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Tensor network states form a powerful framework for both the analytical and numerical study of strongly
correlated phases. Vital to their analytical utility is that they appear as the exact ground states of associated
parent Hamiltonians, where canonical proof techniques guarantee a controlled ground space structure. Yet,
while those Hamiltonians are local by construction, the known techniques often yield complex Hamiltonians
which act on a rather large number of spins. In this paper, we present an algorithm to systematically simplify
parent Hamiltonians, breaking them down into any given basis of elementary interaction terms. The underlying
optimization problem is a semidefinite program, and thus the optimal solution can be found efficiently. Our
method exploits a degree of freedom in the construction of parent Hamiltonians—the excitation spectrum of
the local terms—over which it optimizes such as to obtain the best possible approximation. We benchmark our
method on the AKLT model and the toric code model, where we show that the canonical parent Hamiltonians
(acting on 3 or 4 and 12 sites, respectively) can be broken down to the known optimal two-body and four-body
terms. We then apply our method to the paradigmatic resonating valence bond (RVB) model on the kagome
lattice. Here, the simplest previously known parent Hamiltonian acts on all the 12 spins on one kagome star.
With our optimization algorithm, we obtain a vastly simpler Hamiltonian: we find that the RVB model is the
ground state of a parent Hamiltonian whose terms are all products of at most four Heisenberg interactions, and
whose range can be further constrained, providing a major improvement over the previously known 12-body
Hamiltonian.

DOI: 10.1103/PhysRevB.106.035109

I. INTRODUCTION

Tensor network states (TNS), in particular one-
dimensional matrix product states (MPS) and higher-
dimensional projected entangled pair states (PEPS), form
a powerful framework for the study of strongly correlated
quantum many-body systems. They describe complex
many-body wave functions by associating local tensors to
individual sites which are then correlated locally, based upon
the understanding that the entanglement follows the locality
of the interactions. MPS and PEPS therefore provide a faithful
approximation of low-energy states of local Hamiltonians,
which—together with efficient algorithms for their variational
optimization—makes these states the basis of a wide variety
of numerical methods [1–7].

At the same time, MPS and PEPS also provide an effec-
tive toolkit for the analytical study of quantum many-body
systems [8], for several reasons: first, tensor networks al-
low to model global symmetries locally, enabling one to
understand their action on the entanglement [9–11]; second,
many interesting wave functions have an exact MPS or PEPS
representation (such as topological fixed point models or An-
derson’s resonating valence Bond wave function) [12–15];
and third, any MPS or PEPS appears as the exact ground

state of some associated local parent Hamiltonian [11,16–
21]. Importantly, these Hamiltonians inherit the symmetries
encoded in the tensor, and techniques for lower bounding
their gaps have been established, which makes them per-
fectly suited for the analytical characterization of the physics
of strongly correlated phases. The most well-known among
such models is arguably the AKLT (Affleck-Kennedy-Lieb-
Tasaki) model [22,23], which provided the first example of
a spin-1 model with SO(3) symmetry for which the Haldane
gap could be rigorously proven, and which historically gave
rise to the development of MPS as an analytical tool [8].

In constructing parent Hamiltonians, two main desiderata
must be met: They should have a well-behaved ground space,
and they should be simple. By construction, they enforce local
consistency of the ground space with the tensor network de-
scription, and a variety of conditions has been derived which
guarantee that this local consistency implies global consis-
tency, that is, a global ground space which is either unique or
has a controlled degeneracy (such as for topological phases)
[11,17–21]. At the same time, the construction principle of en-
forcing local consistency automatically yields a Hamiltonian
which is local, i.e., a sum of local terms. However, though
local, these Hamiltonians can still act on fairly large clusters,
in particular in 2D. This is due to the fact that generically,
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nontrivial constraints only arise once the degrees of freedom
in the bulk exceed those at the boundary, which requires larger
regions in higher dimensions.

Remarkably, however, in many cases of practical inter-
est much smaller Hamiltonians than those derived through
canonical (i.e., generally applicable) proof techniques suf-
fice. For instance, in the 1D AKLT model, the canonical
three-body Hamiltonian can be broken down into two-body
Hamiltonians, as well as in the 2D honeycomb AKLT model
(ten-body to two-body) or in the toric code model (12-body
to four-body). Clearly, obtaining such significantly simplified
Hamiltonians is highly desirable. Unfortunately, no system-
atic procedure for breaking down canonically constructed
parent Hamiltonians is known: to start with, this requires a
suitable guess for a simpler Hamiltonian, which is not always
available, and said guess must subsequently be shown to have
the same ground space as the canonical Hamiltonian, which
must either be done brute-force on a computer, or by proving
it by hand on a case-by-case basis.

In this paper, we present a systematic method to break
down any given parent Hamiltonian into sums of simple el-
ementary Hamiltonian terms. The method can be combined
with any canonical tensor network parent Hamiltonian con-
struction from the literature, and for any given target set of
desired simple Hamiltonian terms. Our method gives rise to
an optimization problem which can be solved systematically
and efficiently; formally, the optimization can be rephrased as
a semidefinite program (SDP) and is thus converging provably
efficiently. A central ingredient which we exploit in this opti-
mization is an ambiguity in the canonical construction of par-
ent Hamiltonians, relating to the spectrum of local excitations.

To test our method, we first benchmark it on two well-
studied models. First, the 1D AKLT model, where we show
that it allows to reduce the four-body parent Hamiltonian
obtained through the most fundamental canonical technique
to a sum of nearest-neighbor two-body interactions. Second,
the toric code model, where more refined canonical techniques
allow to construct a 12-body Hamiltonian, which our method
breaks down to the well-known sum of four-body vertex and
plaquette terms.

We then apply our algorithm to one of the most paradig-
matic models of a topological spin liquid, the spin-1/2
resonating valence bond (RVB) state on the kagome lattice.
There, our method allows us to obtain a vastly simpler parent
Hamiltonian than the ones previously known. Namely, for this
model, refined canonical techniques gave rise to a 19-body
Hamiltonian (acting on two overlapping stars) [13], which had
subsequently be shown to be a sum of two 12-body terms
(each acting on one star) by a suitable guess, confirmed by
brute-force numerical analysis [24]. Applying our method to
systematically study the possibility to further decompose this
12-body interaction, we find that it can be decomposed into
terms containing product of at most four Heisenberg interac-
tions each, thereby significantly reducing the complexity of
the parent Hamiltonian of the kagome RVB model.

