(1) and ε(2) are onsite energy for dx2−y2 and dxy WFs. t (1)
and t (2) [t ′(1) and t ′(2)] are in-plane nearest- (next-nearest) neighbor
hopping strength for dx2−y2 and dxy WFs. U (U ′) and JH represent the
intra- (inter-) orbital Coulomb repulsion and Hund’s coupling.

R ε(1) − ε(2) t (1) t ′(1) t (2) t ′(2) U U ′ JH

La 1.39 −0.37 0.10 −0.16 −0.05 3.60 1.90 0.84
Pr 1.41 −0.37 0.09 −0.16 −0.05 3.63 1.94 0.84
Nd 1.42 −0.37 0.09 −0.16 −0.05 3.64 1.95 0.84

nearest- and next-nearest-neighbor (NN and NNN) hopping.
Since the 3dx2−y2 and 3dxy are almost orthogonal to the rest 3d
WFs, these model parameters are directly extracted from the
crystal model (see the Appendix). The out-of-plane hopping
value of dx2−y2 (dxy) WF is only 10% (20%) of its in-plane
value, so the system shows a quasi-two-dimensional (2D)
nature. Therefore, we consider only the hopping within the
effective quasi-2D NiO2 plane. As shown in Table I, both
the NN and NNN hopping parameter of dx2−y2 is two times
larger than that of dxy, giving an opportunity to see larger
superexchange physics for dx2−y2 orbital as we show below.

In order to investigate the interactions in nickelates, we
consider the following Hamiltonian [10]:

Ĥint = U
∑
i,α

n̂iα↑n̂iα↓ +
∑
i,σ,σ ′

(U ′ − JHδσσ ′ )n̂i1σ n̂i2σ ′ ,

where U (U ′) denotes intra-(inter-)orbital Coulomb repulsion,
and JH denotes Hund’s coupling. We take U ′ = U − 2JH so
that the Hamiltonian is rotationally invariant in the orbital
space. The U (U ′) and JH on 3d WFs are estimated from the
first-principles calculations with constrained random-phase
approximation [64–66]. The interaction parameters for three
nickelates are listed in Table I, showing the similar strength
with well-kept relationship U ′ = U − 2JH . The relatively
large value of JH therefore puts the infinite-layer nickelates
as a moderate correlated system sharing similarity with iron-
pnictides [67].

III. TWO WEAKLY INSULATORS

Having established the microscopic two-band Hubbard
model with orbitals relevant to low-energy physics of nick-
elates, we first consider the evolution of its electronic
structures on hole-doping. We introduce a slave-boson for-
malism [68,69] to decouple the exchange interactions, using
a direct multiorbital generalization of original single-orbital
scheme [70] (for details see the Appendix). Figures 2(a)
and 2(b) presents the orbital-resolved charge density as a
function of Hund’s interaction (JH ) and doping ratio (x). We
focus on 0 � x � 1 that corresponds to the hole-doping evo-
lution from 3d9 to 3d8 configuration on NiO2 plane. The main
feature is that there are three distinct phases depending on the
strength of JH versus η, called the orbital-selective Mottness
regime, Hundness regime, and “mixed” regime. The Mottness
(Hundness) phase occupies the small (large) JH regime, while
the mixed phase emerges in between. Figures 2(c) and 2(e)
present the doping dependent orbital-resolved charge density
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FIG. 2. Evolution of many-body electronic structure with hole-

doping in the two-band Hubbard model. Density plot of orbital
occupation on (a) Ni 3dx2−y2 orbital and (b) Ni 3dxy orbital, as a
function of Hund’s interaction JH and doping ratio x. Orbital charge
density taken at specific Hund’s interactions [dashed lines in (a) and
(b)] are shown in the lower panels (c)–(e). [(f)–(h)] Orbital-resolved
renormalization factor qα (quasiparticle weight) as a function of x for
(f) JH = 0.3 eV, (g) JH = 0.8 eV, and (h) JH = 1.4 eV. Here we set
η = 1.2 eV.

(nα) in three different regimes. In the orbital-selective Mot-
tness regime [Fig. 2(c)], the doped-holes reside on Ni 3dx2−y2

orbital, and the Ni 3dxy orbital is totally filled. Since a strong
crystal field (η) favors a large orbital polarization, holes tend
to fill the 3dx2−y2 orbital in a low-spin configuration. In the
Hundness regime [see Fig. 2(e)], the doped-holes reside on
the Ni 3dxy orbital only. This is the result of a large Hund’s
exchange (JH ) promoting the carriers on different orbitals
in a high-spin state to minimize repulsive interactions. Im-
portantly, in the mixed phase [Fig. 2(d)], doping leads to a
transition from Mottness to Hundness, where the holes reside
on 3dx2−y2 orbital in the regime x < x∗, while the holes begin
to populate 3dxy orbital in the regime x > x∗. Here the critical
value of x∗ depends on JH , η, i.e., the larger (smaller) JH (η),
the smaller value of x∗.

Furthermore, the competition between Hundness and Mot-
tness can be revealed by the renormalization factor qα (i.e.,
inverse of effective mass ∼m−1

α ) of two bands, which qualifies
the effective carrier quasiparticle weight, as shown in Fig. 2(f).
In the orbital-selective Mottness regime, Ni 3dx2−y2 orbital
is active and its quasiparticle weight increases as the hole-
doping. In the Hundness regime [Fig. 2(h)], the 3dx2−y2 orbital
is locked by Hund’s interaction thus quasiparticle weight is
pinned at exactly zero. In the mixed regime [Fig. 2(g)], qx2−y2

exhibits a nonmonotonic behavior, with a maximum around
x ∼ x∗. After the Hundness physics sets in (x > x∗), qx2−y2

drops to zero.
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FIG. 3. Phase diagram on hole-doping, including d-wave SC and
two weak insulators (WIs). (a) Tc versus doping ratio x for s-wave
(red square) and d-wave (red dots) pairing symmetry, and effective
mass mα/m0 for the 3dx2−y2 (blue diamond) and 3dxy (blue triangular)
orbitals. Here we set J = 0.20 eV, JH = 0.7 eV, and η = 1.2 eV.
(b) Heatmap of Tc versus JH and η by setting x = 0.2, J = 0.20 eV.
The shaded region marks parameters relevant to nickelates.

