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Using a systematic relation between topological gapless phases in three dimensions and topological gapped
phases in two dimensions, we identify four types of higher-order topological semimetals or nodal superconduc-
tors (HOTS), hosting (i) flat zero-energy “Fermi arcs” at crystal hinges, (ii) flat zero-energy hinge arcs coexisting
with surface Dirac cones, (iii) chiral or helical hinge modes, or (iv) flat zero-energy hinge arcs connecting
nodes only at finite momentum. Bulk-boundary correspondence relates the hinge states to the bulk topology
protecting the nodal point or loop. We classify all HOTS for all tenfold-way classes with an order-two crystalline
(anti)symmetry, such as mirror, twofold rotation, or inversion.
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I. INTRODUCTION

Topological semimetals have a band structure with a touch-
ing of valence and conduction bands that is robust to small
parameter changes that preserve the crystalline symmetries
[1–8]. The prime example is a Weyl semimetal, which has
twofold degenerate band crossing points around which the
band structure is effectively described in terms of massless
Weyl fermions [9–19]. Similarly, topological nodal super-
conductors have protected gapless modes in the excitation
spectrum of the Bogoliubov quasiparticles [1,20–22]. A topo-
logical classification of nodal points or lines, indicating which
type of node may be protected for which combination of
symmetries, has been obtained for the “tenfold-way” sym-
metry classes [23]. These are defined by the presence or
absence of time-reversal and spin-rotation symmetry, as well
as the particle-hole symmetry associated with the mean-field
description of superconductors [24]. The results have been
subsequently extended to incorporate crystalline symmetries
[25–32].

Topological nodal semimetals and superconductors may
have gapless surface excitations, with a surface band struc-
ture that connects to the projections of the nodes of the bulk
band structure onto the surface Brillouin zone. These sur-
face excitations are anomalous, in the sense that they cannot
be removed by a local, symmetry-allowed perturbation [33].
For example, a Weyl semimetal has a “Fermi-arc” of sur-
face states, whereas nodal-loop semimetals have “drumhead”
surface states, an approximately flat “Fermi disk” of surface
states inside the projection of the nodal loop on the surface
[4,15,34–40].

There is an insightful theoretical argument that links
the protected surface states and nodal points or lines in
gapless band structures to properties of gapped topologi-
cal band structures in lower dimensions. For example, the

Hamiltonian H (kx, ky, kz ) of a Weyl semimetal can be
considered as a kz-dependent “one-parameter family” of two-
dimensional Hamiltonians Hkz (kx, ky). A topological phase
transition of Hkz (kx, ky) as a function of kz—a “band
inversion”—then corresponds to a protected gap closing in
three dimensions [14,41], whereas the chiral edge states in the
topological phase of Hkz (kx, ky) naturally map to the Fermi-arc
surface states [11,19,42]. In the same way, a gapless band
structure with a nodal loop can be obtained by considering
H (kx, ky, kz ) as a “two-parameter family” of one-dimensional
Hamiltonians [4,40,43]. The flat disk of “drumhead” surface
states is then associated with the protected end-states of topo-
logical band structures in one dimension [33].

With crystalline symmetries, anomalous boundary states
may also exist at edges or corners of a crystal, instead
of being extended across the entire surface [44–57]. Band
structures that impose such boundary signatures are said to
possess “higher-order” topology [44,58]. For a large class of
crystalline symmetries, classification information of gapped
topological band structures that includes the order of the topo-
logical phase is available [49–53,59–62].

Soon after the discovery of gapped higher-order topolog-
ical band structures, it was realized that topological gapless
phases may also have higher-order anomalous boundary states
[63–80]. In particular, a second-order topological semimetal
has anomalous states on crystal hinges, extending between
the projections of the nodal points of the bulk band structure.
No third-order topological semimetals can exist, because a
putative anomalous corner state can always hybridize with the
continuum of bulk states.

In this article, we consider the question, for which
combinations of tenfold-way and crystalline symmetries
second-order topological gapless phases may exist. Hereto,
we note that, if we again view the Hamiltonian H (kx, ky, kz )
as a one-parameter family of two-dimensional Hamiltonians
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FIG. 1. (a) Rhombic pillar geometry and local density of states at energy E = 0 of model (1). (b) Quasi-one-dimensional band structures
in the rhombic pillar geometry for the models of Eqs. (1), (4), (7), and (9) (from left to right). The full and dashed black curves indicate the
bulk and surface excitation gaps, respectively. In models (1), (4), and (7), we set t = 1 and k0 = 0.6π . In model (9), we used m = 0, t = 1,
t ′ = 2.

Hkz (kx, ky), a second-order topological nodal semimetal or
superconductor arises if, as a function of kz, Hkz (kx, ky)
goes through a topological phase transition involving a
gapped second-order phase atomic-limit phase [64,69,81].
Hence, to determine which combinations of tenfold-way
and crystalline symmetries allow for second-order nodal
phases, it suffices to inspect topological phase transitions
of the two-dimensional Hamiltonians Hkz (kx, ky ). We here
provide such a systematic classification for three crys-
talline symmetries: mirror, twofold rotation, or inversion
symmetry. These are the symmetries for which a full order-
resolved classification of gapped topological band structures
exists [49–52].

Specifically, we consider a pillar geometry, translation in-
variant in the z direction and finite, with symmetry-compatible
lattice termination, in the xy plane, see Fig. 1(a). We set the
unit cell size along z to 1, so that −π < kz � π . We view the
Hamiltonian H (kx, ky, kz ) of such a crystal as a kz-dependent
family Hkz (kx, ky), where each Hamiltonian Hkz (kx, ky) de-
scribes a two-dimensional crystal with symmetry-compatible
boundaries. Throughout, we take H0(kx, ky) and Hπ (kx, ky) to
be gapped, so that any nodal points or loops in the bulk band
structure occur away from the high-symmetry planes kz = 0,
π . For definiteness, we assume that Hπ (kx, ky ) is topologically
trivial, which is an assumption that can be made without
loss of generality for a classification of features directly
associated with the nodes of the bulk spectrum. In this geom-
etry, anomalous second-order boundary states (if any) exist
between projections of bulk nodes on both sides of kz = 0 or
between projections of two bulk nodes on the same side of
kz = 0.

The tenfold-way and crystalline symmetries imply con-
straints for the family of two-dimensional Hamiltonians
Hkz (kx, ky). As symmetry operations may change the sign of
kz, in general the symmetry constraints at the high-symmetry
planes kz = 0, π differ from those for generic 0 < |kz| <

π . Because of the different symmetries involved, different
types of anomalous boundary states are possible around kz =
0 and for generic 0 < |kz| < π . Considering all combina-
tions of tenfold-way and order-two crystalline symmetries,
we find three scenarios for topological semimetals or nodal
superconductors with second-order hinge states around kz = 0
and one scenario for second-order hinge states in a region
at finite 0 < |kz| < π . We now discuss these four scenar-
ios, together with examples of lattice models that realize
them.

II. FOUR TYPES OF SECOND-ORDER TOPOLOGICAL
SEMIMETALS AND NODAL SUPERCONDUCTORS

(i) Flat zero-energy hinge arcs around kz = 0. If Hkz (kx, ky )
is in a second-order topological phase for kz = 0 and remains
so upon (continuously) going to finite |kz| > 0, there are flat
arcs of zero-energy hinge states running between the projec-
tions of nodal points or loops on both sides of kz = 0 onto
the edge Brillouin zone. (The hinge states are the zero-energy
corner states of the two-dimensional Hamiltonians
Hkz (kx, ky).) An example is a band structure with a chiral
antisymmetry C, corresponding to tenfold-way class AIII,
and a mirror symmetry Mx that commutes with C. This
symmetry class may be realized in a time-reversal symmetric
superconductor with U(1) spin-rotation symmetry [24]. A
concrete lattice model is the four-band model

H (kx, ky, kz ) = tτ1σ1[m(kz ) + 2 − cos kx − cos ky]

+ tτ1σ3 sin kx + tτ1σ2 sin ky, (1)

with Pauli matrices τ j and σ j , j = 0, 1, 2, 3. Here and below,
m(kz ) is defined as m(kz ) = cos k0 − cos kz. The symmetry
constraints are

H (kx, ky, kz ) = − UCH (kx, ky, kz )U †
C

=UMH (−kx, ky, kz )U †
M, (2)

with UC = τ3σ0 and UM = τ3σ3. The Hamiltonian (1)
has double band crossings at kz = ±k0, which are turned
into nodal loops upon addition of a generic symmetry-
preserving perturbation. Seen as a two-dimensional Hamilto-
nian, Hkz (kx, ky) is in a second-order phase with nondegener-
ate zero-energy states at mirror-symmetric corners for −k0 <

kz < k0 and in a trivial phase for |kz| > k0, see Appendix A
for details. Hence, for a pillar geometry the three-dimensional
Hamiltonian H (kx, ky, kz ) describes a nodal-loop semimetal
with a flat arc of hinge states. Exact diagonalization, with
symmetry-preserving terms added such that eventual trivial
surface states are gapped out, confirms the appearance of a flat
arc of zero-energy states on the two mirror-symmetric hinges
of the pillar, see Figs. 1(a) and 1(b). The symmetry-preserving
perturbation used in the calculations of Fig. 1 has the form

δH (kx, ky, kz ) = bτ2σ2 (3)

with b = 0.4t . In addition to gapping out nontopological sur-
face states, the addition of this term also lifts the accidental
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degeneracy of the nodal point at kz = ±k0 and turns it into a
nodal loop, see Appendix A.

The presence of the antisymmetry C is essential for pinning
the hinge states to zero energy. Other antisymmetries, such
as the antiunitary particle-hole antisymmetry P associated
with the Bogoliubov-de Gennes description of superconduc-
tors or combinations of C or P and crystalline symmetries can
also stabilize hinge states at zero energy. Flat arcs of hinge
states also appear in proposals for second-order semimetals in
the literature [63–71,76,77,80], although the antisymmetry re-
quired for the topological protection is not always recognized
explicitly [63–68,77,80] or is allowed to be weakly broken
[69,71,76], so that the hinge arc is no longer strictly pinned to
zero energy. In that case, the hinge arc no longer has a strict
topological protection and may be removed by a sufficiently
strong local perturbation at the crystal hinge.