II. TENSOR NETWORKS AND PARENT HAMILTONIANS

We start by introducing tensor network states and parent
Hamiltonians, and in particular canonical constructions for the
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FIG. 1. Tensor networks (shown for a 2D square lattice) are
constucted from a local tensors Ai

αβγ δ (with physical index i and
virtual indices α, β, . . .); they are arranged on a lattice and the
virtual indices are contracted to yield the expansion coefficient
|�〉 = ∑

ci1,...,iN |i1, . . . , iN 〉.

latter. Tensor networks [1,2,8] are constructed by associating
a tensor Ai

αβ··· to each site (we focus on translational invariant
systems, where all tensors are the same), where i = 1, . . . , d
is the physical index and α, β, . . . = 1, . . . , D are virtual in-
dices or entanglement indices with bond dimension D. The
tensors are then arranged on a lattice and the virtual indices
contracted (that is, identified and summed over) with those of
the adjacent tensors. Two particularly important classes are
MPS, where the tensors are arranged on a 1D line, and PEPS,
where the tensors are placed on some 2D lattice. After con-
tracting all indices with suitable boundary conditions (for the
purpose of this work, the boundary conditions are irrelevant,
but take periodic), one is left with a multi-index tensor ci1,...,iN
which depends on the physical index i of all N spins in the
system, and which provides an MPS or PEPS description of
its wave function |�〉 by virtue of |�〉 = ∑

ci1,...,iN |i1, . . . , iN 〉
[Fig. 1]. The construction can be modified to include more
than one type of tensors, such as tensors which only carry
virtual indices and which are placed in between the tensors
with physical indices; we will encounter such an instance later
in Sec. IV B.

We now turn to parent Hamiltonians. To this end, consider
blocking the tensors in a contiguous region R, and consider
the resulting object as a linear map P : (CD)⊗|∂R| → (Cd )⊗|R|
from the virtual indices at the boundary ∂R of the region
to the physical indices in the bulk R [Fig. 2(a)]. Since the
volume |R| grows faster than the boundary |∂R| as the size
of R is (uniformly) increased, one quickly reaches a point
where Im P is not full rank [Fig. 2(b)]. Then, we can define
a parent Hamiltonian h � 0 such that h|Im P = 0 and h|K > 0
on K = (Im P )⊥ [Fig. 2(c)]; canonically, one chooses h to be
the projector onto K. This Hamiltonian satisfies h|�〉 = 0. If
we now take such an hi centered around every site i in the
lattice, then H = ∑

hi � 0, and H |�〉 = ∑
hi|�〉 = 0, that

is, the MPS or PEPS |�〉 is a ground state of the parent
Hamiltonian H .

A key question is when this construction gives Hamiltoni-
ans with a well-behaved ground space. For this, the concept
of injectivity and the associated injectivity length is of central
importance [8]. A tensor network is said to be normal if under
blocking sufficiently many sites, P becomes an injective map.
The blocked tensor network is then said to be injective, and
the size L of the block (in 1D) is the associated injectivity
length. In 2D, the characterization of the smallest injective
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FIG. 2. Schematics of the parent Hamiltonian construction.
(a) The elementary tensors are blocked on a region R. The resulting
tensor is interpreted as a linear map P from the virtual to the physical
system. (b) If the blocked region is sufficiently large, the image of
the map P , and thus the support of the overall tensor network wave
function, will be only a subspace of the full physical Hilbert space
H, leaving an orthogonal complement (Im P )⊥ orthogonal to the
state. (c) A parent Hamiltonian for the state is obtained by taking
an arbitrary positive semi-definite operator h which is zero of Im P
and strictly positive on (Im P )⊥.

block will depend on the lattice and might not be unique,
for the following, we consider a square region of size H × V
which is injective. The relevance of injectivity lies in the
fact that an injective P can be inverted on Im P by acting
on the physical system. Thus an injective tensor network is
equivalent up to local (nonunitary) transformations to maxi-
mally entangled states between nearest neighbors. The latter
is the unique ground state of a two-body Hamiltonian, and
by conjugating this Hamiltonian with the inverse of P , one
arrives at the conclusion that the two-body parent Hamiltonian
constructed from the blocked tensor network has a unique
ground state [8,25,26]. Thus the parent Hamiltonian acting
on 2L sites (in 1D) or 2H × V and H × 2V sites (in 2D)
has a unique ground state. This result can be improved by
using more refined proof techniques, which allow to show
that the parent Hamiltonian constructed on L + 1 (in 1D) or
(H + 1) × V and H × (V + 1) sites (in 2D) has a unique
ground state [8,11,17].

Similar results have been derived for 2D systems exhibiting
topological order. There, the individual PEPS tensors must
exhibit an entanglement symmetry, characterized by a group
action or set of matrix product operators (MPOs), and the rele-
vant scale is set by the block size at which P becomes injective
on the symmetric subspace of the entanglement degrees of
freedom (G injectivity or MPO injectivity) [19–21]. Again,
this implies that the PEPS is equivalent to a topological fixed
point model up to local transformations, which can be used to
obtain a parent Hamiltonian with a topological ground space
(e.g., acting on 2H × 2V sites for Kitaev’s double models
on the square lattice) [13]; yet again, this can be improved

using more refined techniques to smaller regions, such as
(H + 1) × (V + 1) on the square lattice, where the size and
shape of the minimal region will depend on the structure of
the tensor network at hand (but not on the specific model) [8].

In the construction of parent Hamiltonians, there remains a
degree of freedom, beyond the size of the region (the P) from
which the Hamiltonian is constructed. Namely, we require
h|K > 0 exactly on K = (Im P )⊥, but any such h will be a
valid choice (and moreover, since any two such operators are
relatively bounded, this choice does not affect gappedness of
the total Hamiltonian). This degree of freedom can be utilized
to find an h which can be broken down into a sum of simpler
terms. One example where this happens is the AKLT model,
where the sum of two two-body Hamiltonian terms has the
same ground space as the canonical three-body Hamiltonian
with a suitably chosen h|K > 0. In this specific case, a guess
for the two-body Hamiltonian can be obtained from the parent
Hamiltonian construction, applied to two sites. However, this
need not generally be the case; rather, we generally expect a
parent Hamiltonian to be decomposable into a sum of smaller
terms which by themselves are not parent Hamiltonians (i.e.,
positive semi-definite operators which annihilate the state).
Thus the question arises whether and how the degree of free-
dom h|K > 0 can be systematically exploited to break down
parent Hamiltonians into a sum of simpler terms. This is
precisely the question which we will address in the remainder
of the paper.

III. LOCALITY OPTIMIZATION ALGORITHM

As we have just discussed, the parent Hamiltonian, con-
structed on any given patch, is highly nonunique, as any
operator h � 0 with h|K > 0 on K = (Im P )⊥, and zero oth-
erwise, will serve that purpose. In the following, we will
devise an algorithm which uses this degree of freedom to
break down the parent Hamiltonian into a sum of simpler
“target” terms.