Here we stress that the “mixed” phase exhibits weakly
insulating behavior in both lightly and heavily hole-doped
regimes [Fig. 3(a)], but the origin of them is different. In
the lightly hole-doped regime, the insulator comes from the
suppressed kinetic mobility of carriers on 3dx2−y2 WF and
vanishing small carrier density on 3dxy WF. While in the heav-
ily hole-doped regime, the insulating behavior is produced by
frozen carriers on 3dx2−y2 and strong correlation due to Hund-
ness. Thus, we conclude that the “mixed” phase induced by
the competition between JH and η leads to insulating behavior
in both lightly and heavily hole-doped regimes, providing a
natural understanding of experimental SC phase diagram.

In the phase diagram Fig. 3(a), in the overdoped regime, the
3dx2−y2 orbital becomes frozen and the 3dxy orbital is active.
In this case, even though the effective mass of the 3dxy orbital
could be moderated close to the superconductivity dome, the
transport property contributed from 3dxy orbital is inevitably
influenced by the Hund effect, which should be different from
the normal Fermi liquid theory for a single orbital.

IV. SUPERCONDUCTIVITY

Last, we turn to study the SC in our model. We assume the
carrier pairing is mediated by the spin fluctuations, and addi-
tional antiferromagnetic interactions between the moment of
charge carriers survive [30,71–73], Hint = J

∑
〈i j〉,α Si · S j −

1
4 nin j , where J denotes the effective spin exchange strength
between the 3dx2−y2 orbitals. Then we treat this interaction
at the mean-field level and self-consistently solve the pair-
ing strength and critical temperature in the Bogoliubov-de
Gennes (BdG) equations (see Appendix). Figure 3(a) shows
the critical temperature Tc as a function of hole ratio. We
find Tc of extended s-wave symmetry is vanishing small, and
nonzero Tc is present for d-wave symmetry in the underdoped
regime. That a SC dome appears sandwiched between orbital-
selective Mott-insulator and Hund-induced correlated phase
qualitatively agrees with the experimental observations.

To see the robustness of SC, other η and JH values are
studied here. Due to the screening effect from other 3d WFs,
the realistic JH between 3dx2−y2 and 3dxy may deviate from
the value listed in Table I up to 30%. And the three different
models in determining CFS allows a reasonable window for η.
In Fig. 3(b), it is clear the SC is stable in the parameter region

relevant to nickelates [Fig. 3(b)]. In this regard we conclude
the SC is robust and insensitive to the values of JH , η.

V. CONCLUSION

Using comprehensive many-body computations based on a
first-principles microscopic Hamiltonian, we present a unified
physical picture for understanding the hole-doping supercon-
ducting phase diagram in infinite-layer nickelates [11–16,18]
and provide a quantitative basis for theoretical models in
describing the electronic structure revealed in RIXS [52].
Our study implies that infinite-layer nickelate-based super-
conductors, in a lightly hole-doped regime, are analogous to
the cuprates with an active 3dx2−y2 orbital, resulting in Mot-
tness physics. In contrast, in the heavily hole-doped regime,
it shares many similarities with iron-based superconductors,
such as the importance of Hund’s interaction and tendency to-
wards high-spin configurations. In this context, infinity-layer
nickelate is a moderately correlated system in which the elec-
tronic structures of the NiO2 layer bears similarities to those
in either cuprates or iron-based materials in different regions.

Finally, we believe this work has implications on many
aspects. First, the finding of a finite hybridization between
O 2p orbitals and (bare) Ni 3d orbitals, akin to cuprates in
the lightly doping regime, demonstrates the contribution from
O 2p electrons cannot be totally neglected, thus pointing to
a mixed charge-transfer and Mott characteristics for infinite-
layer nickelates. It is able to explain a small but nonvanishing
doping dependence of O K-edge spectra in the recent exper-
iments [61,72]. Second, to further support the existence of
a weak insulator in the overdoped regime, the hole-doped
Nd6Ni5O12 compound can be studied (undoped Nd6Ni5O12

is equivalent to Ni 3d8.8 configuration [74,75]), and a weak
insulator phase is expected in its heavily hole-doped regime.
Last, important future problems include the exploration of
possible enhancement of superconductivity in such a multi-
orbital system and tuning superexchange effect via oxygen
states would provide a practical route [62].
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APPENDIX A: DENSITY-FUNCTIONAL THEORY AND
DYNAMICAL MEAN-FIELD THEORY SIMULATIONS

In this Appendix, we provide some more numerical results
to support the conclusions we have discussed in the main
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FIG. 4. (a) Archetype structure of RNiO2, R = La, Pr, Nd. The interstitial site is marked by the red dashed circle. (b) Energy versus lattice
constant in the c direction for RNiO2. (c) Onsite energies of Ni 3d WFs when interstitial s, Nd 5d , Ni 3d , and O 2p orbitals are chosen in the
downfolding. (d) Onsite energies of Ni 3d WFs when Ni 3d and O 2p orbitals are chosen in the downfolding. (e) Onsite energies of Ni 3d
WFs when only Ni 3d orbitals are used in the downfolding. Here (e) is plotted for a clearer comparison.

text. In Appendix A, we present the computational details
of density-functional theory and dynamical mean-field the-
ory calculations and make a comparison with CaCuO2. In
Appendix B, we present an introduction of the slave-boson
method for mean-field calculations. In Appendix C, we out-
line the Bogoliubov-de Gennes equation for superconductivity
used in this work. In Appendix D, we provide further discus-
sion to understand the contribution of R 5d electrons from a
rare-earth element.

1. Crystal structure

DFT) calculations are performed within the plane wave,
using the projector augmented wave method as implemented
in the Vienna ab initio simulation package VASP [76–78].
The generalized gradient approximation was used for the
exchange-correlation potential [79]. The infinite layered struc-
ture ABO2 can be obtained from cubic perovskite ABO3 by
removing apical oxygen atoms [the left vacancy site is called
interstitial site as shown in Fig. 4(a)]. To simulate the growth
of RNiO2 (R = La, Pr, Nd) layers on substrate SrTiO3, the
in-plane lattice constant of RNiO2 is fixed to that of SrTiO3

at 3.92 Å. The out-of-plane parameter is scanned to obtain
the optimal value [the potential energy surface is shown in
Fig. 4(b)], which is 3.41, 3.35, and 3.31 Å for LaNiO2,
PrNiO2, and NdNiO2. Because of the removal of apical O,
the lattice constant in the c direction is much smaller than the
in-plane lattice constants.

