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Susceptibility synthesis of arbitrary shaped metasurfaces
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Visual perception relies on light scattering at the object’s surface in the direction of observation. By
engineering the surface scattering properties, it is possible to realize arbitrary visual percepts. Here, we
address theoretically this problem of electromagnetic field transition conditions at conformal interfaces to
achieve surface-topography-dependent transmitted and reflected fields. Our analysis, supported by two- and
three-dimensional finite-element simulations, provides a solid theoretical framework to design metasurfaces for
cloaking, wearable optics, and next-generation freeform imaging systems.
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I. INTRODUCTION

For centuries, optical design consisted of developing thin
films and various coatings to address light reflection, trans-
mission, and/or diffusion at interfaces. Developments in
nanophotonics have strongly improved our ability to control
light scattering processes with optically resonant nanostruc-
tures. Artificial optical materials, also dubbed metamaterials
and metasurfaces, presenting unexpected light propagation
effects have been realized, leading to cloaking [1], negative
refraction [2,3], subwavelength focusing, generalized refrac-
tion [4], and vectorial electromagnetic field control [5–8].
Today these “conventional” metamaterials and metasurfaces
are realized assembling subwavelength photonic structures.
The study of the device’s optical response is generally com-
plex and requires lengthy numerical simulations that describe
in detail the effect of light interaction with a large num-
ber of nanophotonic building blocks. To avoid modeling
thousands and billions of small geometric features, homog-
enization methods that approximate the complexity of an
inhomogeneous material filed with nanoscale inclusions by
its effective medium response, i.e., homogeneous artificial
material, have been proposed [9,10]. For the case of metasur-
faces, consisting of a surface two-dimensional arrangement
of nanostructures, equivalent transition conditions linking the
values of the macroscopic field quantities on both sides of
a thin homogenized layer have been derived. In fact, such
transition conditions are well known in electromagnetics but
also in acoustics and are commonly used to simplify physical
interpretation or ease numerical simulations [11–13]. Meta-
surfaces have thus been modeled using advanced effective
transition conditions, called generalized sheet transition con-
ditions (GSTCs). GSTCs were originally derived in optics
in the 1990s in the seminal paper of Idemen [14]. These
transition conditions conceal in a tensorial form the equivalent
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response occurring on reflecting and transmitting fields at
complex interfaces. Efforts to reproduce the above-mentioned
intriguing effects using GSTC formulation, including anoma-
lous refraction, cloaking, and vectorial electromagnetic field
control, have been realized recently [15,16]. But so far, model-
ing relied on Idemen’s original work, and most papers dealing
with GSTCs only considered layers manufactured on planar
surfaces.

Here, we provide a fully self-contained introduction to
GSTCs on arbitrary geometries—namely, conformal GSTCs
(C-GSTCs)—with all the necessary theoretical and numerical
tools to exploit these transition conditions. A schematic of the
studied problem is presented in Fig. 1. Inspired by Idemen’s
original idea to calculate the reflection and transmission prop-
erties of field discontinuity at planar interfaces, our derivation
considers both electric and magnetic surface distributions on
a shaped surface (see formal description in [17]). We express
these quantities in the sense of the distribution function along
the surface. After deriving the C-GSTCs, we explain the inver-
sion procedure to synthesize the susceptibilities of conformal
interfaces for arbitrary input-output fields. Finally, a numeri-
cal implementation of these expressions using a finite-element
method (FEM) is realized to study the angular sensitivity
of simple metasurfaces, including deflector and lenses, and
we also propose a generic method for surface cloaking of
complex objects.

Compared to the existing literature on GSTCs, this article
contributes to the domain in three ways:

(1) We generalize the susceptibility synthesis method to
the conformal case by considering susceptibility tensors dis-
tributed on surfaces of arbitrary shapes. To obtain the GSTC in
curvilinear coordinates, an extension of the classical method
based on surface distribution is described.

(2) We provide a full two- and three-dimensional imple-
mentation of GSTC on arbitrary interfaces using the FEM
through the use of the variational formulation associated with
Maxwell equations and GSTC.

(3) We present numerical examples showing the versatility
of the synthesis method in multiple scenarios.
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FIG. 1. Schematic representation of conformal metasurfaces.
(a) Light reflection and refraction across a conformal metasurface
defined by an ensemble of nanostructured materials along the curved
surface. (b) The conformal metasurface is modeled using equivalent
GSTCs and the associated physical properties defined along the
surface to satisfy the input-output field discontinuities.

