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Starting from a realistic extended Hubbard model for a px,y-orbital tight-binding model on the Honeycomb
lattice, we perform a thorough investigation of the possible electron instabilities in magic-angle twisted bilayer
graphene near the van Hove (VH) dopings. Here we focus on the interplay between the two symmetries of the
system. One is the approximate SU(2)×SU(2) symmetry which leads to the degeneracy between the intervalley
spin density wave (SDW) and valley density wave (VDW) as well as that between the intervalley singlet and
triplet superconductivities (SCs). The other is the D3 symmetry which leads to the degeneracy among the three
symmetry-related wave vectors of the density-wave (DW) orders, originating from the Fermi-surface nesting.
The interplay between these two degeneracies leads to intriguing quantum states relevant to recent experiments,
as revealed by our systematic random-phase-approximation based calculations followed by a succeeding mean-
field energy minimization for the groundstate energy. At the SU(2)×SU(2) symmetric point, the degenerate
intervalley SDW and VDW are mixed into a new state of matter dubbed as the chiral SO(4) spin-valley DW.
This state simultaneously hosts three four-component vectorial spin-valley DW orders with each adopting one
wave vector, and the polarization directions of the three DW orders are mutually perpendicular to one another. In
the presence of a tiny intervalley exchange interaction with coefficient JH → 0− which breaks the SU(2)×SU(2)
symmetry, a pure chiral SDW state is obtained. In the case of JH → 0+, although a nematic VDW order is
favored, the two SDW orders with equal amplitudes are accompanied simultaneously. This nematic VDW+SDW
state possesses a stripy distribution of the charge density, consistent with the recent STM observations. On the
aspect of SC, while the triplet p + ip and singlet d + id topological SCs are degenerate at JH = 0 near the
VH dopings, the former (latter) is favored for JH → 0− (JH → 0+). In addition, the two asymmetric doping-
dependent behaviors of the obtained pairing phase diagram are well consistent with experiments.
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I. INTRODUCTION

The condensed-matter community is witnessing a surge
in the synthesis and research of novel graphene-multilayer-
heterostructure materials [1–13] with Moiré pattern super-
structure [14–30], leading to the greatly enlarged unit cell and
hence thousands of energy bands within the Moiré Brillouin
zone (MBZ). Remarkably, several isolated flat bands emerge
within the high-energy band gap, which brings about strong
electron correlations and different types of electronic instabil-
ities, including the correlated insulators and superconductivity
(SC). Here we focus on magic-angle twisted bilayer graphene
(MA-TBG) [1,2], in which spin-unpolarized [12] correlated
insulating phases are revealed when the low energy flat va-
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lence or conduction bands are half-filled, and it leads to the
novel SC after doping.

Currently, the characterization of the correlated insulat-
ing phase near this doping level [2,31–64], the pairing
mechanism, and pairing symmetry [1,47–59,65–90] are still
under debate. Particularly, two opposite points of view are
held, i.e., the strong-coupling Mott-insulating picture and
the weak-coupling itinerant pictureHere we start from the
weak-coupling viewpoint first proposed in Ref. [49] that the
correlated insulator and SC in the MA-TBG are driven by
Fermi-surface (FS) nesting near the van Hove singularity
(VHS) [56–59,84–86,91–97]. The key point is that the spin
or charge susceptibility would diverge as the system is doped
to the VHS point with good FS nesting, leading to the spin
or charge (including valley) density wave (DW). When the
doping level deviates from the DW ordered regime, the short-
ranged DW fluctuations would mediate the SC. Two questions
naturally arise: what type of spin or/and charge (or valley)
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DW would be driven by the FS nesting near the VHS for the
MA-TBG? What is the pairing symmetry mediated by the DW
fluctuations?

The answers of the two questions are deeply related to
the symmetries of the MA-TBG. One relevant symmetry is
the D3 symmetry. In the weak-coupling theories [49,58,84],
the wave vector of the DW orders is determined by the
FS-nesting vector. However, the presence of the D3 symmetry
brings about three degenerate FS-nesting vectors [49,58,84].
The different DW orders hosting these degenerate wave vec-
tors can be mixed to minimize the energy in general, leading
to an exotic ground state. For example, in the theory proposed
in Ref. [49], the three SDW orders hosting degenerate wave
vectors of (0, π ), (π, 0), and (π, π ) would coexist and be
equally mixed into the chiral SDW state, in which the polar-
ization directions of the three vectorial SDW order parameters
are mutually perpendicular and can be globally arbitrarily
rotated in the R3 space by the Goldstone zero modes. This
state breaks the time-reversal symmetry (TRS) and can be
topologically nontrivial with nonzero Chern numbers.

The other relevant symmetry is associated with the special
valley degree of freedom of the MA-TBG. As revealed in
the continuum-theory model [71], the electron states within
the two different MBZs centered at K and K ′ would not
hybridize for small twist angles, leading to two isolated and
TR related sectors of energy bands, leading to the valley-U(1)
symmetry, which survives the electron-electron interactions
[36,46,52,58,84,98–100]. Besides, this system additionally
holds a spin SU(2)K × SU(2)K ′ symmetry [58,84]. Although
this symmetry survives the dominant interactions in the
MA-TBG, it would be slightly broken by a tiny intervalley ex-
change interaction whose strength JH is much lower than any
other energy scale of the system and can be treated as JH → 0.
The SU(2)K × SU(2)K ′ symmetry has a profound influence
on the formula of the order parameters of the instabilities of
the MA-TBG: it leads to the degeneracy between the interval-
ley spin DW (SDW) and valley DW (VDW) as well as that
between the intervalley-pairing spin-singlet and spin-triplet
SCs of the MA-TBG [58,84]. Due to these degeneracies at the
exactly symmetric point, it is generally perceived that the re-
alized instabilities in the MA-TBG are determined by the tiny
JH : for the case of JH → 0− (JH → 0+), a pure SDW (VDW)
will be the realized DW order, and a triplet p + ip (singlet
d + id) will be the pairing symmetry [58,84]. However, here
we hold a different point of view, as introduced below.

The fact that the SDW and VDW orders are degenerate at
the exactly SU(2)K × SU(2)K ′-symmetric point with JH = 0
doesn’t necessitate that only one of them is the candidate for
a tiny JH . Actually, the two orders can generally be mixed to
lower the ground-state energy in any case. The right procedure
for the identification of the ground-state DW orders for differ-
ent JH is as follow. Firstly, we should identify the energetically
minimized mixing manner between the SDW and VDW at the
symmetric point with JH = 0. Note that the mixing manner
thus obtained is not unique, as the spontaneous breaking of the
SU(2)K × SU(2)K ′ symmetry always leads to gapless Gold-
stone modes which can rotate one ground state to numerous
other degenerate ones, forming a ground-state subspace. Then
the realistic tiny JH -term sets in, which serves as a perturbative
symmetry-breaking field and will select its favorite states from

this subspace. These states form the ground states for nonzero
JH . Note that the D3 symmetry plays an important role in
this procedure: it will introduce three times as many states
to participate in the mixing, which fundamentally changes the
ground state. The ground state thus obtained turns out to be
fundamentally different from the intuitively conjectured one
in Refs. [58,84].

In this paper, we perform a thorough investigation on the
DW orders and SC in the MA-TBG driven by FS nesting
near the VHS, with a particular attention paid to the interplay
between the approximate SU(2)K × SU(2)K ′ symmetry and
the threefold degeneracy among the wave vectors of the DW
orders. Through adopting realistic band structure and inter-
action terms that respect all symmetries of the system, we
carry out systematic calculations based on the random-phase
approximation (RPA) and subsequent mean-field (MF) energy
minimization for the ground state. We have also provided
a phenomenological Ginzburg-Landau theory to account for
our microscopic results. While the RPA calculations suggest
that the critical interactions U (s)

c and U (v)
c for the SDW and

VDW orders are equal at JH = 0, the subsequent MF en-
ergy minimization yields that the SDW ground state holds
a lower energy because its vectorial order parameters allow
three times as many states to participate in the mixing and
thus have more opportunity to lower the energy. When we
further allow the SDW and VDW to mix, a novel chiral SO(4)
spin-valley DW state with exotic properties is obtained, as will
be introduced in Sec. II. When the tiny intervalley exchange
interaction term is added, we obtain the pure chiral SDW state
for JH → 0− and a nematic DW state with mixed SDW and
stripy VDW orders for JH → 0+. The latter case is consistent
with the recent STM experiment [5,6], and might be more
probably realized in the MA-TBG. On the JH -dependent pair-
ing symmetries, our results are essentially consistent with the
intuitively conjectured one in Refs. [58,84].

The rest of this paper is organized as follows. Section II
provides an overview on the main results provided in this
work. In Sec. III, we describe the model and the approach.
A two-orbital tight-binding (TB) model on the honeycomb
lattice is provided, added with realistic interaction terms. The
RPA approach and the subsequent MF analysis are introduced.
In Sec. IV, we study the case of JH = 0, in which the system
hosts the exact SU(2)K × SU(2)K ′ symmetry. The degenera-
cies between the SDW and VDW as well as between the
singlet and triplet SCs are analyzed in detail. We find that
the SDW and VDW can mix into the chiral SO(4) spin-valley
DW. In Sec. V, we provide our results for the cases with tiny
JH �= 0, including JH → 0+ and JH → 0−. These two cases
have different DW states and pairing symmetries. Finally, a
conclusion will be reached with some discussions in Sec. VI.

II. OVERVIEW

This section provides an overview on the present work,
which is focused on how the interplay between the approxi-
mate SU(2)K × SU(2)K ′ symmetry and the D3 symmetry will
influence the formula of the order parameters of the DW
and SC in the MA-TBG. Briefly speaking, our answer to the
question about the DW is fundamentally different from the
generally perceived one. Due to the degeneracy between the
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SDW and VDW and that between singlet and triplet pairings
at the exact SU(2)K × SU(2)K ′-symmetric point with JH = 0,
it is generally intuitively perceived that for the case of JH →
0− (JH → 0+), a pure SDW (VDW) will be realized, and a
triplet p + ip (singlet d + id) will be the pairing symmetry
[58,84]. However, here we propose that the two DW orders are
generally mixed. In the case of JH = 0, we obtained the chiral
SO(4) spin-valley DW, which evolves into a pure chiral SDW
upon JH → 0− and a nematic DW with mixed SDW and stripy
VDW orders upon JH → 0+. The latter case is consistent with
recent STM observations. For the SC, our answer is consistent
with the generally perceived viewpoint.

Our start point is the px,y-orbital tight-binding (TB) model
on the Honeycomb lattice [46,99], equipped with realistic
extended Hubbard interactions including a tiny intervalley
exchange interaction. While the TB part and the dominant in-
teractions in this Hamiltonian possess the SU(2)K × SU(2)K ′

symmetry, which is broken by the tiny intervalley exchange
interaction. Besides, the model holds a D3 symmetry, which
leads to three degenerate FS-nesting vectors Qα (α = 1, 2, 3)
near the VHS points. In our calculations, we first carry out
systematic RPA based studies to figure out the forms of all
possible instabilities, and then perform a subsequent MF en-
ergy minimizations to pin down the mixing manner between
degenerate orders. Finally, in order to account for the results
obtained by our microscopic calculations, we have also pro-
vided a phenomenological Ginzburg-Landau theory to clas-
sify all the possible configurations of the DW order parame-
ters, which emerge as possible solutions to minimize the G-L
free energy function. Our results are summarized in Fig. 1.

The results for the case of JH = 0 are listed in the row of
JH = 0 in Fig. 1(a). In this case, the critical interactions U (s)

c
and U (v)

c for the SDW and VDW orders are equal, and the
leading spin-singlet (d + id) and spin-triplet (p + ip) pairings
have equal Tc. The degeneracy between the SDW and VDW
makes them mix into the chiral SO(4) spin-valley DW or-
dered state. This DW state is characterized by three coexisting
four-component vectorial order parameters Δα (α = 1, 2, 3)
shown in Fig. 1(b), with each Δα ≡ (�(v)

α ,�(s)
α,x,�

(s)
α,y,�

(s)
α,z )

hosting one wave vector Qα . Here, �
(s)
α,x/y/z and �(v)

α represent
the SDW and VDW order parameters hosting the wave vector
Qα , respectively. The three four-component vectorial order
parameters are mutually perpendicular to one another, i.e.,
Δ1 ⊥ Δ2 ⊥ Δ3, and can be globally arbitrarily rotated in the
R4 order-parameter space by the Goldstone zero modes, as
shown in Fig. 1(b). This phase is a generalization of the 3Q
chiral SDW state proposed previously [49,101–104] to the R4

VDW-SDW order-parameter space, and represents a new state
of matter that possesses a series of intriguing properties. For
example, this DW ground state hosts seven branches of gap-
less Goldstone modes. In addition, the topological properties
of this DW state can be nontrivial with nonzero Chern number,
as long as a DW gap opens at the Fermi level.