2. Wannier downfolding

To obtain parameters such as onsite energy and hopping
integral, we downfold the full Hamiltonian into the subspace
in Wannier90 package [80]. The downfolding process also
allows us to obtain the following matrix element:

Hαβ (R) =< φ0,α|Ĥ |φR,β >, (A1)

where |φ0,α > is the maximally localized Wannier function α

in home cell (index as 0) and |φR,β > the maximally local-
ized Wannier function β in cell R. When R = 0, α = β, the
above matrix element orbital energy; otherwise, we obtain the
hopping integral.

For example, the subspace can be chosen as interstitial
s, Nd 5d , Ni 3d , and O 2p orbitals. There are 17 orbitals
in total. The Wannier fitted band structure with respect to
first-principles calculations is shown in Fig. 5(a) and the ob-
tained WFs are displayed in Fig. 5(b). From Fig. 5(a), the
fitted band structure is exactly the same as DFT in a very
large energy window and WFs in Fig. 5(b) are very close to
the corresponding atomic orbitals, so it is reasonable to call
the Hamiltonian obtained here a “bare” one. (The real bare
Hamiltonian should contain other bands including core levels,
Ni 3s, 3p, and empty ones. These are quite high in energy and
only renormalize the parameters by a small amount. Therefore
it is safe to ignore these bands and call the Hamiltonian of
17 bands as bare Hamiltonian.) In this limit, the obtained
onsite energy of Ni 3d WFs is shown in Fig. 4(c). As
{3dx2−y2 , 3dz2} and {3dxy, 3dxz, 3dyz} are almost degenerate,
the Ni atoms now have coordination environments close to
Oh spatial group.

We can reduce the number of bands in the downfolding,
and then the contributions of these abandoned bands are
projected to the kept subspace. Here we abandon higher-
energy bands (interstitial s orbital and Nd 5d), so the effective
Hamiltonian now contains 11 bands: five Ni 3d and six O 2p
WFs. The Wannier fitted band structure with respect to first-
principles calculations is shown in Fig. 6(a) and the obtained
WFs are displayed in Fig. 6(b). Since there is large interaction
between Ni 3dz2 , interstitial s and Nd 5dz2 , the abandon of
interstitial s and Nd 5dz2 in the downfolding will be reflected
on Ni 3dz2 WF. As shown in Fig. 4(d), although the onsite
energy of the other four 3d WFs does not change, the onsite
energy of 3dz2 is largely reduced and close to 3dxy.

Furthermore, in the downfolding process, we can construct
“effective” (five) Ni 3d orbitals only, dubbed as the crystal
model (compared with cluster method as shown below). In
practice, this is equivalent to choosing subspace as (five) Ni 3d
orbitals only in the Wannier downfolding. And the obtained
on-site energy for Ni 3d orbitals is shown in Fig. 1(d) of the
main text. One sees that the onsite energy of 3dz2 is further
reduced. Please note that the obtained orbitals contain contri-
butions from both “bare” 3d orbitals and 2p orbitals, so that
we call them “effective” orbitals to distinguish them from the
“bare” ones.
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FIG. 5. Downfolding in the “bare” limit. (a) The DFT band structure and the Wannier fitted bands. (b) Maximally localized Wannier
functions. The WFs on the other oxygen atoms is ignored here because of symmetry.

3. Cluster model calculation of 3d sequence

Based on the above band-structure calculations and
Wannier downfolding scheme, here we can calculate the ef-
fective 3d orbital sequence (which is related to the RIXS
experiment) through the cluster model proposed by Eskes
et al. [81]. Here we consider a NiO4 cluster: four O atoms
forming a square and the Ni atom is at the center [see
Fig. 7(a)]. We denote the bare on-site energy of 2pi as ε(pi )
(i = x, y, z) and 3d j as ε(d j ) ( j = z2, x2 − y2, xy, xz, yz).
There are three steps for this treatment. At step 1, we start
from the linear combination of p on the four O atoms accord-
ing to the symmetry of 3d orbitals. Here we take the linear
combination O1-px (also label as px1), O2-py, O3-px, and O4-
py as an example [Fig. 7(a)]. Suppose the hopping between
O1-px and O2-py is denoted by Vpp [V ′

pp for O1-py and O2-px

as displayed in Fig. 7(b)]. Now we consider their linear com-
binations; the resulting effective orbitals and onsite energies

are easily calculated and the results are shown in Fig. 7(c).
The bonding orbital is expressed as 1

2 (px1 + py2 − px3 − py4 )
with onsite energy stabilized by 2|Vpp|, so the onsite energy
of this effective orbital is calculated as ε[ 1

2 (px1 + py2 − px3 −
py4 )] = ε(px1 ) − 2|Vpp|. The antibonding orbital is expressed
as 1

2 (px1 − py2 − px3 + py4 ) with onsite energy destabilized
by by 2|Vpp|, so the onsite energy is ε[ 1

2 (px1 − py2 − px3 +
py4 )] = ε(px1 ) + 2|Vpp|. The onsite energy of left two non-
bonding orbitals do not change and is ε(px1 ).

At step 2, we consider the hopping between Ni 3d WFs
and these effective orbitals formed by p. Here we take Ni
3dx2−y2 as an example. Suppose the hopping between O1-px

and 3dx2−y2 is Vx2−y2 as shown in Fig. 7(d); then the hop-
ping between 3dx2−y2 and 1

2 (px1 − py2 − px3 + py4 ) is given by
V = 0.5 ∗ Vx2−y2 ∗ 4 = 2Vx2−y2 . The other symmetry-allowed
hoppings are shown in Figs. 7(e)–7(g). Then we reach the
information in Table II.

