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Tuning of quantum entanglement in a superconductor with transition-metal and rare-earth
impurities: Effect of potential scattering on quantum phase transitions

N. Ebrahimian®,"-* M. Khosrojerdi 2T and R. Afzali®2-#
' Department of Physics, Faculty of Basic Sciences, Shahed University, Tehran 3319118651, Iran
2Department of Physics, K. N. Toosi University of Technology, Tehran 15875-4416, Iran

® (Received 25 June 2021; revised 26 May 2022; accepted 7 July 2022; published 20 July 2022)

Bipartite quantum entanglement of electron spins of a Cooper pair in a dirty s-wave superconductor is
investigated at absolute zero temperature in terms of the exchange interaction and potential scattering as well
as the relative distance between the two electrons. In the case of transition-metal impurities, we utilize the
T-matrix approach to obtain the relevant Green’s functions. We employ the two-electron spin-space density
matrix, which is associated with the perturbed Green’s functions. We show that a two-spin state can be described
by the Werner state for dirty superconductors as well as for clean ones. We find that both the first and second
quantum phase transitions (QPTs) are generated by the competition between potential scattering and other
interactions. Meanwhile, it is not possible to determine the allowable value for each interaction individually.
In the case of rare-earth impurities, concurrence, as a measure of bipartite entanglement, is discussed in terms
of the relative distance and collision times for all finite and infinite Debye frequencies. The results confirm that
quantum correlation and QPTSs can be tuned by impurities.
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I. INTRODUCTION

Quantum entanglement of electron spins was investigated
in a number of many-body systems [1-15]. In the case of s-
and d-wave superconductors, bipartite entanglement of two
electron spins and tripartite entanglement were overlooked
using space-spin density matrix approach. Quantum phase
transition (QPT) is defined by the abrupt change in the ground
state caused by quantum fluctuations, and entanglement is
an appropriate tool for finding QPTs in many-body systems
[4,16]. Meanwhile, there is no one-to-one correspondence
between QPT and the appearance of the critical point of con-
currence, except under certain conditions [16—19], as in our
case.

The physical properties of BCS s-wave superconductors
with impurities including transition and rare-earth metals
are described by the Shiba-Rusinov (SR) model and the
Abrikosov-Gorkov (AG) theory [20—40]. According to the SR
model, the scattering of classical impurity spins as well as a
localized excited state in the energy gap, A(X), are taken into
account [25-27]. There are some studies for dirty s-wave su-
perconductors based on the SR model, which were addressed
QPTs without quantum information considerations [41-43].
For instance, QPTs were investigated in terms of interimpurity
distance, exchange interaction, J, and pair interaction [41,42].
Also, QPT and the hybridization of two bound states in the
energy spectrum are modulated by the angle of magnetization
[43].
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Let us express how our study differs from previous ones.
Previously, QPT was achieved without considering potential
scattering in the SR model; but in the present study, this
scattering plays a significant role. Here, if only exchange
interaction or only potential scattering is taken into account,
QPT does not occur. Compared to previous studies of QPT,
we find different types of QPT from a quantum information
point of view. Furthermore, von Neumann entropy was used
to study single-site entanglement [39], while we rely on bi-
partite entanglement of two electron spins in a Cooper pair
and the correlations associated to the distance between these
electrons.

The plan of our paper is as follows. In Sec. I A, we discuss
the case of transition-metal impurities, whereas in Sec. II B we
address the case of rare-earth impurities. Section Il is devoted
to conclusions and an outlook.