The results for JH → 0− (Hund-like) are listed in the row
of JH < 0 in Fig. 1(a). In this case, our RPA calculation
yields U (v)

c > U (s)
c , suggesting that the SDW is preferred to

the VDW. Therefore, in the R4 VDW-SDW order-parameter
space, the VDW axis becomes the “difficult” axis and would
be kicked out from the low-energy degree of freedom. As
a result, our subsequent MF energy minimization yields the

FIG. 1. (a) The properties of the system, including the char-
acterization of the ground state, the relation between the critical
interactions Uc for VDW (U (v)

c ) and SDW (U (s)
c ) as well as that

between the Tc of singlet-(T (s)
c ) and triplet-(T (t )

c ) SCs, for differ-
ent intervalley exchange interactions. [(b)–(d)] The corresponding
DW order-parameter configurations of the ground states. In (a), the
number after SDW and VDW denotes how many Qα are distributed
to the corresponding DW orders. When JH = 0 the ground state
is in the chiral SO(4) spin-valley DW phase, wherein the three
mutually perpendicular four-dimensional order-parameter vectors
Δα = (�(v)

α , �(s)
α,x, �

(s)
α,y, �

(s)
α,z ) can be globally arbitrarily rotated in

the R4 VDW-SDW order-parameter space by the Goldstone zero
modes, see (b). When JH < 0 the ground state is in the chiral SDW
phase, wherein the three mutually perpendicular SDW vectors �(s)

α =
(�(s)

α,x,�
(s)
α,y, �

(s)
α,z ) can be globally arbitrarily rotated in the R3 SDW

space, see panel (c). When JH > 0, one wave vector, e.g., Q3, is fully
occupied by the scalar VDW order �

(v)
3 , and the remaining two are

occupied by the vectorial SDW orders, i.e., �
(s)
1 and �

(s)
2 , which are

perpendicular to each other and can be globally arbitrarily rotated
in the R3 SDW order-parameter space, see panel (d). The schematic
phase diagram with respect to the U -JH parameters are shown in (e).

pure 3Q chiral SDW state characterized as Δα = (0,�(s)
α ) ≡

(0,�(s)
α,x,�

(s)
α,y,�

(s)
α,z ), with �

(s)
1 ⊥ �

(s)
2 ⊥ �

(s)
3 , as shown in

Fig. 1(c). This state is qualitatively the same as that obtained
previously [49,101–104], which hosts four branches of gap-
less Goldstone modes one. The Chern number can also be
nonzero, as long as an SDW gap opens at the Fermi level.
As for the SC, the triplet SC with p + ip pairing symmetry is
preferred.

The results for JH → 0+ (anti-Hund-like) are listed in the
row of JH > 0 in Fig. 1(a). In this case, our RPA calculation
yields U (v)

c < U (s)
c , suggesting that the VDW is preferred to

the SDW. Therefore, in the R4 VDW-SDW order-parameter
space, the VDW axis becomes the “easy” axis. However, this
does not suggest a pure VDW state as generally perceived
[58,84], because here we have three four-component vec-
torial DW order parameters, which can not all point along
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the “easy” VDW axis, as their mutual perpendicular relation
is robust against the tiny JH term. Our subsequent MF en-
ergy minimization yields a DW state with one scalar VDW
component mixed with two mutually perpendicular vecto-
rial SDW components with equal amplitude, with the VDW
randomly choosing one wave vector Qα from the three
symmetry-related ones and the two SDW hosting the remain-
ing two. Obviously, this nematic DW state spontaneously
breaks the C3 rotation symmetry, and the obtained stripy
charge order is consistent with recent STM experiments [5,6].
This DW state is schematically shown in Fig. 1(d). The num-
ber of Goldstone modes and the topological properties in this
case are the same as those in JH → 0−. As for the SC, the
singlet SC with d + id pairing symmetry is preferred.

The schematic phase diagram with respect to the U -JH

parameters are shown in Fig. 1(e). Besides the JH dependence,
our results reveal two asymmetric doping-dependent behav-
iors in the pairing phase diagram. One is the asymmetry with
respect to the charge neutral point (CNP): the Tc at the nega-
tive dopings is much higher than that at the positive dopings,
which is due to the higher DOS in the former case. The other
asymmetry is with respect to each VH doping: the Tc on the
higher-doping side of each VH point is higher than that on its
lower-doping side. This asymmetry is attributed to the better
FS nesting and hence stronger DW fluctuations in the former
case. These two asymmetric doping-dependent behaviors are
well consistent with the experiments [1,12], implying that the
pairing in the MA-TBG should be mediated by the spin-valley
DW fluctuations.

III. MODEL AND APPROACH

A. Model

For the MA-TBG there are four low-energy flat
bands that are well isolated from the high-energy bands
14,15,36,42,46,67,68,84,98–100,105–135]. The four flat
bands can be divided into two valence bands and two
conduction bands, which touch at the charge neutral point
(CNP), i.e., KM and K ′

M points in the MBZ. Besides the
four-fold degeneracy at the CNP, the valence and conduction
bands each are two-fold degenerate along the ΓMKM and
KMMM lines. The continuum theory [14,110] tells that these
degeneracies are the consequence of the so-called U(1)-valley
symmetry of the TBG with small twist angles. This symmetry
forbids the hopping from the MBZ in the K valley to that
in the K ′ valley. While the TB models in Ref. [100] can
faithfully describe the low-energy flat bands in both aspects
of the symmetry and the topology at the CNPs, they are
too complicated to be sufficiently convenient for succeeding
studies with electron-electron interactions. Here we focus
on the low-energy band structure near the Fermi level for
the doped case, particularly near the VHS points which are
related to experiments, which allows us to adopt simpler band
structures.

The proposed simplest TB model for the MA-TBG is that
on the honeycomb lattice containing a px and a py orbitals on
each site [36,46,49,98,99], with the orbitals on adjacent cites
coupling via coexisting σ and π bondings [49]. It is proved
in Appendix A that the valley-U(1) symmetry requires that

the amplitudes of the σ and π bondings are equal. In such a
condition, we transform the px,y-representation into the valley
representation by ĉ j±σ = (ĉ jxσ ± iĉ jyσ )/

√
2, where ĉ jμσ is

the annihilation operator of the electron on the jth site with
spin σ and orbital μ (μ = x, y represents the px or py orbital)
and ± represent the K and K ′ valleys. Consequently, we can
find the following TB Hamiltonian [46,99],

ĤTB =
∑

α

∑
〈 j j′〉ανσ

[(tα−iνt ′
α )ĉ†

jνσ ĉ j′νσ+H.c.]

− μc

∑
jvσ

ĉ†
jvσ ĉ jvσ ,

=
∑
mvkσ

ε̃mv
k ĉ†

mvkσ
ĉmvkσ . (1)

More details are provided in Appendix A. Here, ĉmvkσ is
the annihilation operator of the electron with the band index
m, the valley index v, the wave vector k and the spin σ .
The energy ε̃mv

k is with respect to the chemical potential μc.
〈 j j′〉α denotes the αth neighboring bond. tα is the hopping
strength that is caused by the σ and π bonding [136–140]
and t ′

α is responsible for the Kane-Mele type of the valley-
orbital coupling [46,99]. In our calculations, we consider up
to the third-neighbor hoppings, i.e., α = 1, 2, 3. The chemical
potential μc is determined by the doping δ ≡ n/ns − 1 with
respect to the CNP. n is the average electron number per unit
cell with n = ns ≡ 4 for the CNP.

The TB model in Eq. (1) tells that the K and K ′ valley
bands are separated with each other, leading to a valley-U(1)
symmetry. Moreover, each valley independently supports the
spin-SU(2) symmetry, leading to an SU(2)K × SU(2)K ′ sym-
metry. Finally, the geometry of the TBG leads to a D3 point
group. Figure 2(a) shows the corresponding band structure
with the TB parameters provided in the figure caption. As a
result of the U(1)-valley symmetry, KM points are four-fold
degenerate, and ΓM and MM points are doubly degenerate.
The U(1)-valley symmetry is also responsible for the double
degeneration of the ΓMKM and KMMM lines. These characters
are consistent with the continuum theory. The hump and dip
in the two middle bands along the ΓMMM line give two VHS
points for the hole and electron dopings respectively, see
Fig. 2(b). They, denoted as the h-VHS and e-VHS, are both
near the MM points and correspond to the doping of −0.182
and 0.240, respectively. These two VHSs originate from the
Lifshitz transition points, which can be seen from the FSs
in Figs. 2(c) and 2(d). The valley-separated FSs reflect the
intervalley nesting behavior whose three nesting vectors are
marked as Qα (α = 1, 2, 3). These nesting vectors do not
exactly connect the MM points, different from the previous
model in Ref. [49].

Note that in Ref. [141], we provide the FSs at the e-VH and
h-VH dopings for five different twist angles near the magic
angle, which is 1◦, 1.05◦, 1.1◦, 1.15◦, and 1.2◦. The band
structure is obtained via the continuum model [14]. The result-
ing FSs clearly exhibit the presence of the Lifshitz transitions,
which leads to the VHSs. What’s more, in these FSs there are
also approximate FS nesting with threefold rotation symmetry
related nesting vectors Qα (α = 1, 2, 3) whose exact values
depend on the twist angles.
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FIG. 2. Band structure of the TB model Eq. (1) representing the
MA-TBG. (a) The band structure along the high-symmetry lines,
with the CNP setting as the zero point of energy. (b) The corre-
sponding DOS, with the two VHS points denoted as h-VHS and
e-VHS representing for the VHSs of the hole- and electron- dopings,
respectively. (c), (d) FSs at the h-VHS and e-VHS doping levels with
δ = −0.182 and 0.240, respectively. The green hexagon represents
the MBZ. The black and red curves correspond to the FSs from the
K and K ′ valleys, respectively. The three Qα in blue mark the FS-
nesting vectors. The TB parameters adopted are t1 = 1.5 meV, t ′

1 =
−0.8 meV, t2 = 0.25 meV, t ′

2 = 0, t3 = 0.2 meV, and t ′
3 = 0.3 meV.

Symmetry analysis and the extended character of the Wan-
nier bases [52,98,99] suggest the following interaction terms
for the MA-TBG,

Ĥint =U
∑

jv

n̂ jv↑n̂ jv↓ + V
∑

j

n̂ j+n̂ j− +
3∑

α=1

Wα

∑
〈 j j′〉α

n̂ j n̂ j′

−J
∑
〈 j j′〉1

∑
vv′σσ ′

ĉ†
jvσ ĉ jv′σ ′ ĉ†

j′v′σ ′ ĉ j′vσ

−JH

∑
jvσσ ′

ĉ†
jvσ ĉ jv̄σ ĉ†

jv̄σ ′ ĉ jvσ ′ , (2)

where n̂ j = n̂ j+ + n̂ j−, n̂ jv = n̂ jv↑ + n̂ jv↓, and n̂ jvσ =
ĉ†

jvσ ĉ jvσ . The extended density-density interactions between
neighboring sites are represented by the Wα terms which
are up to the third neighbor. The relation among Wα and
U is assumed to be U : W1 : W2 : W3 = 3 : 2 : 1 : 1 [52,99].
The exchange interaction J = 0.2U is taken according
to Ref. [99]. The tiny intervalley Hund’s-rule exchange
interaction is given by the last term with the coefficient
JH two orders of magnitude weaker than U [142], and the
parameters U , V and JH satisfy the relation U = V + 2JH .

The model Eq. (2) provides a realistic description for
the electron-electron interactions in the MA-TBG. The total

Hamiltonian of the system is given by

Ĥ = ĤTB + Ĥint. (3)

Note that all the terms except the tiny JH term conserve the
SU(2)K × SU(2)K ′ symmetry, which is broken by the tiny JH

term to the valley-U(1) symmetry plus the global spin-SU(2)
symmetry. In our study, we considered the three different
cases, i.e., JH = 0, JH = 0.01U and JH = −0.01U , for com-
parison. As will be seen below, the three different cases will
lead to qualitatively different ground states. In realistic mate-
rial, the interaction strength U is estimated to be comparable
with the band width [1]. Although in some study [37] the U
is estimated to be about an order of magnitude larger than
that adopted here, the band width of the MA-TBG measured
by the STM [13] is also an order of magnitude larger than
that adopted here. The experimentally measured bandwidth
can be viewed as that renormalizd by electron-electron inter-
action, and our TB band structure can also be viewed as the
one renormalized by interaction. Therefore our model can be
viewed as rescaled from the realistic material by a factor of
about 10. Such rescaling will not alter the qualitative behavior
of the system.

B. The RPA + MF approach

The RPA approach is used in this work to identify the elec-
tron instabilities driven by the FS nesting and VHS. According
to the standard multiorbital RPA approach [143–152], the
following bare susceptibility is defined for the noninteracting
case, namely,

χ
(0)l1l2
l3l4

(q, τ ) ≡ 1

N

∑
k1k2

〈
Tτ ĉ†

l1k1σ
(τ )ĉl2k1+qσ (τ )

×ĉ†
l4k2+qσ

(0)ĉl3k2σ (0)
〉
0
, (4)

where q and k1,2 are the wave vectors and l1,...,4 = (ιv) with
ι = A and B representing the sublattice index and v = ±
denoting the K and K ′ valleys respectively. The 〈· · · 〉0 denotes
the thermal average of the noninteracting system. The explicit
formula of χ

(0)l1l2
l3l4

(q, τ ) is given in Appendix B.
When interactions turn on, we define the following renor-

malized spin and charge susceptibilities:

χ
(s)l1l2
l3l4

(q, τ ) ≡ 1

2N

∑
k1k2,σ1σ2

〈
Tτ ĉ†

l1k1σ1
(τ )ĉl2k1+qσ1 (τ )

×ĉ†
l4k2+qσ2

(0)ĉl3k2σ2 (0)
〉
σ1σ2, (5a)

χ
(c)l1l2
l3l4

(q, τ ) ≡ 1

2N

∑
k1k2,σ1σ2

〈
Tτ ĉ†

l1k1σ1
(τ )ĉl2k1+qσ1 (τ )

×ĉ†
l4k2+qσ2

(0)ĉl3k2σ2 (0)
〉
. (5b)

In the RPA level, they are related to the bare susceptibility
through the relation

χ (s)(q, iω) = [I − χ (0)(q, iω)Ũ (s)]−1χ (0)(q, iω), (6a)

χ (c)(q, iω) = [I + χ (0)(q, iω)Ũ (c)]−1χ (0)(q, iω). (6b)

Here, χ (0)/(s)/(c)(q, iω) are the Fourier transformations of
χ (0)/(s)/(c)(q, τ ) in the imaginary-frequency space, which are
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operated as 16 × 16 matrices by taking the upper and lower
two indices as one number, respectively. Note that we only
provide the zz component of the spin susceptibility. In the
presence of spin-SU(2) symmetry, the other two components,
i.e., the +− and −+ components are equal to the zz compo-
nent. The forms for Ũ (s)/(c) are given in Appendix B.