A. Algorithm

The goal is to expand the target Hamiltonian in some given
set of (local) operators Oa,

h =
∑

a

caOa, Oa = (Oa)†. (1)

In order to keep the dimension of {Oa} as small as possible,
one can e.g. use that the parent Hamiltonian inherits all the
symmetries of the TN state, and restrict to a set which shares
the same symmetries. The goal of the algorithm is to find a
set of coefficients {ca} such that h is a parent Hamiltonian,
that is, h vanishes on Im P and it is strictly positive on its
orthogonal complement. To achieve this, we choose a basis
{|ϕα〉} of (Im P )⊥ and expand

h =
∑
α,β

Pαβ |ϕα〉〈ϕβ | , (2)

where we impose that P ≡ (Pαβ ) is a strictly positive matrix;
this guarantees that h has the required property. Finding a
decomposition {ca} of the parent Hamiltonian now amounts
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to finding zeros of the cost function

F (ca, Pαβ ) =
∥∥∥∥∥

∑
a

caOa −
∑
α,β

Pαβ |ϕα〉〈ϕβ |
∥∥∥∥∥

2

2

= X ∗
A MAB XB

!= 0, (3)

where the vector XA = (−ca, Pαβ ) contains both the informa-
tion on the expansion coefficients {ca} of h in the operator
basis {Oa}, and on the positive matrix Pαβ representing h
as a strictly positive operator on (ImP )⊥. The norm ‖ · ‖2

is the Frobenius norm. If we choose the basis {|ϕα〉} to be
orthonormal, 〈ϕα|ϕβ〉 = δαβ , the matrix M becomes sparse
and it reads

MAB =
⎛
⎝ Mab Ra,αβ

Rγ δ,b δαγ δβδ

⎞
⎠,

Mab = Tr(OaOb), Ra,αβ = 〈ϕα|Oa|ϕβ〉. (4)

By solving the eigenvalue problem (3), we thus obtain
solutions h = ∑

caOa which satisfy (2) and thus vanish on
Im P . However, h is not positive (or even non-negative) on
(Im P )⊥ unless we impose P > 0. To obtain solutions which
additionally satisfy this positivity condition, we thus choose
to minimize the quadratic form in Eq. (3) on the convex
space of positive definite matrices Pαβ . Hence, the optimized
Hamiltonian is given by the coefficients ca such that

(ca, Pαβ ) = ArgMin F (ca, Pαβ ), P � 1, (5)

where we imposed that the eigenvalues of P are � 1 without
loss of generality (as this only amounts to a rescaling).

A possible route to solve this optimization problem is to
apply a gradient descent algorithm to the cost function F , and
project onto the desired space at each step. We start from
an initial point such that the Hamiltonian h vanishes, i.e.,
ca = 0 for all a, and the initial Pαβ is the identity. Since
the cost function is a quadratic form, the gradient can be
efficiently computed by simple matrix multiplication. The
algorithm is thus as follows:

(1) Xin = (0, 1),
(2) X ′ = X − η ∇F (X ) = X − 2ηM · X ,
(3) X ′′ = 
(X ′),
(4) Repeat from 2. until convergence.
The projection 
 in 3. has to enforce the condition P � 1.

This can be achieved by taking the Pαβ components of the
vector X , and setting to one all the diagonal elements of
the triangular part of its Schur decomposition which dropped
below one at step 2., i.e.,


(X ) =
(

c

(P)

)
=

(
c

Z† 
(T ) Z

)
=

(
c

Z† T̃ Z

)
, (6)

where the triangular matrix T̃ is the same as T , but all the
diagonal entries that are smaller than one in T are set to one
in T̃ .

To monitor the status of the convergence during the mini-
mization we directly compute the cost function at each step.
To speed up the convergence we employ an adaptive step
size ηn = 〈δXn, δXn〉/〈δXn, δGn〉, where δXn = Xn − Xn−1 and

δGn = Gn − Gn−1 are the point and gradient displacements at
the nth step of the optimization [27].

From a numerical perspective, the main bottleneck of the
algorithm comes from the calculation of the basis {|ϕα〉} of
(Im P )⊥. To this end, we employed linear algebra routines that
compute the null space of the operator P t , stored in a dense
format. We note that the matrix representation of the operator
P is sparse, and its columns provide a sparse basis {|ψα〉} of
ImP . Starting from this sparse basis, it might be possible to
build a sparse basis of (Im P )⊥, thus improving the efficiency
of this step and allowing to treat larger patches.

Once the basis {|ϕα〉} is at hand, the computation of the
matrix elements Ma,b and Ra,αβ in Eq. (4) can be carried out
efficiently by storing the local operator basis in a sparse for-
mat and performing sparse linear algebra matrix-matrix and
matrix-vector multiplication. As we explain below, exploiting
the symmetries of the TNS and the operator basis can further
reduce the computational cost of determining |ϕα〉 and R.

B. Symmetries

The dimension of the parameter space of the optimization
algorithm is DO + (dim (Im P )⊥)2, where DO is the dimen-
sion of the operator basis {Oa}. The number of parameters can
be reduced if the target Hamiltonian is invariant under some
symmetry. In this case, the matrix Pαβ can be decomposed into
blocks labeled by the eigenvalues of the symmetry generator:

P =
⊕

λ

Pλ . (7)

Upon proper choice of the basis of local operators, the same is
true for all the Oas. The dimension of the parameter space is
thus reduced to DO + ∑

λ(Dλ)2, where Dλ is the dimension of
the intersection of (Im P )⊥ with each eigenspace (irrep) of the
symmetry generators. The cost function in Eq. (3) becomes

F (ca, Pλ
αβ ) =

∑
λ

∥∥∥∥∥
∑

a

caOλ
a −

∑
α,β

Pλ
αβ |ϕλ

α〉〈ϕλ
β |

∥∥∥∥∥
2

= caTr(OaOb) cb − 2ca

∑
λ

〈ϕλ
α|Oλ

a |ϕλ
β〉Pλ

αβ

+
∑

λ

(Pλ
αβ )2 = X ∗

A MAB XB, (8)

where Oλ is the restriction of O to the symmetry sector labeled
by λ, and we used the fact that Oa is block diagonal for all
a. The vector XA = (−ca, Pλ1

αβ, Pλ2
αβ, . . . ), and the matrix M

reads

MAB =

⎛
⎜⎜⎜⎝

M Rλ1 0 0
R†

λ1
1λ1 Rλ2 0

0 R†
λ2

1λ2

. . .

0 0 . . .
. . .

⎞
⎟⎟⎟⎠,

Mab = Tr(OaOb), Ra,αβ = 〈ϕα|Oa|ϕβ〉. (9)

An example which we will use in the following is SU(2)
symmetry. In this case, we take λ = s, Sz, where Sz is the
eigenvalue of the z component of the total angular momentum
on the chosen patch of physical sites, Sz = ∑

i Sz
i , and s is

the quantum number of the total squared angular momentum
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S2 = (Sx )2 + (Sy)2 + (Sz )2 (with eigenvalues s(s + 1)). Note
that, thanks to SU(2) invariance, the Pαβ blocks are indepen-
dent of the eigenvalue Sz, and the cost function in Eq. (8)
becomes

F
(
ca, Pλ

αβ

) = caTr(OaOb) cb

− 2ca

∑
s

(2s + 1)〈ϕs,0
α |Os,0

a |ϕs,0
β 〉Ps

αβ

+
∑

s

(2s + 1)(Ps
αβ )2, (10)

where the factor (2s + 1) takes into account the multiplicity
of the eigenvalue Sz for a given s, so that the generators
|ϕs,Sz

α 〉 need to be computed only in the Sz = 0 sector. This
further reduces the number of variational parameters down to
DO + ∑

s(Ds)2, where Ds is the dimension of the simultane-
ous eigenspace of S2 and Sz in the Sz = 0 sector.