II. MODEL AND METHOD

Basically, the entanglement arises from particles’ statis-
tics or the external/internal interactions [9]. We deal with a
BCS s-wave superconductor as an interacting system. Mean-
field approximation is a fundamental concept in BCS theory
[8,9,15]. This approximation for obtaining the value of bi-
partite entanglement is accurate whenever the fluctuations
associated to all interactions are small, as in our case. Further-
more, we assume that the energy gap is space independent and
its average value can be used (A(X) >~ A). This assumption is
established by Anderson’s theorem for nonmagnetic impurity
cases [19-23]. Also, for the transition-metal case, local vari-
ations of A(X) rapidly fade away from an impurity center at
low-enough impurity concentrations [25-27]. In addition, this
situation is satisfied for the rare-earth metal case because of
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the existence of a long-range coherence length [44,45]. The
impurity part of the Hamiltonian is given by (throughout the
paper, weuse i = kg = 1)

Hip = 3 [ @0, 0S.0,505(5)
ap
+ / Iy YLEWV EYu(®), (1

where S is the spin operator of the impurity, o denotes the
Pauli matrices, ¥ and ¥’ are fermionic field creation and
annihilation operators, respectively, and o and 8 denote spin
indices. J(X) is associated with the magnetic impurities and
V (X) refers to potential scattering, which is due to nonmag-
netic impurities. The range of J(X) is determined by the
quantum mechanical structure of the electron cloud associated
with the localized spin. Undoubtedly, J(X) has different values
for different kinds of impurities and hosts [46—48]. It should
be mentioned that we assume that J(X) has a constant value in
momentum space. In the meantime, it is supposed that there
is no correlation between different impurities.

The relation between the two-electron space-spin density
matrix and the two-particle Green’s function is described by

[8]
p2(R1, %, X1, %) = (—1/2)GGty, Koty X117, %51, (2)

where ¢ denotes an infinitesimal time after 7. By rewriting
the two-particle Green’s function in terms of the fermionic
single-particle Green’s functions, we have

Psys5235),5) (X1, X2, J_C”l s )?’2)
= (=1/2)(Gy,  Gait1, X 1])G, 5, (Rata, X515 )

— G5, (111, X9t Gy, 5 (o, X111)), 3)

where s1, 52, 57, and s, are particles’ spin indices. It merits
mentioning that in the absence of impurity, the anomalous
Green’s function can be neglected compared to the single-
particle Green’s function [8]. Also, the modification due to the
impurity on the anomalous Green’s function is negligible. The
normalized reduced space-spin density matrix in the presence
of the impurity is written as

- I N
b= =(1—A>Z+A|w< Ny, “)

Trlp]

where I is a 4 x4 unit matrix and |[¢ ) = (1)) —
|41))/+/2 is the singlet state. By considering £} = X, 5=
X, and ¥ = X] - X, parameter A is obtained as [9]

A =G(r)G(—r)/(2 — G(NG(=r)), &)

where G(r) is specified by Gj, ¢ (%111, ¥yt]") = 8,4, G(r). Up
to the first-order approximation, A is given by

48 (nd(r) + q(n)]

A~ AO :
GO2(0)[2 — g©2(r))?

(6)

where A© is the nonimpurity part of A, and
g% (r) = GO(r)/GO0),
d(r) = Im[G"(0)] x Im[GV(0)],
q(r) = =2Im[GV (NG (r), ™

where G@(r) and GW(r) are the unperturbed Green’s
function and first-order perturbed Green’s function due to
the presence of impurities, respectively. The relation be-
tween concurrence and density matrix is given by C =
max[0, (3A — 1)/2] [3,14]. According to Hill and Wootters
[11,12], concurrence is established by operating the spin flip.
Originally, concurrence was introduced for the mixed states
of a two-qubit system as a scalar function to describe bipartite
density matrices. Concurrence is a computationally manage-
able measure of entanglement [49].

Due to the nature of the system under investigation, we
use a trick to convert the methodology used for calculating
concurrence in noninteracting systems to interacting systems
such as superconductors. This trick was used for both s- and
d-wave superconductors in the absence of impurities and the
only change was the use of new Green’s functions [9]. Now,
impurities in superconductors cause an additional interaction,
which leads to new Green’s functions. Thereby, the formula-
tion of concurrence for noninteracting Green’s functions can
be survived. Now we proceed to obtain Green’s functions and,
subsequently, concurrence.