The tenfold-way class CII with a twofold rotation sym-
metry Rz allows for a variant of this scenario, in which the
zero-energy hinge arcs do not terminate at nodes of the bulk
band structure, but at (topologically protected) Dirac nodes
of the surface band structure. In this case, the presence of
anomalous zero-energy hinge states at kz = 0 as well as their
absence at kz = π are protected by the topology of the bulk
band structure, whereas the zero-energy hinge states at generic
0 < |kz| < π are “extrinsic,” i.e., unrelated to the bulk topol-
ogy [49]. Such hinge states may disappear at a kz-dependent
closing of the surface gap. We refer to Appendix B for details.

(ii) Flat zero-energy hinge arcs around kz = 0 and first-
order surface states at kz = 0. With a suitable combination
of tenfold-way and crystalline symmetries, it is possible that
Hkz (kx, ky) is in a first-order topological phase at kz = 0, and in
a second-order topological phase at finite 0 < |kz| < k0. Then,
the band structure is of a hybrid order, with a flat arc of zero-
energy states at the hinge coexisting with first-order Dirac
cone surface states on adjacent surfaces that are themselves
not invariant under the crystalline symmetry. An example is
a spinful odd-parity time-reversal symmetric superconductor
(tenfold-way class DIII) with mirror symmetry M. A concrete
model is the four-band Hamiltonian

H (kx, ky, kz ) = tτ3σ0[m(kz ) + 2 − cos kx − cos ky]

+ tτ2σ0 sin kx + tτ1σ3 sin ky, (4)

which has nodal points at |kz| = k0 and satisfies the symmetry
constraints

H (kx, ky, kz ) = − UPH (−kx,−ky,−kz )∗U †
P

=UT H (−kx,−ky,−kz )∗U †
T

=UMH (−kx, ky, kz )U †
M, (5)

where UT = τ0σ2, UP = τ1σ0, and iUM = iτ3σ1 represent
time reversal, particle-hole conjugation, and mirror, respec-
tively. At generic kz, Hkz (kx, ky) is invariant under the products
PT and T M that leave kz invariant, but not under P , T , or
M separately. Because the symmetries differ for kz = 0 or π

and generic 0 < |kz| < π , Hkz (kx, ky) is in different topolog-
ical classes at kz = 0 and at kz �= 0: a first-order phase with
helical Majorana edge states for kz = 0, and a second-order
phase with zero-energy corner states for 0 < |kz| < k0. As
shown in Fig. 1(b), for the three-dimensional Hamiltonian

H (kx, ky, kz ) this implies a combination of Dirac cone surface
states at kz = 0 and a flat hinge arc ranging from kz = 0 to the
projection of the nodal loop around |kz| = k0 onto the hinge
Brillouin zone. To remove nontopological surface states and
accidental degeneracies, the additional term

δH (kx, ky, kz ) = bτ0σ1 sin kz (6)

with b = 0.4t was added to the model (4).
(iii) Chiral or helical hinge states around kz = 0. With

rotation or inversion symmetry, it is possible that H0(kx, ky )
is in a second-order phase with zero-energy corner states,
whereas Hkz (kx, ky) is in a nontrivial atomic limit phase at
generic kz. In this case, the bulk band crossing is protected by
the transition between the nontrivial and trivial atomic limits
as a function of kz. Around kz = 0, such a system hosts chiral
or helical hinge mode which are pinned to zero energy at
kz = 0.

As an example, we consider a crystal with twofold ro-
tation symmetry Rz, which has co-propagating chiral hinge
modes on rotation-related hinges. Copropagating chiral hinge
modes are ruled out in gapped topological phases, but with
a gapless bulk, an equilibrium current carried by bulk states
may compensate the equilibrium current carried by the chiral
hinges. This scenario applies to a spinful even-rotation-parity
time-reversal symmetry-breaking superconductor (tenfold-
way class D), which has the Bogoliubov-de Gennes Hamil-
tonian

H (kx, ky, kz ) = tτ3σ3[m(kz ) + 2 − cos kx − cos ky]

+ tτ1σ3 sin kx + tτ2σ3 sin ky, (7)

with the representations UP = τ1σ0 and iUR = iτ3σ3. Since
particle-hole conjugation changes the sign of kz, for generic kz,
Hkz (kx, ky) is constrained by Rz only. The spectrum, showing
the linearly dispersing chiral hinge states around kz = 0, is
shown in Fig. 1(b). In the presence of time-reversal symme-
try, this scenario leads to helical hinge states around kz = 0
instead of chiral hinge states, as discussed in Appendix B. To
remove nonprotected surface states, we added an additional
term of the form

δH (kx, ky, kz ) = b1σ2τ2 + b2σ1τ1 sin kz (8)

with b1 = b2 = 0.4t to the model Hamiltonian (7). As in the
previous cases, this additional term also lifts the accidental
degeneracy of the nodal point at kz = ±k0 and turns it into
a nodal loop. We refer to Appendix A for a more detailed
discussion.

(iv) Flat zero-energy hinge arcs away from kz = 0. If
Hkz (kx, ky) can be in a second-order phase for generic 0 <

|kz| < π , flat zero-energy hinge arcs between projections of
bulk nodes on hinge Brillouin zones away from kz = 0 and
kz = π are possible irrespective of the topological phase of
Hkz (kx, ky) at kz = 0. Such flat arcs of zero-energy hinge states
are the only possible second-order boundary features associ-
ated with a bulk gap closing if the topological classification
of Hkz (kx, ky) at kz = 0 does not allow for topological phases
with anomalous boundary features or Hkz (kx, ky) immediately
becomes trivial upon going from kz = 0 to nonzero kz.
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An example is a spinful odd-rotation-parity time-reversal-
symmetric superconductor (class DIII)

H (kx, ky, kz ) = tτ0σ3 sin kz(m − 1 − cos kx − cos ky)

+ tτ0σ1 sin kx + tτ3σ2 sin ky

+ t ′τ3σ0 cos2 kz, (9)

with the representations UT = τ0σ2, UP = τ1σ0, and iUR =
iτ0σ3. The Hamiltonian (9) is topologically trivial at kz = 0,
π and is in a second-order phase around |kz| = π/2. It has a
total of eight nodal loops. Four of these, which appear closest
to kz = 0 and π , are “fragile” and can be removed by the
addition of trivial bands (see Appendix A). The remaining
four, which are closer to kz = ±π/2, are associated with
the topological phase transitions between second-order and
atomic-limit phases of Hkz (kx, ky). There is a flat zero-energy
hinge arc connecting projections of the nodal loops around
kz = ±π/2 onto the edge Brillouin zone. Figure 1(b) shows
the spectrum for this model for the pillar geometry. For the
numerical calculations of Fig. 1(b), we added the term

δH = bτ2σ0 sin kz (10)

with b = 0.4t to the model (9) to gap out nonprotected surface
states.

Further illustrative examples for each type are presented in
Appendix B.

III. CLASSIFICATION

In Table I, we list all combinations of tenfold-way and crys-
talline symmetries for which second-order nodal semimetal
or superconductor phases exist, for the twofold rotations Rx

or Ry, Rz, mirror Mx or My, or inversion symmetry I.
We include magnetic crystalline symmetries, which are the
product of a crystalline symmetry S and time-reversal T .
The subscripts ± in the table indicate, whether the crystalline
symmetry S commutes or anticommutes with the tenfold-way
symmetries T , P , or C, if applicable (also see Appendix F).
Of the symmetry classes shown in the table, a second-order
semimetal with a flat arc of zero-energy hinge states was
previously proposed in Ref. [70] in the presence of the mag-
netic inversion symmetry T I−. A list of second-order gapless
phases protected by crystalline antisymmetries is given in
Appendix C.

The results presented in Table I have been obtained by
comparison of the order-resolved classifications at kz = 0 and
0 < |kz| < π , as explained in detail in Appendix C. We supply
an exhaustive list of topological invariants for the nodal phases
in Appendix G. More details on the construction and notation
of the symmetry classes can be found in Appendix F. Fur-
thermore, in Appendix E, we discuss two boundary signatures
that do not occur in the presence of a single twofold crystalline
symmetry.

IV. NODAL LOOPS VERSUS DIRAC POINTS

For the order-two crystalline symmetries considered here,
a bulk band structure with a “Dirac point,” a multiply degen-
erate Weyl point, is unstable to a splitting into a nodal loop.
This is the case, e.g., in the model considered in Ref. [70], as

TABLE I. Combinations of tenfold-way symmetries T , P , or
C = PT and order-two crystalline symmetries S = Mx/y, Rx/y, Rz,
I, or magnetic symmetries T S allowing for a second-order topo-
logical gapless phase with anomalous hinge states around kz = 0
[of type (i), (ii), or (iii), as discussed in the text] or with flat hinge
arcs at generic kz [type (iv)]. The subscripts S± indicate, whether
S commutes (+) or anticommutes (−) with T , P , and/or C, us-
ing the convention that the representation matrix U 2

S = 1. Magnetic
symmetries are indicated by the product T S, where the superscript
T ± indicates the square (T S)2 = ±1 and the subscript S± indicates,
whether T S commutes or anticommutes with P or C. In class CII
with Rz

+−, the zero-energy hinge arc ends at a surface Dirac cone,
see Appendix B for details.

Class T 2 P2 C2 type Mx/y Rx/y Rz I

AIII 0 0 1 (i) Mx/y
+ T +Rx/y

+ Rz
− T +I−

BDI 1 1 1 (i) Mx/y
++ Rx/y

++ Rz
+− I+−

(iv) Mx/y
−− Rz

−+
D 0 1 0 (i) T +Mx/y

+ Rx/y
+

(iii) Rz
− T +I+

(iv) T −Mx/y
−

DIII −1 1 1 (i) Mx/y
−−

(ii) Mx/y
−− Rx/y

−+ Rz
+− I−−

(iii) Rz
+−

(iv) Mx/y
++ Rz

−+
CII −1 −1 1 (i) Mx/y

++ Rz
+−*

(iv) Mx/y
±± Rx/y

−− Rz
±∓ I−+

C 0 −1 0 (i) T −Mx/y
+

(iv) T ∓Mx/y
± Rx/y

−
CI 1 −1 1 (i) Mx/y

−−
(iv) Mx/y

±± Rx/y
+− Rz

∓± I++

well as for the models considered here. Nodal loops for the
four examples discussed here are shown in Appendix A. Sta-
bilizing Dirac points requires crystalline symmetries of higher
order than considered here, such as fourfold or sixfold rotation
symmetry. Topological semimetals with flat or approximately
flat arcs of hinge states and fourfold rotation symmetry [our
type (i)] were discussed in Refs. [63,64,69,71]. Reference [72]
proposes models for a nodal superconductor with inversion-
symmetry-protected helical hinge states around [our type (iii)]
and nodal points in the bulk band structure protected by four-
fold and sixfold rotation symmetry. In principle, degenerate
Weyl points may also split into single Weyl points if the
classification group at finite kz admits both first-order and
second-order or obstructed atomic-limit phases under taking
the direct sum. Such a scenario does not occur, however, for
the order-two crystalline symmetries [52].