II. DERIVATION OF CONFORMAL GSTCs USING
SURFACE DISTRIBUTIONS

We consider Maxwell’s equations in the time-harmonic
regime assuming a time dependency in exp(+ jωt ):

∇ × E = − jωB, ∇ × H = jωD,

∇ · D = 0, ∇ · B = 0, (1)

together with the following (simply anisotropic) constitutive
relations linking the electromagnetic fields with the electric
and magnetic inductions through electric and magnetic sus-
ceptibility tensors:

D = ε0(χ ee + 1)E and B = μ0(χmm + 1)H. (2)

With these definitions, the electromagnetic fields satisfy the
following natural transition conditions at the interface be-
tween two media:

n × �E� = 0, n × �H� = 0, n · �D� = 0, n · �B� = 0,

where for any field A = E, H, D, B, the jump operator �A� =
A+ − A− with A± the values of A above and below the in-
terface. With a metasurface, however, the interface is covered
with resonant nanostructures of various geometries that can
resonantly interact with the incident light, inducing localized
surface electric and magnetic dipole moments at the interface
plane responsible for electromagnetic field discontinuities.
This interaction modifies the natural transition conditions. The
derivation of C-GSTCs begins by considering that disconti-
nuities may be formally treated by decomposing the fields
according to a series of nth derivatives of Dirac delta func-
tions δ

(n)
S defined along the surface (a proper mathematical

definition of this distribution is provided in Sec. II of the
Supplemental Material [17]). We consider here an arbitrary
conformal metasurface located on a two-dimensional surface
S = {x = (x, y, z), z = f (x, y)}, as presented in Fig. 1, and
assume that each field A can be decomposed as a series of
Dirac surface distributions δS with multiple singular parts and
one regular part as follows:

A(x) = A(x) +
∞∑

n=0

An(x, y)δ(n)
S (x), (3)

where the An are the singular parts of A defined on the con-
formal interface while the regular part A is given by

A(x) = A+(x) if z > f (x, y) and A−(x) if z < f (x, y).

Now and for the remainder of this paper, we will consider
that An = 0 for n > 0 (this is due to the fact that we are only
interested in the first-order transition conditions verified by
the fields). By substituting the distribution form of the fields
from (3) into Maxwell equations (1) and using the identities
discussed in Sec. II of the Supplemental Material [17], which
provide the curl and divergence of singular fields, we then find
that

(∇‖ × E0)δS + n × E0∂nδS + ∇ × E + n × �E�δS

= − jω(B0δS + B), (4)

(∇‖ × H0)δS + n × H0∂nδS + ∇ × H + n × �H�δS

= jω(D0δS + D), (5)

(∇‖ · D0)δS + n · D0∂nδS + ∇ · D + n · �D�δS = 0, (6)

(∇‖ · B0)δS + n · B0∂nδS + ∇ · B + n · �B�δS = 0. (7)

Without loss of generality, we can now consider that the inter-
face is surrounded by air (this situation occurs for example in
the case of nanohole arrays in slab waveguides [18]) and use
the same decomposition of the susceptibilities as the one for
the fields in Eq. (3), that is, χι(x) = χι,0(x, y)δS (x) for ι equal
to either ee or mm. The χι,0 terms are referred to as the surface
susceptibility tensors (and are given in meters). Putting this
definition into the constitutive relations of Eq. (2), one finds
that the first-order fields are linked to the mean value of the
regular fields across the interface via the surface susceptibil-
ities (see Sec. III of the Supplemental Material [17], where
the full details of the proof are given). Finally, separating the
regular and singular terms in Eqs. (4)–(7) we end up with the
following C-GSTCs:

n × �E� = − jωμ0(χmm,0{H})‖ + ∇‖ × (χ ee,0{E})⊥, (8)

n × �H� = jωε0(χ ee,0{E})‖ + ∇‖ × (χmm,0{H})⊥, (9)

n · �D� = −ε0∇‖ · (χ ee,0{E})‖, (10)

n · �B� = −μ0∇‖ · (χmm,0{H})‖, (11)

where {·} refer to the mean operator with {A} = (A+ +
A−)/2. These boundary conditions suggest that a subwave-
length metasurface operates as if effective surface currents
[given on the right-hand side of Eqs. (8) and (9)] were present
on its surface.