A. The transition-metal impurity case

The Green’s function averaged over the positions
and the spin directions of the impurities is described
by Refs. [25-28,50] G,; = (a; + axp207 + azp3), where
ap(=1,2,3) = En/((bz — AZ — ~I%)’ [71 = &), l;z = A, and [)3 =
&;. Here, @, A,and & are renormalized frequency, renor-
malized energy gap, and renormalized kinetic energy with
respect to chemical potential, respectively. Additionally, b,
is given by b, = b, + (T, X £,(j, v, U(w/A, j, v))) where
I, = pt,(j, v)/16y j>rN(0). Meanwhile, 1,(j, v) is always
less than unity and is given by

t(j,v) = — 2+ j* + 2,
L, v) =v(l+v2 =2, 5, v) =1, v) -2 8)

and ¢, is expressed by

Uuy(1-U?

é‘l(jv v, U(Cl)/A, j’ V)) -

(5 —U%)
. . V(1 —=U?)
63, v, U(w/A, j,v)) = m, )
where gy = (1 +v? — j2)((1 +v* — j>)? + 4j2)_1/2 and U
satisfies
/= U2
wn=u - YYA=UD L 8AyIN®©). (10)

(e5—U?)

where p is the normalized impurity concentration [30-33],
Iny stands for the Euler constant, and N(0) is the density
of single-particle states at the Fermi level. The dimensionless
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0.0

FIG. 1. The allowable range (under the surface) of the di-
mensionless parameters j, v, and p regarding to the smallness of
Im[GP(r)]/Im[G?(0)].

quantities j and v are defined, respectively, by the exchange
interaction as J = 2j/SwN(0) and by the potential scattering
as V = v/ N(0). It merits mentioning that I',,, €9, and « (or,
equivalently, j, v, and p) enter the impurity effect on Green’s
functions and their values are small. It should be noted that the
value of o can be controlled by p. Using these descriptions, we
can assume that U =~ w/A.

Basically, the general range of v as well as j are determined
by |eo| < 1. It is worth noting that the system always remains
in the singlet state, j < 0. Meanwhile, the allowable ranges
of v and j which are interdependent can be calculated numer-
ically based on two hypotheses. First, the perturbed Green’s
function is small in comparison to the unperturbed Green’s
function. Second, the impurity terms, which exist in A, &z,
and &, are small. Accordingly, the numerical results show that
the allowable ranges are p < 0.6, j < —0.2 and 0 < v < 1
(Fig. 1).

In addition, the appropriate ranges of j and v for some
special cases such as In-Fe [51], Pb-Mn [51], and Zn-Mn
[52] are given in Table I. It should be noted that the relation
between the three parameters j, v, and p is very complicated;
the value of each of these parameters is reevaluated whenever
one of them is changed.

Basically, the Green’s function in the presence of impurity
scattering is given by

0 0 0
Gy = GE(S/:/? + G];TG]? (11)

where the scattering is described by a T matrix [50]. The
general form of Gg is represented by (o — ezp3 — Apr02) ™",

TABLE I. The values of j, v, and ¢, for some special cases.
Samples A and B are selected arbitrarily.

Sample o j v
In-Fe 0.60 —-0.85 < j < —0.50 O<v<l
Pb-Mn 0.55 —0.90 < j < —0.54 O<v<l
Sample A 0.45 —-0.99 < j < —0.61 O0<v<l
Sample B 0.35 -1 <j<—-0.69 0<v<0.86
Zn-Mn 0.25 -1<j<-0.77 0<v<0.71

CVSvV

cCVSV

~— kpr = 1.005
ker = 1.000
~0— kpr = 0.995

N

0.825

0.820 ’”’*"'”\H// J
. /
0.815 J?
-~ p=0301
p=0300
0.810

- p=0.299

0.2 0.4 0.6 0.8
v

FIG. 2. For transition-metal case, concurrence versus v for vari-
ous values of p at j = —0.8 and krr = 1. Inset: Concurrence versus
v for various values of kgr at j = —0.8 and p = 0.3.

which is a tensor product of both Pauli matrices, o;, and the
electron-hole spin states, p;. We neglect the «-dependent part
of the 7 matrix. The first term of the series expansion for
the T matrix around « = 0 is obtained by TO = (5T, +
82120202 + 83173 03), where

—wv/ A2 — w? AVAZ — »?