V. HINGE DISORDER

As long as the bulk density of states vanishes at the nodal
point, zero-energy hinge arcs are robust to weak disorder
[82,83]. However, potential disorder may broaden a flat hinge
arc, even if it respects the tenfold-way symmetries T , P , and
C (if applicable). Such local hybridization of hinge states is
absent, however, if the hinge states are protected by a chiral
antisymmetry C and all hinge states have the same C-parity.
This is the case for our example (1). If the hinge states appear
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in pairs with opposite C-parity or if they are not pinned to zero
energy by an antisymmetry C, no such protection exists. In
our examples (4) and (9), the zero-energy hinge states appear
in Kramers pairs with opposite C-parity, allowing them to
hybridize. For type (iii), the hinge states are chiral or heli-
cal Majorana modes, which are prohibited from localization
by disorder, although away from zero energy disorder may
cause chiral or helical hinge states to hybridize with bulk
states. A detailed discussion on the effect of hinge disorder
for each example discussed in this manuscript can be found in
Appendix D.

VI. CONCLUSION

Using the systematic relation between topological gap-
less phases in d dimensions and topological gapped phases
in d − 1 dimensions, we performed an extensive topolog-
ical classification for d = 3 and identified four types of
second-order topological semimetals and nodal superconduc-
tors distinguished by their boundary signatures and associated
bulk topology around the nodal manifold. These boundary
signatures are unique to nodal topological phases as the hinge
anomaly requires a bulk node before connecting to a topo-
logically trivial configuration at large momentum. For a strict
protection, all types require the presence of an antisymme-
try, which suggests superconductors or semimetals with an
approximate sublattice antisymmetry as natural candidates.
We hope that our work may contribute to the topological
interpretation of nodal superconductors, such as doped Bi2Se3

[84–86] where the proposed multicomponent order parame-
ter with Eu symmetry can yield a system in class DIII with
mirror M−− and rotation R−+ permitting second-order nodal
topology (cf. Table I), as well as iron-based [87–97] and
heavy-fermion compounds [98] where nodal loops have been
observed.
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APPENDIX A: FURTHER DISCUSSION OF EXAMPLES
FROM THE MAIN TEXT

To decide, whether a certain combination of tenfold-
way and crystalline symmetries can protect a second-order
topological semimetal phase and to find the type of the
boundary signatures, one needs to (a) determine the crys-
talline symmetry classes of the two-dimensional Hamiltonian
Hkz (kx, ky) at the high-symmetry planes kz = 0, π , and at
generic 0 < |kz| < π , and (b) obtain the order-resolved clas-
sification corresponding to the crystalline symmetry classes

at kz = 0, π , and at generic 0 < |kz| < π , together with the
mapping between these.

For the twofold crystalline symmetries, order-resolved
classification information can be found in Ref. [52], which
classifies two-dimensional topological band structures in
terms of a “subgroup sequence”

K ′′ ⊆ K ′ ⊆ K.

Here K is the full classifying group (restricted to strong topo-
logical phases and subject to the rules of stable equivalence
[42]), K ′ classifies all topological band structures that do
not have first-order boundary signatures, and K ′′ classifies
all topological band structures without boundary signatures.
The quotient K ′/K ′′ then describes the second-order phases.
Since the crystalline symmetry class at generic 0 < |kz| < π

is obtained from the crystalline symmetry class at the high-
symmetry planes kz = 0, π by lifting symmetry requirements,
in the mathematical literature the mapping between the clas-
sifying groups at kz = 0, π and at generic 0 < |kz| < π is
known as the “forgetful functor” [42]. To the best of our
knowledge, no complete classification information that in-
cludes the action of the forgetful functor for the tenfold-way
classes with a twofold crystalline symmetry is available in
the literature, but this information can be obtained relatively
straightforwardly by inspecting models for the generators of
the classifying groups.

We now discuss the crystalline symmetry classes
of the two-dimensional Hamiltonian Hkz (kx, ky) at the
high-symmetry planes kz = 0, π , and at generic 0 < |kz| < π ,
the order-resolved classifications, the action of the forgetful
functor, and the resulting consequences for three-dimensional
topological gapless phases for the four examples discussed
in the main text. Figure 2 shows the band structure and the
nodal loops calculated from the model Hamiltonians with
perturbation.

Example of Eq. (1). Considering kz as a parameter,
the three-dimensional Hamiltonian H (kx, ky, kz ) of Eq. (1)
describes a one-parameter family of two-dimensional Hamil-
tonians Hkz (kx, ky). At the high-symmetry planes, kz = 0 and
kz = π , Hkz (kx, ky) is subject to the chiral antisymmetry C and
the mirror symmetry Mx as

H0,π (kx, ky) = − UCH0,π (kx, ky)U †
C

=UMH0,π (−kx, ky)U †
M, (A1)

with UC = τ3σ0 and UM = τ3σ3, see Eq. (2) of the main text.
In the notation of Ref. [52], this is the crystalline symmetry
class AIIIM+ , where the Cartan symbol “AIII” indicates the
presence of the chiral antisymmetry C and the superscript
“M+” the presence of the crystalline mirror symmetry Mx

that commutes with C. Since the mirror symmetry leaves z in-
variant, the crystalline symmetry class for generic 0 < |kz| <

π is the same.
The subgroup sequence classifying the crystalline symme-

try class AIIIM+ is given in Table II of Ref. [52],

0 ⊆ Z ⊆ Z,

from which one immediately concludes that all nontrivial
topological phases in the crystalline symmetry class AIIIM+

are second-order phases with zero-energy corner states at
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FIG. 2. Bulk band structures (top) and nodal lines in the three-dimensional Brillouin zone (bottom) for the representative models of
Eqs. (1), (4), (7), and (9) (from left to right) from the main text. The same parameters were used as in Fig. 1. In the depictions of the nodal
lines, we include a color gradient proportional to the kz coordinate of the nodal line.

mirror-symmetric corners. The four-band Hamiltonian (1) is
a generator of the nontrivial topology. One can see this, e.g.,
by noting that it has the maximal number of anticommuting
terms and the minimal number of bands. Alternatively, that
the four-band Hamiltonian (1) with |kz| < k0 is a generator
of the nontrivial topology can also be inferred from the exact
diagonalization, which gives precisely one zero-energy corner
state per mirror-symmetric corner if |kz| < k0, see Fig. 1(b) in
the main text.

Example of Eq. (4). When seen as a kz-dependent family of
two-dimensional Hamiltonians Hkz (kx, ky), the model (4) is in
symmetry class DIIIM−− at the high-symmetry planes kz = 0,
π . For generic 0 < |kz| < π , Hkz (kx, ky) is constrained by the
product C = PT and by the mirror symmetry M only. Since
M commutes with C, Hkz (kx, ky) is in the symmetry class
AIIIM+ for generic 0 < |kz| < π . The subgroup sequences for
kz = 0, π and for generic 0 < |kz| < π are given in Tables II
and IV of Ref. [52], respectively,

0 ⊆ 2Z ⊆ Z for kz = 0, π,

0 ⊆ Z ⊆ Z for 0 < |kz| < π.
(A2)

From these subgroup sequences we conclude that the genera-
tor of the classifying group is a first-order phase for kz = 0, π

and a second-order phase for 0 < |kz| < π . That the four-band
Hamiltonian (4) is a generator for kz = 0 as well as 0 < |kz| <

k0 can be seen by noting that it has the maximal number of
anticommuting terms and the minimal number of bands or,
alternatively, by inspection of the exact diagonalization results
of Fig. 1(b), which show that the two-dimensional Hamilto-
nian Hkz (kx, ky) corresponding to Eq. (4) has helical Majorana
edge states for kz = 0 and nondegenerate zero-energy corner
states for 0 < kz < k0.

Example of Eq. (7). The model of Eq. (7) satisfies the
symmetry constraints

H (kx, ky, kz ) = − UPH (−kx,−ky,−kz )∗U †
P

=URH (−kx,−ky, kz )U †
R, (A3)

with UP = τ1σ0 and iUR = iτ3σ3. It is in the crystalline sym-
metry classes DR− for kz = 0, π and AR for 0 < |kz| < π .

The corresponding subgroup sequences are [52]

2Z ⊆ Z ⊆ Z2 for kz = 0, π,

Z ⊆ Z ⊆ Z2 for 0 < |kz| < π.

The two-dimensional Hamiltonian Hkz (kx, ky) corresponding
to the model (7) is the generator “1” of K ′ for |kz| < k0, which
is a second-order phase with zero-energy corner states for
kz = 0 and an obstructed atomic-limit phase for 0 < |kz| < k0.
At |kz| = k0, there is a transition between two atomic-limit
phases, which lends topological protection to the gaplessness,
but does not come with a boundary signature. This explains
the phenomenology of the three-dimensional model (7): dis-
persing chiral hinge modes around kz = 0, pinned to zero
energy at kz = 0.

Example of Eq. (9). The model of Eq. (9) satisfies the
symmetry constraints

H (kx, ky, kz ) = − UPH (−kx,−ky,−kz )∗U †
P

=UT H (−kx,−ky,−kz )∗U †
T

=URH (−kx,−ky, kz )U †
R, (A4)

with UT = τ0σ2, UP = τ1σ0, and iUR = iτ0σ3. At the high-
symmetry momenta kz = 0, π , the two-dimensional Hami-
tonian Hkz (kx, ky) corresponding to this model is in the
crystalline symmetry class DIIIR−+ ; for generic momenta
0 < |kz| < π , the crystalline symmetry class is AIIIR− . The
corresponding subgroup sequences are [52]

0 ⊆ Z2 ⊆ Z2 for kz = 0, π,

2Z ⊆ Z ⊆ Z for 0 < |kz| < π.