FIG. 6. Downfolding with Ni 3d and O 2p orbitals. (a) The DFT band structure and the Wannier fitted bands. (b) Maximally localized
Wannier functions. The WFs on the other oxygen atoms is ignored here because of symmetry.
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FIG. 7. NiO4 cluster model. (a) The linear combination of O1-px , O2-py, O3-px , and O4-py. The hopping between O1-px and O2-py is
Vpp. (b) The linear combination of O1-py, O2-px , O3-py, and O4-px . The hopping between O1-py and O2-px is Vpp. (c) Energy diagram for
four effective p orbitals linear combined from O1-px , O2-py, O3-px , and O4-py. (d) Symmetry-allowed hopping between 3dx2−y2 and 1

2 (px1 −
py2 − px3 + py4 ). The hopping between 3dx2−y2 and px1 is Vx2−y2 . (e) Symmetry-allowed hopping between 3dz2 and 1

2 (px1 + py2 − px3 − py4 ).
The hopping between 3dz2 and px1 is Vz2 . (f) Symmetry-allowed hopping between 3dxy and 1

2 (py1 + px2 − py3 − px4 ). The hopping between
3dxy and py1 is Vxy. (f) Symmetry-allowed hopping between 3dxz and 1√

2
(pz1 − pz3 ). The hopping between 3dxz and pz1 is Vxz. Here dyz and

1√
2
(pz2 − pz4 is omitted for symmetry reason.

At step 3, we can construct a 2×2 matrix for each 3d and
the corresponding effective p orbitals. Diagonalizing the ma-
trix gives two eigenvalues. Since the effective p orbitals have
lower onsite energies than 3d , the higher eigenvalue gives the
onsite energy of related effective 3d orbitals. For NdNiO2,
the parameters from the above downfolding are ε(dx2−y2 ) =
5.57 eV, ε(dz2 ) = 4.93 eV, ε(dxy) = 4.92 eV, ε(dxz ) = 5.06 eV,
ε(px1 ) = 1.19 eV, ε(py1 ) = 1.91 eV, ε(pz1 ) = 1.96 eV, Vpp =
−0.62 eV, V ′

pp = −0.26 eV, Vx2−y2 = 1.28 eV, Vz2 = −0.19 eV,
Vxy = −0.75 eV, and Vxz = −0.80 eV, which gives the effec-
tive 3d sequence as dx2−y2 (0 eV) > dxy (−1.53 eV) > dxz/dyz

(−1.57 eV) > dz2 (−2.04 eV). This is shown in Fig. 1(e).
Importantly, the cluster method can also infer the informa-

tion on the effective 3d orbitals. Here we compare the NiO4

cluster from NdNiO2 and the CuO4 cluster from CaCuO2 (see
Appendix A 6 for more information). As shown in Table III,
CaCuO2 is a typical charge-transfer insulator and the con-

tribution from O 2p orbitals is close to 50%, except for dz2

effective orbitals. But the 2p contributions are much smaller
in NiO4, and here we take effective 3dx2−y2 orbitals as an
example. We see the weight of O 2p in this effective orbital
of NdNiO2 is around 23.8%. As a comparison, we find the
weight of O 2p orbital in CaCuO2 is around 44.8%. Thus, the
component of O p orbital in NiO4 is only half of that in CuO4.
This is one of key difference between NdNiO2 and CaCuO2.
This difference is able to explain that, in the recent EELS
experiment [61], hole-doping only leads to a relatively small
change of the O K-edge XAS spectrum in NdNiO2 compared
to cuprates.

4. Impurity model calculation of 3d sequence

DFT+DMFT provides an impurity model approach to-
wards the 3d orbital sequence. We have performed calcula-

TABLE II. Cluster model parameter. Here dyz and 1√
2
(pz2 − pz4 ) is omitted for symmetry.

State ε(d ) ε(effective p) Hopping

{dx2−y2 , 1
2 (px1 − py2 − px3 + py4 )} ε(dx2−y2 ) ε(px1 ) + 2Vpp 2Vx2−y2

{dz2 , 1
2 (px1 + py2 − px3 − py4 )} ε(dz2 ) ε(px1 ) − 2Vpp 2Vz2

{dxy,
1
2 (py1 + px2 − py3 − px4 )} ε(dxy ) ε(py1 ) − 2V ′

pp 2Vxy

{dxz,
1√
2
(pz1 − pz3 )} ε(dxz ) ε(pz1 )

√
2Vxz
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TABLE III. The weight of O p orbital in each effective 3d orbitals in NiO4 cluster from NdNiO2 compared with CuO4 cluster from
CaCuO2. Here dyz − 1√

2
(pz2 − pz4 ) is omitted for symmetry.

O p weight dx2−y2 − 1
2 (px1 − py2 − px3 + py4 ) dz2 − 1

2 (px1 + py2 − px3 − py4 ) dxy − 1
2 (py1 + px2 − py3 − px4 ) dxz − 1√

2
(pz1 − pz3 )

NiO4 23.8% 0.6% 11.9% 9.6%
CuO4 44.8% 3.3% 43.7% 45.2%

tions with LaNiO2 and NdNiO2. In both compounds, Ni-3d
orbitals are considered correlated impurities. In addition,
for NdNiO2, two different methodologies are employed for
Nd-4 f orbitals, namely (1) open-core treatment and (2) cor-
related impurity on the equal-footing as Ni-3d . For each
case, we have performed calculations using both Ud = 5.0 eV,
Jd = 0.8 eV and Ud = 6.0 eV, Jd = 0.9 eV (see Fig. 8). For
the realistic Nd calculations, Uf = 6.0 eV, Jf = 0.7 eV is
employed for Nd-4 f orbitals as well. In all calculations, the
continuous time quantum Monte Carlo (CTQMC) impurity
solver is employed. The solver samples 2×109 steps at 116K.
The nominal double-counting scheme was employed in these
calculations, with nd = 9.0.

We show the crystal field splitting obtained from
DFT+DMFT calculations in Table IV. In all cases, the low-
energy effective crystal field splitting has the same order as
experimental observation. Here we conclude the DMFT cal-
culations give consistent results about the Ni 3d sequence.