III. SUSCEPTIBILITY SYNTHESIS

GSTCs provide a way to synthesize the optical response
of a shaped metasurface to transform any given incident field
into user-defined outgoing transmitted and reflected fields
(denoted by E0

+ and E0
−, respectively). The results of our

synthesis are therefore the coefficient values of the C-GSTCs
electric and magnetic surface susceptibility tensors χι,0 as a
function of the position along an arbitrarily shaped surface.
Even though this method does not directly provide the ge-
ometry of a real metasurface realizing such susceptibilities,
it was extensively used throughout the recent years [19–26] to
model and investigate metasurface functionalities, including
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bianisotropic surfaces and multi-wave-front shaping metasur-
faces.

A. Exact method

Solutions for the susceptibilities are obtained by solving
the inverse problem in Eqs. (8) and (9). Note that no physical
assumption has been made so far to restrict the suscepti-
bility tensor values, leaving us with 12 complex unknown
coefficients (due to the symmetry of the susceptibility ten-
sors). Thus, if we consider setting only one incident and one
outgoing field, the solution of the inversion problem is unde-
termined. Equations (8) and (9) only provide four equations in
the interface local system of coordinates, indicating that mul-
tiple combinations of coefficients could satisfy the equations.
To obtain a well-posed inversion problem, the most traditional
method consists of relying on physical conditions, includ-
ing for example symmetries and reciprocity such that the
C-GSTCs share the same number of equations and unknown
susceptibility coefficients. In the following, we consider ten-
sors such that the tangential curl terms in (8) and (9) vanish.
This is a common assumption made with planar GSTC where
this term is usually set to zero by taking χαz

ι,0 = χ zα
ι,0 = 0 for

α = x, y, z when n = z. For nonplanar interfaces a similar
assumption is made using the local orthonormal curvilinear
basis (τ1, τ2, n) with tangential vectors τ1 and τ2. Given the
decomposition of any field A on S by A = (A · τ1)τ1 + (A ·
τ2)τ2 + (A · n)n, the assumption of vanishing tangential curl
terms in (8) imposes that the matrices χι,0 satisfy

(χι,0A)⊥ = [(χι,0A) · n]n = 0. (12)

Introducing now the general decomposition of the susceptibil-
ity tensors in any basis B,

χι,0 =
∑

α,β∈B
χαβ

ι α ⊗ β ⇒ χι,0A =
∑

α,β∈B
χαβ

ι (A · α)β,

valid in both Cartesian or curvilinear coordinates consider-
ing either B = {x, y, z} or B = {τ1, τ2, n}, Eq. (12) leads to
χαn

ι,0 = 0 for α = τ1, τ2, n. With this choice of susceptibility
tensor, we drastically simplify the first two C-GSTCs into
their compact forms:

n × �E� = − jωμ0χmm,0{H‖}, (13)

n × �H� = jωε0χ ee,0{E‖}. (14)

Setting the off-diagonal terms χ τ1τ2

ι,0 and χ τ2τ1

ι,0 to zero then
leaves only four unknown coefficients in the curvilinear
coordinate system. In Cartesian coordinates the susceptibili-
ties are then found for α,β = x, y, z as χ

αβ
ι,0 = χ τ1τ1

ι,0 τ1
ατ

1
β +

χ τ2τ2

ι,0 τ2
ατ

2
β. Given injected and transmitted electromagnetic

fields E0
±, H0

±, the inversion of C-GSTCs Eqs. (13) and (14)
around the interface leads to

χ τ1τ1

ee,0 = −1

jωε0

�H0 · τ2�

{E0 · τ1} , χ τ2τ2

ee,0 = 1

jωε0

�H0 · τ1�

{E0 · τ2} ,

χ τ1τ1

mm,0 = 1

jωμ0

�E0 · τ2�

{H0 · τ1} , χ τ2τ2

mm,0 = −1

jωμ0

�E0 · τ1�

{H0 · τ2} . (15)

FIG. 2. Schematic representation of a conformal metasurface
made of “perfect” meta-atoms with well-controlled phase changes.