If U > U (s)
c (U > U (c)

c ), the denominator matrix in
Eq. (6a) [Eq. (6b)] has zero eigenvalue(s) for some (q, iω = 0)
and the renormalized zero-frequency spin (charge) suscep-
tibility χ (s) (χ (c) ) diverges, implying the formation of DW
order in the spin (charge) channel. The concrete formulism of
the interaction-induced DW order in the spin (charge) channel
can be constructed as follow.

Let U → U (s)
c (U → U (c)

c ) from below, get the eigenvector
ξ (s)(Q) (ξ (c)(Q)) corresponding to the largest eigenvalue of
χ (s)(Q, iω = 0) (χ (c)(Q, iω = 0)). Here the momentum Q, at
which χ (s)(Q, iω = 0) (χ (c)(Q, iω = 0)) first diverges, pro-
vides the wave vector of the interaction-induced magnetic
(valley) order, and the eigenvector ξ (s)(Q) (ξ (c)(Q)) provides
the form factor of the induced order. Generally in the weak-
coupling limit, the wave vector Q of the interaction-induced
order is equal to the FS-nesting vector. Due to the three-
fold rotational symmetry of the system, there exist three
degenerate FS-nesting vectors Qα with α = 1, 2, 3, and so
do the wave vectors of the induced order. As a result, the
interaction-induced SDW or CDW order can be described by
the following order-parameter part of the Hamiltonian:

ĤCDW =
3∑

α=1

∑
l1l2kσ

�(c)
α ĉ†

l1kσ
ξ

(c)
l1l2

(Qα )ĉl2k−Qασ + H.c.,

ĤSDW=
3∑

α=1

∑
l1l2kσσ ′

[
�(s)

α ·σσσ ′
]
ĉ†

l1kσ
ξ

(s)
l1l2

(Qα )ĉl2k−Qασ ′ + H.c.

(7)

Here σ is the vectorial Pauli matrix (σ (x), σ (y), σ (z) ), and
�(s)

α (�(c)
α ) is the global amplitude of the αth vectorial SDW

(scalar CDW) order parameter determined by the interaction
strength via the following MF energy minimization.

Firstly, let’s write down the total MF- Hamiltonians de-
scribing the two ordered phases

ĤMF−CDW = ĤTB + ĤCDW, (8a)

ĤMF−SDW = ĤTB + ĤSDW. (8b)

After diagonalizing the two Hamiltonians, we obtain their
ground states |CDW-MF〉 and |SDW-MF〉. Secondly, the two
MF energies are represented by the expectation values of the
original Hamiltonian (3) in the two ground states, i.e.,

ECDW-MF = 〈CDW-MF|H |CDW-MF〉, (9a)

ESDW-MF = 〈SDW-MF|H |SDW-MF〉. (9b)

Note that the Wick’s decomposition procedure is adopted in
calculating the above two expectation values. Finally, tuning
the SDW or CDW order parameters �(s)

α or �(c)
α so that the

above two MF- energies are minimized, after which we obtain
these order parameters.

An important property of the DW orders obtained at U
slightly larger than Uc is that they are either intra-valley orders

or intervalley ones, but not their mixing. To clarify this point,
we put aside the sublattice and spin indices of χ (s) or χ (c)

defined in Eq. (5) and only focus on the valley degree of
freedom, which leads to

χ (s,c)v1v2
v3v4

≡ 〈
Tτ ĉ†

v1
(τ )ĉv2 (τ )ĉ†

v4
(0)ĉv3 (0)

〉
, (10)

with the valley index vi = ± denoting K and K ′ valleys,
respectively. Since the valley-U(1) symmetry of the system
requires the conservation of the total value of valleys, i.e.,
v1 + v4 = v2 + v3, χ (s,c)v1v2

v3v4
should take the form of

χ (s,c)v1v2
v3v4

=

⎛
⎜⎜⎝

χ++
++ 0 0 χ++

−−
0 χ+−

+− 0 0
0 0 χ−+

−+ 0
χ−−

++ 0 0 χ−−
−−

⎞
⎟⎟⎠. (11)

Here the correspondence between the value of v1v2 or v3v4

and the row or column index is ++ : 1,+− : 2,−+ : 3,−− :
4. Due to the block-diagonalized character of the matrices
χ (s,c) shown in Eq. (11), any of their eigenvectors ξ can either
take the form of (a, 0, 0, b)T or of (0, c, d, 0)T . While the
form represents the intra-valley order, the latter denotes the
intervalley one, which do not mix. Note that the FS-nesting
vectors Qα shown in Figs. 2(c) and 2(d) always connect the
FSs from different valleys, we can easily conjecture that the
induced DW orders are intervalley orders, which is consistent
with our following calculation results.

Note that although the DW order obtained in the charge
channel breaks the translational symmetry, the distribution
of the charge density in this state is actually translational
invariant due to its intervalley coherence character. Therefore
it is inappropriate to name this state as CDW. Instead, it
should better be dubbed as the valley DW (VDW), as it breaks
the valley-U(1) symmetry. In the following, we rename such
quantity as U (c)

c , �(c)
α and ξ (c)(Q) to be U (v)

c , �(v)
α and ξ (v)(Q).

The DW order obtained in the spin channel breaks the trans-
lational symmetry, the spin-SU(2) and valley-U(1) symmetry.
Therefore we should better name it as valley-spin DW. In the
following, we simply dub it as SDW for convenience.

When both U < U (s)
c and U < U (v)

c are satisfied, an effec-
tive pairing interaction vertex V αβ (k, k′) is developed through
exchanging the short-ranged spin (charge) fluctuations be-
tween a Cooper pair. The detailed expression of V αβ (k, k′)
is provided in Appendix B. It leads to the following linearized
gap equation near the superconducting critical temperature Tc:

− 1

(2π )2

∑
β

∮
FS

dk′
‖
V αβ (k, k′)

v
β
F (k′)

�β (k′) = λ�α (k), (12)

where α and β label the bands that cross the FS, corresponding
to combined (mv) in Eq. (1). v

β
F (k′) gives the Fermi velocity

and k′
‖ is the tangent component of k′ along the FS. After

discretization, Eq. (12) presents as an eigenvalue problem.
The eigenvector �α (k) represents the gap form factor and the
eigenvalue λ determines the Tc through Tc ∝ e−1/λ. Symme-
try analysis requires that each �α (k) is attributed to one of
the three irreducible representations of the point group D3.
Further considering the parity of �α (k) in the absence of
spin-orbit coupling, there are six possible pairing symmetries
[49], i.e., s, (dx2−y2 , dxy), and fx(x2−3y2 )∗ f ′

y(y2−3x2 ) pairings for
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the spin singlet and (px, py), fx(x2−3y2 ), and f ′
y(y2−3x2 ) pairings

for the spin triplet.
Since the superconducting critical temperature Tc is much

lower than the total band width of the low-energy emergent
flat bands, it is reasonable to only consider the weak-pairing
limit, in which only the electrons on the FS participate in
the pairing. In such a condition, the Anderson’s theorem re-
quires that the Cooper pairing can only take place between
intervalley. Moreover, these intervalley pairings are neither
valley-singlet pairing nor valley-triplet one, but instead are
a mixing between them, as the square of the total vectorial
valley of the Cooper pair is not a good quantum number here.
Actually, if an electron with momentum-valley k-K is on the
FS and thus can participate in the pairing, the electron with
momentum-valley k-K ′ is generally away from the FS and
thus cannot participate in the pairing, which leads to a ratio
of 1:0 between the amplitudes for the parings of c†

kK c†
−kK ′ and

c†
kK ′c

†
−kK , leading to a 1:1 mixing between the valley-singlet

and valley-triplet pairings.

IV. CHIRAL SO(4)-DW AND DEGENERATE SC AT JH = 0

As introduced in Sec. III A, when the intervalley Hund’s
coupling is neglected, the MA-TBG has an SU(2)K ×
SU(2)K ′ symmetry, with each valley independently hosting
a spin-SU(2) symmetry. In this section, we will explore the
consequence of such a symmetry. It will be seen below that
degeneracies will take place either between the SDW and
VDW or between the singlet and triplet SCs. The degeneracy
between the SDW and VDW orders, in combination with
the threefold degeneracy among the wave vectors of the DW
orders caused by the D3 point group of the MA-TBG, would
make them mix into a chiral SO(4) DW order. A series of
intriguing properties of this chiral SO(4) DW state are studied.

A. Degenerate DW orders mixing into SO(4) DW

The doping dependence of the critical interaction strengths
U (s)

c and U (v)
c are shown in Fig. 3(a). From Fig. 3(a), the

U (s)
c and U (v)

c are at the order of the band width of the flat
band. Two features are obvious in Fig. 3(a). The first feature
is that both U (s)

c and U (v)
c go to zero at the two VH dopings,

suggesting that an infinitesimal interaction would drive DW
orders at these dopings. This feature originates from the fact
that the divergent DOS together with the good FS nesting
makes even the bare susceptibility χ (0) diverge. The second
feature is that the U (s)

c and U (v)
c are exactly equal for a large

doping range around the VH dopings. Further more, the eigen-
vectors ξ (s) and ξ (v) corresponding to the largest eigenvalues
of χ (s)(iω = 0) and χ (c)(iω = 0) are identical too, which take
the form of (0, c, d, 0)T and belong to the intervalley type of
DW orders, originating from the intervalley FS nesting shown
in Figs. 2(c) and 1(d). Such a degeneracy originates from
the SU(2)K × SU(2)K ′ symmetry of the MA-TBG system, as
clarified below.

Due to the SU(2)K × SU(2)K ′ symmetry of MA-TBG in
the case of JH = 0, we can define the unitary symmetry oper-
ation P̂ : ci → P̂ciP̂† with the following explicit formula:

ĉi+↑ → ĉi+↑, ĉi+↓ → ĉi+↓, ĉi−↑ → ĉi−↑, ĉi−↓ → −ĉi−↓.

(13)

FIG. 3. (a) Doping dependence of U (s)
c and U (v)

c . (b) Distribution
of χ (q) in the MBZ for δ = 0.240, corresponding to the e-VHS
in Fig. 2. (c) The energies of MF states determined by HMF-SDW

and HMF-VDW for several different configurations at the e-VHS point
with U = 4 meV . The nonzero order parameters are �

(v)
1 = �

(v)
2 =

�
(v)
3 = � for the isotropic VDW, �

(s)
1,z = �

(s)
2,z = �

(s)
3,z = � for the

collinear SDW, �c
1 = � for the nematic VDW, �

(s)
1,z = � for the

nematic SDW, and �
(s)
1,x = �

(s)
2,y = �

(s)
3,z = � for the chiral SDW, in

which the energies of the isotropic and nematic VDWs are exactly
equal to those of the collinear and nematic SDW, respectively. These
five configurations take the minimal energies of 499.603, 499.603,
499.681, 499.681, and 499.484 meV, respectively, when their � take
0.602, 0.602, 1.131, 1.131, and 0.720 meV.

One can easily check [P̂, Ĥ ] = 0 from Eq. (3) (set JH = 0)
and Eq. (13). A consequence of this symmetry is that it maps
an intervalley VDW order to the z component of an intervalley
SDW (abbreviated as the z-SDW) one with the same wave
vector Q and form factor ξv1v2 (Q), i.e.,

ÔVDW ≡
∑

ι1v1,ι2v2,kσ

ĉ†
ι1v1kσ

ξι1v1,ι2v2 (Q)ĉι2v2k−Qσ , (14a)

Ôz-SDW ≡
∑

ι1v1,ι2v2,kσσ ′
ĉ†
ι1v1kσ

ξι1v1,ι2v2 (Q)σ z
σσ ′ ĉι2v2k−Qσ ′, (14b)

which satisfy

P̂†ÔVDWP̂ = Ôz-SDW. (15)

Here the intervalley condition for the DW orders requires

ξι1v1,ι2v2 = δv̄1,v2ξι1v1,ι2 v̄1 . (16)

One can easily check Eq. (15) by using Eqs. (13) and (16).
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Now let’s gradually enhance the interaction strength U
from zero and monitor the formation of the VDW and SDW
orders. Initially, U is so small that the formation of neither
the SDW nor the VDW can gain energy, and thus no DW
orders are formed. On the one hand, supposing at the critical
interaction strength U (v)

c , the formation of a VDW order with a
wave vector Q and a form factor ξ (v)(Q) begins to gain energy.
Then from the mapping in Eq. (15) and the fact of [P̂, Ĥ ] = 0,
it is easily proved that the formation of a z-SDW order with
the same wave vector and form factor can also gain energy
because

EVDW = 〈VDW|Ĥ |VDW〉 = 〈
VDW

∣∣P̂†Ĥ P̂
∣∣VDW

〉
= 〈z-SDW|Ĥ |z-SDW〉 = Ez-SDW. (17)

Therefore we have U (v)
c � U (s)

c . On the other hand, let’s sup-
pose U is enhanced to U (s)

c so that the formation of an SDW
order with an arbitrary direction of magnetization with a wave
vector Q and form factor ξ (s)(Q) begins to gain energy. Note
that from the spin-SU(2) symmetry, we can always rotate the
direction of the magnetization to the z axis without costing
energy, thus U (s)

c is also the critical U for the z-SDW order.
As for arbitrary U > U (s)

c , the formation of a z-SDW state can
gain energy, then from Eq. (17) the formation of a VDW state
can also gain energy, suggesting U (v)

c � U (s)
c . The combina-

tion of both hands leads to U (v)
c = U (s)

c ≡ Uc, and the wave
vector Q together with the form factor ξ (Q) of both DW orders
should be identical.

On the above we prove the degeneracy between the SDW
and the VDW. Due to this degeneracy, the two DW order
parameters will generally be mixed to lower the energy. In Ap-
pendix C 1, we study how they would be mixed via combined
Ginzburg-Landau (G-L) theory and the microscopic calcula-
tions. As a result, our results yield that the two DW orders
should be mixed with a π/2 phase difference, suggesting that
the MF Hamiltonian involving both orders is

ĤMF-DW = ĤTB +
∑

ι1ι2kσσ ′
(�(v)δσσ ′ + i�(s) · σσσ ′ )

× c†
ι1Kkσ

ξι1Kι2K′ (Q)ĉι2K′k−Qσ ′ + H.c. (18)

In this form of DW ordered state, the SU(2)K × SU(2)K ′

symmetry of the system would be embodied as the SO(4)
symmetry for the DW order parameters.