C. Formulation as a semidefinite program

The minimization problem in Eq. (5) can be formulated as
a semi-definite program (SDP). This implies that the problem
can be systematically and efficiently solved using a suitable
SDP solver, and makes clear why the gradient method chosen
for the optimization in this work performs so well on the
problem.

To start with, let us consider a variation where we define
the cost function F using the operator norm ‖ · ‖∞ rather
than the Frobenius norm squared. ‖X‖∞ can be obtained by
minimizing λ subject to −λ � X � λ. Thus minimizing F
amounts to solving the SDP

minimize
{ca},P,λ

λ

subject to − λ �
∑

a

caOa −
∑
α,β

Pαβ |ϕα〉〈ϕβ | � λ

P � 0.

In case the cost function is defined using the Frobenius norm,
as in Eq. (3), one can rewrite ‖X‖2 as the minimum of λ

subject to (
λ1 X
X † λ1

)
� 0 ,

to yet again re-express the minimization of F as an SDP.

IV. BENCHMARKS

Let us now benchmark our method with two well-studied
models. The 1D AKLT model and the Toric Code on the
square lattice.

A. The AKLT state on a chain

The AKLT state [22,23] is constructed by placing spin-1/2
singlets on a chain and projecting every two adjacent spin-
1/2’s to the joint spin-1 (symmetric) subspace. The resulting
spin-1 chain is rotationally [i.e., SO(3)] invariant and can be
described as an MPS with the tensors given in Fig. 3(a). This
MPS is normal and becomes injective upon blocking L = 2
sites. Thus the elementary proof technique of inverting P on

FIG. 3. (a) Tensor Network representation of the AKLT state.
(b) Blocking three sites of the MPS tensors yields the map P , starting
point of the parent Hamiltonian construction. In this case the number
of blocked sites Ns is larger than the minimum Ns required to build
the most local parent Hamiltonian Eq. (11).

the injective block results in a parent Hamiltonian acting on
Ns = 4 sites, while the more refined techniques allow to prove
well-behavedness of the parent Hamiltonian on Ns = 3 sites.
On the other hand, it is well known that the AKLT state is the
unique ground state of the two-body Hamiltonian

H =
L∑

i=1

[
1
2
Si · Si+1 + 1

6 (Si · Si+1)2 + 1
3

]
, (11)

where S = (Sx, Sy, Sz ) is the spin-1 representation of SU(2).
Indeed, the Hamiltonian (11) can be obtained by applying the
parent Hamiltonian construction to two sites. Once one has
obtained a guess for a two-body Hamiltonian in this way, it
is straightforward to verify that it is indeed a well-behaved
parent Hamiltonian, by checking that its ground space on three
(or four) sites is just the same as that of the three-site (or four-
site) parent Hamiltonian and thus, it has a unique ground state
and a gap.

For this approach, however, a prior guess for a suit-
able two-body Hamiltonian is required. We will now
demonstrate that our method can be used to break up the
canonical three-body or four-body AKLT parent Hamiltonian
into the two-body Hamiltonian (11) without any such prior
knowledge. Since we aim to decompose the Hamiltonian into
SU(2)-invariant two-body nearest neighbor terms, we only
need to include nearest-neighbor Heisenberg interactions in
the operator basis {Oa}; for instance, with Ns = 3 the operator
basis is {Id, S1 · S2, S2 · S3, (S1 · S2)2, (S2 · S3)2}. Fig. 4 shows
the results of the minimization procedure. In Figs. 4(a) and
4(b), we plot the cost function during the (projected) gradient
descent optimization for Ns = 3 and Ns = 4, respectively. We
compare a constant step η = 0.2 (green line) and an adaptive
step η = Min{〈δXn, δXn〉/〈δXn, δGn〉, ηmax} (orange and blue
lines).1 Figures 4(e) and 4(f), demonstrate that the matrix Pαβ

1A maximum step size ηmax is necessary to ensure stability of the
optimization. η = 0.2 is the maximum size yielding a stable constant
step optimization.
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FIG. 4. [(a) and (b)] Cost function F , Eq. (3), during the min-
imization. The adaptive step-gradient descent procedure converges
much faster (∼200 and 1500 steps to reach F ∼ 10−12 for Ns = 3
and 4, respectively) than the constant step one (η = 0.5). [(c) and (d)]
Coefficients of the operators {Oa} in the optimal decomposition at
convergence. The basis ordering is {Id, Si · Si+1, . . . , (Si · Si+1)2, . . . }
with i = 1, . . . , Ns − 1. (e),(f) Eigenvalues of the matrix Pαβ at con-
vergence (F < 10−12) for Ns = 3 and 4. The result shows that the
locality-optimized Hamiltonian, acting on Ns sites, is not the projec-
tor onto (Im P )⊥.

obtained, and thus the Hamiltonian density, is not a projec-
tor on the original Ns = 3, 4 sites. Rather, the Hamiltonian
obtained is equal to Eq. (11) within numerical precision, as
shown in Figs. 4(c) and 4(d).2

B. The toric code on the square lattice

Let us now turn to a paradigmatic two-dimensional model
which exhibits topological order: Kitaev’s toric code [28].
Consider an arbitrary lattice, and assign a qubit {|0〉, |1〉} to
every edge of the lattice. The toric code wave function is then
given by the equal weight superposition of all configurations
which obey a Z2 Gauss law around every vertex, i.e., there
are an even number of |1〉 states adjacent to every vertex.
Equivalently, this amounts to saying that the wave function
is an equal weight superposition of all closed loop configura-
tions on the lattice, where the states |0〉 and |1〉 correspond to

2We note that for Ns = 4, the Hamiltonian density is not homo-
geneous on the four-site patch, rather the coefficients of S2 · S3 and
(S2 · S3)2 are larger at the center of the patch. Yet, as the density has
to be summed on all sites to construct the parent Hamiltonian on a
ring, the latter is translation-invariant and coincides with Eq. (11) up
to multiplicative factors.