5. 3d sequence in CaCuO2

To make a comparison with cuprates, here we consider the
infinite-layer cuprate CaCuO2 [82]. The lattice constant we
use is a = b = 3.90 Å and c = 3.21 Å. The result is shown

in Fig. 9. Here the experimental result [Fig. 9(a)] is taken
from Hozoi et al. [83], which the contribution of magnetic
contributions are excluded [84]. The CFS of the crystal model
is shown in Fig. 9(b), which is almost the same to the ex-
perimental date in Fig. 9(a). The Wannier fitted band structure
with respect to first-principles calculation is shown in Fig. 9(e)
and the obtained WFs are shown in Fig. 9(f), with large tails
on the nearby O atoms. We can also use both Cu 3d and
O 2p in the downfolding. Once the O 2p orbitals are used,
the the hybridization of O 2p and Cu 3d is closed and the
WFs resembles atomic 3d orbitals [compare Fig. 9(g) and
Fig. 9(f)]. The parameters from such downfolding in CaCuO2

are follows: ε(dx2−y2 ) = 2.38 eV, ε(dz2 ) = 1.90 eV, ε(dxy) =
1.87 eV, ε(dxz ) = 1.96 eV, ε(px1 ) = 0.59 eV, ε(py1 ) = 1.90 eV,
ε(pz1 ) = 1.76 eV, Vpp = −0.64eV, V ′

pp = −0.47 eV, Vx2−y2 =
1.22 eV, Vz2 = −0.25 eV, Vxy = −0.68 eV, Vxz = −0.72 eV,
which allows us to calculate effective 3d sequence through
cluster model as dx2−y2 (0 eV) > dxy (−1.66 eV) > dxz/dyz

(−1.70 eV) > dz2 (−2.58 eV). This is shown in Fig. 9(c).
Hozoi et al. [83] has applied state-of-art many-body quan-

tum chemistry methods (CASSCF+SDCI) to study the CFS
and the obtained orbital order is shown in Fig. 9(d). Therefore,
all three models give a consistent CFS of Cu 3d effective
orbitals.

FIG. 8. Momentum-resolved spectral function from DFT+DMFT calculations for LaNiO2 and NdNiO2 at 116 K.
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TABLE IV. CFS obtained in DFT+DMFT calculations. In NdNiO2 calculations, Nd-4 f orbitals are treated using open-core method
[column NdNiO2 (opencore)] or on the equal footing using CTQMC [column NdNiO2 (full)]. All orbital energies are relative to dx2−y2

orbitals, and all units are in eV. In each column, the left number is the “bare” result, where the self-energy takes the infinity frequency
limit [	(ω → ∞)] and only statically shifts the DFT levels, while the right column is the “interacting” result, where the zero-frequency limit
[	(ω = 0)], representing the renormalized quasiparticle result.

LaNiO2 NdNiO2 (opencore) NdNiO2 (full)

U = 5.0 U = 6.0 U = 5.0 U = 6.0 U = 5.0 U = 6.0
dx2−y2 0.0 0.0 0.0 0.0 0.0 0.0

dxy −0.47 −1.17 −0.48 −1.21 −0.60 −1.28 −0.60 −1.30 −0.60 −1.23 −0.61 −1.25
dzx/zy −0.13 −1.28 −0.13 −1.31 −0.29 −1.33 −0.29 −1.35 −0.17 −1.27 −0.16 −1.27
dz2 0.15 −2.15 0.17 −2.21 0.10 −2.05 0.12 −2.08 0.11 −1.96 0.13 −1.96

6. Physical picture for the crystal field splitting

In the main text, we have shown numerical results and
detailed discussion on the crystal field splitting of Ni 3d
orbitals. Here we provide a physical picture to understand this
result.

A vast of band structure calculations have shown a multi-
band nature around the Fermi level [20–23,40–50,53–59]. In
addition to the Ni 3dx2−y2 band, most works [41–50] prefer
to use 3dz2 as the other target orbital based on the following
two reasons: (1) 3dz2 contributes the � electron pocket and
(2) it is analogous to cuprates where the 3dz2 orbital is closest
to 3dx2−y2 . However, different from cuprates with Oh sym-
metry, the point group of nickelates is reduced to D4h, and
thus the crystal field splitting should be different. In Fig. 10,
we present a diagram to understand the crystal field splitting
under the change of tetragonal distortion along the c direc-
tion. In contrast to Oh symmetry, by removing the apical O,
the out-of-plane orbitals {dz2 , dxz, dyz} have lower energies by
extending the orbital along the c axis, leaving in-plane orbitals
{dx2−y2 , dxy} relevant to the Fermi level [40]. This applies to
both infinite-layer CaCuO2 and NdNiO2. This also explains
why the out-of-plane 3dz2 is considerably lower in energy
compared to the degenerate 3dxy, 3dxz/yz levels, contrary to the
commonly accepted crystal field picture for a square planar
coordination.

7. Parameters of the two-band model

As Ni 3dxy is orthogonal to both NN and NNN 3dxz, 3dyz,
3dz2 and 3dx2−y2 , 3dx2−y2 is orthogonal to NN and NNN 3dxz,
3dyz, 3dxy, with negligible hopping to NN 3dz2 (0.023 eV) and
orthogonal to NNN 3dz2 , the {3dxy, 3dx2−y2} can be regarded
as orthogonal to {3dxz, 3dyz, 3dz2}. This allows us to separate
{3dxy, 3dx2−y2} out, which means we can directly extract the
parameters related to {3dxy, 3dx2−y2} from the crystal model.
The obtained parameters are listed in Table I in the main text.
With these parameters, we can recalculate the band structure
as shown in Fig. 11. The good agreement between these two
indicates the validity of the model parameters.

APPENDIX B: SLAVE-BOSON
MEAN-FIELD CALCULATION

We use the slave-boson mean-field method to deal with
the interaction between electrons. The slave-boson mean-
field method was first introduced to describe the unoccupied
states [85,86]. Then Kotliar and Ruckenstein extended the
slave-boson formalism, and they used four slave-bosons to
describe four different occupied states on one site [68,69].
In this way, the Hubbard interaction term can be mapped to
slave-boson space and simply expressed by slave-boson oper-
ators, and simultaneously the hopping terms are also modified.

FIG. 9. Onsite energy for the Cu 3d orbital. (a) From experimental data [83]; (b) from crystal model; (c) from cluster model; (d) from
state-of-the-art many-body quantum chemistry method data. The onsite energy of dx2−y2 is set to be zero [83]. (e) The DFT band structure and
the Wannier fitted effective bands with Cu 3d orbitals. Maximally localized wannier functions for (f) Cu 3d orbital only and (g) Cu 3d orbitals
and O 2p orbitals used in the downfolding process.
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FIG. 10. Schematic plot of crystal field splitting by increasing tetragonal distortion along the c axis. Different 3d orbitals are labeled by
colors.