Although the symmetries allow for a nontrivial topological
phase at kz = 0, the corresponding Hamiltonian immediately
turns trivial upon going to nonzero kz, ruling out a topological
semimetal phase that derives its protection from a nontrivial
phase of Hkz (kx, ky ) at kz = 0. (This observation, as well as
the converse, that any topologically nontrivial gapped two-
dimensional Hamiltonian Hkz (kx, ky) must be trivial for kz →
0, π follows from the observation that there is no nontrivial
map from Z2 to Z.) Instead, the family of two-dimensional
Hamiltonians Hkz (kx, ky) as defined from Eq. (9) corresponds
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FIG. 3. Band structures in a rhombic pillar geometry for the example systems as defined in Eqs. (B1), (B3), (B6), (B9), and (B11) (from
left to right, top) and bulk band structures (middle) and nodal line (bottom). In the pillar geometry (top), periodic boundary conditions are
applied in the z direction, which is along the pillar axis. The full and dashed black curves denote the excitation gap in the bulk and on the
surface, respectively. Symmetry-preserving perturbations have been added to the models given in the text to turn accidentally degenerate nodal
points into nodal loops and to gap out nonanomalous surface states, as desribed the text. In the models of Eqs. (B1), (B3), (B6), and (B11), we
took the parameter values t = 1, k0 = 0.6π ; for the model of Eq. (B9), we took the parameter values m = 0, t = 1, t ′ = 2.

to the trivial class for kz = 0 and π—i.e., it corresponds to the
element “0” in the classifying group K—and is nontrivial—
corresponding to the element “1”—in a region k01 < |kz| <

k02 around |kz| = π/2. The resulting phenomenology of the
three-dimensional model is as shown in Fig. 1: flat arcs of
zero-energy hinge states in a finite region around |kz| = π/2,
but no boundary signatures at kz = 0 or π .

APPENDIX B: MORE EXAMPLES

Below we discuss more examples that realize variants of
the four main scenarios for second-order gapless topological
band structures discussed in the main text.

Type (i) with degenerate flat hinge arcs. The exam-
ple of Eq. (1) describes a second-order topological gapless
phase with nondegenerate flat arcs of hinge states. Since the
hinge states are protected by the chiral antisymmetry C and,
hence, have a Z topological classification, examples with de-
generate flat arcs of hinge states can trivially be obtained by
taking the direct sum of multiple copies of the model (1). A
nontrivial example with twofold degenerate hinge arcs, for
which the degeneracy at kz = 0 is symmetry-enforced, can
be found by considering the direct sum of two copies of the
example of Eq. (4) of the main text,

H (kx, ky, kz ) = tτ3σ0ρ0[m(kz ) + 2 − cos kx − cos ky]

+ tτ2σ0ρ0 sin kx + tτ1σ3ρ0 sin ky. (B1)

Here, the 2×2 identity matrix ρ0 and the associated Pauli ma-
trices ρ j , j = 1, 2, 3, describe an additional two-component
degree of freedom. The tenfold-way and crystalline symme-
tries of this eight-band model are the same in the example of
Eq. (4) of the main text, see the previous Section for details.

As before, we consider the model (B1) as a one-parameter
family of two-dimensional Hamiltonians Hkz (kx, ky). Because
the model (B1) is the direct sum of two copies of a Hamilto-
nian that generates the classification group K , it corresponds
to the element “2” in the sequence of classifying groups.
According to the subgroup sequences (A2), the element
“2” of the classying group is a second-order phase with
Kramers-degenerate zero-energy corner states for kz = 0 and
a second-order phase with twofold degenerate corner states for
0 < |kz| < k0. The resulting three-dimensional band structure
has a flat arc of twofold degenerate zero-energy hinge modes
for −k0 < kz < k0, whereby the twofold degeneracy at kz = 0
is protected by time-reversal symmetry, whereas the twofold
degeneracy at 0 < |kz| < k0 is protected by the chiral antisym-
metry C = PT .

Figure 3 shows the nodal region, the bulk band structure,
and the dispersion for a pillar geometry with translation in-
variance in the z direction. To remove nontopological surface
states and accidental degeneracies in the spectrum, the addi-
tional term

δH = b1τ0σ1ρ2 + b2τ0σ1ρ0 sin kz (B2)

has been added to the Hamiltonian (B1), with parameter val-
ues b1 = 0.4t and b2 = 0.2t .

Although this model has the smallest number of bands
compatible with the requirement that it has Kramers degen-
erate hinge modes at kz = 0, it is not a minimal model. In the
context of the classification, this follows from the fact that
the model (B1) corresponds to the nonminimal element “2” in
the classifying group. It also follows from the phenomenology
of the model: In principle, one can add a perturbation that
preserves time-reversal symmetry, but causes the transition of
Hkz (kx, ky) from the nontrivial phase “2” at kz = 0 towards
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the trivial phase “0” at kz = π to proceed in two steps. As
a result, there are nodal points at two values of kz, each of
which can be broadened into a nodal loop by a symmetry-
preserving perturbation. For kz between the projections of the
nodal points/loops there are nondegenerate zero-energy hinge
states, as in the original model (4) of the main text.

Type (i) with rotation symmetry Ry. Another example for
a second-order nodal superconductor with a flat arc of zero-
energy hinge states around kz = 0 is a time-reversal symmetry
breaking superconductor with a twofold rotation symmetry
Ry around the y axis and even-parity superconductivity. A
concrete lattice model is the four-band model

H (kx, ky, kz ) = tτ3σ0(m(kz ) + 2 − cos kx − cos ky)

+ tτ1σ1 sin kx + tτ1σ3 sin ky, (B3)

which satisfies the symmetry constraints

H (kx, ky, kz ) = − UPH (−kx,−ky,−kz )∗U †
P

=URH (−kx, ky,−kz )U †
R, (B4)

with UP = τ1σ0 and iUR = iτ0σ3. Since the twofold rota-
tion Ry acts like a mirror kx → −kx at the high-symmetry
values kz = 0 or kz = π , the crystalline symmetry class of
the two-dimensional Hamiltonian Hkz (kx, ky) at kz = 0, π is
DM+ . At generic kz, Hkz (kx, ky) is constrained by the product
PR only, which, at a fixed value of kz, effectively acts as an
antiunitary mirror antisymmetry PMx, so that Hkz (kx, ky) is in
the crystalline symmetry class AP+M. From Tables III and IV
of Ref. [52], we then find that in both cases, the order-resolved
topological classifications given by the subgroup sequence

0 ⊆ Z2 ⊆ Z2.

According to this subgroup sequence, the only topologically
nontrivial band structures are of second order. For |kz| < k0,
the model (B3) realizes such a topological band structure, for
kz = 0 as well as 0 < |kz| < k0. It has zero-energy hinge states
for −k0 < kz < k0 on hinges that are mapped to themselves
under the twofold rotation symmetry Ry.

To remove nontopological surface states and accidental
degeneracies, for the numerical calculations we add the ad-
ditional term

δH = b1τ3σ3 + b2τ0σ1 sin kz (B5)

with b1 = b2 = 0.4t . The corresponding bulk band structure
and the quasi-one-dimensional band structure of a rhombic
pillar geometry are shown in Fig. 3.

Type (ii) with inversion symmetry. The model of Eq. (4)
of the main text, which describes an odd-parity nodal
superconductor with mixed-order boundary signatures (sur-
face Dirac cones pinned to kz = 0 and flat arcs of hinge states
around kz = 0) also satisfies an unusual inversion symmetry
I with representation UI = τ3σ3. (This inversion symmetry
is unusual, because it anticommutes with time reversal.) If I
is imposed instead of Mx, the model of Eq. (4) is still topo-
logical, with crystalline symmetry class DIIIR−− for kz = 0, π
and AIIIT

+R− for 0 < |kz| < π . (Note that at fixed kz = 0, π ,
inversion effectively acts as a twofold rotation Rz. The same
applies to the product T I at fixed 0 < |kz| < π .) The sub-

group sequences follow from Tables III and IV of Ref. [52],

0 ⊆ Z2 ⊆ Z2
2 for kz = 0, π,

0 ⊆ Z2 ⊆ Z2 for 0 < |kz| < π.

Hence, at kz = 0, π , there are first-order as well as second-
order phases, with separate Z2 classifications. At generic
0 < |kz| < π there is only a second-order phase. Upon con-
tinuously going from kz = 0 to generic 0 < |kz| < π , the
generator of the first-order phase at kz = 0 becomes a second-
order phase at nonzero kz. That this is the case is seen
by inspecting the behavior of Hkz (kx, ky) for the concrete
model (4), which has first-order boundary states at kz = 0
and zero-energy corner states for 0 < kz < k0 (see discus-
sion in the main text and in the previous section). Hence,
we conclude that the model (4) with inversion symmetry
I−− instead of the mirror symmetry Mx also realizes a
second-order nodal superconductor of type (ii). A differ-
ence between the inversion-symmetric and mirror-symmetric
versions of the model (4) is that in the mirror-symmetric
version the hinge states appear on the mirror-symmetric
hinges, whereas in the inversion-symmetric version the
hinge states can appear on any pair of inversion-related
hinges. Since the phenomenology of the inversion-symmetric
version of the model (4) is the same as that of the mirror-
symmetric version, we refer to Fig. 1(b) of the main text for
numerical results.

Type (iii) with helical hinge modes. A second-order
topological nodal superconductor of type (iii) with heli-
cal hinge modes exists in the (three-dimensional) symmetry
class DIIIR

z
+− , which describes an odd-rotation-parity time-

reversal-symmetric superconductor with an unconventional
twofold rotation symmetry Rz. (The rotation symmetry is
unconventional, because R2 = 1 and R commutes with time
reversal.) To construct a concrete lattice model, one may
take the direct sum H (kx, ky, kz ) ⊕ H∗(−kx, ky, kz ) of two
time-reversed copies of the four-band model H (kx, ky, kz ) of
Eq. (7),

H (kx, ky, kz ) = tτ3σ3ρ0[m(kz ) + 2 − cos kx − cos ky]

+ tτ1σ3ρ3 sin kx + tτ2σ3ρ0 sin ky, (B6)

where the Pauli matrices ρ j describe an additional two-
component degree of freedom. The model has the symmetries

H (kx, ky, kz ) = − UPH (−kx,−ky,−kz )∗U †
P

=UT H (−kx,−ky,−kz )∗U †
T

=URH (−kx,−ky, kz )U †
R, (B7)

with UP = τ1σ0ρ0, UT = τ0σ0ρ2, and URz = τ3σ3ρ0. For
the high-symmetry momenta kz = 0, π , the two-dimensional
Hamiltonian Hkz (kx, ky) corresponding to Eq. (B6) is in
crystalline symmetry class DIIIR+− ; and at generic 0 < |kz| <

π it is in symmetry class AIIIR− . The corresponding subgroup
sequences follow from Tables II and IV of Ref. [52],

4Z ⊆ 2Z ⊆ Z for kz = 0, π,

2Z ⊆ Z ⊆ Z for 0 < |kz| < π.