Si=————, S, = ,
! A5 — ? 2 A% — ?
A? — @?
S3= ——5———. 12
TN —? (12

Then we obtain the perturbed Green’s function as follows:
GV(k, w) = Bk, o)(T10((® + ;)% + A?)
— 2 A% (0 + &) — T3(A — 0®)!/?
x (0 +ep)* =A%),
(A% — ?)2

Bk, w) = , (13)
(a)2 — A2 — 8]%)2(0)2 — Azsé)

where GV is a linear combination of 'y, I'y, and I';. Also, by
rewriting k as k = kr + ¢;/vr, we have

GV = (2m)2N(0) [or
rkF

A
de; / doGV(k, w)
-A

—wp

x sin(kpr + ezr/vp), (14)

where r and kr are the distance between the two electrons
of the Cooper pair and the Fermi wave number, respectively.
According to the numerical calculation, we find that the varia-
tion of Debye frequency in the Green’s function is negligible,
therefore we choose wp = 0.1, which is measured with re-
spect to the Fermi energy. Also, we use A/er = 0.001.

Concurrence [c = c(p, j, v, kpr)] is calculated as a func-
tion of internal/external parameters. Changing p (Fig. 2) or
kpr (the inset in Fig. 2) only changes the value of concurrence.
All critical points (including the local maximum point and the
turning point) occur at the same value of v.

Figure 3 illustrates how increasing |j| leads to moving
the discontinuous point, which appears in the local maximum
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CVSV

0.2 0.4 0.6 0.8

FIG. 3. For transition-metal case, concurrence versus v for vari-
ous values of j at p = 0.2 and kpr = 1.

point. Based on our investigation, critical points do not ap-
pear for those values of j in the interval (—0.60, —0.05). By
increasing |j|, critical points move toward high values of v.
Furthermore, the turning (local maximum) point disappears

cvVsvVv
0.68

0.66

0.64

0.2 0.4 0.6 0.8
v

FIG. 4. For transition-metal case, concurrence versus v for var-
ious values of A (measured with respect to Fermi energy) at j =
—0.8, p=0.2, and kpr = 1.

for j > —0.64(j > —0.60). We show how the different hosts
and their energy gap can affect not only the value of concur-
rence but also the occurrence of the critical points (Fig. 4). By
increasing the value of A (or pair interaction), the turning (lo-
cal maximum) point moves toward the lower (higher) values
of v.

Partial derivatives of concurrence versus v provide valu-
able insight into critical points (Fig. 5). The first partial
derivative reaches a discontinuity (continuity) at the turning
(local maximum) point, but concurrence remains continuous
(discontinuous) and we assert that this point corresponds the
second (first)-order QPT. For second-order QPT, v does not
have a widely varying range based on the variation of | j| or A.

Concurrence versus the relative distance for different val-
ues of p, v, and j is shown in Fig. 6. The value of concurrence
in the presence of transition-metal impurity is larger than
that in the nonimpurity case. It can be seen that the curves
for different values of v are almost overlapped. At higher
values of p, the zero value of concurrence occurs at larger
values of kg r. Finally, for higher values of | j|, the variation of
concurrence does not significantly change.