In this paper, we use a two-orbital slave-boson method to
deal with interaction term [70]. First, we introduce 16 slave-
boson operators to describe 16 different occupied states on
each site,

{e(†), p(†)
ασ , s(†)

α , d (†)
σσ ′ , h(†)

ασ , f (†)}, (B1)

FIG. 11. Band structure of two-band model and first-principles
calculation for NdNiO2. Here a 2D Brillouin zone is used and the
band structure of the two-band model is shifted.

where α = 1, 2 (label dx2−y2 and dxy, respectively) is the band
index and σ =↑,↓ is the spin index. These 16 slave-boson
states have been listed in Table V. The introduction of 16
slave-bosons enlarge the Hilbert space to an unphysical one,
so we need some local constraints to form a physical space.
Summing up all slave-boson operators, we define

Îi = e†
i ei +

∑
ασ

(p†
iασ piασ + h†

iασ hiασ ) +
∑

α

s†
iαsiα

+
∑
σσ ′

d†
iσσ ′diσσ ′ + f †

i fi, (B2)

TABLE V. The atomic states in the original model, their cor-
responding slave-boson states, as well as the labeling of the mean
fields. The site index is suppressed, α = 1, 2, and σ̄ =↓ (↑) if σ =↑
(↓) [70].

Original model Slave-boson model Mean fields

|e〉 |0〉 e†|vac〉 e ≡ 〈e(†)〉
|pασ 〉 d̂†

ασ |0〉 p†
ασ d̂†

ασ |vac〉 pασ ≡ 〈p(†)
ασ 〉

|sα〉 d̂†
α↑d̂†

α↓|0〉 s†
α d̂†

α↑d̂†
α↓|vac〉 sα ≡ 〈s(†)

α 〉
|dσσ 〉 d̂†

1σ d̂†
2σ |0〉 d†

σσ d̂†
1σ d̂†

2σ |vac〉 dσσ ≡ 〈d (†)
σσ 〉

|dσ σ̄ 〉 d̂†
1σ d̂†

2σ̄ |0〉 d†
σ σ̄ d̂†

1σ d̂†
2σ̄ |vac〉 dσ σ̄ ≡ 〈d (†)

σ σ̄ 〉
|h1σ 〉 d̂†

1σ d̂†
2↑d̂†

2↓|0〉 h†
1σ d̂†

1σ d̂†
2↑d̂†

2↓|vac〉 h1σ ≡ 〈h(†)
1σ 〉

|h2σ 〉 d̂†
1↑d̂†

1↓d̂†
2σ |0〉 h†

2σ d̂†
1↑d̂†

1↓d̂†
2σ |vac〉 h2σ ≡ 〈h(†)

2σ 〉
| f 〉 d̂†

1↑d̂†
1↓d̂†

2↑d̂†
2↓|0〉 f †d̂†

1↑d̂†
1↓d̂†

2↑d̂†
2↓|vac〉 f ≡ 〈 f (†)〉
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and define the operators,

Q̂i1σ = p†
i1σ pi1σ + s†

i1si1 +
∑
σ ′

d†
iσσ ′diσσ ′ + h†

i1σ hi1σ

+
∑

σ

h†
i2σ hi2σ + f †

i fi, (B3)

Q̂i2σ = p†
i2σ pi2σ + s†

i2si2 +
∑
σ ′

d†
iσ ′σ diσ ′σ + h†

i2σ hi2σ

+
∑

σ

h†
i1σ hi1σ + f †

i fi. (B4)

Thus, the physical subspace is given by two kinds local con-
straints:

Îi − 1 ≡ 0, (B5)

f̂ †
iασ f̂iασ − Q̂iασ ≡ 0. (B6)

These constraints ensure a physical local Hilbert space of
the slave-boson model. The first relation (B5) represents the
completeness of the boson operators, i.e., the total probability
of slave-bosons on one site is 1. The second relation (B6) is
similar to the conservation of the number of particles, i.e.,
the charge of bosons should be equal to the electron number.
Therefore, we have to ensure that in the physical subspace
the operators Q̂iασ are identical to the operators f̂ †

iασ f̂iασ .
Using these constraints and neglecting the spin-flip and pair-
hopping term in Hund coupling, the interaction term becomes
quadratic in the boson operators:

Ĥint =
∑

i

{
U

∑
α

s†
iαsiα + (U + 2U ′ − JH )

∑
ασ

h†
iασ hiασ

+ (U ′ − JH )
∑

σ

d†
iσσ diσσ + U ′ ∑

σ

d†
iσ σ̄ diσ σ̄

+ 2(U + 2U ′ − JH ) f †
i fi

}
. (B7)

But the hopping term become more complex by the correction
of slave-bosons. There is a mapping for the hopping term:

d̂iασ → z̃iασ d̂iασ , d̂†
iασ → d̂†

iασ z̃†
iασ , (B8)

where

z̃iασ = (1 − Q̂iασ )−1/2ziασ Q̂−1/2
iασ

zi1σ = e†
i pi1σ + p†

i1σ̄ si1 + p†
i2σ diσσ + p†

i2σ̄ diσ σ̄

+ s†
i2hi1σ + d†

iσ̄ σ hi2σ + d†
iσ̄ σ̄ hi2σ̄ + h†

i1σ̄ fi

zi2σ = e†
i pi2σ + p†

i2σ̄ si2 + p†
i1σ diσσ + p†

i1σ̄ diσ̄ σ

+ s†
i1hi2σ + d†

iσ σ̄ hi1σ + d†
iσ̄ σ̄ hi1σ̄ + h†

i2σ̄ fi. (B9)

The z operators keep track of the slave-bosons during the
hopping processes and the choice of the z operators is not
unique. In our paper, the hopping term can be written as:

ĤTB =
∑
i,α,σ

εα n̂iασ +
∑

〈i, j〉,α,σ

(tα f̂ †
iασ z̃†

iασ z̃ jασ f̂ jασ + H.c.)