For kz = 0, the eight-band model (B6) corresponds to the
element “2” in this subgroup sequence, which corresponds
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to a second-order band structure with Kramers pairs of zero-
energy corner states. For 0 < kz < k0, the element “2” in the
subgroup sequence corresponds to a topologically nontrivial
atomic limit.

Like the model of Eq. (B1), the model (B6) is not a minimal
model. As a function of kz, the two-dimensional Hamiltonian
Hkz (kx, ky) can transition from the nontrivial second-order
phase “2” at kz = 0 to the trivial phase at kz = π via an
intermediate gapped phase corresponding to the generator “1”
of the classification group K . If the gap closings take place at
kz = ±k01 and kz = ±k02, the three-dimensional system has
helical dispersing hinge modes around kz = 0 and flat arcs
of zero modes for |kz| between k01 and k02. As for all other
models considered here, a symmetry-preserving perturbation
may change the gap closing points into nodal loops.

A numerical evaluation of the model (B6), with an addi-
tional term

δH = b1τ2σ2ρ0 + b2τ1σ1ρ3 sin kz + b3τ2σ2ρ2 sin kz (B8)

to gap out nontopological surface states and to separate the
gap closing points, is shown in Fig. 3. The parameter values
are b1 = b2 = 0.3t, b3 = 0.6t .

Type (iv) with four nodal points. The model (9) of a second-
order topological superconductor in symmetry class DIIIR

z
−+

has eight nodal loops. Four of the nodal loops are a conse-
quence of a transition between obstructed atomic limits. This
obstruction is “fragile,” in the sense that these four nodal loops
can be removed under the direct sum with the corresponding
atomic limit that cancels the obstruction. This cancellation is
realized, e.g., in an eight-band generalization of the model of
Eq. (9),

H (kx, ky, kz ) = tτ0σ3 sin kz[μ3(m − 1)−μ11(cos kx + cos ky)]

+ tτ0σ1μ11 sin kx + tτ3σ2μ11 sin ky

+ t ′τ3σ0μ1 cos2 kz, (B9)

where μ11 = 1
2 (μ0 + μ3). The bulk band structure, the man-

ifold of nodal excitations in the three-dimensional Brillouin
zone, and the band structure in a pillar geometry are shown
in Fig. 3. In the numerical calculations, we included an addi-
tional symmetry-allowed hybridization

δH = b1τ2σ0μ0 sin kz + b2τ2σ0μ3 sin kz (B10)

with b1 = 0.4t, b2 = 0.2t to gap out nontopological surface
states and remove accidental spectral degeneracies.

Type (i)* in class CII with rotation symmetry Rz
+−. In

symmetry class CII with rotation symmetry Rz
+−, we en-

counter a special case of a second-order topological semimetal
with zero-energy hinge arcs that, for generic 0 < |kz| < π , are
only protected by the boundary gap, but not by the bulk gap.
The subgroup sequences for this crystalline symmetry class
are [52]

4Z ⊆ 2Z ⊆ 2Z for kz = 0, π,

2Z ⊆ Z ⊆ Z for 0 < |kz| < π.

The subgroup sequence for kz = 0 indicates that for this mo-
mentum, the system permits a second-order topological phase
hosting an anomalous, protected Kramers pair of zero-energy
corner states. In class CII, the two partners in the pair have

the same eigenvalue under the chiral antisymmetry C = T P ,
because T commutes with C [49]. These hinge states must
remain at zero energy upon going to nonzero kz, because the
chiral antisymmetry prohibits them from acquiring a nonzero
energy. However, since T maps kz to −kz, it no longer pairs
zero-energy hinge state at nonzero kz. It is possible to move
and hybridize such zero-energy hinge states with the zero-
energy modes at the opposite hinge, while preserving rotation
symmetry [49]. This transformation closes only the gap on
the surface, but not in the bulk. This is in agreement with the
subgroup sequence for finite kz, according to which the gen-
erator of the nontrivial topology at kz = 0, which corresponds
to the element “2”, maps to an obstructed atomic-limit phase
at nonzero kz. The obstructed atomic limit Hkz (kx, ky) does
not have in-gap corner states that are protected by the bulk
topology.

These findings are realized in the eight-band lattice model

H (kx, ky, kz ) = tτ3σ1ρ0[m(kz ) + 2 − cos kx − cos ky]

+ tτ0σ3ρ3 sin kx + tτ0σ3ρ1 sin ky, (B11)

which satisfies the symmetries

H (kx, ky, kz ) = − UPH (−kx,−ky,−kz )∗U †
P

=UT H (−kx,−ky,−kz )∗U †
T

=URH (−kx,−ky, kz )U †
R, (B12)

with UP = τ2σ0ρ0, UT = τ1σ2ρ0, and UR = τ3σ1ρ0. We fur-
ther include a symmetry-allowed hybridization,

δH = b1τ3σ1ρ1 + b2τ1σ2μ1 sin kz

+ b3τ2σ2μ3 sin kz + b4τ2σ2μ0 sin kz, (B13)

with b1 = 0.2t , b2 = b3 = 0.4t , and b4 = 0.6t , to remove
accidental degeneracies and boundary states. The bulk and
rhombic pillar band structure as well as the nodal manifold
are shown in Fig. 3. Around kz = 0, the system hosts a zero-
energy hinge arc. These states hybridize and disappear at a
Dirac node of the surface band structure. Since this model
corresponds to the element “2” in the classification sequence
for generic 0 < |kz| < π , as a function of kz the transition
from the second-order phase at kz = 0 to the trivial phase at
kz = π involves two gap closings, separated by an intermedi-
ate second-order phase. As shown in Fig. 3, between the first
and the second nodal loop, a nondegenerate arc of zero-energy
hinge states appears, which corresponds to the second-order
topological phase for the value “1” of the crystalline topolog-
ical invariant at finite kz.

APPENDIX C: CLASSIFICATION

Tables II–V contain a complete list of all combina-
tions of tenfold-way symmetries and an additional order-two
crystalline symmetry, for which second-order gapless topo-
logical phases are possible. The crystalline symmetries are
mirror Mx/y, twofold rotation Rx/y around the x or y axis,
twofold rotation Rz around the z axis, and inversion I.
The tables also contain unitary and antiunitary crystalline
antisymmetries, which are denoted as the product of the chi-
ral conjugation operation C or particle-hole conjugation P
(squaring to one) and a crystalline symmetry. The subscripts
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TABLE II. Combination of tenfold-way symmetries T , P , or C = PT and mirror symmetry S = Mx/y that allow for a second-order
semimetal or nodal superconductor with anomalous hinge states around kz = 0 [of type (i), (ii), or (iii), as discussed in the text] and/or with
flat hinge arcs that occur only between nodal manifolds at finite kz and do not cross kz = 0, π [type (iv)]. The table also contains the symmetry
class of the two-dimensional Hamiltonian Hkz (kx, ky ) at kz = 0, π and at 0 < |kz| < π , together with the corresponding subgroup sequence
K′′ ⊆ K′ ⊆ K. The rightmost column displays the type of boundary phenomenology around kz = 0 that is induced by a nontrivial higher-order
topology of Hkz (kx, ky ) for generic 0 < |kz| < π . If multiple types are listed, the first and second entries are for odd and even multiples of
the generator of the nontrivial topology, respectively. For the types “(i),” “(ii),” and “(iii),” it is assumed that Hkz (kx, ky ) does not go through
a topological phase transition if kz → 0, whereas “(iv)” refers to a topological phase of Hkz (kx, ky ) at generic kz that does not come with
higher-order boundary signatures upon going to kz = 0 or that is incompatible with the symmetry constraints at kz = 0, so that a gap closing is
necessary upon going to kz = 0.

kz = 0, π 0 < |kz| < π

Class T 2 P2 C2 S Class K′′ ⊆ K′ ⊆ K Class K′′ ⊆ K′ ⊆ K type

AIII 0 0 1 Mx/y
+ AIIIM+ 0 ⊆ Z ⊆ Z AIIIM+ 0 ⊆ Z ⊆ Z (i)

A 0 0 0 CMx/y ACM 0 ⊆ Z ⊆ Z2 ACM 0 ⊆ Z ⊆ Z2 (i)

BDI 1 1 1 Mx/y
++ BDIM++ 0 ⊆ Z ⊆ Z AIIIM+ 0 ⊆ Z ⊆ Z (i)

DIII −1 1 1 Mx/y
++ DIIIM++ 0 ⊆ Z2 ⊆ Z2 AIIIM+ 0 ⊆ Z ⊆ Z (iv)

CII −1 −1 1 Mx/y
++ CIIM++ 0 ⊆ 2Z ⊆ 2Z AIIIM+ 0 ⊆ Z ⊆ Z (iv)/(i)

CI 1 −1 1 Mx/y
++ CIM++ 0 ⊆ 0 ⊆ 0 AIIIM+ 0 ⊆ Z ⊆ Z (iv)

AI 1 0 0 CMx/y
− AICM− 0 ⊆ 0 ⊆ 0 ACM 0 ⊆ Z ⊆ Z2 (iv)

D 0 1 0 CMx/y
+ DCM+ 0 ⊆ Z ⊆ Z2 ACM 0 ⊆ Z ⊆ Z2 (i)

AII −1 0 0 CMx/y
− AIICM− 0 ⊆ Z2 ⊆ Z2

2 ACM 0 ⊆ Z ⊆ Z2 (iv)
C 0 −1 0 CMx/y

+ CCM+ 0 ⊆ 2Z ⊆ 2Z2 ACM 0 ⊆ Z ⊆ Z2 (iv)/(i)