B. Rare-earth metal and nonmagnetic impurity cases

In the following, we present the results for the concur-
rence based on the perturbed Green’s functions, which will
be explained in the Appendix. At a fixed collision time,
7, concurrence is reduced by increasing the value of kpr
[Fig. 7(a)]. For the sake of comparison, we also present the
curve of concurrence for nonimpurity case [8,9]. The curves
of concurrence for nonimpurity case and nonmagnetic im-
purity with finite wp case are overlapped. Although, for the
case of infinite wp, at a fixed krr, concurrence takes smaller
values than those in the finite case. With increasing 1/, the
concurrence decreases as a result of increasing the impurity
effect [Fig. 7(b)]. At a fixed value of 1/7, the concurrence for
infinite wp is smaller than the finite one.

Investigating concurrence in the presence of the rare-earth
impurity in terms of krr, 71, and 1, for both finite and infinite
wp cases has been done. The appropriate ranges of 7, and 1,
are tuned by considering different values of wp, A, and w.
After lengthy calculations, we conclude that the values of 1
and 1, are extremely large (without any physical meaning).

Jc/dv vs v dc/ov vs v
—0.048
—-0.049 0.02
~0.050 [b]
0.00 2c/@v)? vs v
£ -0.051 2 1 e
2 2 °
—0.052 -0.02( %"
-0.053 t
[a] -4
_0'054 _0'04 0.635 0.640 0.645 0.650 0.655 0.660 0.665
-0.055 -
0.28 0.30 0.32 0.34 0.36 0.635 0.640 0.645 0.650 0.655 0.660 0.665
v %
FIG. 5. Partial derivatives of concurrence versus v at j = —0.8, p = 0.3, and krr = 1 (a) for the values of v located in the interval

(0.28,0.37) (b) for the values of v located in the interval (0.635,0.665).
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cvskpr cvskpr cvs kpr
1.0 -0- Non-Impurity 1.0 -0- Non-Impurity 1.0 -0- Non-Impurity
0.8 \0\0\ v=03 0.8 p=01 0.8 j=-05
- v=05 < p=02 - j==0.7
0.6 0.6 0.6
< < Bl
0.4 0.4 0.4
[a] [b] [c]
0.2 0.2 0.2
0.0 0.0 H 0.0
0.5 1.0 1.5 2.0 2.5 0.5 1.0 1.5 2.0 2.5 0.5 1.0 1.5 2.0 2.5
kpr kpr kg r
FIG. 6. For transition-metal case, (a) concurrence versus kzr for various values of v at j = —0.8 and p = 0.2, (b) concurrence versus kg r
for various values of p at j = —0.3 and v = 0.3, and (c) concurrence versus kzr for various values of j at p = 0.3 and v = 0.3.

III. CONCLUSIONS

Quantum correlation in many-body systems is very de-
sirable for quantum information protocols. Within the BCS
theory (by assuming the smallness of fluctuations of all in-
teractions), we have considered an s-wave superconductor
in the presence of a rare-earth element and transition-metal
described by AG theory and SR model, respectively. Then
we have examined quantum correlation and bipartite entan-
glement as well as one of their most important applications
known as QPT. We have proved that there is a one-to-one
correspondence between QPT and entanglement. Also, we
have shown that the system describes the Werner state as a
noninteracting Fermi gas. For the SR model, we have shown
that not only the occurrence of the first and second QPTs
depends on the potential scattering, but also it does not re-
quire to have higher values of |j|, which still plays a role
on localized excited states. The first-order QPT occurs at
higher values of v when |j| or A increases. In the case of
second-order QPT, the enhancement of |j|(A) leads to the
displacement of QPT toward higher (lower) values of v. It
merits mentioning that there is no QPT for some values of | j|.
At a fixed kpr, the value of concurrence in the presence of the
transition-metal impurity is larger than that in the nonimpurity
case. As we have shown, entanglement can exist for large kg r,
if p has a high value. Meanwhile, under AG theory, we have

cvskpr
1.0
-0 Non-Impurity
0.8 Impurity (Infinite wp)
=0~ Impurity (Finite wp)
0.6
© [a]
0.4
0.2
0.0 ‘ ‘ ....... .........
0.0 0.5 1.0 1.5 2.0 2.5

kpr

demonstrated that dirty superconductors don’t show any QPT,
even by considering all possible wp cases. Finally, quantum
information allows us to adjust the physical properties of such
systems.
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APPENDIX