+ Rπ/2

= 11 1

1
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0

= 1
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X⊗4
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0
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1

= 1=0

0

=0

0

FIG. 5. (a) Vertex tensors providing the PEPS representation of
the toric code ground state. The virtual index 1 signals the presence
of a loop entering the vertex. Rπ/2 stands for all the possible π/2
rotations of the vertex tensors. (b) Local projectors that map diag-
onally the virtual space of the vertex tensors to the physical space
of a site on the tilted square lattice. (c) Ns = 12 sites patch used
for the parent Hamiltonian construction. Physical legs are omitted
in the drawing for clarity; that is, each red dot additionally carries
a physical index, as in (b). The linear map P obtained from this
patch maps the virtual space (C2)⊗8 to the physical space (C2)⊗12.
Plaquette terms are product of X s on the green line, cross terms are
product of Zs on the blue line.

the no-loop and loop state, respectively. In the following, we
focus on the square lattice. A tensor network representation
of the toric code can be constructed by using two types of
tensors: One vertex tensor which only carries virtual indices
and which enforces the Z2 Gauss law [see Fig. 5(a)] and
an edge tensor which is described by a Kronecker delta and
which “copies” the virtual degree of freedom to a physical
qubit [see Fig. 5(b)]; these tensors are arranged to a tensor
network as shown in Fig. 5(c).

Conceptually, a parent Hamiltonian constructed on a region
R (with edge tensors at its boundary) ensures that for any
given edge configuration, all bulk loop configurations get the
same weight. It is easy to see that such a Hamiltonian will
enforce the closed loop constraint, as well as enforce an equal
amplitude for all loop configurations which can be coupled by
local moves; this gives rise to a fourfold degeneracy on the
torus, with sectors labeled by the parity of loops around the
torus in either direction [19,28]. To construct a parent Hamil-
tonian with controlled ground space degeneracy, we start by
noting that the map P given by a vertex tensor surrounded by
four edge tensors is injective.3 A resulting canonical parent
Hamiltonian can then be constructed on the 12-sites patch
shown in Fig. 5(c); it is straightforward to prove that it satisfies

3In principle, three edge tensors are sufficient. This results in a
slightly smaller parent Hamiltonian (some edge sites—but not all!—
at its boundary can be omitted in Fig. 5(c), which however breaks
the lattice symmetry. We thus choose to work with the given four-site
injective patch.
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FIG. 6. (a) Decomposition of the projector-valued parent Hamil-
tonian hId of the toric code in terms of N-body Pauli products; the
plot shows the total weight of all N-body terms. Terms with all
possible weights are needed in the decomposition. (b) Cost func-
tion during the minimization, using the adaptive step. Symmetric
and nonsymmetric versions of the algorithm achieve convergence
in the same number of steps, but the symmetric version reduces
significantly the computation cost. (c) Coefficients of the opera-
tors {Oa} in the optimal decomposition at convergence. When only
cross and plaquette terms (made of X,Y or Z) are included in the
basis, the algorithm produces the expected result within machine
precision. (d) Eigenvalues of the matrix Pαβ at convergence, divided
in the two physical Z2 symmetry sectors. The most local Hamiltonian
is different from the projector on (Im P )⊥.

the intersection property by using the refined “invert and grow
back” techniques discussed, e.g., in Refs. [8,13], and thus has
the correct ground space structure.

In the following, we apply our method to analyze how one
can break down the canonical parent Hamiltonian acting on
patches of Ns = 12 sites into simpler terms, where one goal is
to check whether our optimization method does indeed return
the toric code Hamiltonian

H = −
∑

v

∏
i∈v

Zi −
∑

p

∏
i∈p

Xi , (12)

which in known to have the toric code wave function as its
unique ground state (up to topological degeneracy) [28]. Here,
the terms in the first sum act on the four qubits surrounding
any given vertex v, and those in the second sum on the four
qubits surrounding any given plaquette p of the square lattice,
as shown in Fig. 5(c), where X and Z are Pauli matrices.

To this end, we start from the Ns = 12 site patch depicted
in Fig. 5(c), for which the dimension of (Im P )⊥ is 3968.
Figure 6(a) shows the decomposition of the projector-valued
Hamiltonian hId [i.e., with P = Id in Eq. (2)] in an operator
basis made of all the possible products of Pauli matrices on
the 12 sites, grouped by the number Ns of nontrivial Pauli
operators: We observe that hId contains terms all the way up to

Ns = 12-body terms, and thus, optimization over P is required
to obtain a simpler decomposition of the parent Hamiltonian
h into Pauli products.

We now apply the algorithm of Sec. III starting from an
operator basis with all possible products of Pauli matrices on
four-site crosses and plaquettes [see Fig. 5(c)] that respect
the physical symmetries of the TN state on the chosen patch:
Specifically, we used the Z2 symmetry generated by

∏Ns
i=1 Zi,

the fourfold π/2-rotation Rπ/2 around the center of the patch,
and the reflection R with respect to the horizontal axis that
goes through the center of the patch. This basis contains
25 operators (including the identity), and the total number
of variational parameters for the nonsymmetric version of
the algorithm would be 25 + 39682 � 1.6 × 107. Given the
aforementioned symmetries, we can apply the symmetric ver-
sion of the algorithm to reduce the number of parameters.
In particular, we consider the algorithm where we use the
global Z2 symmetry only, which reduces the dimension of the
variational space down to 25 + 2 · (3968/2)2 � 7.9 × 106,
and the fully symmetric version where we exploit Z2, Rπ/2,
and R symmetries, yielding a variational space dimension of
1466797 � 1.5 × 106, and compare their performance. The
cost function during the minimization is plotted in Fig. 6(b).
Both versions of the algorithm converge to the minimum in
∼1000 steps. However, it is computationally much cheaper for
the most symmetric version to perform a single step, reducing
the CPU time by a factor proportional to the ratio between the
variational space dimensions without and with symmetries.
Although in this example, exploiting the full symmetry group
of the patch is not indispensable, it will be crucial in the
next example, where even a single optimization step would
be prohibitive without it.

Considering the optimum found by the algorithm, we find
that our method indeed yields a parent Hamiltonian identical
to the one in Eq. (12), except for a different relative weight
of the two types of terms (this is possible as the terms com-
mute, and the Hamiltonian is frustration-free, i.e., the ground
state minimizes each of the four-body terms individually). In
Fig. 6(c), we show the coefficients of the Hamiltonian density
on the 12-site patch at convergence. In Fig. 6(d), we plot
the eigenvalues of the optimized parent Hamiltonian h on the
12-site patch, demonstrating that the most local h is indeed
not a projector.

V. THE SU(2) RESONATING VALENCE BOND STATE
ON THE KAGOME LATTICE

In the following, we apply our method to find an optimally
local parent Hamiltonian for the paradigmatic resonating va-
lence bond state on the kagome lattice, which is a prime
example of a topological spin liquid. For this model, the
simplest hitherto known parent Hamiltonian was a general
operator acting on a whole kagome star, that is, Ns = 12 sites.
Applying our method, we arrive at a much simpler Hamilto-
nian, where each term is a product of at most four Heisenberg
interactions. This represents a significant simplification over
the original 12-body interaction and demonstrates the power
of our method.