B. Phase-based method

One difficulty with the synthesization method of Eq. (15)
is that the resulting susceptibilities have a nonzero imaginary
part, meaning that suitable loss and gains need to be imple-
mented in the metasurface. We explain in this section how to
adapt the phase-based method described in [24] in order to
synthesize real-valued susceptibilities. The idea is to consider
“perfect” meta-atoms with a transmission equal to 1 and phase
shift φ as represented in Fig. 2. For a two-dimensional electric
field polarized in the (out-of-plane) y direction, we have

E0
y,− = e− jk0n·x,

H0
‖,− = − 1

μ0c
n × yE0

y,−,

E0
y,+ = e− j(k0n·x+φ),

H0
‖,+ = − 1

μ0c
n × yE0

y,+.

Once reported in (15), we find that all susceptibilities are equal
to [using that (e− jφ − 1)/(e− jφ + 1) = − j tan(φ/2) and (n ×
y) · τ1 = −1 in two dimensions]

χ = − 2

k0
tan

(
φ

2

)
.

The susceptibilities are thus found by first computing the
expected phase shift φ along the (conformal) metasurface.
Examples using this method are reported in Secs. VI A 4 and
VI B 2 of the Supplemental Material [17].

IV. FINITE-ELEMENT IMPLEMENTATION

To verify the validity of our C-GSTC derivation we im-
plemented these equations using the FEM and tested the
performance of the synthesized interfaces in terms of angu-
lar response efficiency. Incidentally, and to the best of our
knowledge, only a recent work dealing with FEM modeling
of planar GSTCs in two dimensions has been proposed [27].
Here, we provide a full three-dimensional modeling method
that applies to both planar and conformal interfaces. This
modeling method relies on the FEM and thus on the varia-
tional formulation associated with the vectorial form of the
wave equation. In general, this formulation is given in the
frequency domain as

∑
D∈D

∫
D

1

μ
∇ × E · ∇ × φ − k2εE · φ dx + B∂D = 0, (16)

where D is the set of domains present in the simulation
and B∂D is a surface integral accounting for the boundary
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conditions on the domains borders ∂D and given by

B∂D = − jωμ0

∫
∂D

n × H · φ ds.

At the interface ∂D1 ∩ ∂D2 between two domains, the natural
transition conditions give n × �H� = 0, thus canceling out
the surface integral. With the C-GSTCs however, the jumps
of the components of the fields are not equal to zero and
BS 	= 0 (with S the C-GSTC interface). From Eqs. (13) and
(14) one finds (see Sec. V of the Supplemental Material [17])
that BS = Bee,1

S + Bee,2
S + Bmm,1

S + Bmm,2
S with

Bee,	
S = −

∫
S

k2
0χ

τ	τ	

ee,0 {E · τ	}{φ∗ · τ	}ds,

Bmm,	
S =

∫
S

(
χ τ	τ	

mm,0

)−1
�E · τ 	̄��φ∗ · τ 	̄�ds,

where 	̄ = 1 if 	 = 2 and 1 otherwise. One modification of
the FEM scheme is also required in order to account for these
surface integrals. Indeed, the Nédélec elements usually con-
sidered in electromagnetic FEM simulations [28,29] ensure
that the natural transition conditions are verified; it considers
the same degrees of freedom for the tangential components
of the electric field on each side of the interfaces. To account
for the C-GSTCs, we instead discretized separately the two
domains on each side of S so as to duplicate the number of
degrees of freedom for the tangential components and thus
make it possible to have a nonzero jump of the fields on S.
The surface integrals in BS together with (16) and additional
boundary conditions at the edge of the simulation area to
generate an input plane wave and to absorb all outgoing waves
(open system) define the whole simulation problem. With
respect to existing works dealing with GSTC equations that
replace metasurface discontinuous regions with small equiva-
lent volumes (Sec. IV B of Ref. [30]; Sec. IV of Ref. [23]), our
approach implements directly the real transition conditions
inside the variational formulation. Our FEM simulations were
performed using COMSOL Multiphysics in both two and
three dimensions [31].

V. NUMERICAL EXAMPLES

The ability to design arbitrary shaped functional inter-
faces is of particular interest to study the impact of freeform
geometry and compare their performance with respect to con-
ventional flat optical components. We have first realized two
simple studies of the usual optical components, a lens and a
deflector, to illustrate the impact of interface geometry and
how it influences the device optical performance.