B. Consequence of degeneracy among wave vectors

On the above, we have proved the degeneracy between the
SDW and VDW orders at the critical point. Note that only
one single wave vector Q of the DW orders is considered. In
such a case, the degeneracy not only applies at the critical
point but also at any U > Uc: the ground-state energies of both
DW states are always equal to each other due to Eq. (17) and
the spin-SU(2) symmetry. However, for the MA-TBG, there
is a threefold rotational symmetry, which brings about three
degenerate wave vectors for the DW orders simultaneously.
In such a case, the DW components hosting these degenerate
wave vectors can be mixed, leading to a different situation: the
degeneracy between SDW and VDW only applies at U = Uc,
but not at U > Uc where the ground-state energy of the SDW

state with mixed wave vectors is lower than that of the VDW
state, as will be discussed below.

As shown in Figs. 2(c) and 2(d), the FS of MA-TBG ex-
hibits threefold degenerate nesting vectors Qα (α = 1, 2, 3),
which in the weak-coupling treatment are just the three degen-
erate wave vectors of the DW orders. This point is supported
by the distribution of the largest eigenvalue χ (q) of the bare
susceptibility matrix at iω = 0 in the MBZ, as shown in
Fig. 3(b) is for the e-VH doping. Figure 3(b) exhibits a sixfold
symmetric pattern peaking at ±Qα (α = 1, 2, 3). As the three
Qα are near the three Mα points in the MBZ, we just set
Qα = Mα for simplicity. When interactions turn on, the spin
or charge susceptibilities first diverge at the three Qα , yielding
the three degenerate wave vectors as Qα .

In the presence of degenerate wave vectors, the degeneracy
between SDW and VDW orders is still tenable at the criti-
cal point, including the relations U (v)

c = U (s)
c and ξ (v)(Qα ) =

ξ (s)(Qα ). The reason for this degeneracy is clear in the frame-
work of RPA: the critical interaction U (s)

c or U (v)
c is determined

by the condition that the denominator matrix in Eq. (6a) or
Eq. (6b) begins to have zero eigenvalue at some q. In the
presence of degenerate wave vectors, this condition is first sat-
isfied by the three degenerate momenta simultaneously, which
means that the condition U = U (v,s)

c is also the condition that
the formation of the VDW or SDW orders with any one of the
three wave vectors can first gain energy. Therefore the above
energy-based proof for the single-Q case also applies here.

However, the degeneracy between the SDW and VDW or-
ders is broken for a general U > U (v)

c = U (s)
c , wherein the in-

teraction among the degenerate order-parameter components
corresponding to the degenerate wave vectors energetically fa-
vors the SDW. The mixing of the three degenerate components
of the VDW and SDW orders leads to the order-parameter
fields given by Eq. (7). From the formula of P̂ defined in
Eq. (13), it is easily checked that a VDW state formed by the
mixing of three degenerate components with wave vectors Qα ,
form factors ξ (Qα ), and global amplitude �α , is described by

ĤVDW =
3∑

α=1

∑
l1l2kσ

�α ĉ†
l1kσ

ξl1l2 (Qα )ĉl2k−Qασ+H.c., (19)

we have

P̂†ĤVDWP̂ = Ĥcol-SDW (20)

with

Ĥcol-SDW ≡
3∑

α=1

∑
l1l2kσ1σ2

�ασ z
σ1σ2

ĉ†
l1kσ1

ξl1l2 (Qα )ĉl2k−Qασ2+H.c.

(21)

Obviously, the Ĥcol-SDW defined above is a special case of
the ĤSDW defined in Eq. (7) with setting ξ (s) = ξ and �α =
�αez. In such an SDW state, all the three degenerate vectorial
SDW components are along the same z direction, forming a
collinear SDW state. Therefore, in the presence of degenerate
wave vectors, the SU(2)K × SU(2)K ′ symmetry of the MA-
TBG maps any intervalley VDW order into an intervalley
collinear SDW order with the same wave vector and form
factor, and hence both DW states share the same ground-state
energy. However, the general form of SDW states given in
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Eq. (7) not only includes the collinear SDW states but also
includes the noncollinear ones. Therefore the ground-state
energy of the SDW state is at least no higher than that of
the VDW state in the presence of degenerate wave vectors.
Our numerical calculations shown below single out the non-
coplanar chiral SDW state to be the SDW state with the lowest
energy, which, of course, is lower than that of the VDW state.

To find the energetically most favored DW state, we should
take the three (nine) components of the VDW (SDW) or-
der parameter, �(v)

α (α = 1, 2, 3) [�(s)
α,μ (α = 1, 2, 3; μ =

x, y, z)] in Eq. (7) as the variational parameters to minimize
the energy of the Hamiltonian Eq. (3) in the VDW (SDW) MF
state generated by the MF Hamiltonian Eq. (8).

Before performing the energy minimization, it is helpful to
classify all the possible configurations of the VDW and the
SDW order parameters from the G-L theory. The G-L theory
provided in Appendix C 3 suggests that there exist three SDW
configurations, i.e., the collinear SDW state, the chiral SDW
state and the nematic SDW state. In the collinear state, the
three SDW order parameters �1 = �2 = �3. In the chiral
state, they satisfy �1 ⊥ �2 ⊥ �3 and |�1| = |�2| = |�3|. In
the nematic state, only one of the three �α (α = 1, 2, 3) exists,
and the other two vanishes. As for the VDW, there exist two
possible configurations, i.e., the isotropic-VDW state and the
nematic-VDW state. While the former contains three VDW
components with equal amplitude for the three wave vectors,
the latter only contains one for one arbitrarily chosen wave
vector.

For the VDW states, our numerical results yield that the
energetically most favored state is the isotropic VDW state
with �

(v)
1 = �

(v)
2 = �

(v)
3 = �. The energy of this state is

exactly equal to that of the collinear-SDW state with �(s)
α,z =

�; �(s)
α,x/y = 0, as proved on the above. To compare, we also

calculate the energy of the nematic VDW state with only
�

(v)
1 = � as the nonzero component, whose energy is exactly

equal to the nematic SDW state with only �
(s)
1,z = � as the

nonzero component. The � dependence of the two VDW
states (and the associate SDW states) are shown in Fig. 3(c),
which verifies the isotropic VDW state as the energetically
most favored VDW state, consistent with the so called 3Q
VDW state defined in Ref. [58]. However, this 3Q-VDW state
is beaten by the noncoplanar chiral SDW state with �

(s)
1,x =

�
(s)
2,y = �

(s)
3,z = � as the nonzero components, which is among

the energetically most favored degenerate SDW states, consis-
tent with Ref. [49]. These degenerate ground states are related
by the spin-SU(2) rotations. In each of these degenerate
lowest-energy SDW states, the three SDW order-parameter
components �(s)

α with equal amplitudes satisfy �
(s)
1 ⊥ �

(s)
2 ⊥

�
(s)
3 , leading to noncoplanar structure with spin chirality. Such

chiral SDW states cannot be mapped to any VDW state by the
SU(2)K × SU(2)K ′ symmetry operation. The � dependence
of the energy of the chiral SDW states is compared to that of
the VDW states in Fig. 3(c), which verifies that the former is
energetically more favored than the latter.

C. Chiral SO(4) spin-valley DW

As clarified in the above two sections, although the
SU(2)K × SU(2)K ′ symmetry brings about the degeneracy

between the SDW and VDW orders at the critical point U =
Uc, the SDW order with a noncoplanar chiral spin configu-
ration wins over the VDW at the ground state for general
realistic U > Uc. However, the SU(2)K × SU(2)K ′ symme-
try still plays an important role in determining the ground
state in general cases. Assuming that the chiral SDW state
with �

(s)
1,x = �

(s)
2,y = �

(s)
3,z = � obtained above is the ground

state, let’s perform the symmetry operation P̂ on this state.
Consequently, we obtain a DW state with two vectorial SDW
components pointing toward the x and y directions mixed
with one scalar VDW component. This state would have the
same energy as the chiral SDW state. This fact tells us that
the ground state of the system is generally a mixing between
the SDW and VDW orders. As clarified in Sec. IV A, in the
case of one single wave vector, the SDW and VDW would
be mixed in the manner of a π/2 phase difference to form
the SO(4) DW. When all the three SO(4) DW components for
the three wave vectors turn on, the general form of the MF
Hamiltonian for the DW state reads

ĤMF-DW = ĤTB +
3∑

α=1

∑
l1l2kσσ ′

(
�(v)

α δσσ ′ + i�(s)
α · σσσ ′

)

× c†
l1kσ

ξl1l2 (Qα )ĉl2k−Qασ ′ + H.c.

= ĤTB +
3∑

α=1

∑
l1l2kσσ ′

[
(Δα · Σα )σσ ′

× ĉ†
l1kσ

ξl1l2 (Qα )ĉl2k−Qασ ′ + H.c.
]
, (22)

where the four-component vector Δα ≡ (�(v)
α ,�(s)

α ) =
(�(v)

α ,�(s)
α,x,�

(s)
α,y,�

(s)
α,z ) ∈ R4 and Σα = (σ (0), iσ ) with σ (0)

to be the 2 × 2 identity matrix. Here we have totally twelve
variational parameters Δα (α = 1, 2, 3).

Before performing the energy minimization, we have done
a G-L theory based analysis in Appendix C 2 to classify the
possible configurations of the three SO(4) DW order param-
eters as possible solutions to minimize the G-L free-energy
function. Consequently, only three possible solutions exist,
i.e., the collinear SO(4) spin-valley DW state, the chiral SO(4)
spin-valley DW state and the nematic SO(4) spin-valley DW
state. In the collinear state, the three DW order parameters
Δ1 = Δ2 = Δ3. In the chiral state, they satisfy Δ1 ⊥ Δ2 ⊥
Δ3 and |Δ1| = |Δ2| = |Δ3|. In the nematic state, only one of
the three Δα (α = 1, 2, 3) exists, and the other two vanish.

Our energy-minimization result yields that the chiral
SO(4) spin-valley DW states are the ground states of the
system. These states include the chiral SDW with Δ1 =
(0,�, 0, 0),Δ2 = (0, 0,�, 0),Δ3 = (0, 0, 0,�) as a special
example. However, there are simultaneously many other de-
generate ground states with equal energy to this state, forming
a ground-states set. This set of states are obtained through per-
forming all the possible global SO(4) rotations on the three Δα

of the chiral SDW state within the R4 parameter space. Such a
ground-state degeneracy results from the spontaneous break-
ing of the SO(4) symmetry which originates from the physical
SU(2)K × SU(2)K ′ symmetry, see Appendix C 1. Therefore
the ground state of the MA-TBG should be a mixing between
the SDW and VDW with a particular manner: this DW state
possesses three coexisting wave vectors Qα , with each Qα
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distributed to a four-component DW order parameter which
comprises of one VDW component and three SDW ones.
The three four-component vectorial DW order parameters
with equal amplitude are perpendicular to each other and can
globally arbitrarily rotate in the R4 parameter space. We call
such a DW state as the Chiral SO(4) spin-valley DW. Besides,
as the obtained intervalley DW states break the valley-U(1)
symmetry, the valley-U(1) rotation about the valley τz axis
will rotate the DW order parameters in the valley (τx, τy)
plane. Concretely, it will change the form factor ξ in Eq. (22)
by a multiplied phase factor eiα . Such valley-U(1) rotation
brings about extra ground-state degeneracy.

The Goldstone-mode fluctuations grown on top of the chi-
ral SO(4) DW ground state are intriguing, considering the
continuous SO(4) and valley-U(1) symmetry breaking, com-
bined with the wave-vector degeneracy. Firstly, let’s globally
rotate the three Δα so that one of it, say Δ1 is rotated from
its polarization direction to the three remaining perpendicular
directions in the R4 space, and Δ2,3 are also operated by
these global rotations. Such global rotations lead to three
gapless Goldstone modes. Secondly, let’s choose the global
rotation manner so that Δ1 is fixed unchanged, and Δ2 can
freely rotate toward the two remaining directions under the
condition Δ1 ⊥ Δ2, leading to two more gapless Goldstone
modes. Thirdly, let’s fix the rotation plane to be that expanded
by Δ1 and Δ2, under which the Δ3 can only rotate toward the
remaining one direction under the condition Δ3 ⊥ Δ1 ⊥ Δ2,
leading to one more Goldstone mode. Finally, the continuous
valley-U(1) symmetry breaking brings about another gapless
Goldstone mode, which is the rotation of the order parame-
ters in the valley (τx, τy) plane. All together, we have seven
branches of gapless Goldstone modes, much more than those
in conventional SDW states. For example, the Neel SDW state
on the square or honeycomb lattice has only two branches of
gapless acoustic Goldstone modes.

Due to the Mermin-Wagner theorem, at finite temperature,
the Goldstone-modes fluctuations in the 2D MA-TBG system
would destroy the long-range chiral SO(4) DW order which
breaks the continuous SO(4) and valley-U(1) symmetry. How-
ever, the short-range fluctuations of this DW order still exist.
Further more, there exists a characteristic temperature TM

below which the correlation length of the DW order begins to
enhance promptly, and the local environment around an elec-
tron is similar with that in the presence of long-range order. As
a result, many properties exhibited in the experiment are also
similar with the latter case. It was argued in Ref. [45] that the
SDW-correlated state can explain such experimental results as
the transport property at finite temperature. The chiral SO(4)
DW state can be obtained from the chiral SDW state through
an SU(2)K × SU(2)K ′ rotation, which is a unitary transfor-
mation and doesn’t alter the band structure. Therefore this
SO(4) DW state is also ready to explain similar experimental
results. Note that in addition to the continuous SO(4) and
valley-U(1) symmetry, the discrete TRS is also broken here,
which can possibly maintain at finite temperature, leading into
such experimental consequence as the Kerr effect.