Resonating valence bond (RVB) states are constructed as
equal-weight superpositions of all possible singlet coverings
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between nearest neighbors on a given 2D lattice. In quantum
dimer models, singlets are replaced by orthogonal dimers,
facilitating their analysis. On frustrated lattices, such dimer
models have been known for a long time to be simple repre-
sentatives of topologically ordered phases [29]; in particular,
the dimer model on the kagome lattice is a topological Z2

fixed point model, locally unitarily equivalent to the toric
code. When orthogonal dimer coverings are replaced by spin-
1/2 singlets, one obtains the RVB state, which is a good
candidate for describing the physics of frustrated magnets. On
the kagome lattice, it was shown to be in the same Z2 spin liq-
uid phase as the kagome dimer model [13], and demonstrated
to be even more stable against perturbation [30]. Starting from
the SU(2) singlets RVB state, simple ansatze for the ground
state wave functions of physically relevant models have been
devised [31]. RVB states have a natural PEPS representa-
tion [12,19] with a Z2 entanglement symmetry; they become
Z2-injective upon blocking and thus, their canonical parent
Hamiltonians exhibit a fourfold degenerate ground space on
the torus, as required for a Z2 topological spin liquid. How-
ever, the hitherto known parent Hamiltonians for the kagome
RVB state are rather complicated: the simplest parent Hamil-
tonian which has been obtained using canonical techniques
is constructed on two overlapping stars, that is, 19 sites [13];
later, it has been shown by brute-force numerical checking
that the parent Hamiltonian constructed from the map P on a
single star, that is, Ns = 12 sites, has the same ground space
as the 19-site two-star Hamiltonian when applied on both of
the stars [24]. In the following, we will apply our algorithm
to analyze whether, and how, this one-star Hamiltonian can be
broken down into simpler terms.

We use the TN representation of the SU(2) RVB state
introduced in Ref. [13], which is given in Fig. 7. Figure 7(c)
shows the patch of 12 sites that we consider in what follows,
where the virtual space consists of six bonds with dimension
D = 3. The PEPS is Z2-injective, with the virtual symmetry
generator g = diag(1, 1,−1). Since the dimension of (Im P )⊥
is 3731, the number of variational parameters which arise
from the matrix P [Eq. (2)] would be more than 107. As this is
prohibitive, we will need to use the symmetries of the system
at hand.

Let us start with the symmetries of the parent Hamiltonian
h, that is, the basis {|ϕα〉} on which h is supported and the
associated positive matrix P > 0, h = ∑

Pαβ |ϕα〉〈ϕβ |. The
map P of the one-star tensor network in Fig. 7(c) (which maps
the virtual to the physical system) commutes with both SU(2)
and a 60◦ rotation; by choosing boundary conditions with
well-defined quantum numbers on the virtual system, we can
thus ensure that we obtain |ϕα〉 with well-defined SU(2) and
angular momentum quantum numbers. In addition, we can
ensure that the |ϕα〉 transform nicely under reflection about
the vertical axis: Such a reflection changes εabc → −εabc in
Fig. 7(b), that is, the state acquires a minus sign for each blue
tensor in the εabc configuration. The number of those tensors
equals the number of triangles which hold a singlet (or dimer),
and the number of singlets inside the star is determined by
a simple counting argument from the number of spin-1/2
states at the virtual boundary (i.e., boundary configurations
{|0〉, |1〉}), or more precisely this number modulo 4. This
quantum number of the boundary condition commutes with

= εabc

a

b c

a = b = c

↓

21

↑

20

↑

2 0

↓

21
= 1===

2

22
= 1

(c)(b)

(a)

FIG. 7. TN representation of the spin-1/2 RVB state. The on-site
tensors (a) and triangle plaquette tensors (b)—only nonzero entries
are shown—are placed and contracted on the kagome lattice as
shown in (c). The states 0 and 1 carry the spin-1/2 degree of freedom,
while the state 2 signals the absence of a spin 1/2. The on-site tensor
selects either the left or right singlet and maps it to the physical spin
1/2; the triangle plaquette tensor can either hold no singlet (222 con-
figuration), or exactly one singlet (εabc). Up- and downward-pointing
blue tensors are related by rotation. Physical legs are omitted in
the drawing for clarity; that is, each red dot additionally carries a
physical index, just as in (a).

SU(2) and angular momentum, and thus, we can obtain a
basis of |ϕα〉 labeled by SU(2), rotation, and reflection quan-
tum numbers. By exploiting these symmetries, as described
in Sec. III B, we are able to break down the Pαβ variational
matrix into blocks, yielding 20 931 parameters.

We exploit the same symmetries to select the operators to
be included in the basis {Oa}. As we show in the Appendix,
every SU(2)-invariant Hamiltonians H on (C2)⊗N can be
decomposed as H = ∑

waKa in a basis of SU(2)-invariant
Hamiltonians {Ka}, where each Ka is a nonoverlapping prod-
uct of only two types of terms: Heisenberg interactions Si · S j ,
and “chiral” terms of the form Si · (S j × Sk ); in addition, at
most one such chiral term is needed. We use this basis of
SU(2)-invariant Hamiltonians to build the basis of operators
{Oa} for our parent Hamiltonian. In this process, we make use
of further symmetries: First, we observe that the RVB wave
function is real, and thus, the parent Hamiltonian can be cho-
sen real as well, h = h̄ (more specifically, we can replace any
parent Hamiltonian h by (h + h̄)/2, which changes neither the
ground space nor the spectrum). Since S1 · (S2 × S3) is purely
imaginary (as it is a sum of terms with one Sy each) and it
appears at most once, this implies that we can omit it alto-
gether, and the basis {Oa} can be chosen to be spanned solely
by nonoverlapping products of Heisenberg terms. Further, we
impose that the basis {Oa} has the same lattice symmetries as
used for the {|ϕα〉}, i.e., reflection about the vertical axis and
rotation by 60◦.

We thus have that each operator Oa is a symmetrized prod-
uct of 1 � r � 6 Heisenberg interactions. As we are interested
in finding the most local parent Hamiltonian, we apply our
method to a growing sequence of basis sets Or = {Oa}, where
a given Or consists of all operators with up to r Heisenberg
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FIG. 8. Operator basis dimension for the two cases considered
here. (a) The basis contains all products of up to r Heisenberg inter-
actions. (b) The basis contains all products of up to r = 4 Heisenberg
interactions, restricted to the spins on the central hexagon and up to
N� continguous outer spins. In both cases, the operators are sym-
metrized w.r.t. the sixfold rotation and twofold reflection symmetry
of the star, see text.

interaction [see Fig. 8(a) for the dimension of those basis
sets, going up to about 6000). Figure 9(a) shows the results
obtained by our algorithm when approximating the parent
Hamiltonian with the basis set Or , for r = 1, . . . , 4. We find
that while for r � 3, the parent Hamiltonian cannot be faith-
fully approximated, the basis set O4, which contains products
of up to r = 4 Heisenberg terms, provides an approximation
of the exact parent Hamiltonian up to machine precision.4

In order to investigate whether it is possible to further
simplify the Hamiltonian, we analyze the effect of restricting
Or to more local Heisenberg terms; specifically, we define
O4(N�) to contain all products of up to 4 Heisenberg terms
which act on the six central spins and up to N� adjacent
spins at the tips of the star, as shown in Fig. 8(b) (which
also provides the basis size). Figure 9(c) shows the results on
the accuracy of the approximation of the parent Hamiltonian
using the basis set O4(N�): While for N� � 3, the parent
Hamiltonian is not well approximated, we can reproduce the
Hamiltonian up to machine precision for N� = 5. The case
N� = 4 lies in between those regimes, as it provides a very
good but not perfect approximation of the parent Hamiltonian,
with an error of about 10−5 in Frobenius norm squared.