A. Deflector

In this first example, we consider a periodically oscillating
interface designed using C-GSTCs from which an incident
plane wave is refracted at an angle of θr � 45◦ (the precise
value of θr is given by the order of diffraction) with respect
to the z axis. We synthesized the susceptibilities using (15)
considering z-polarized input and output plane waves and the
output one given by an order of diffraction with angle θr .
The interface geometry is given by f (x, y) = α cos( 2π

5λ
x) for

α ranging from 0 to 2.5λ. We implemented the C-GSTC FEM

FIG. 3. Planar and sinusoidal light deflectors. (a) Flat metasur-
face deflecting light at an angle θ◦

r . (b) Similar calculation to that
in (a) but considering a sinusoidal (conformal) interface. (c) and
(d) Associated electric susceptibilities (here χ ee = χmm) for both
planar and conformal metasurfaces. (e) Sensitivity of the transmis-
sion (normalized by the total output power) into the θ◦

r order of
diffraction depending on the amplitude α of the interface’s sinusoidal
oscillations.

as mentioned above considering a simulation domain size of
20λ × 20λ and the results are summarized in Fig. 3.

As we can see in Fig. 3(e) the sinusoidal interface does not
perform well when the plane wave is sent with an incident
angle different than zero. More precisely, we can see that its
performance drastically reduces the deflection efficiency from
100% to only 50% for less than 10◦ incident angle change.

B. Lens

This example is inspired from pioneering work realized by
Abbe back in 1881 [32]. It states that for any optical system,
which would be able to produce on- and off-axis sharp images,
the ratio of the sines of the entrance and exit angles (αin, αout )
of optical rays must equal the magnification M of the
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(a) (b) (c) (g)

(h)
(f)(e)(d)

FIG. 4. Planar and conformal metalenses. (a) Schematic of the Abbe-sine numerical experiment realized with curved metalens. (b) and
(c) Calculation of the field transmitted through a synthesized conformal metalens when R = f . (d) Focusing profile [dashed lines in (b)–(c) and
(g)–(h), respectively] of the curved metalens when R = f . (e) Same as (d) for the planar metalens. (f) Sensitivity of the full width at half
maximum with respect to the incident angle for different radii of curvature of the metasurface. (g) and (h) Same calculation as in (c) but using
a plane wave tilted by 22.5◦ while adjusting the surface curvature to R = f and R = ∞, respectively.

optical system with the relationship sin(αin)/ sin(αout) = |M|.
Ray-tracing calculations of light focusing from curved meta-
surfaces have suggested that the Abbe-sine condition can be
realized for spherical interface with radius of curvature equal
to the focusing distance of the curved metalens [33,34]. The
C-GSTCs proposed herein have been utilized to calculate the
susceptibilities of a focusing half-circle metalens and are used
to study the angular response of the Abbe-sine component.
We thus consider the focusing of an incident plane wave from
a metalens covering a hemisphere centered at (0, 0, R) with
radius R while imposing a spherical output wave centered at
the focal point (0, 0, f ). The simulation results are provided
in Figs. 4(b) and 4(c) using a domain size of 10λ × 30λ with
f = 10λ.

To reach the Abbe-sine condition with curved interfaces,
it is necessary to study the focusing responses of the metal-
ens for arbitrary incident angles, while keeping the surface
susceptibilities initially calculated for a normally incident
beam. The comparison of both planar versus curved focusing
efficiency is presented in Figs. 4(d) and 4(e), including a
quantitative comparison with the evolution of the full width
at half maximum (FWHM) in Fig. 4(f). It indicates that the
FWHM of the conformal metasurface is almost invariant with
respect to the incident angle while it increases for the pla-
nar interface case as a function of the incident angle from
0 to 20◦. Conformal metasurfaces are thus able to improve
the focusing profile and the point-spread function to reduce
monochromatic aberrations. In Sec. VI of the Supplemental
Material [17] we also present incident angle characterization

of sinusoidal interfaces that are traditionally used for light
deflection in generalized Snell-law experiments. We show that
instead, their deflection efficiency is extremely sensitive to the
incident angles.

C. Cloaking

In our third example, we realize a new sort of optical
illusion, manipulating the optical signature of an actual object,
for example a cat-shaped structure, to mimic light scatter-
ing of another object, a mouse-shaped structure. Applying a
metasurface conformally to the shape on the former object,
one can realize an advanced version of cloaking accounting
for both the complex shapes and projection of arbitrary field
distributions. Our approach suggests wrapping a metasurface
conformally to an object, while adjusting the surface suscep-
tibilities, to reflect and/or transmit light as if it was coming
from another user-defined object.