The topological properties of the chiral SO(4) DW state
might probably be nontrivial with nonzero Chern number. As
this state is related to the chiral SDW state through a uni-
tary transformation, the two states share the same topological

En
er

gy
 (m

eV
)

FIG. 4. The band structure along the high-symmetric lines for the
chiral SO(4) DW state at half filling in the electron-doped case. The
red solid lines and black solid lines represent for the band structures
of the conduction bands and valence bands respectively. (Inset) The
nearly crossing and tiny splitting between the lowest conduction
band and the highest valence band.

properties. The chiral SDW states with three degenerate wave
vectors have been studied previously in other circumstances
[101–104], which suggests that when an SDW gap opens at
the Fermi level, this state has a nontrivial topological Chern
number and is thus an interaction-driven spontaneous quan-
tum anomalous Hall (QAH) insulator [153–155]. Therefore
the chiral SO(4) DW state obtained here might also be a
spontaneous QAH insulator, as long as the single-particle gap
caused by the DW order opens at the Fermi level. Experimen-
tally, the half-filled MA-TBG is indeed a correlated insulator
[2], which thus might probably be a QAH insulator.

In our model, the band structure reconstructed in the chiral
SO(4) DW state for the half filling in the electron-doped case
is shown in Fig. 4. Globally, the conduction bands (red solid)
overlap with the valence bands (black solid), leading to a
metallic state instead of an insulator. However, as there is
no degenerate point in momentum space between the highest
valence band and the lowest conduction band, the two bands
are separate by a direct gap. In such a case, the total Chern
number of the valence bands is still well-defined. The situation
for the hole-doped case is similar. Our calculation of the Chern
number of the valence bands through the formula provided
in Refs. [101,102] yields the number of 4 (−4) for the half
filling in the electron-doped (hole-doped) case, suggesting the
possibility of QAH effect. Although the DW gap under the
present interaction parameters is not large enough to fully
separate the valence bands and the conduction bands, they
can be fully separated for enhanced interaction parameters,
leading to real QAH effect. We leave this topic for future
study.

To show the real-space pattern of the chiral SO(4) DW
orders, we introduce the following intervalley site-dependent
valley and spin densities defined as

�
(v)
j = 〈ĉ†

j+↑ĉ j−↑ + ĉ†
j+↓ĉ j−↓ + H.c.〉, (23a)

�
(s)
j,x = 〈ĉ†

j+↑ĉ j−↓ + ĉ†
j+↓ĉ j−↑ + H.c.〉, (23b)
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(a) VDW

-0.51 0.0 0.51

(b) x-SDW

-0.32 0.0 0.32

(c) y-SDW

-0.18 0.0 0.18

(d) z-SDW

-0.36 0.0 0.36

FIG. 5. The real-space distributions of the scalar intervalley charge density (a) and the three components of the vectorial intervalley spin
density [(b)–(d)] for a typical groundstate configuration with Δ1 = (0.47, −0.19, −0.22, 0.46) meV, Δ2 = (−0.49, 0.13, −0.11, 0.50) meV,
and Δ3 = (−0.24, −0.64, −0.19, −0.11) meV in the chiral SO(4) DW phase for JH = 0.

�
(s)
j,y = 〈−iĉ†

j+↑ĉ j−↓ + iĉ†
j+↓ĉ j−↑ + H.c.〉, (23c)

�
(s)
j,z = 〈ĉ†

j+↑ĉ j−↑ − ĉ†
j−↓ĉ j+↓ + H.c.〉. (23d)

The real-space distributions of these densities are shown
in Fig. 5 for an arbitrarily chosen ground state with
Δ1=(0.47,−0.19,−0.22, 0.46), Δ2=(−0.49, 0.13,−0.11,

0.50), and Δ3=(−0.24,−0.64,−0.19,−0.11). This pattern
leads to a 2 × 2-enlarged unit cell as enclosed by the black
diamonds in Fig. 5, which contains 8 sites or 16 orbitals.
Such a translation-symmetry breaking has not been detected
by experiments yet, which might possibly be caused by that
the intervalley valley or spin order in this system can not
be easily coupled to conventional experimental observables.
Obviously, both the VDW and SDW orders are nematic in
the shown configuration, spontaneously breaking the C3 ro-
tational symmetry of the MA-TBG [90]. However, this state
can also arbitrarily rotate to other isotropic states such as the
chiral SDW state. Concretely, the orientations of the three Δα

can be pinned down by an added infinitesimal term breaking
the SU(2)K × SU(2)K ′ symmetry, such as an imposed weak
magnetic field studied below or a tiny intervalley Hund’s-rule
coupling that will be studied in the next section. To investigate
how an imposed infinitesimal magnetic field will pin down the
direction of the polarization of the chiral SO(4) DW obtained
here through the Zeeman coupling, the following Zeeman
term is added into the Hamiltonian Eq. (3),

HZeeman = JZ

∑
i,v

(ĉ†
iv↑ĉiv↑ − ĉ†

iv↓ĉiv↓), (24)

where JZ = 0.01 meV is adopted. The energy of ĤTB +
Ĥint + ĤZeeman is optimized in the state determined by HMF-DW

in Eq. (22). Our numerical results for the optimized order
parameters are as follow. Firstly, the three relative phase
angles between the VDW and SDW orders are θα ≈ π

2 ,
approximately maintaining the SO(4) symmetry. Secondly,
among the three DW order parameters Δα , an arbitrarily

chosen one, say Δ1, takes the form of Δ1 ≈ (�, 0, 0, 0),
denoting a VDW order, and the remaining two both take the
form of (0,�1,�2, 0) and are perpendicular to each other,
denoting two mutually perpendicular SDW orders polarized
within the xy plane. Therefore we obtain a spin-valley DW
ordered state which hosts one scalar VDW order mixed with
two mutually perpendicular vectorial SDW orders oriented
within the xy plane, with the three DW order parameters
randomly distributed with the three symmetry-related wave
vectors Qα . Obviously, this phase is nematic, since neither
the VDW nor the SDW order is distributed with all the three
symmetry-related wave vectors. The physical picture of this
result is as follow. Considering that the three wave vectors Qα

are all antiferromagnetic-like, the z component of the SDW
order will be most unfavored by the uniform Zeeman term
and thus it would be kicked out from the 3D “easy plane” for
the polarization of any DW order; the VDW order parameter
is completely blind to the Zeeman coupling and thus it is max-
imized and fully occupies a wave vector; the x, y components
of the SDW sit in between the two and occupy the remaining
two wave vectors.

The relation between the SO(4) and the SU(2)K × SU(2)K ′

symmetries, and the consequent degeneracy between the
SDW and VDW orders have been clarified in Refs. [58,84]
previously. However, the role of the degeneracy among the
symmetry-related wave vectors is first thoroughly investigated
here. In this work, we reveal that the combination of the
two aspects will bring about the TRS-breaking chiral SO(4)
spin-valley DW state with intriguing properties, whose energy
is reasonably lower than that of the 3Q-VDW state proposed
in Ref. [58]. Further more, our results are more different
from those in Refs. [58,84] for the cases of JH �= 0 (which
will be studied in the next section). Briefly, both Refs. [58]
and [84] take the viewpoint that since the SDW and VDW
are degenerate at JH = 0, one naturally conjectures that for
JH > 0 (JH < 0) the VDW (SDW) will beat the other order.
However, it is pointed out here that the SDW and VDW
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FIG. 6. The largest pairing eigenvalues λ vs doping for all
possible pairing symmetries under U = 1.1 meV. Note about the
degeneracy between the p- and d-, the f ′- and s-, and the f - and
f ∗ f ′-wave pairings, respectively, referred to Fig. 7. The degenerate
p and d wave pairings dominate other pairings near the two VH
dopings, see the two regimes covered with green rectangles, which
represent for the chiral SO(4) DW phase. The insets on both sides
show the normalized gap functions for all possible pairing symme-
tries near the two VH dopings.

generally can be mixed. For JH = 0, they are mixed into the
chiral SO(4) DW, whose three mutually perpendicular vec-
torial order parameters can be globally arbitrarily rotated in
the R4 space, forming a degenerate-ground-state set. Then the
realistic tiny SU(2)K × SU(2)K ′-symmetry-breaking JH term
acts as a perturbation upon this degenerate-ground-state set,
whose consequence is to select in this set its favorite states
with special polarization directions of the three mutually per-
pendicular vectorial DW order parameters. As a result, for
JH → 0− we get pure chiral SDW, while for JH → 0+ we get
a nematic DW state with one stripy VDW component mixed
with two SDW components, instead of the pure isotropic
VDW suggested by Refs. [58,84]. More details of these results
will be presented in the next section.

D. Degeneracy between singlet and triplet SCs

The doping-dependences of the largest pairing eigenvalues
for all the pairing symmetries are plotted in Fig. 6, where the
gap form factors �α (k) (determined by Eq. (12)) near the two
VHS points are shown on both sides. The two green rectangles
near the e-VHS and the h-VHS give the regimes for the chiral
SO(4) spin-valley DW studied above where U > U (s)

c = U (v)
c ,

and the remaining regimes support the SC phases. In the
regimes near the VHS, the degenerate p- and d-wave pairings
are the leading pairing symmetries, while in the over doped
regimes far away from the VHS, the degenerate fx(x2−3y2 )-
and fx(x2−3y2 ) ∗ f ′

y(y2−3x2 )- wave pairings become the leading
symmetries.

FIG. 7. One-to-one mapping between the triplet pairings (the
first row) and singlet pairings (the second row) under the operation
P̂. The red and black curves represent the FSs contributed from the
K and K ′ valleys, respectively.

The most remarkable feature of Fig. 6 lies in that there
is a one-to-one corresponding degeneracy between the triplet
and singlet pairings, i.e., the p- and d-pairing degeneracy, the
f ′- and s-pairing degeneracy, and the f - and f ∗ f ′-pairing
degeneracy, see Fig. 7. Similar to the degeneracy between the
intervalley SDW and the VDW, the degeneracy between the
intervalley singlet and triplet pairings originates from that they
are related by the unitary symmetry operation P̂ defined in
Eq. (13). Concretely, the following singlet and triplet pairings
with order parameters

Ô(s)
SC =

∑
mvk∈FS

[ĉmvk↑ĉmv̄k̄↓ − ĉmvk↓ĉmv̄k̄↑]�mv (k), (25a)

Ô(t )
SC = −

∑
mvk∈FS

[ĉmvk↑ĉmv̄k̄↓ + ĉmvk↓ĉmv̄k̄↑]v�mv (k), (25b)

are related as

P̂†Ô(s)
SCP̂ = Ô(t )

SC, (26)

where k̄ ≡ −k, v̄ ≡ −v and the operator P̂ is defined by
Eq. (13). Note that in the weak-pairing limit only the electrons
on the FS participate in the pairing, and an electron state on
the (mv)th band with momentum k can only pair with its TR
partner, i.e., the state on the (mv̄)th band with momentum k̄.
The condition mvk ∈ FS defines v as an implicit function of
k, and from Fig. 7 we have vk̄ = −vk, suggesting that vk is
an odd function of k. Equations (25) and (26) suggest that
a singlet pairing with even-parity gap function �mv (k) can
be mapped to a triplet pairing with odd-parity gap function
−vk�mv (k). In Fig. 7, the distributions of the gap signs for all
possible pairing symmetries are schematically shown, where
the listed one-to-one mapping between different singlet and
triplet pairings can well explain the singlet-triplet degeneracy
shown in Fig. 6.

Similar to the degeneracy between the SDW and VDW
orders, the degeneracy between the singlet and triplet SCs also
originates from the SU(2)K × SU(2)K ′ symmetries. However,
there is an important difference between them: for the SC,
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FIG. 8. FSs on the over and under doping sides of the h-VHS
point [(a) and (b)] and e-VHS point [(c) and (d)] with the same filling
deviation of 0.01. The FSs show better nesting behavior on the over
doping side than on the under doping side. Other denotations and
parameters are the same with those in Fig. 2.

there is only one “nesting vector” or “wave vector,” i.e., Q = 0
in the particle-particle channel, which is the center-of-mass
momentum of a Cooper pair. As a result, the singlet-triplet
degeneracy for SC is always tenable, leading to degenerate
ground-state energies for singlet and triplet SCs and hence
their arbitrary mixing. Such a degeneracy can only be lifted up
by adding a weak intervalley Hund’s-rule coupling that will be
studied in the next section.

The doping dependence of the superconducting Tc shown
in Fig. 6 exhibits two asymmetric behaviors consistent with
experiments. One is the asymmetry with respect to the CNP:
the Tc at the negative dopings is much higher than that at
the positive dopings, which is due to the higher DOS for
the former case than that for the latter case [see Fig. 2(b)].
Such an asymmetric behavior is well consistent with both the
experiments of Y. Cao et al., in Ref. [1] and the observations of
M. Yankowitz et al., in Ref. [12]. The other asymmetry is with
respect to each VH doping: the Tc on the higher-doping side
of each VH point is higher than that on its lower-doping side.
This asymmetry is attributed to the asymmetric situations of
the FS nesting on the two sides of each VH doping, see Fig. 8
which indicates that the FSs are better nested at the higher-
doping side of each VH doping than those at its lower-doping
side. As a result, the susceptibility and hence the effective
pairing interaction on the higher-doping side of each VH
doping are stronger than those on the other side, leading to the
higher Tc on the higher-doping side. This asymmetric behavior
is also well consistent with both experiments in Refs. [1,12].
The consistence of these two asymmetric doping-dependent
behaviors of the Tc with the experiments suggests that the

SC pairing mechanism in the MA-TBG should be consistent
with that we proposed, i.e., exchanging the spin-valley DW
fluctuations.