In order to double-check the correctness of the Hamilto-
nian found by our algorithm, we performed exact diagonal-
ization on small tori, employing periodic clusters including
up to 18 sites on the kagome lattice [see Fig. 10(a)]. Fig-
ure 10 shows comparisons between the spectrum of the
12-site projector-valued parent Hamiltonian and the optimized
Hamiltonians returned by our method (for r = 4 and N� = 4,
respectively), for clusters of 12 and 18 sites. The expected

4Depending on the basis size the algorithm may take several thou-
sands of steps to converge, and it does not always find an exact parent
Hamiltonian. This is signaled by the fact that at convergence—we
monitor the status of convergence by computing the norm displace-
ment vector at consecutive steps ε = ||Xn − Xn−1||, and stop the
algorithm when ε < 10−10—the cost function is not vanishing within
numerical precision.
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FIG. 9. [(a) and (c)] Cost function F , Eq. (3), at the optimum as a
function of r and N�, respectively (see Fig. 8). A machine-precision
approximation is obtained for r = 4 and N� = 5, respectively, but
N� = 4 already provides a fairly accurate approximation. [(b) and
(d)] Eigenvalues of Pαβ in the Sz = 0 sector vs the value s(s + 1) of
the total spin S2, for r = 4 and N�, respectively, showing that the
optimal solution is not a projector.

topological fourfold degeneracy of the ground space is ac-
curate within 10−9; this is in agreement with the accurate
approximation of the parent Hamiltonian whose ground space
has an exact fourfold degeneracy. On the other hand, as ex-
pected, the two spectra already differ for low-lying excited
states. Similarly, the spectra of the optimized parent Hamilto-
nians on the full star for r = 4 and N� = 4 [Figs. 9(b) and
9(d), respectively) are far from the projector-valued parent
Hamiltonian. We also verified that the overlap of the RVB
state with the ground-space of the optimized Hamiltonian
equals 1 within numerical accuracy, for clusters up to N = 24
sites.

An interesting question is whether one can gain physi-
cal intuition on the operators that are essential to obtain a
good parent Hamiltonian for the RVB state. Unfortunately,
we found this to be hard in practice, due to the large number
of operators in the basis (∼ 3000 at least). Although certain
operators contribute far more than others to the final result
(e.g., the number of operators Oa with weights |ca/c0| > 0.5,
where c0 is the largest coefficient of the identity operator,
are only 10), all the operators appear to be necessary to give
high overlap with the RVB state, and to reproduce the correct
ground state degeneracy.

VI. CONCLUSIONS

A. Summary

In this work, we have presented an algorithm to systemat-
ically simplify parent Hamiltonians for tensor network states
such as MPS and PEPS. Specifically, our method allows to
decompose a parent Hamiltonian into a sum of terms chosen
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(a)

(b) (c)

(d) (e)

FIG. 10. (a) Periodic clusters employed for the computation of
the spectrum of the parent Hamiltonian. The latter is obtained as
a sum of the parent Hamiltonian h on all stars of the cluster. [(b)–
(e)] Comparison between the low-energy spectra of the RVB parent
Hamiltonian obtained as a projector on (Im P )⊥ (blue empty di-
amonds) and the optimized Hamiltonian (orange filled diamonds)
obtained on a basis of operators with up to four Heisenberg inter-
actions [(b) and (c)] and up to four triangles around the hexagon
[(d) and (e)]. Periodic clusters with N = 12 [(b) and (d)] and N = 18
[(c) and (e)] are considered.

from any given set of elementary operators, while preserving
the ground space as well as the gappedness of the original
parent Hamiltonian. A central ingredient is the remaining de-
gree of freedom in the parent Hamiltonian construction: while
its local terms have a fixed ground space, they can have an
arbitrary excitation spectrum. Our method exploits this degree
of freedom to optimize for the parent Hamiltonian which is
best approximated by the given basis set of elementary inter-
actions. This results in a convex optimization problem which
can formally be written as a semidefinite program, and which
can thus be solved efficiently by a gradient-based algorithm to
find the optimal decomposition. Additionally, our algorithm
can be combined with symmetries of the parent Hamiltonian
(that is, the symmetries of the tensor network state) by im-
posing the same symmetries on the basis set, which leads to a
significant reduction in computational resources.

We have applied our method to three paradigmatic ten-
sor network models. First, the 1D AKLT model, where we
found that our algorithm allows to decompose the canonically
constructed three- or four-body parent Hamiltonians into the

well-known two-body AKLT Hamiltonian. Next, the toric
code model, where refined canonical constructions yield a
parent Hamiltonian acting on 12 sites, which our algorithm
would break down into the well-known toric code Hamilto-
nian consisting of four-body vertex and plaquette terms.

Finally, we have studied the resonating valence bond
(RVB) state on the kagome lattice, which is a prime example
of a topological spin liquid, and which possesses a succinct
PEPS representation. However, while the RVB state (as a
Z2-injective PEPS) is the exact fourfold degenerate ground
state of a local parent Hamiltonian, the smallest canonically
constructed parent Hamiltonian still acts on two overlapping
stars, that is, 19 spins, which had been shown by brute force
to be decomposable as the sum of two one-star, i.e., 12-body,
terms. The application of our algorithms to this 12-site Hamil-
tonian results in a significant simplification: We find that the
RVB parent Hamiltonian can be decomposed into a sum of
interaction terms each of which is a product of no more than
four Heisenberg interactions, a notable improvement over the
general 12-body interaction; moreover, the range of those
interactions can be further restricted.

Altogether, this demonstrates the ability of our algorithm
to significantly simplify the locality of parent Hamiltonians
beyond the abilities of existing proof techniques, and opens
up the possibility to identify tensor network models which are
ground states of particularly simple parent Hamiltonians.

B. Discussion

Let us conclude by discussing two aspects of our method
which might raise natural questions.