Through a straightforward but lengthy calculation, the
Green’s functions are determined by considering different
values of wp, which are selected based on the comparison
between A and w. Here, nonmagnetic and magnetic impu-
rities are abbreviated by indices NM and M, respectively.
It should be mentioned that the impurity effect enters via
Ney, (® = w14, ) and nwz(ﬁ = An,,) that consist of 7; and 1,
respectively (for nonmagnetic case 7| = 7). In addition, 7|
and 1, are represented by 1/7; o< V2 £ S(S + 1)J%/4.

cvsl/t
———— 00— —— 00— 0—>0—)

© [b]

Impurity (Infinite wp)
= Impurity (Finite wp)

0.00 0.02 0.04

1/

0.06 0.08 0.10

FIG. 7. For nonmagnetic impurity case, (a) concurrence versus krr for infinite and finite Debye frequency and (b) concurrence versus
inverse collision time (in arbitrary units) for infinite and finite Debye frequency at a fixed kyr(= 1 x 1073).
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1. Infinite Debye frequency case

For the nonmagnetic case, the exact Green’s function is given by
G, () = lim G, (1, 1) = (11%1 / dwGr, w)eiw'>ezw} = GO(r)err, (A1)
t—0~ t—0—
where v is the Fermi velocity and G®(r) was given in Refs. [8,9]. For s-wave superconductors, the angular dependence does

not exist in the Green’s functions. It is worth mentioning that Eq. (15) is equal to the product of the Green’s function of a clean
superconductor and exp(—r/2tvr). For magnetic cases, we obtain the perturbed Green’s functions as follows:

. iw i|b|A
mp o @te+i/2n oW o 2 a2
Gy (K, ) = @ -8 ) 1 - ) @ > A2, (A2)
7 . i

w A

- o+ &+ lal/2t oA -2
Gk, w) = k 1— 0o 2 < A2 A3
w (k. @) (0? — A2 — 8]%) (0? — A2 — e%) @ (A3)

where o> = w?/A” and b* = 1/d°.

2. Finite Debye frequency case

In some works [21], the value of wp is taken to be infinite to simplify the calculations. However, in real materials, wp has
finite values. For nonmagnetic cases, we have

a)D(a)2 — AT 4 8]%)

®® > A, wp < Vo — A2, (A4)

o w
Gy, (k. @) = —
NM, T\ m(0? — A?)(w? — A% — 53)2

k
. 1 [ o(—imwp 4+ 2V/w? — AZ)(w? — A% + &2
Gy, (K, @) = = ( 5 ) w® > A%, wp > Vw2 — A2 (A5)
T 2rwpVw? — A2(w? — A — 8]%)

For magnetic cases, we have

2wp 2wph?
a7 N a)—i—&‘];—a)[)/ﬁﬂ(l) _ on 2 2 2 2 A2
Gy (k, w) ~ (@ — a2 1 —(a)2 ey @ > A% wp < Va? — A2, (A6)
k k

1¢(: 20 1 (242 : ;

- 1 —(za)——)~|——(——t|b|A) w i
GOE o)~ | —— ep|1- = e - 2
m, (k, @) 2 _ A2 _ 8;% (0 +&3) (wz — A2 — s]%) TTiWp + 27

w* > A%, wp > Va? — A2, (A7)

1 20 1 (2A%
. 1 o —22-)+ - (2-— A
o~ [ Vwep(1 - 200w Tl m8)) 0
5 w? — A2 —¢2 (0? — A2 — 8%) TTiwp 27

k k
w? < A%, wp > VA2 — 2. (A8)

We do not take into account the conditions w?> < A? and wp < /A2 — w?, since they contradict the fact that A is always less
than wp.
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