V. RESULTS WITH WEAK INTERVALLEY EXCHANGE
INTERACTIONS (JH �= 0)

For the realistic material of the MA-TBG, theoretical
analysis suggests that there exists a very weak intervalley
Hund’s rule exchange interaction with strength JH ≈ 0.01U
[58,84,142] which has been neglected in Sec. IV. As in
the case of JH = 0, the SU(2)K × SU(2)K ′ symmetry brings
about the SDW-VDW degeneracy at the critical point and the
singlet-triplet degeneracy for SCs, it is necessary to add the
tiny symmetry-breaking JH term to lift up these degeneracies.
Further more, this symmetry also leads to the chiral SO(4)
spin-valley DW ground state which hosts three vectorial DW
order parameters, whose polarization directions need to be
pinned down by the tiny symmetry-breaking JH term. In this
section, we focus on the infinitesimal JH term, including
JH → 0− and JH → 0+, and investigate its influence on the
ground state of the MA-TBG. The two cases will be studied
separately in the following.

A. JH → 0−

For the case of JH → 0−, we set JH = −0.01U and redo
the RPA calculations. The results of our RPA calculations are
shown in Figs. 9(a) to 9(d). The doping dependence of the
critical interaction strength U (s,v)

c shown in Fig. 9(a) suggests
U (v)

c > U (s)
c , as is verified by the broadened U (v)

c − U (s)
c > 0

shown in Fig. 9(b). This result suggests that a negative JH

favors the SDW order. In such a case, we redo the energy op-
timization of the Hamiltonian Eq. (3) in the mixed spin-valley
DW state determined by Eq. (22), with the same variational
parameters. Our result reveals that the pure chiral SDW states
[49] obtained in Sec. IV B are the ground states. The physical
picture for the evolution from the chiral SO(4) spin-valley
DW in the case of JH = 0 to the chiral SO(3) SDW state in
the case of JH → 0− is simple: in the former case, due to
the SO(4) symmetry, the four axes for each spin-valley DW
vectorial order are equally favored, which leads to the free
rotation of that vectorial order in the R4 space; however, in
the latter case, the VDW-axis for each DW order parameter
is disfavored and the left three SDW-axes form the R3 easy
“plane,” within which the SDW vectorial orders can arbitrarily
rotate.

The chiral SDW state obtained here has similar properties
in many aspects with the same phase obtained previously in
other contexts [49,101–104]. The real-space configuration of
the chiral SDW state also has four sublattices. This ground
state hosts four branches of gapless Goldstone modes, includ-
ing three spin-wave modes brought about by the spin-SU(2)
symmetry breaking and one extra valley-wave modes caused
by the valley-U(1) symmetry breaking. At finite temperature,
the gapless Goldstone-mode fluctuations will also destroy the
long-range DW order, leaving short-ranged DW fluctuations
with long correlation length below some characteristic tem-
perature. Further more, the TRS breaking of this state can
survive finite temperature. The topological properties of this
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FIG. 9. Doping dependences of U (s)
c , U (v)

c [(a) and (e)] and their
difference [(b) and (f)] and of the largest eigenvalues λ for the
singlet-pairing, the triplet pairing [(c) and (g)] and their difference
[(d) and (h)] with JH = −0.01U for the left column and JH = 0.01U
for the right column. In the calculations for (c), (d), (g), and (h),
U = 1.1meV is adopted.

state can also be nontrivial with nonzero Chern number, as
long as an SDW gap opens at the Fermi level.

However, the close proximity of the chiral SDW state
obtained here for JH → 0− to the chiral SO(4) spin-valley
DW state for JH = 0 makes it different from those in other
contexts [49,101–104] in the aspect of the response to a weak
magnetic field. The condition JH → 0− and the applied weak
magnetic field studied in the Sec. IV C both have the effect
of pinning down the directions of the polarizations of the DW
orders. However, the effects brought about by them conflict:
while the former case disfavors the VDW, the latter favors it.
Considering that the JH in real materials is very weak, a weak
magnetic field (a few tesla) is enough to overcome its effects.
As a result, the weak applied magnetic field would drive
the isotropic chiral SDW state here into a nematic DW state
containing one nematic VDW order and two nematic SDW
orders. Such an effect can be easily checked by experiments.

The doping-dependence of the largest pairing eigenval-
ues for the singlet and triplet pairing symmetries is shown
in Fig. 9(c). Clearly the tiny SU(2)K × SU(2)K ′-symmetry-
breaking JH term leads to the split between the singlet and
triplet pairings. Concretely, near the VHS the triplet p-wave
pairing wins over the singlet d-wave one and becomes the
leading pairing symmetry, while far away from the VHS in

the over doped regime the singlet fx(x2−3y2 ) ∗ f ′
y(y2−3x2 )-wave

pairing beats the triplet fx(x2−3y2 )- wave pairing and serves as
the leading pairing symmetry. In the experiments reported in
Refs. [1,12], the SC is mainly detected near the VHS. There-
fore the experiment-relevant pairing symmetry in the case of
JH → 0− should be triplet p-wave pairing. As the p-wave
belongs to the 2D irreducible representation, the degenerate
px- and py-wave pairings would always be mixed into the
px ± ipy form to lower the ground-state energy, i.e., the p + ip
for abbreviation, as verified by our numerical results. This
state is topologically nontrivial. As the JH is very weak, the
two asymmetric behaviors of the doping-dependence of the
superconducting Tc shown in Fig. 9(c) are similar with the
case of JH = 0 shown in Fig. 6, which are consistent with
experiments.

B. JH → 0+

The RPA results for JH → 0+ are shown in Figs. 9(e)–9(h).
Figures 9(e) and 9(f) obviously show U (s)

c > U (v)
c , suggesting

that the VDW is more favored than the SDW here. However,
this does not mean that the ground state for general realistic
U > U (s)

c ≈ U (v)
c is in the pure VDW phase, due to the fol-

lowing reason. The tiny positive JH term as a perturbation
on the chiral SO(4) DW state, its only role is to set the
VDW axis as an easy axis for the three vectorial DW order
parameters Δα to orient in the R4 space. However, among
the three mutually perpendicular Δα (α = 1, 2, 3), at most
one lucky Δα is given the opportunity to orient toward the
VDW-axis, with the remaining two still residing in the R3

SDW “plane,” leading to a mixed VDW and SDW ordered
state. Such an argument is consistent with the following nu-
merical results for the succeeding MF-energy minimization.
Firstly, the three relative phase angles between the VDW and
SDW orders are θα ≈ π/2, keeping the approximate SO(4)
symmetry. Secondly, among the three DW order parameters
Δα , an arbitrarily chosen one, say Δ2, takes the form of
Δ2 ≈ (�, 0, 0, 0), while the remaining two, i.e., Δ1 and Δ3,
both take the form of (0,�1,�2,�3) with Δ1 ⊥ Δ3. This
result suggests that for JH → 0+, we obtain a spin-valley DW
ordered ground state with one scalar VDW order parameter
accompanied by another two mutually perpendicular vectorial
SDW order parameters, with the three DW order parameters
randomly distributed with the three symmetry-related wave
vectors Qα .

In Fig. 10, the real-space distributions of the intervalley
charge and spin densities defined in Eq. (23) are shown
for a typically chosen group of DW order parameters
for this phase, i.e., Δ1 = (0.020, 0.41, 0.32, 0.51),
Δ2 = (0.72, −0.0019, 0.08, 0.0), and Δ3 =
(−0.077, 0.13, 0.55, −0.44). As the VDW order in this DW
state nearly only takes one wave vector Q2 among the three
symmetry-related ones {Qα (α = 1, 2, 3)}, the intervalley
charge density shown in Fig. 10(a) exhibits a nematic stripy
structure, which spontaneously breaks the C3 rotational
symmetry of the original lattice. Note that the extension
direction of the charge stripe can be arbitrary among the
three symmetry-related directions. Such a nematic stripy
distribution of the intervalley charge density is related to the
recent STM experiments [5,6]. Note that the C3-symmetry
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(a) VDW

-0.34 0.0 0.34

(b) x-SDW

-0.19 0.0 0.19

(c) y-SDW

-0.32 0.0 0.32

(d) z-SDW

-0.32 0.0 0.32

FIG. 10. The real-space distributions of the scalar intervalley charge density (a) and the three components of the vectorial intervalley spin
density (b)–(d) for a typical groundstate configuration with Δ1 = (0.020, 0.41, 0.32, 0.51) meV, Δ2 = (0.72, −0.0019, 0.08, 0.0) meV, and
Δ3 = (−0.077, 0.13, 0.55, −0.44) meV in the nematic DW phase for JH = 0.01U . Note that the pattern in (a) nearly takes only one wave
vector, i.e., Q2, while those in (b-d) take both Q1 and Q3.

breaking here for the intervalley charge density can be
delivered to the intravalley one relevant to the STM based
on the Ginsberg-Landau theory, as it cannot be excluded that
the two orders are coupled. Here we have provided a simple
understanding toward these experimental observations based
on the spontaneous breaking of the C3 symmetry, which
suggests that the JH → 0+ is more realistic for the MA-TBG.
It is interesting that the ground state of the system is not a
pure nematic VDW, but it also comprises of two additional
nematic SDW orders with equal amplitudes, as shown in
Figs. 10(b)–10(d) for the three components of the intervalley
spin density. Here we propose that a spin-dependent STM
can detect such a nematic spin order, which coexists with the
already-detected nematic stripy charge order.

This spin-valley DW ground state hosts four branches of
gapless Goldstone modes, including three spin-wave modes
brought about by the spin-SU(2) symmetry breaking and one
extra valley-wave modes caused by the valley-U(1) symmetry
breaking. At finite temperature, the DW fluctuations will also
destroy the long-range DW order, leaving short-ranged DW
fluctuations with long correlation length below some charac-
teristic temperature. However, the VDW order parameter, the
TRS breaking, and the C3-symmetry breaking can survive the
finite temperature, as they are discrete symmetry breakings.
Besides, the topological properties of this state can also be
nontrivial if it is insulating. Therefore, at finite temperature for
JH → 0+, we obtain a nematic VDW state with TRS breaking,
which simultaneously hosts strong SDW fluctuations with
long spin-spin correlation length.

The doping-dependence of the largest pairing eigenvalues
for the singlet and triplet pairing symmetries are shown in
Fig. 9(g) for JH → 0+. Consequently, near the VHS the sin-
glet d-wave pairing wins over the triplet p-wave pairing and
becomes the leading pairing symmetry, while far away from
the VHS in the over doped regime the triplet fx(x2−3y2 )-wave
pairing beats the singlet fx(x2−3y2 ) ∗ f ′

y(y2−3x2 )-wave pairing
and serves as the leading pairing symmetry. The experiment-

relevant pairing symmetry near the VH dopings in this case
should be singlet d-wave pairing, which takes the form of
topological d + id pairing state. As the JH is very weak, the
two asymmetric behaviors of the doping dependence of the
superconducting Tc shown in Fig. 9(g) are also clear, which
are consistent with experiments.

VI. CONCLUSION AND DISCUSSION

In conclusion, by adopting realistic band structure and
interactions, we have performed a thorough investigation
on the electron instabilities of the MA-TBG driven by
FS nesting near the VH dopings. A particular attention is
paid to the approximate SU(2)K × SU(2)K ′ symmetry and
the threefold wave-vector degeneracy brought about by the
D3-rotational symmetry of the system. At the SU(2)K ×
SU(2)K ′-symmetric point with JH = 0, we obtain the chiral
SO(4) spin-valley DW state. This state is a generalization
of the 3Q chiral SDW state to the R4 VDW-SDW order-
parameter space, which is a novel state possessing a series
of exotic properties. The leading pairing symmetries are de-
generate singlet d + id and triplet p + ip. For JH → 0−, we
obtain the pure 3Q chiral SDW state, and triplet p + ip-wave
pairing. For JH → 0+, we obtain a nematic DW state with
mixed SDW and stripy VDW orders, and singlet d + id-wave
pairing. The stripy intervalley charge-density pattern in this
nematic state is consistent with recent STM experiments,
suggesting that JH → 0+ is more realistic for the MA-TBG.
These results are summarized in Fig. 1. Besides, the two
asymmetric doping-dependent behaviors of the pairing phase
diagram shown in Figs. 6 and 9 are well consistent with
experiments, suggesting the relevance of the exchanging-DW-
fluctuations pairing mechanism for the MA-TBG.

The px,y-orbital TB model on the honeycomb lattice
adopted here is criticized to be topologically problematic
[100,132] for the CNP. However, here we focus on the doped
case, particularly on the VHS, and therefore only the low-
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energy band structure near the FS will matter. For more
accurate band structure, we can adopt the continuum-theory
band structure directly [71], which is not only complicated
but also has the difficulty of how to properly put in the inter-
action terms. Alternatively, later than the present work, part
of the present authors have recently adopt the faithful TB
model [100] with five bands per valley per spin which can
properly deal with the band topology to study the problem.
Although the band structure of that model is much more com-
plicated than that of our present model, the results published
in Ref. [156] are qualitatively consistent with those obtained
in this work. The reason lies in that the physics discussed in
this paper only relies on the approximate SU(2)K × SU(2)K ′

symmetry, the valley-U(1) symmetry and the presence of
three-fold degenerate nesting vectors which originate from the
D3-rotational symmetry of the material. These symmetries do
not depend on the details of the band structures.

Note that the nesting vectors Qα in our model only locate
along the ΓMMM lines, but not exactly at the MM points. If we
adopt the accurate value of Qα (generally incommensurate)
to build our VDW or SDW order parameters, the unit cell
would be huge or even infinite, which brings great difficulty to
the calculations. Further more, the relation Qα �= −Qα might
bring further difficulty to the calculations. However, as the
main physics revealed here only relies on the threefold wave-
vector degeneracy brought about by the D3 symmetry of the
system, we argue that the accurate values of Qα should not
influence the main results.