The first point is that in the decomposition h = ∑
caOa

of the parent Hamiltonian [Eq. (1)], the local terms Oa are,
in general, not frustration free. This is, in fact, an advantage
of our method, since this way, we can obtain decompositions
with smaller local terms. In case one wants to restrict the
search to decompositions into frustration free terms—as is the
case for the AKLT or the Toric Code model—this is in fact a
much easier task. In that case, it is sufficient to check whether
the reduced density operator ρ for any subset of sites on the
region supporting h is rank deficient, construct parent Hamil-
tonians on those patches (e.g., as projectors onto the kernel of
ρ), and verify whether their joint ground space coincides with
that of h. However, this method will fail to further simplify,
e.g., the one-star parent Hamiltonian of the RVB model [13].
Thus, in order to obtain the most simple decomposition, one
will generally want to consider decompositions into arbitrary
local terms, and this is what our method achieves. Let us note
that a situation akin to the RVB also arises for the Majumdar-
Ghosh model [32]: The canonical parent Hamiltonian acts on
four adjacent sites, which can be decomposed into a sum of
two frustration-free terms acting on three adjacent sites. The
latter can, yet again, be expressed as the sum of three (locally
frustrated) Heisenberg interactions acting on nearest and next-
nearest neighbor spins, respectively, while no decomposition
of the Majumdar-Ghush Hamiltonian into frustration free two-
site terms exists.

Fortunately, the decomposition into locally frustrated terms
does not affect the power of the parent Hamiltonian frame-
work, such as tools to characterize the ground space or to
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prove gaps: since we decompose the local, frustration free
parent Hamiltonian terms h as

∑
caOa, frustration freeness is

re-gained when considering that local sum, and the methods
developed for parent Hamiltonian generally only depend on
the correct ground space of h, but not on the precise form of
the higher eigenspaces of h.

A second point of concern might be that in general, the
decomposition h = ∑

caOa obtained by our method is exact
only up to numerical accuracy, unless one manages to first
find an analytic expression for the ca and then to analyti-
cally verify the exact validity of h = ∑

caOa, which seems
rather challenging beyond frustration free decompositions.
However, there are a few points to notice: First, the clear
jump in accuracy to machine precision when reaching a large
enough set of Oa’s [Figs. 9(a) and 9(c)] strongly suggests
that the decomposition is exact. Second, for many practical
purposes, such as the construction of simple Hamiltonians
for the experimental realization of topological spin liquids in
quantum simulators, one is interested in systems of compara-
tively small size (that is, rather ∼104 than 1023 particles), in
which case perturbations of the Hamiltonian on the order of
machine precision will not change the ground state, as long as
there is a reasonably sized gap. And finally, in order to be able
to meaningfully talk about a gapped phase, the physics of a
system ought to be stable against sufficiently small (but finite)
local perturbations even in the thermodynamic limit, and thus,
for such “reasonable” systems, a sufficiently accurate decom-
position h ≈ ∑

caOa will exhibit the same physics; in fact,
for frustration-free systems, and in particular tensor network
states, it has been shown that such a notion of stability against
small but extensive perturbation follows from a condition on
the Hamiltonian called LTQO [33–36].

ACKNOWLEDGMENTS

We acknowledge helpful discussions with M. Dalmonte, H.
Dreyer, G. Giudice, M. Iqbal, N. Pancotti, D.T. Stephen, and
F.M. Surace. This work has been supported by the European
Research Council (ERC) under the European Union’s Horizon
2020 research and innovation programme through Grant No.
863476 (ERC-CoG SEQUAM) and Grant No. 771891 (ERC-
CoG QSIMCORR), as well as the Deutsche Forschungs-
gemeinschaft (DFG, German Research Foundation) under
Germany’s Excellence Strategy (EXC-2111—390814868).

APPENDIX: DECOMPOSITION OF SU(2)-INVARIANT
HAMILTONIANS INTO HEISENBERG AND CHIRAL

THREE-BODY TERMS

In this Appendix, we show that any SU(2)-invariant Hamil-
tonian can be decomposed as a sum of terms, each of which
only consists of nonoverlapping products of Heisenberg in-
teractions S1 · S2 and (at most one) chiral three-body term
S1 · (S2 × S3).

Let us first consider a general (not necessarily hermitian)
SU(2)-invariant operator X on (C2)⊗N . It is well-known that
the space of all operators X such that [X, u⊗N ] = 0 for all

u ∈ SU(2) is spanned by the canonical representation Vπ of
the permutation group Sn � π , where Vπ acts by permuting
the tensor components of (C2)⊗N [37]. Any permutation π

can be expressed as a product of 2-cycles (i, j), i.e., swapping
two elements i and j. Since V(i, j) = (Si · S j + 1)/2 (where
we normalize the spin operator Si = (Si

x, Si
y, Si

z ) at position
i to have eigenvalues ±1), we find that the space of all X
is spanned by products of Heisenberg interactions Si · S j =∑

δabSi
aS j

b . Note that this includes cases where the different
Heisenberg terms overlap.

We will now show that one can get rid of overlapping
Heisenberg terms at the cost of introducing just one additional
type of interaction, namely Si · (S j × Sk ) = ∑

εabcSi
aS j

bSk
c . To

this end, consider the overlapping term

(S1 · S2)(S2 · S3)

=
∑
abcd

δabS1
aS2

bδcd S2
c S3

d

(∗)=
∑
abcde

δabδcd iεbceS1
aS2

e S3
d +

∑
abcd

δabδcdδbcS1
aS3

d

=
∑
bce

iεbceS1
aS2

e S3
d +

∑
ad

δbcS1
aS3

d

= i S1 · (S2 × S3) + S1 · S3,

where in (∗), we have used that

SaSb =
∑

c

iεabcSc + δab1. (A1)

We have thus succeeded in rewriting a product of two over-
lapping Heisenberg interactions as a linear combination of
elementary two- and three-body interactions Si · S j and Si ·
(S j × Sk ). We can now continue this analysis for all possible
overlaps of those two types of terms, making use of (A1) and
the summation rules for δ and ε tensors. Even without carrying
out this analysis explicitly, it is easy to see that it allows us
to transform arbitrary products of those two- and three-body
terms into nonoverlapping products of the same two types
of terms: Every application of (A1) gets rid of one overlap
of two terms at one position while introducing an ε, and
sums over δ and ε tensors always yield linear combinations
of products of δ and ε tensors with no joint indices. Note
that this also gives a constructive procedure to arrive at such a
decomposition.

We thus find that any operator X with [X, u⊗N ] = 0 can
be expressed as a complex linear combination of nonover-
lapping products of terms Si · S j and Si · (S j × Sk ); since
those are all hermitian, they also span the set of all hermitian
matrices H with [H, u⊗N ] = 0 over the real numbers. An
additional simplification can be obtained by observing that
a product of two ε can be replaced by a linear combination
of δ’s 5, and thus, in the basis we require only products of
Heisenberg interactions with at most one three-body term
S1 · (S2 × S3).

5εi jkεlmn = δil (δ jmδkn − δ jnδkm ) − δim(δ jlδkn − δ jnδkl ) +
δin(δ jlδkm − δ jmδkl )
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