The synthesizing of the susceptibilities is realized by
computing first the electromagnetic fields scattered by both
objects, i.e., cat and mouse shaped nanostructures in the ab-
sence of a metasurface [see Figs. 5(c) and 5(d)], considering
an incident plane wave impinging from the bottom left of the
simulation domain. We then apply the inversion procedure to
adjust the interior fields from the cat geometry to the exte-
rior fields scattered by the mouse-shaped structure through
the conformal susceptibilities disposed along the cat surface
[see Fig. 5(e)]. The calculations are performed considering
a background domain with permittivity equal to εr = 1 and
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(g)

(f)
(b)(a)

(e)

(c)

(d)

ω
∂ω

Ω
∂Ω

z
com

ponent
of

E
(V

/m
)

2

1

0

-1

-2

40◦
45◦
50◦

Incoming plane wave

FIG. 5. Conformal metasurface making the cat reflections look like the ones coming from a virtual mouse. (a) and (b) Schematic
representation of the system: a shape � with an optical index equal to 2 is coated with a conformal metasurface on its borders ∂� with
susceptibilities synthesized in such a way that the reflections produced by this shape are equal to the one from a nonmodified shape ω with the
same optical index. (c) and (d) Simulation of the reflected field for � (resp. ω) representing a cat (resp. a mouse). (e) Simulation of the C-GSTC
coated � shape (ω given for comparison with dashed lines). (g) Absolute difference of the outgoing Poynting vector’s normal component on
the exterior circle between the field reflected by the ω shape and the C-GSTC coated � one. (f) Same as (g) but imposing a zero electric field
inside the � shape during the susceptibility synthesization step.

assuming that the objects are made of homogeneous medium
with a permittivity εr = 2. The results summarized in Fig. 5
thus indicate that the mouse-scattered fields are reproduced
almost perfectly, even from an arbitrary shaped structure, pro-
ducing the illusion of light scattering from a different object.
For practical applications, it is necessary to verify that the
scattering illusion is preserved over a relatively large incident
angle range. Figure 5(g) presents the angular cross sections as
a function of the incident angles (the outward Poynting vec-
tor norm) computed on the edge of the simulation domain
(circle boundary). Figure 5(g) shows that the performance
of the illusion system behaves poorly for incident angles
slightly different from the designed case. Note that here the
susceptibilities have been calculated considering that the field
inside the cat-shaped nanostructure remains equal to the field
distribution in the absence of a beam-shaping metasurface.
Choosing another inner field distribution is also possible. As
an example, to study designs with reduced angular sensitivity,
we show in Fig. 5(f) that imposing a zero field inside the
shaped nanostructure could maintain broader angular scatter-
ing [41–43].

VI. CONCLUSION

In conclusion, we have proposed a detailed derivation
and full wave implementation of conformal GSTCs. We pro-
posed several numerical examples showing the versatility
of the inversion procedure with C-GSTCs. Our proposed
modeling technique may be of interest to scientists and en-
gineers searching for innovative solutions to adjust the optical
response of freeform optical components. However, it is im-
portant to keep in mind that even if the presented numerical
results may seem promising for future applications of con-
formal metasurfaces, the susceptibilities obtained through the
inversion procedure are not directly linked to physical mate-
rials or structures. Furthermore, our numerical examples have
shown that spatially varying complex susceptibilities need to
be considered, suggesting that a dedicated number of gains
and losses have to be carefully distributed along the surface
to match incoming with outgoing fields. In Sec. III B, we
have proposed a synthesization method based on phase shifts
which lead to real-valued susceptibilities. Numerical experi-
ments (whose results are given in the Supplemental Material
[17]) show that this method still allows one to control the
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transmitted fields at the expense of small losses. Other syn-
thesis methods which rely on more practical parameters could
also be considered and adapted to conformal geometries. As
such, we can cite methods based on reflection and trans-
mission coefficients such as in [24,35–37] or the method in
[38] which relies on a Lorentzian model of the susceptibili-
ties. Lastly, susceptibilities of real metasurfaces could also be

obtained through the use of the homogenization theory such
as in Refs. [39,40].
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