(B10)

Only the hopping term is corrected here, and the on-site
energy is unchanged. The saddle-point approximation is

equivalent to a mean-field approximation where the Bose
fields and Lagrange multipliers are treated as static and ho-
mogeneous fields [68–70]. Thus, this approximation consists
essentially in replacing the creation and annihilation operators
of the slave-bosons by site-independent c numbers which can
be chosen to be real. So the interaction term is only dependent
on these c numbers:

Hint = NU
(
s2

1 + s2
2

) + N (U + 2U ′ − JH )
(
h2

1↑ + h2
1↓

+ h2
2↑ + h2

2↓
)

+ N (U ′ − JH )
(
d2

↑↑ + d2
↓↓

) + NU ′(d2
↑↓ + d2

↓↑
)

+ 2N (U + 2U ′ − JH ) f 2. (B11)

We define a new factor qασ =< z̃†
ασ z̃ασ > to describe the

correction of the hopping term. In our choice, the q factor is
defined as a real number from 0 to 1. As Hubbard interaction
strength increases, the q factors decrease. If the band is half-
filling, then the q factor will become zero, which means a Mott
insulator. The hopping term can be written as

ĤTB =
∑
i,,σ

εα n̂iασ +
∑

<i, j>,α,σ

(tαqασ d̂†
iασ d̂ jασ + H.c.). (B12)

It can be easily seen that the role of the slave-bosons is to
renormalize the electronic hopping strength. The c numbers
of the slave-bosons can be solved by minimization of free
energy. Next, we need to simplify our model, because the
16 slave-boson parameters are not easy to solve, even on
the mean-field level. Let us analyze the real situation of our
system. In our system, when we consider Ni 3dx2−y2 and 3dxy

orbitals, the electron on every site is between 2 and 3. More-
over, there is a large crystal field split between two orbitals.
And the Hubbard interaction strength U in two orbits is very
large, which prevents two electrons from occupying the same
orbit on the same site. In addition, we assume that system is
spin degenerate. So we believe that the probability of some
electron occupied states is very small, such as empty, single,
and four occupied states, and these states can be ignored in
our case, so it is only four effective occupied states are left
in our model, and they are {s, d1, d2, h1}. s means there are
two electrons in the lower band (s = s2). d1 means the each
band has one electron (d1 = d↑↑ = d↓↓), and the two electrons
are arranged paramagnetically. Relatively, d2 means two elec-
trons are antiferromagnetically arranged (d2 = d↑↓ = d↓↑). h1

means there are two electrons in the lower band and one
electron in the upper band (h1 = h1↑ = h1↓). So under this
condition, the interaction term is simplified to

Hint = NUs2 + 2N (U ′ − JH )d2
1 + 2NU ′d2

2

+ 2N (U + 2U ′ − JH )h2
1 (B13)

and the completeness relationship of the slave-bosons
Eq. (B5) and the conservation of the number of bosons and
electrons [Eq. (B6)] can be expressed as

1 = s2 + 2
(
d2

1 + d2
2 + h2

1

)
, (B14)

n1 = 2
(
d2

1 + d2
2 + h2

1

)
, (B15)

n2 = 2
(
s2 + d2

1 + d2
2 + 2h2

1

)
. (B16)
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With these constraints, the q factor of the hopping term also is
simplified:

q1 = 2
(
1 − 2d2

1 − 2d2
2 − s2

1

)
s2

(1 − s2)(1 + s2)
,

q2 =
(
1 − 2d2

1 − 2d2
2 − s2

)
(d1 + d2)2

2
(
d2

1 + d2
2

)(
1 − d2

1 − d2
2

) . (B17)

We discuss the modification of superconductivity in the next
section.

In this work, we only consider paramagnetic solutions,
since no long-range magnetic order has been reported in the
experiments. The discussion of influence of magnetic solution
in the slave-boson calculation is left for future study.

APPENDIX C: BOGOLIUBOV-DE GENNES EQUATION
AND SUPERCONDUCTIVITY

We use the BdG method to deal with the superconductivity.
First, it should be noticed that there is no coupling between
two bands after the slave-boson mean-field approximation. So
we can treat the two energy bands respectively as a single
band. Thus, the single-band Hamiltonian can be written as:

Ĥα = −
∑
i,σ

μα n̂iασ + tαqα

∑
<i, j>,σ

(d̂†
iασ d̂ jασ + H.c.)

+ 1

4
Jα

∑
〈i j〉

(4Siα · S jα − niαn jα ), (C1)

where μα = μ − εα is the chemical potential of band α. We
have ignored the Hund coupling, because the Hund coupling
term only depends on slave-boson mean-field parameters. For
simplicity, we absorb the coefficient 1

4 into Jα in the following
text, that is, Jα = 1

4 Jα .
Next, by using mean-field approximation and translating it

into the k space, we get a new Hamiltonian in the mean-field
level [69]:

Ĥα =
∑
kσ

[−2(K + tα )(cos kx + cos ky) − μα]d̂†
kασ

d̂kασ

−
∑

k

(�∗
dηkd̂−kα↓d̂kα↑ + �dηkd̂†

kα↑d̂†
−kα↓)

+ N |�d |2
3Jα

+ 4NK2

3Jα

+ 2JαNnα (1 − 2nα ), (C2)

where ηk = cos kx − cos ky, assuming a d-wave symmetry
pairing, and we define order parameters as

�d = 3Jα

N

∑
k

ηk〈d̂−kα↓d̂kα↑〉

K = 3Jα

2N

∑
k

(cos kx + cos ky)〈d̂†
kασ

d̂kασ 〉. (C3)

Before solving the Hamiltonian (C2), we need to consider
the influence by slave-bosons. As mentioned in the previous
section, slave-boson method modifies hopping term with q
factors, so we also introduce the q factors into superconduc-

tivity:

Ĥα =
∑
kσ

[−2qα (K + tα )(cos kx + cos ky) − μα]d̂†
kασ

d̂kασ

− qα

∑
k

(�∗
dηkd̂−kα↓d̂kα↑ + �dηkd̂†

kα↑d̂†
−kα↓)

+ N |�d |2
3Jα

+ 4NK2

3Jα

+ 2JαNnα (1 − 2nα ). (C4)

And order parameters also be modified by q factors:

�d = 3Jαqα

N

∑
k

ηk〈d̂−kα↓d̂kα↑〉

K = 3Jαqα

2N

∑
k

(cos kx + cos ky)〈d̂†
kασ

d̂kασ 〉. (C5)

So we can conclude that if the electron kinetic energy is
zero, then there is no superconductivity in system. To solve
the Hamiltonian (C4), we introduce the BdG method. The
Bogoliubov transformation of Fermion operator is

d̂†
kα↑ =

′∑
n

(u∗
nk γ̂

†
nk,↑ + vnk γ̂n,−k,↓)

d̂−kα↓ =
′∑
n

(unk γ̂n,−k,↓ − v∗
nk γ̂

†
nk,↑), (C6)

where the ′ over the summation means only sum with positive
energy eigenvalue and γ̂

†
nkσ

and γ̂nkσ are the quasiparticle
generation and annihilation operators and they satisfy the an-
ticommutation relation. By using Bogoliubov transformation,
the diagonalized Hamiltonian can be written as

Ĥeff = Eg +
′∑

n,k,σ

γ̂
†
nkσ

γ̂nkσ . (C7)

We mark a new kinetic energy parameter as εk = −2(K +
tα )(cos kx + cos ky) for simplicity. And the commutation rela-
tion between the creation (annihilation) operator of electrons
and the system Hamiltonian is

[d̂†
kα↑, Ĥα] = −(qαεk − μα )d̂†

kα↑ + qα�∗
dηkd̂−kα↓,

[d̂−kα↓, Ĥα] = (qαεk − μα )d̂−kα↓ + qα�∗
dηkd̂†

kα↑. (C8)

Substitute Eq. (C6) and Eq. (C7) into Eq. (C8) and compare
the coefficients of the quasiparticle operators on both sides of
the equation. We can get the coupled equations of coefficients
{unk, vnk}:

Enk

(
unk

vnk

)
=

(
qαεk − μα qα�dηk

qα�∗
dηk −qαεk + μα

)(
unk

vnk

)
. (C9)

The self-consistent equations of mean-field order parameter
and number of density can be written as

�d = − 3Jαqα

N

∑
nk

ηkunkv
∗
nknF (Enk ),

K = 3Jαqα

2N

∑
nk

(cos kx + cos ky)|unk|2nF (Enk ),

nα = 2

N

∑
nk

|unk|2nF (Enk ), (C10)
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where nF (Enk ) is the Fermi-Dirac distribution with energy
Enk . Using the self-consistent iteration of Eq. (C9) and
Eq. (C10), we can get the mean-field order parameters. The
last point to mention is that although the superconducting
order parameter �d is written here as a complex number, it
is actually a real number under the conditions we consider.

APPENDIX D: DISCUSSION ON R 5d ELECTRONS

In the main text, we only keep two correlated Ni 3d orbitals
in the construction of effective model by neglecting the 5d
electron band from the rare-earth element. Here we present
several remarks and explain why we discard the R 5d electron
band in the effective model.

(1) We notice that, in a recent experiment on the
Nd6Ni5O12 compound [74,75] (which hosts a 3d8.8 configura-
tion, named n = 5 in series Rn+1NinO2n+1), superconductivity
survives and shows very similar behavior with infinite nicke-
lates (n = ∞). However, the 5d band around the Fermi level
of the Nd6Ni5O8 compound is totally different from that
in infinite nickelates: Instead of a 5dz2 band around the �

point, Nd6Ni5O8 shows a 5dxy band around the M point. This
dramatic 5d band difference, but with the similar supercon-
ducting behavior, strongly supports that the 5d band from rare
earth is irrelevant to superconductivity.

(2) In infinite-layer nickelates, the band around the � point
is mainly made of the 5dz2 orbital, which has sizable hy-
bridization with the Ni 3dz2 orbital. However, as we elucidated
in the main text, both RIXS experiment [52] and our calcula-
tions show that the Ni 3dz2 orbital is deeply below the Fermi
level and hardly contributes to the physics in the NiO2 plane.
Thus, if we focus on the nature of superconductivity, that is
believed to occur in the NiO2 plane, then it is reasonable to
neglect the 5d band around the � point in the effective model.

(3) In infinite-layer nickelates, under hole-doping, the 5d
band around the � point quickly vanishes (or its contribution
around the Fermi level vanishes), which implies this 5d band
is irrelevant to the superconducting nature [34].

Based on the above reasons, we speculate that the 5d band
from rare-earth elements contributes to modifying the electron
correlations on the Ni 3dz2 orbital through the hybridization
effect and to serving as a charge reservoir. In this regard, the
existence of an R 5d band can explain that the charge carriers
changes from electron-like to holelike on hole doping in the
Hall measurement. That is, the existence of an R 5d band
contributes to electron-like carriers in the parent compound,
and then these electron-like carriers continue reduce on hole
doping. At the critical doping level, the contribution of the R

weak insulator

weak insulator

FIG. 12. Critical doping level of superconducting dome as a
function of Hund’s coupling JH .

5d band around the Fermi level vanishes, so that the carrier
type becomes holelike. This is confirmed in many DFT calcu-
lations, e.g., Ref. [34].

Last, we also notice that RIXS data cannot fully exclude
the contributions of Nd 5d orbitals when doing atomic multi-
ple calculations [52]. The detailed role of Nd 5d orbitals needs
a careful study in the future.

APPENDIX E: SUPERCONDUCTING CRITICAL
DOPING LEVEL

In the main text, we discuss the superconducting dome
and related critical doping level at a given Hund exchange
strength JH = 0.7 eV. In this section, we discuss how the
superconducting dome evolves as a function of JH . Figure 12
shows the dependence of critical doping levels as a function of
Hund’s interaction JH (by fixing other parameters). Xc1(Xc2)
is the lower (upper) critical doping level and the supercon-
ducting dome appears within Xc1 < x < Xc2. As we see, the
lower critical doping level Xc1 is independent of JH while the
upper critical doping level Xc2 is gradually suppressed with
increased JH . Thus by choosing JH ∼ 0.85 eV, the obtained
critical doping level is comparable with experiments. Such a
Hund’s coupling is actually a large value and the commonly
used JH for nickel is about 0.7 eV in DFT+DMFT calculation,
so we use 0.7 eV in the paper for illustration.
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