BDI 1 1 1 Mx/y
−− BDIM−− 0 ⊆ 0 ⊆ 0 AIIIM+ 0 ⊆ Z ⊆ Z (iv)

DIII −1 1 1 Mx/y
−− DIIIM−− 0 ⊆ 2Z ⊆ Z AIIIM+ 0 ⊆ Z ⊆ Z (ii)/(i)

CII −1 −1 1 Mx/y
−− CIIM−− 0 ⊆ Z2 ⊆ Z2 AIIIM+ 0 ⊆ Z ⊆ Z (iv)

CI 1 −1 1 Mx/y
−− CIM−− 0 ⊆ 2Z ⊆ 2Z AIIIM+ 0 ⊆ Z ⊆ Z (iv)/(i)

AI 1 0 0 CMx/y
+ AICM+ 0 ⊆ 2Z ⊆ 2Z ACM 0 ⊆ Z ⊆ Z2 (iv)/(i)

D 0 1 0 CMx/y
− DCM− 0 ⊆ 0 ⊆ 2Z ACM 0 ⊆ Z ⊆ Z2 (iv)

AII −1 0 0 CMx/y
+ AIICM+ 0 ⊆ 2Z ⊆ Z ACM 0 ⊆ Z ⊆ Z2 (ii)/(i)

C 0 −1 0 CMx/y
− CCM− 0 ⊆ 0 ⊆ 2Z ACM 0 ⊆ Z ⊆ Z2 (iv)

± indicate, whether the crystalline symmetry S commutes
(+) or anticommutes (−) with T , P , or C. (If there are two
subscripts, the first subscript describes the commutation or
anticommutation with T , whereas the second subscript refers
to P .) The tables also contain the crystalline symmetry classes
of the two-dimensional Hamiltonian Hkz (kx, ky) at the high-
symmetry momenta kz = 0, π and at generic 0 < |kz| < π ,
together with the corresponding subgroup sequences K′′ ⊆
K′ ⊆ K.

Within the same symmetry class, the second-order bound-
ary phenomenology may be different for the generators of the
nontrivial higher-order topology and for direct sums of these
generators. An example is the tenfold-way symmetry class
DIII with a mirror symmetry Mx

−−, see Eqs. (4) and (B1), for
which the generator of the nontrivial topology has boundary
states of type (ii) and the direct sum of the generator with
itself has boundary states of type (i). The rightmost columns
of Tables II list other examples of symmetry classes, for
which taking the direct sums of the generator of the nontrivial
topology leads to a different boundary phenomenology. To be
precise, for the right columns of Tables II–V, we consider
nodal semimetals or superconductors obtained by taking mul-
tiple direct sums of the generator of the nontrivial higher-order
topology of Hkz (kx, ky) at a reference value kz = kz,ref , with
0 < |kz,ref | < π . If Hkz (kx, ky) can be continuously (i.e., with-

out gap closing) extended to kz = 0, the three-dimensional
Hamiltonian H (kx, ky, kz ) corresponding to Hkz (kx, ky ) has a
unique nontrivial boundary phenomenology at kz = 0, which
is one of the types (i) or (ii) discussed in the main text. If
a continuous extension to kz = 0 is possible, but there is no
nontrivial boundary signature at kz = 0, or if a continuous
extension to kz = 0 without gap closing is not possible, we
use the label “(iv)” to indicate that higher-order boundary sig-
natures occur away from kz = 0. Additionally, right column of
Tables IV and V contain two symmetry classes with boundary
phenomenology of type (iii), which originates from the gen-
erators of the nontrivial topology at kz = 0, while Hkz (kx, ky )
is an obstructed atomic limit at generic 0 < |kz| < π .

To identify all second-order topological semimetals and
nodal superconductors and their types as summarized in
Tables II–V, we made use of the order-resolved classifica-
tion of two-dimensional second-order topological insulators
and superconductors from Refs. [49,52] and performed a few
additional checks as follows. First, a necessary and suffi-
cient criterion of a second-order gapless topological phase
of type (i), (ii), or (iv) is a two-dimensional second-order
topological phase at 0 < |kz| < π . All symmetry classes with
an order-two symmetry fulfilling this criteria are included in
Tables II–V. To identify the type, one needs to compute the
forgetful functor from the classifying group at kz = 0, π to
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TABLE III. Same as Table II, but for rotation symmetry S = Rx/y.

kz = 0, π 0 < |kz| < π

Class T 2 P2 C2 S Class K′′ ⊆ K′ ⊆ K Class K′′ ⊆ K′ ⊆ K type

AIII 0 0 1 P+Rx/y
+ AIIIP

+M+ 0 ⊆ Z2 ⊆ Z2 AIIIP
+M+ 0 ⊆ Z2 ⊆ Z2 (i)

A 0 0 0 P+Rx/y AP+M 0 ⊆ Z2 ⊆ Z2 AP+M 0 ⊆ Z2 ⊆ Z2 (i)

BDI 1 1 1 Rx/y
++ BDIM++ 0 ⊆ Z ⊆ Z AIIIP

+M+ 0 ⊆ Z2 ⊆ Z2 (i)
D 0 1 0 Rx/y

+ DM+ 0 ⊆ Z2 ⊆ Z2 AP+M 0 ⊆ Z2 ⊆ Z2 (i)

DIII −1 1 1 Rx/y
−+ DIIIM−+ 0 ⊆ Z2 ⊆ Z2

2 AIIIP
+M+ 0 ⊆ Z2 ⊆ Z2 (ii)

AII −1 0 0 CRx/y
− AIICM− 0 ⊆ Z2 ⊆ Z2

2 AP+M 0 ⊆ Z2 ⊆ Z2 (ii)

CII −1 −1 1 Rx/y
−− CIIM−− 0 ⊆ Z2 ⊆ Z2 AIIIP

+M+ 0 ⊆ Z2 ⊆ Z2 (iv)
C 0 −1 0 Rx/y

− CM− 0 ⊆ 0 ⊆ 0 AP+M 0 ⊆ Z2 ⊆ Z2 (iv)

CI 1 −1 1 Rx/y
+− CIM+− 0 ⊆ 0 ⊆ 0 AIIIP

+M+ 0 ⊆ Z2 ⊆ Z2 (iv)
AI 1 0 0 CRx/y

+ AICM+ 0 ⊆ Z ⊆ Z AP+M 0 ⊆ Z2 ⊆ Z2 (i)

the classifying group at finite 0 < |kz| < π , which can be
done either by inspecting the generator Hamiltonians and/or
by inspecting the boundary signatures of the corresponding
topological phases, e.g., with the help of Ref. [49]. Second-
order gapless phases of type (iii) (with chiral or helical hinge
states) may appear when the Hamiltonian at kz = 0 or π is in a
second-order topological phase, which becomes an obstructed
atomic limit at 0 < |kz| < π under the forgetful functor. The
positive results for this type are included in the tables II–V.

Table I in the main text contains the possible types
of higher-order topological semimetals and nodal supercon-
ductors with a unitary or antiunitary order-two crystalline
symmetry as extracted from Tables II–V. While in Tables II–
V, we followed the convention of Refs. [49,52] for the
labeling of the real crystalline symmetry classes with a unitary
symmetry S or antisymmetry CS for mathematical simplicity,
in Table I in the main text we preferred the more physically
relevant notation using unitary symmetries S or antiunitary
symmetries T ±S . The relation between the two schemes fol-
lows by combining the crystalline symmetry operators with
the tenfold-way symmetries, i.e. in class D (C) we can label

an additional order-two crystalline symmetry either by CS±
or equivalently by PCS± = T ±S± (T ∓S±), and in class AIII,
we have CP sS± = T ±sS± with s = ±1.

APPENDIX D: DISORDER

Disorder breaks translation symmetry and any crystalline
symmetries that protect the hinge states. However, if the bulk
density of states at the nodal points is sufficiently small, which
requires the absence of trivial bulk bands or type-II Weyl
nodes, the hybridization of hinge states with bulk states is
strongly suppressed for weak disorder. In that case, the domi-
nant effect of disorder is a hybridization between hinge states,
leading to a disorder-broadened arc of localized hinge states.

As discussed in the main text, for a disorder potential
that obeys the tenfold-way symmetries, such disorder-induced
hybridization of hinge states can be forbidden by the
symmetry constraints. Whether or not this is the case can be
read off from the tables for the “extrinsic” classification group
K̄e of anomalous corner states of two-dimensional second-
order topological phases in the presence of disorder [49]. In

TABLE IV. Same as Table II, but for rotation symmetry S = Rz. If four types are listed in the rightmost column, the nth element refers
to the boundary phenomenology for the case that the topological equivalence class of Hkz (kx, ky ) at generic kz is that of the (4m + n)-fold
multiple of the generator of the nontrivial topology, with m integer. The type (i)∗ is discussed in detail in the text, see the discussion preceding
Eq. (B11).

kz = 0, π 0 < |kz| < π

Class T 2 P2 C2 S Class K′′ ⊆ K′ ⊆ K Class K′′ ⊆ K′ ⊆ K type

AIII 0 0 1 Rz
− AIIIR− 2Z ⊆ Z ⊆ Z AIIIR− 2Z ⊆ Z ⊆ Z (i)/(iv)

BDI 1 1 1 Rz
+− BDIR+− 2Z ⊆ Z ⊆ Z AIIIR− 2Z ⊆ Z ⊆ Z (i)/(iv)

DIII −1 1 1 Rz
−+ DIIIR−+ 0 ⊆ Z2 ⊆ Z2 AIIIR− 2Z ⊆ Z ⊆ Z (iv)

CII −1 −1 1 Rz
+− CIIR+− 4Z ⊆ 2Z ⊆ 2Z AIIIR− 2Z ⊆ Z ⊆ Z (iv)/(i)*/(iv)/(iv)

CI 1 −1 1 Rz
−+ CIR−+ 0 ⊆ 0 ⊆ 0 AIIIR− 2Z ⊆ Z ⊆ Z (iv)

D 0 1 0 Rz
− DR− 2Z ⊆ Z ⊆ Z2 AR Z ⊆ Z ⊆ Z2 (iii)/(iv)

BDI 1 1 1 Rz
−+ BDIR−+ 0 ⊆ 0 ⊆ 0 AIIIR− 2Z ⊆ Z ⊆ Z (iv)