The chiral character of the SO(4) DW state predicted in this
work is lack of experiment evidence presently. The reason for
this might lie as follow. This state is formed as a consequence
of the competition among the three degenerate wave vectors
caused by the three-fold rotation symmetry of the system.
In realistic system, there might be such factors as the strain
which will break the exact three-fold rotation symmetry. As
a result, only one of the three wave vectors might win and
be realized, which breaks the chiral DW state. Therefore the
state obtained in our work needs ideal experimental condition
to be realized, which might be realized in the future. It is also
possible that the weak-coupling start point, as well as the con-
crete formula of the multiorbital Hubbard interactions adopted
here does not apply to the real material of magic-angle twisted
bilayer graphene system. However, the physics revealed here
might apply to other systems with similar degrees of freedom.
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APPENDIX A: TIGHT-BINDING HAMILTONIAN HTB

This Appendix provides some details for the TB Hamil-
tonian HTB in Eq. (1), including its connection with the
Slater-Koster formalism and the U(1)-valley symmetry. In ad-
dition, how to transform it from the px,y-orbital representation
to the valley representation is shown.

The proposed simplest TB model for the MA-TBG
possesses two orbitals of px and py on each lattice site
[36,46,49,98], holding the form

Ĥ0 =
∑

jμ, j′μ′σ

t jμ, j′μ′ ĉ†
jμσ ĉ j′μ′σ − μc

∑
jμσ

ĉ†
jμσ ĉ jμσ , (A1)

where ĉ jμσ is the annihilation operator of the electron with the
μth (μ = x, y represents px or py) orbital and spin σ on the
jth site. μc is the chemical potential, and t jμ, j′μ′ is the hopping
integral between the μ and μ′ orbitals on the jth and j′th sites,
respectively.

In the case with D6 symmetry, the hopping integral can be
constructed [49] via the Slater-Koster formalism [157] based
on the coexisting σ and π bondings [136–140], namely,

t jμ, j′μ′ = t j j′
σ cos θμ, j j′ cos θμ′, j j′ + t j j′

π sin θμ, j j′ sin θμ′, j j′ ,

(A2)
with θμ, j j′ denotes the angle from the direction of μ to that of

r j′ − r j . The Slater-Koster parameters of t j j′
σ and t j j′

π represent
the parts of the hopping integrals caused by σ and π bonds
between the jth and j′th sites, respectively.

To reflect the U(1)-valley symmetry, the above Slater-
Koster Hamiltonian Eq. (A1) can be transformed into the
valley representation via ĉ j±σ = (ĉ jxσ ± iĉ jyσ )/

√
2 with ±

representing the K and K ′ valley. As required by the U(1)-
valley symmetry, the intervalley hopping terms should vanish,
which leads to,

2t j j′
σ cos θx, j j′ cos θy, j j′ + 2t j j′

π sin θx, j j′ sin θy, j j′ = 0,

(A3a)

t j j′
σ (cos2 θx, j j′− cos2 θy, j j′ ) + t j j′

π (sin2 θx, j j′− sin2 θy, j j′ ) = 0.

(A3b)

Since θy, j j′ = θx, j j′ − π
2 , we get

t j j′
σ = t j j′

π ≡ t j j′ . (A4)

Substituting Eq. (A4) into Eq. (A2), we have

t jμ, j′μ′ = t j j′δμμ′ . (A5)
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Up to the third-neighbor hoppings, the Hamiltonian Eq. (A1)
turns into [46,99],

Ĥ0 =
3∑

α=1

∑
〈 j j′〉αvσ

tα (ĉ†
jvσ ĉ j′vσ + H.c.) − μc

∑
jvσ

ĉ†
jvσ ĉ jvσ ,

(A6)

where v = ± and 〈 j j′〉α denotes the αth neighboring bond
with the hopping strength of tα . This Hamiltonian has the
valley-SU(2) symmetry.

For the real material of the MA-TBG, the point-group is D3

instead of D6. The breaking of D6 down to D3 brings about the
Kane-Mele type of valley-orbital coupling, i.e.,

Ĥ1 =
3∑

α=1

∑
〈 j j′〉ασ

t ′
α[(ĉ†

jσ × ĉ j′σ )z + H.c.]

= −i
3∑

α=1

∑
〈 j j′〉ασ

t ′
α (ĉ†

j+σ ĉ j′+σ − ĉ†
j−σ ĉ j′−σ ) + H.c.,

(A7)

where ĉ jσ = (ĉ jxσ , ĉ jyσ )T and t ′
α describes the αth neighbor-

ing coupling strength.
Combining Ĥ0 and Ĥ1, we arrive at the TB Hamiltonian

expressed in the Eq. (1) of the main text, which satisfies the
U(1)-valley symmetry [46,99].

APPENDIX B: MORE INFORMATION ON
RPA APPROACH

In this Appendix, we provide the detailed informations on
the RPA approach, including the explicit form of the nonin-
teraction susceptibility χ (0), the interaction matrices Ũ (s) and
Ũ (c), and the effective pairing interaction vertex V αβ (k, k′).

The form of χ (0) is given by

χ
(0)l1l2
l3l4

(q, iω) = 1

N

∑
k,αβ

nF
(
ε̃

β

k+q

) − nF
(
ε̃α

k

)
ε̃α

k − ε̃
β

k+q + iω

× ξα∗
l1 (k)ξβ

l2
(k+q)ξβ∗

l4
(k + q)ξα

l3 (k), (B1)

where nF (ε̃α
k ) is the Fermi-Dirac distribution. α and β repre-

sent the combined index (mv) in Eq. (1). ε̃α
k and ξα (k) are

the energy level and corresponding eigenstate at the wave
vector k for the αth band, both of which are determined by
Eq. (1). In the RPA level, the renormalized spin and charge
susceptibilities have been given in Eqs. (6a) and (6b), in
which

Ũ (s) = U (s) − 2S, (B2a)

Ũ (c) = U (c) + 2S. (B2b)

Labelling orbitals {pA
+, pA

−, pB
+, pB

−, } as {1, 2, 3, 4}, the ex-
plicit forms of U (s), U (c), and S are given as follow. Firstly,
the nonzero elements of U (s)l1l2

l3l4
are

U (s)11
11 = U (s)22

22 = U (s)33
33 = U (s)44

44 = U, (B3a)

U (s)11
22 = U (s)22

11 = U (s)33
44 = U (s)44

33 = −2JH , (B3b)

U (s)12
12 = U (s)21

21 = U (s)34
34 = U (s)43

43 = U . (B3c)

(a)

l 3

k

-k

k'(U)

(b) (c)

l 4

l 1

l 2

-k'

l 3l 3

l 4l 4

l 2

l 2

l 1

l 1

(U)

(U)

(U)

(U)

kk

-k-k

k'

k'

-k'

-k'

k1k1 k2k2

k3 k3k4k4

FIG. 11. Three processes that have contributions to the renor-
malized effective vertex in the RPA: (a) bare interaction vertex and
[(b) and (c)] two second-order perturbative processes during which
spin or charge fluctuations are exchanged between a cooper pair.

Secondly, the nonzero elements of U (c)l1l2
l3l4

are

U (c)11
11 = U (c)22

22 = U (c)33
33 = U (c)44

44 = U

+W2[cos q1 + cos q2 + cos(q1 − q2)], (B4a)

U (c)11
22 = U (c)22

11 = U (c)33
44 = U (c)44

33 = 2U + 2JH

+ 4W2[cos q1 + cos q2 + cos(q1 − q2)], (B4b)

U (c)12
12 = U (c)21

21 = U (c)34
34 = U (c)43

43 = −4JH − U, (B4c)

U (c)11
33 = U (c)11

44 = U (c)22
33 = U (c)22

44 = 2W1(1 + eiq1 + eiq2 )

+ 2W3[2 cos(q1 − q2) + ei(q1+q2 )], (B4d)

U (c)33
11 = U (c)44

11 = U (c)33
22 = U (c)44

22 = 2W1(1 + e−iq1 + e−iq2 )

+ 2W3[2 cos(q1 − q2) + e−i(q1+q2 )]. (B4e)

Finally, the nonzero elements of Sl1l2
l3l4

read

S11
33 = S12

43 = S21
34 = S22

44 = −J

2
(1 + eiq1 + eiq2 ), (B5a)

S33
11 = S43

12 = S34
21 = S44

22 = −J

2
(1 + e−iq1 + e−iq2 ). (B5b)

In the expressions of U (c) and S, q1,2 ≡ q · a1,2, where a1,2

are the two unit vectors of the Moiré lattice.
In the RPA level, the Cooper pair with momentum and

orbital of (kl3,−kl4) could be scattered into (k′l1,−k′l2) by
exchanging charge or spin fluctuations, see Fig. 11 which is
up to the second-order perturbation. These processes induce
the following effective interaction:

Veff = 1

N

∑
αβ,kk′

V αβ (k, k′)ĉ†
αkĉ†

ᾱk̄
ĉ
β̄k̄

′ ĉβk′ , (B6)

where ᾱ and β̄ denote the opposite-valley bands of the αth
and βth ones, respectively, and k̄ = k. The effective pairing
interaction vertex V αβ (k, k′) has the form

V αβ (k, k′)

=
∑

l1l2l3l4

�
l1l2
l3l4

(k, k′, 0)ξα,∗
l1

(k)ξ ᾱ,∗
l2

(−k)ξ β̄

l4
(−k′)ξβ

l3
(k′).

(B7)

The three processes that have contributions to �
l1l2
l4l3

(k, k′) are
presented in Fig. 11 where (a) denotes the bare interaction ver-
tex, and (b) and (c) represent two second-order perturbation
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processes. During them the spin or charge fluctuations are ex-
changed within a cooper pair. The effective vertex �

l1l2
l3l4

(k, k′)
is

�
(s)l1l2
l3l4

(k, k′)

=
(

Ũ (c)(k − k′) + Ũ (s)

4

)l1l3

l2l4

+
(

Ũ (c)(k + k′) + Ũ (s)

4

)l1l4

l2l3

+ 1

4
[3Ũ (s)χ (s)(k − k′)Ũ (s) − Ũ (c)χ (c)(k − k′)Ũ (c)]l1l3

l2l4

+ 1

4
[3Ũ (s)χ (s)(k + k′)Ũ (s) − Ũ (c)χ (c)(k + k′)Ũ (c)]l1l4

l2l3
,

(B8)

for the singlet channel and is

�
(t )l1l2
l3l4

(k, k′)

=
(

Ũ (c)(k − k′) + Ũ (s)

4

)l1l3

l2l4

−
(

Ũ (c)(k + k′) + Ũ (s)

4

)l1l4

l2l3

+ 1

4
[Ũ (s)χ (s)(k − k′)Ũ (s) + Ũ (c)χ (c)(k − k′)Ũ (c)]l1l3

l2l4

+ 1

4
[Ũ (s)χ (s)(k + k′)Ũ (s) + Ũ (c)χ (c)(k + k′)Ũ (c)]l1l4

l2l3
,

(B9)

for the triplet channel.
Note that the vertex �

l1l2
l3l4

(k, k′) has been symmetrized and
antisymmetrized for the singlet and triplet cases, respectively.
The vertex �

l1l2
l3l4

(k, k′) gives the effective paring interaction
vertex V αβ (k, k′).

APPENDIX C: THE G-L THEORY FOR THE CHIRAL
SO(4) DW

1. Mixing between VDW and SDW and SO(4) DW

In the main text, we prove the degeneracy between the
VDW and the SDW. Due to this degeneracy, the two DW order
parameters will generally be mixed to lower the energy. Below
we study how they would be mixed. The MF Hamiltonian
involving both orders should be

ĤMF−DW = ĤTB +
∑

ι1ι2kσσ ′
(�(v)δσσ ′ + eiθ�(s) · σσσ ′ )

× c†
ι1Kkσ

ξι1Kι2K′ (Q)ĉι2K′k−Qσ ′ + H.c., (C1)

where θ is the mixing angle. We shall show below via com-
bined Ginzburg-Landau (G-L) theory and the microscopic
calculations that the mixing angle θ = π/2, under which
the SU(2)K × SU(2)K ′ symmetry would be embodied as the
SO(4) symmetry for the DW order parameters.

Firstly, due to the global spin-SU(2) symmetry, we can
only consider the case in which the spin polarization direction

is along the z axis, under which we have

�(s) · σσσ ′ → �(s)σ z
σσ ′ . (C2)

Secondly, the global valley U(1) symmetry of the system
requires that when the MF Hamiltonian on the above is oper-
ated by the valley U(1) transformation,

c†
ιvkσ

→ eivαc†
ιvkσ

, (C3)

the G-L free energy would be unchanged. Under this transfor-
mation, we get effectively that

ξι1Kι2K′ → ei2αξι1Kι2K′ . (C4)

Note that we can combine the phase factor ei2α into the defini-
tion of �(v) and �(s) to change the two DW order parameters
as complex numbers. Therefore the G-L free energy of the
system can be defined as

F (�̃(v), �̃(s) ) ≡ F (ei2α�(v), ei2α�(s) ). (C5)

The valley U(1) symmetry guarantees that this G-L free
energy should be invariant under �̃(v/s) → eiα�̃(v/s), which
suggests that �̃(s/v) should come in pair with �̃(s/v)∗, i.e.,

F (�̃(v), �̃(s) ) = F (|�̃(v)|2, �̃(v)∗�̃(s), �̃(v)�̃(s)∗, |�̃(s)|2).
(C6)

Thirdly, under the SU(2)K × SU(2)K ′ symmetry, let’s per-
form the spin-SU(2) transformation only in the valley K ,

c†
ι1Kkσ

→ eiασ c†
ι1Kkσ

, (C7)

and not in the valley K ′, we have(
�̃(v)

�̃(s)

)
→

(
cos α, i sin α

i sin α, cos α

)(
�̃(v)

�̃(s)

)
≡ R(α)

(
�̃(v)

�̃(s)

)
. (C8)

The G-L free energy F should be invariant under this trans-
formation. From Eq. (C6), only such combination as �̃†( f )�̃

can emerge in F , where �̃ = (�̃
(v)

�̃(s) ), and ( f ) are 2 × 2 complex
matrix. Then from the invariance of F under Eq. (C8), we have

[R(α), ( f )] = 0. (C9)

Note that R(α) = cos αI + i sin ασx, we have ( f ) = f1I +
f2σx. Therefore we have

F (�̃(v), �̃(s) ) = F (|�̃(v)|2 + |�̃(s)|2, �̃(v)∗�̃(s) + �̃(v)�̃(s)∗).
(C10)

Fourthly, if we perform the global SU(2) rotation: rotate
about the spin-x axis by the angle π , under which(

�̃(v)

�̃(s)

)
→

(
�̃(v)

−�̃(s)

)
, (C11)

the free energy function F should be invariant. Therefore the
(�̃(v)∗�̃(s) + �̃(v)�̃(s)∗) term in Eq. (C10) should only appear
in even powers.