DIII −1 1 1 Rz
+− DIIIR+− 4Z ⊆ 2Z ⊆ Z AIIIR− 2Z ⊆ Z ⊆ Z (ii)/(iii)/(ii)/(iv)

CII −1 −1 1 Rz
−+ CIIR−+ 0 ⊆ Z2 ⊆ Z2 AIIIR− 2Z ⊆ Z ⊆ Z (iv)

CI 1 −1 1 Rz
+− CIR+− 2Z ⊆ 2Z ⊆ 2Z AIIIR− 2Z ⊆ Z ⊆ Z (iv)
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TABLE V. Same as Table II, but for inversion symmetry S = I.

kz = 0, π 0 < |kz| < π

Class T 2 P2 C2 S Class K′′ ⊆ K′ ⊆ K Class K′′ ⊆ K′ ⊆ K type

AIII 0 0 1 T +I− AIIIT
+R− 0 ⊆ Z2 ⊆ Z2 AIIIT

+R− 0 ⊆ Z2 ⊆ Z2 (i)

CI 1 −1 1 I++ CIR++ 0 ⊆ 0 ⊆ 0 AIIIT
+R− 0 ⊆ Z2 ⊆ Z2 (iv)

BDI 1 1 1 I+− BDIR+− 2Z ⊆ Z ⊆ Z AIIIT
+R− 0 ⊆ Z2 ⊆ Z2 (i)

D 0 1 0 CI+ DCR+ 0 ⊆ Z2 ⊆ Z2 AT +R Z2 ⊆ Z2 ⊆ Z2 (iii)

DIII −1 1 1 I−− DIIIR−− 0 ⊆ Z2 ⊆ Z2
2 AIIIT

+R− 0 ⊆ Z2 ⊆ Z2 (ii)

CII −1 −1 −1 I−+ CIIR−+ 0 ⊆ Z2 ⊆ Z2 AIIIT
+R− 0 ⊆ Z2 ⊆ Z2 (iv)

Ref. [49], the label “extrinsic” indicates that corner states may
arise as a result of a nontrivial bulk topology or as a result of a
symmetry-compatible “decoration” of the crystal boundaries
with topologically nontrivial insulators or superconductors.
Since disorder breaks both the order-two crystalline symmetry
as well as the translation symmetry along z, hinge disorder
“collapses” the one-dimensional hinge states into a collection
of zero-dimensional corner states. Thus it is the extrinsic
classification group K̄e of Ref. [49] for the crystalline sym-
metry group appropriate for kz = 0 that classifies possible
hinge states of second-order topological gapless phases in the
presence of disorder. In case the extrinsic classification group
K̄e 	 Z, zero-energy hinge states all must have the same
eigenvalue under a unitary antisymmetry C, which prohibits
their hybridization. In case of K̄e 	 Z2, the hinge states are
generally allowed to hybridize in pairs, such that only the
number parity of (Kramers pairs of) zero-energy states per
hinge must remain after hybridization (in the presence of time-
reversal symmetry T 2 = −1, if present). In case of K̄e 	 0,
the hinge states are not only allowed to hybridize in pairs,
but they generically acquire a finite energy themselves. In the
following, we illustrate the consequences of this protection of
hinge states for the examples discussed in the main text and
this Appendix.

Model of Eq. (1). In class AIII, the zero-energy hinge states
are eigenstates under the chiral conjugation C. The eigenvalue
c = ±1 assigns a “chirality” to the zero-energy states. Any
perturbation preserving the chiral antisymmetry cannot hy-
bridize eigenstates with the same chirality eigenvalue. In this
crystalline symmetry class, hinge states on the same hinge
have the same chirality eigenvalue. Therefore disorder cannot
hybridize hinge-states on the same hinge.

This stability of the edge states is consistent with the extrin-
sic classification group K̄e 	 Z of mirror-symmetry breaking
corners of two-dimensional gapped systems in class AIII with
mirror symmetry M+, see Ref. [49].

Models of Eqs. (4) and (B1). In class DIII, eigenstates
come in Kramers pairs, where the two partners in the Kramers
pair have opposite chirality under the chiral antisymmetry
C = PT . For the hinge states with finite kz, time-reversal
symmetry relates hinge states with opposite kz and opposite
chirality eigenvalues. Although time-reversal symmetry for-
bids that such Kramers pairs can hybridize and gap out in
pairs, nonzero matrix elements may exist between hinge states
at values of kz that differ in sign and magnitude, leading to a
(weak) hybridization of hinge states.

This result is consistent with the extrinsic classification
group K̄e 	 Z2 [49]. With broken translation symmetry, all
Kramers pairs formed from modes with opposite kz hybridize
and gap out in pairs. After hybridization, a zero-energy hinge
state remains if the number of zero-energy Kramers pairs per
hinge is odd. The parity of Kramers pairs per hinge in general
depends on the geometry and boundary conditions at top and
bottom of the hinge. Notice that there is no Kramers pair
at kz = 0, since the node of the Dirac cone on the adjacent
surfaces lies at kz = 0.

Notice that, because the chirality eigenvalues of hinge
states on a single hinge at kz > 0 and kz < 0 must be opposite,
the surface states at kz = 0 must be gapless in order to support
the change in boundary topology between kz > 0 and kz < 0.
This change of boundary topology manifests itself as the first-
order surface states at kz = 0 in this higher-order topological
gapless phase of type (ii).

Model Eq. (B3). For this crystalline symmetry class, hinge
states are protected by a Z2 invariant, so that hybridiza-
tion between hinge states at different kz is always possible.
The parity of zero-energy modes per hinge, and thus the
question whether a zero-energy hinge mode remains after
hybridization, depends on the sample geometry and boundary
conditions. This is in agreement with the extrinsic classifying
group K̄e 	 Z2 for this symmetry class [49].

Models of Eqs. (7) and Eq. (B6). These examples have
chiral or helical hinge states on each hinge. There is only a sin-
gle zero-energy mode on each hinge, at kz = 0. Chiral/helical
hinge states are protected from localization. The single mode
at zero-energy is protected from gapping by the local symme-
tries, consistent with the boundary classifying group K 	 Z2

with rotation symmetry, cf. Table I in Ref. [49]. Because
chiral/helical hinge modes have nonzero energy at kz �= 0,
there is a stronger hybridization with bulk states than for
hinges with flat arcs of zero-energy states away from kz = 0.

Model of Eqs. (9) and (B9). For this model, hinge states
are eigenstates of the chiral conjugation C. Time-reversal en-
forces that modes at kz and −kz have opposite chirality. As
discussed above, time-reversal symmetry protects only modes
with opposite kz from hybridization. The parity of zero-energy
Kramers pairs per hinge, and thus whether one must remain
after hybridization, depends on the geometry. This results is in
agreement with the corresponding boundary classifying group
K 	 Z2, cf. Table I in Ref. [49].

Model Eq. (B11). In this symmetry class, the hinge states on
a single hinge have the same eigenvalue under chiral conjuga-
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tion C. This prohibits their hybridization from hinge disorder.
This results is in agreement with the corresponding boundary
classifying group K 	 Z, cf. Table I in Ref. [49].

APPENDIX E: BOUNDARY FEATURES THAT DO NOT
OCCUR IN THE PRESENCE OF A SINGLE TWOFOLD

CRYSTALLINE SYMMETRY

Symmetry-enforced degeneracy of flat hinge arcs for kz �= 0.
The flat zero-energy hinge arcs of the examples in the main
text are nondegenerate. The Appendix discusses an example
in which a twofold degeneracy is protected by time-reversal
symmetry at kz = 0, but the degeneracy is not symmetry-
enforced for nonzero kz. In fact, with only a single twofold
crystalline symmetry, it is impossible to achieve a symmetry-
enforced degeneracy away from the high-symmetry momenta
kz = 0, π . To see this, note that the antiunitary symmetries P
and T that could enforce such a degeneracy change the sign
of kz, so that they would have to be combined with a mirror
reflection Mz to obtain a symmetry constraint of the two-
dimensional Hamiltonian Hkz (kx, ky) at generic 0 < |kz| < π

that acts within a hinge. That means that, if only a single crys-
talline symmetry is present, it must be Mz. However, if the
crystalline symmetry is Mz, all symmetries of the effective
two-dimensional Hamiltonian Hkz (kx, ky) are local and only
first-order topological phases are possible.

Notice, however, that a second-order topological nodal
superconductor with flat hinge arcs with symmetry-enforced
degeneracy can be achieved in the presence of two order-two
crystalline symmetries. An example of such a second-order
phase exists in tenfold-way class DIII with the (unusual)
combination of two mirror symmetries Mz and Mx that both
square to one, mutually commute, and commute with T and
P . (Alternatively, Mz and Mx square to minus one, commute
mutually, and anticommute with T and P .) Then, the two-
dimensional Hamiltonian Hkz (kx, ky) at generic 0 < |kz| <

π satisfies symmetry constraints corresponding to MzP ,
MzT , and Mx. This corresponds to the two-dimensional
crystalline symmetry class DIIIM++ , which admits a second-
order phase with Majorana Kramers pairs as corner states
[49,52]. Returning to the three-dimensional model, one ob-
tains a second-order topological nodal superconductor with
symmetry-enforced twofold degenerate zero-energy hinge
Fermi arcs on Mx-symmetric hinges. A full classification
of such topological gapless phases with multiple order-
two crystalline symmetries is beyond the scope of this
article.

Second-order gapless phases with counter-propagating chi-
ral hinge modes. The examples of type (iii) second-order
topological semimetals or nodal superconductors in Cartan
classes D or CII that were discussed in the main text and
in the Appendix have chiral hinge modes on rotation- or
inversion-related hinges that propagate in the same direction.
By checking combinations of Cartan classes and order-two
crystalline symmetries as shown in Tables I–V, we find that
second-order gapless phases with co-propagating hinge arcs
also exist in Cartan class D with rotation symmetry Rz

−
or inversion antisymmetry CI+. In all cases, both rotation
symmetry and inversion antisymmetry require that that the

chiral hinge modes on rotation- or inversion-symmetry related
hinges must be co-propagating.

One may ask if there exist type (iii) second-order topo-
logical semimetals or nodal superconductors where the
crystalline symmetries require the chiral hinge modes at dif-
ferent hinges to be counter-propagating. By checking all
symmetry classes, we find that all systems with counter-
propagating chiral hinge modes on symmetry related hinges
are fully-gapped second order topological phases in three
dimensions. Thus, while we do not exclude that type (iii)
second-order topological semimetals or nodal superconduc-
tors with counter-propagating chiral hinge modes exist for
other combinations of crystalline symmetries, they do not
exist within the set of tenfold-way classes with a single order-
two crystalline symmetry that is considered here.

APPENDIX F: CRYSTALLINE SYMMETRY CLASSES

The presence of time reversal symmetry T , particle-hole
antisymmetry P , or their product C = PT and the squares
T 2 and P2 (if present) determine the tenfold-way symmetry
class of an insulator or superconductor, see Table I. We here
consider crystalline symmetry classes, in which one twofold
crystalline symmetry S is present in addition to the tenfold-
way symmetries T , P , and/or C. A symmetry operation is
said to be of order two if its square is proportional to the
identity operation. In three dimensions, the twofold crystalline
symmetries are mirror M, twofold rotation R, or inversion
I. The resulting symmetry classes have been enumerated by
Shiozaki and Sato [25]. We now briefly explain the construc-
tion of the symmetry classes of Ref. [25] and the notation of
Ref. [52], which is used throughout this article.

The crystalline symmetry classes are distinguished by the
algebraic relations of their symmetry elements. For order-two
crystalline symmetries S , it is sufficient to distinguish sym-
metry operations that square to +1 (labeled by ηS = 1) and
−1 (ηS = −1). We introduce the labels ηT , ηP and ηC to
denote the commutation relations of the crystalline symmetry
element S with the antiunitary symmetry T , antiunitary anti-
symmetry P and unitary antisymmetry C. Unitary crystalline
symmetries (σS = 1) and antisymmetries (σS = −1) are rep-
resented by a unitary matrix US as

H (k) = σSU (S )H (Sk)U †
S (F1)

and the representations satisfy the relations

U 2
S = ηS ,

USUT = ηT UT U ∗
S ,

USUP = ηPUPU ∗
S ,

USUC = ηCUCUS ,

where Sk denotes the action of the crystalline symmetry on
the momentum coordinates. Similarly, the representations for
antiunitary crystalline symmetries and antisymmetries are de-
fined as

H (k) = σSUSH (−Sk)∗U †
S (F2)
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and the representations satisfy the relations

USU ∗
S = ηS ,

USU ∗
T = ηT UT U ∗

S ,

USU ∗
P = ηPUPU ∗

S ,

USU ∗
C = ηCUCUS .

Following this discussion, a tenfold-way class with the
additional crystalline symmetry S is fully characterized by
the tenfold way class, the set of numbers ηS , ηT , ηP , ηC ,
and σS , and by specifying, whether the crystalline symmetry
is unitary or antiunitary [25]. For the purpose of topologi-
cal classification, this characterization is partially redundant,
however. In particular, a Hamiltonian that satisfies a crys-
talline symmetry S with representation US also satisfies this
crystalline symmetry with representation iUS . Under this
transformation US → iUS , the sign of the square of a unitary
crystalline symmetry is flipped ηS → −ηS while at the same
time the commutation relation with the antiunitary symmetry
elements changes between commuting and anticommuting
ηT → −ηT , ηP → −ηP . We use this freedom to require that
S2 = 1 for a unitary crystalline symmetry S and to write a
unitary antisymmetry, antiunitary symmetry, and antiunitary
antisymmetry as the products CS ′, T ±S ′, and P±S ′, with S ′
a unitary symmetry and T and P antiunitary operators, where
the superscript indicates the square of the antiunitary opera-
tor (T ±S ′)2 = ±1, (P±S ′)2 = ±1. The combination of the
tenfold-way class and the crystalline symmetry S or T ±S ′ or
crystalline antisymmetry CS ′ or P±S ′ then uniquely specifies
the crystalline symmetry class. This is the notation used in
Tables I–V and throughout the text.

APPENDIX G: TOPOLOGICAL INVARIANTS

The protected gapless points or regions are related to
topological phase transitions of the two-dimensional Bloch
Hamiltonian Hkz (kx, ky) as a function of kz. This topological
phase transition is associated with a change of a topological
invariant. Below, we give explicit expressions for the topolog-
ical invariants associated with the symmetry classes featured
in this article. Since the topological phase transitions take
place at 0 < |kz| < π , it is sufficient to consider the crystalline
symmetry classes listed in the third column of Tables II–
V. The corresponding crystalline symmetry class of the full
three-dimensional gapless phase is given in the first column
of these tables.

1. With mirror symmetry Mx/y

For definiteness, we consider the mirror operation Mx.
Class AIIIM+ . At the mirror-symmetric lines kx = 0 and

kx = π , the two-dimensional Hamiltonian Hkz (kx, ky) can be
block-diagonalized into blocks H±

kz
(kx, ky) with even and odd

mirror parity, such that each block is in class AIII. From the
four one-dimensional Hamiltonians H±

kz
(0, ky) and H±

kz
(π, ky)

four winding numbers [42] ν±
kx

can be defined, with kx = 0,
π , where the superscript ± refers to the mirror parity. A
weak first-order topological phase corresponding to a stack
of one-dimensional topological class AIII chains with mirror
parity ±1 in the x-direction has ν±

0 = ν±
π . If Hkz (kx, ky) is

gapped and not in one of the aforementioned weak topological
phases, these winding numbers satisfy the constraint ν+

0 +
ν−

0 = ν+
π + ν−

π = 0. The topological invariant ν ∈ Z describ-
ing transitions between the second-order phases and between
the second-order phase and the trivial phase then reads

ν = 1
2 (ν+

0 − ν−
0 − ν+

π + ν−
π ). (G1)

Class ACM. For this class, the lines kx = 0 and kx = π are
in Cartan class AIII, so that one may define a Chern number
[42] νC ∈ Z on the full Brillouin zone as well as winding num-
ber νkz ∈ Z for the one-dimensional Hamiltonians Hkz (0, ky)
and Hkz (π, ky). These satisfy the constraint νC = ν0 − νπ

mod 2. For transitions not involving a first-order phase, we
therefore have ν0 = νπ mod 2. The topological invariant ν ∈
Z describing transitions between the second-order phases and
between the second-order phase and the trivial phase then
reads

ν = 1
2 (ν0 − νπ ). (G2)

2. With rotation symmetry Rx/y

For definiteness, we consider the rotation symmetry Rx.
Class AIIIP

+M+ . We choose the representations
UC = τ3, UPM = τ3, UT M = UCPM = τ0, so that
Hkz (kx, ky) = −τ3Hkz (kx, ky)τ3 = Hkz (kx,−ky)∗. Then, at
the high-symmetry lines ky = 0, π , Z2 first Stiefel-Whitney
numbers [34] ν0, νπ may be defined from Hkz (kx, 0) and
Hkz (kx, π ) for −π � kx � π . The difference

ν = ν0 − νπ mod 2 (G3)

is the topological invariant that describes transitions between
the second-order phase and the trivial phase.

Class AP+M. A topological invariant can be defined from
a generalization of the Moore-Balents argument [25,99]. We
choose the representation UPM = τ0, so that Hkz (kx, ky) =
−Hkz (kx,−ky)∗. At the high symmetry lines ky = 0, π ,
Hkz (kx, ky) is antisymmetric. To construct a topological invari-
ant, we smoothly deform Hkz (kx, ky) such that Hkz (kx, ky) is
constant for ky = 0 and ky = π . Such a deformation is always
possible, since the fundamental group π1 of gapped antisym-
metric hermitian matrices is trivial. After this deformation, a
Chern number ν can be computed by considering Hkz (kx, ky )
for −π � kx � π and 0 � ky � π . The parity of ν does not
depend on the deformations used to achieve the condition that
Hkz (kx, ky) be constant for ky = 0 and is the sought topological
invariant.

3. With rotation symmetry Rz

Class AR. At the four high-symmetry points (kx, ky) =
(0, 0), (π, 0), (0, π ), and (π, π ) the bands have well-defined
parity under Rz. The four integer invariants ν(kx,ky ) denote the
number of occupied bands of odd parity of Hkz (kx, ky) at the
four high-symmetry momenta (kx, ky). In addition, one may
define the Chern number νC on the full Brillouin zone. The
Chern number and the integers ν(kx,ky ) satisfy the constraint
νC = ν(0,0) − ν(π,0) − ν(0,π ) + ν(π,π ) mod 2 [41]. Hence, for
transitions not involving a first-order phase, we therefore have
ν(0,0) − ν(π,0) − ν(0,π ) + ν(π,π ) = 0 mod 2. The topological
invariant ν ∈ Z describing transitions between the obstructed
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atomic-limit phases and between an obstructed atomic-limit
phase and the trivial phase then reads

ν = 1
2 (ν(0,0) − ν(π,0) − ν(0,π ) + ν(π,π ) ). (G4)

Class AIIIR− . At the four high-symmetry points (kx, ky) =
(0, 0), (π, 0), (0, π ), and (π, π ), the bands have well-defined
parity under Rz. The chiral operator C interchanges bands
of opposite parity. The four integer invariants ν(kx,ky ) denote
the number of occupied bands of odd parity of Hkz (kx, ky)
at the four high-symmetry momenta (kx, ky ) = (0, 0), (π, 0),
(0, π ), and (π, π ). The topological invariant ν ∈ Z describing
transitions between the obstructed atomic-limit phases and
between an obstructed atomic-limit phase and the trivial phase
then reads

ν = ν(0,0) − ν(π,0) − ν(0,π ) + ν(π,π ). (G5)

(Note that this class also allows for the definition of
winding numbers for Hkz (kx, ky) along cuts through the two-
dimensional Brillouin zone at constant kx or ky. Nontrivial
winding numbers signal weak phases.)

4. With inversion symmetry I
Class AT +R. Without loss of generality, we may choose the

representation UT R = τ0, so that Hkz (kx, ky) = Hkz (kx, ky)∗.
For real Hamiltonians, one may define a topological invariant
ν ∈ Z2 as the second Stiefel-Whitney number [34,100]. This
is the sought topological invariant.

Class AIIIT
+R− . Without loss of generality, we may choose

the representations UC = τ2, UT R = τ0, so that Hkz (kx, ky) =
Hkz (kx, ky)∗ = −τ2Hkz (kx, ky)τ2. Again, one may define a
topological invariant ν ∈ Z2 as the second Stiefel-Whitney
number [34,100]. This is the sought topological invariant.
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