From the above analysis, the G-L free energy function F
should take the following form up to the fourth order of �,

F (�̃(v), �̃(s) )

= −a(|�̃(v)|2 + |�̃(s)|2) + b(|�̃(v)|2 + |�̃(s)|2)2

+γ [�̃(v)∗�̃(s) + �̃(v)�̃(s)∗]2 + O(�̃6), (C12)

where a, b, γ are real numbers. In the case of γ > 0, the
minimization of F requires �̃(v)∗�̃(s) + �̃(v)�̃(s)∗ = 0, which
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dictates that the phase angle of �̃(v) should be different from
that of �̃(s) by π/2. In the case of γ < 0, they should have
the same phase angle or be different by a negative sign. Our
microscopic calculations always suggest that the former case
is realized for the parameters of realistic material. Therefore
our combined G-L theory and microscopic calculations sug-
gest that the MF Hamiltonian for the DW ordered state should
take the form of

ĤMF-DW = ĤTB +
∑

ι1ι2kσσ ′
(�(v)δσσ ′ + i�(s) · σσσ ′ )

× c†
ι1Kkσ

ξι1Kι2K′ (Q)ĉι2K′k−Qσ ′ + H.c. (C13)

Below we prove that the SU(2)K × SU(2)K ′ symme-
try acted on the ĉ operator of the system is equivalent
to the SO(4) symmetry in the 4D DW order-parameter
space when the DW MF Hamiltonian takes the above
form Eq. (C13). Note that �(v)δσσ ′ + i�(s) · σσσ ′ = (�(v)I +
i�(s)σ )σσ ′ ≡ |Δ|Mσσ ′ , where

|Δ| =
√

�(v)2 + �
(s)
x

2 + �
(s)
y

2 + �
(s)
z

2
, (C14)

M = 1

|Δ|
(

�(v) + i�(s)
z , i�(s)

x + �(s)
y

i�(s)
x − �(s)

y , �(v) − i�(s)
z

)
. (C15)

It is important that M is an SU(2) matrix because

M†M = I, Det(M) = 1. (C16)

Mathematically, it is known that any SU(2) matrix can always
be parametrized in the form of Eq. (C15).

On the one hand, let’s perform any U ∈ SU(2) on the spin
of the ĉι1+,kσ operator (K valley) and V ∈ SU(2) on that of the
ĉι2−,k−Qσ ′ operator (K ′ valley), resulting in |Δ|M → |Δ|M ′

with

M ′ = U †MV. (C17)

Since U,V ∈ SU(2), from Eq. (C16), we can obtain

M ′†M ′ = I, Det(M ′) = 1. (C18)

Equation (C18) suggests that M ′ is also an SU(2) matrix,
which can also be parametrized in the form of Eq. (C15) with
only �(v) → �(c)′ and �(s) → �(s)′. This leads to an SO(4)
rotation on the four-component DW order parameter Δ ≡
(�(v),�(s) ). Therefore we have proved that any SU(2)K ×
SU(2)K ′ operation acted on the ĉ operators will lead to an
SO(4) rotation on the four-component DW order parameter
Δ.

On the other hand, suppose that the four-component DW
order parameter (�(v),�(s) ) in Eq. (C13) is operated by an
SO(4) rotation with M → M ′, we can always choose

U † = M−1

V = M ′

}
⇒ M ′ = U †MV. (C19)

This means that any SO(4) rotation on the four-component
spin-valley DW order parameter Δ can be realized by
the physical SU(2)K × SU(2)K ′ operation acted on the ĉ
operators.

Combining the above two hands, we arrive at our proof.

2. Mixing between degenerate wave vectors

On the above section, we studied how the SDW and VDW
are mixed in the presence of only one wave vector. As a
result, they are found to be mixed as 1i, leading to the SO(4)
spin-valley DW. In this section, we shall study how the SO(4)
DWs with three degenerate wave vectors are mixed via the
G-L theory.

In the presence of three degenerate DW orders, the MF
Hamiltonian reads

ĤMF−DW = ĤTB +
3∑

α=1

∑
l1l2kσσ ′

(
�(v)

α δσσ ′ + i�(s)
α · σσσ ′

)

× c†
l1kσ

ξl1l2 (Qα )ĉl2k−Qασ ′ + H.c.

= ĤTB +
3∑

α=1

∑
l1l2kσσ ′

[
(Δα · Σ)σσ ′

× ĉ†
l1kσ

ξl1l2 (Qα )ĉl2k−Qασ ′ + H.c.
]
, (C20)

where the four-component vector Δα ≡ (�(v)
α ,�(s)

α ) =
(�(v)

α ,�(s)
α,x,�

(s)
α,y,�

(s)
α,z ) ∈ R4 and Σ = (σ (0), iσ) with σ (0) to

be the 2 × 2 identity matrix.
The G-L free energy F as a function of the three four-

component vectors Δα can be expanded up to the quartic order
of the Taylor’s series as

F = F (Δ1,Δ2,Δ3) = F2 + F4, (C21)

where F2 and F4 are quadratic and quartic order terms, respec-
tively.

Firstly, due to the SO(4) symmetry of the system, the F2

and F4 can only contain such terms as |Δα|2 and Δα · Δβ . As
a result, we have

F2 = α|Δ1|2 + β|Δ2|2 + γ |Δ3|2
+θΔ1 · Δ2 + δΔ1 · Δ3 + ξΔ2 · Δ3. (C22)

From the D3 rotation symmetry of the system, we know that

α = β = γ , θ = δ = ξ . (C23)

Let’s then investigate the consequence of the unit-cell
translation symmetry of the system. Setting the unit vector of
the original honeycomb lattice as a1, a2, and the correspond-
ing unit vector in the reciprocal lattice as b1, b2, we have
Q1 = b1

2 , Q2 = b2
2 , and Q3 = b1+b2

2 . Let’s translate the system
by the unit vector ai (i = 1, 2), under which we have

c†
l1kσ

→ e−ik·ai c†
l1kσ

,

cl2k−Qασ ′ ei(k−Qα )·ai cl2k−Qασ ′ . (C24)

Then Eq. (C20) suggests that under the unit vector ai transla-
tion, we effectively have

Δα → e−iQα ·aiΔα. (C25)

For the case i = 1, we have
Δ1 → −Δ1,

Δ2 → Δ2,

Δ3 → −Δ3. (C26)

Then the a1 translational invariance of F2 in Eq. (C22) dictates

θ = ξ = 0. (C27)
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Similarly, the a2 translational invariance of F2 dictates

θ = δ = 0. (C28)

Therefore up to the quadratic order term of {Δα}, we have

F2 = α(|Δ1|2 + |Δ2|2 + |Δ3|2). (C29)

Through similar analysis on symmetry as the above, we
can obtain the following symmetry-allowed form of F4,

F4 = a(|Δ1|4 + |Δ2|4 + |Δ3|4)

+ b(|Δ1|2|Δ2|2 + |Δ1|2|Δ3|2 + |Δ2|2|Δ3|2)

+ c[(Δ1 · Δ2)2 + (Δ1 · Δ3)2 + (Δ2 · Δ3)2]. (C30)

From combined Eqs. (C29) and (C30), we have

F = F2 + F4

= α(|Δ1|2 + |Δ2|2 + |Δ3|2)

+ a(|Δ1|4 + |Δ2|4 + |Δ3|4)

+ b(|Δ1|2|Δ2|2 + |Δ1|2|Δ3|2 + |Δ2|2|Δ3|2)

+ c[(Δ1 · Δ2)2 + (Δ1 · Δ3)2 + (Δ2 · Δ3)2]

+ O(Δ6). (C31)

In the following, we shall solve the configurations of
{Δα} which minimize the free energy function F provided by
Eq. (C31).

Firstly, we study the relative orientations among the three
DW order parameters Δα (α = 1, 2, 3). This problem is sim-
ply determined by the sign of c in Eq. (C31). The answer is as
following:

c > 0 ⇒ �1 ⊥ �2 ⊥ �3,

c < 0 ⇒ �1 ‖ �2 ‖ �3. (C32)

Then, we study the relative amplitudes among Δα (α =
1, 2, 3). Let their amplitudes be �α (α = 1, 2, 3). Eq. (C32)
yields that in both cases of c > 0 and c < 0, we have

F = F2 + F4

= α
(
�2

1 + �2
2 + �2

3

) + a
(
�4

1 + �4
2 + �4

3

)
+ b̃

(
�2

1�
2
2 + �2

1�
2
3 + �2

2�
2
3

) + O(�6), (C33)

where

b̃ =
{

b, c > 0
b + c, c < 0 . (C34)

In the long-ranged DW ordered state, we should have

α < 0, a > 0. (C35)

To solve the minimum of the free-energy function F pro-
vided by Eq. (C33), we deform it as

F = F2 + F4

= α
(
�2

1 + �2
2 + �2

3

) + a
(
�2

1 + �2
2 + �2

3

)2

+ (b̃ − 2a)
(
�2

1�
2
2 + �2

1�
2
3 + �2

2�
2
3

) + O(�6).

(C36)

Clearly, the solution for the minimization of F function on
the above is determined by the sign of b̃ − 2a. The result is as

following:

b̃ > 2a ⇒ �1 �= 0, or,�2 �= 0, or,�3 �= 0,

b̃ < 2a ⇒ �1 = �2 = �3. (C37)

Note that on the above Eq. (C37), in the first case b̃ > 2a,
only one of �α (α = 1, 2, 3) can be nonzero. Such a state is the
nematic state, which only hosts one wave vector. In the second
case, the amplitudes of the three DW orders are equal, which
can either be the chiral SO(4) DW in which the orientations
of the three DW order parameters are perpendicular to one
another or be the collinear SO(4) DW state in which the
orientations of the three DW order parameters are parallel to
one another, which is determined by Eq. (C32).

Summarizing the above derivations, we get the following
possible solutions for the minimization of the free energy
function F defined in Eq. (C31):

c < 0,

{
b < 2a − c ⇒ collinear-DW
b > 2a − c ⇒ nematic-DW ,

c > 0,

{
b < 2a ⇒ chiral-DW
b > 2a ⇒ nematic-DW . (C38)

Therefore only three possible solutions exist, i.e., the collinear
SO(4) spin-valley DW state, the chiral SO(4) spin-valley
DW state and the nematic SO(4) spin-valley DW state. In
the collinear state, the three DW order parameters Δ1 =
Δ2 = Δ3. In the chiral state, they satisfy Δ1 ⊥ Δ2 ⊥ Δ3 and
|Δ1| = |Δ2| = |Δ3|. In the nematic state, only one of the three
Δα (α = 1, 2, 3) exists, and the other two vanish. In realistic
system, which state would be the ground state cannot be know
only from the G-L theory. Instead, the microscopic calcula-
tions are needed.

3. The case of pure SDW or VDW

In some case in our study, we only consider the pure SDW
or VDW order parameters, particularly in the case when we
try to compare the energies of a pure SDW state and a pure
VDW state.

In the case when we consider the pure SDW state, the
SDW-MF Hamiltonian reads

ĤMF−SDW = ĤTB +
3∑

α=1

∑
l1l2kσσ ′

(
�(s)

α · σ
)
σσ ′

× c†
l1kσ

ξl1l2 (Qα )ĉl2k−Qασ ′ + H.c. (C39)

Here �(s)
α denotes the three-component SDW order parame-

ters, which are abbreviated as �α below. The G-L free energy
should be

F = F (�1,�2,�3) = F2 + F4. (C40)

Adopting the symmetry-based analysis parallel to that per-
formed on the above section, we can obtain

F = F2 + F4

= α(|�1|2 + |�2|2 + |�3|2) + a(|�1|4 + |�2|4 + |�3|4)

+ b(|�1|2|�2|2 + |�1|2|�3|2 + |�2|2|�3|2)

+ c[(�1 · �2)2 + (�1 · �3)2 + (�2 · �3)2]

+ O(�6). (C41)
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The solution for the minimum of Eq. (C41) yields

c < 0,

{
b < 2a − c ⇒ collinear-SDW
b > 2a − c ⇒ nematic-SDW ,

c > 0,

{
b < 2a ⇒ chiral-SDW
b > 2a ⇒ nematic-SDW . (C42)

Therefore there are also three possible SDW solutions, i.e., the
collinear-SDW state, the chiral-SDW state and the nematic-
SDW state. In realistic system, the microscopic calculations
are needed to determine which state should be the ground
state.

In the case when we consider the pure VDW state, the
VDW-MF Hamiltonian reads

ĤMF-VDW = ĤTB +
3∑

α=1

∑
l1l2kσ

�(v)
α c†

l1kσ
ξl1l2

× (Qα )ĉl2k−Qασ + H.c. (C43)

Here �(v)
α denotes the VDW order parameters, which are

abbreviated as �α below. Adopting similar symmetry-based

analysis parallel to the above, we can obtain

F = F2 + F4

= α
(
�2

1 + �2
2 + �2

3

) + a
(
�4

1 + �4
2 + �4

3

)
+ b

(
�2

1�
2
2 + �2

1�
2
3 + �2

2�
2
3

) + O(�6). (C44)

The solution for the minimum of Eq. (C44) yields

b < 2a ⇒ isotropic-VDW,

b > 2a ⇒ nematic-VDW. (C45)

Therefore there are two possible VDW solutions, i.e., the
isotropic-VDW state and the nematic-VDW state. While the
former contains three VDW components with equal ampli-
tudes for the three wave vectors, the latter only contains one
for one arbitrarily chosen wave vector. In realistic system, the
microscopic calculations are needed to determine which state
should be the ground state.
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