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Algebraic canonical quantization of lumped superconducting networks
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We present a systematic canonical quantization procedure for lumped-element superconducting networks
by using a redundant configuration-space description. The algorithm is based on an original, explicit, and
constructive implementation of the symplectic diagonalization of positive semidefinite Hamiltonian matrices, a
particular instance of Williamson’s theorem. With it, we derive canonically quantized discrete-variable descrip-
tions of passive causal systems. We exemplify the algorithm with representative singular electrical networks, a
nonreciprocal extension for the black-box quantization method, as well as an archetypal Landau quantization
problem.
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I. INTRODUCTION

Superconducting circuits [1] are the current leading
technology for quantum information processing [2–4].
Complex as their quantum dynamics may be, simple
effective models based on microwave circuit theory have
been extremely successful in explaining collective quantum
phenomena therein. Indeed, the three-dimensional (3D)
Maxwell-London theory together with the Josephson
equations [5] are the main phenomenological framework
routinely used to describe them [6,7]. However, in certain
cases where characteristic lengths are smaller than the
wavelengths involved, e.g., when energy is localized at very
small volumes, such 3D equations can be further simplified
to Kirchhoff’s laws, which are representable through ideal
lumped-elements circuits. In fact, the canonical quantization
is that of the differential equations governing the dynamics
of the collective degrees of freedom of those elements (like
capacitors, inductors, and Josephson junctions) [8–10].

Nevertheless, bigger electromagnetic environments, such
as superconducting 3D cavities, are still commonly used in
experiments to achieve, for instance, long coherence times
[11]. To incorporate these, and more general linear passive
systems with well-defined probing ports in Kirchhoff’s frame-
work, a two-tier process has been suggested. First, a classical
multiphysics analysis of their linear response is performed,
and then its output is fed to classical engineering theorems
for fraction expansions of causal passive matrices [12]. In
this way, it is possible to obtain lumped-element networks
of the low-lying energy spectrum to the required level of
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accuracy which are fit for quantization, a routine better known
as the black-box approach [13–15]. The classical expansions
can definitely include effective breaking of time-reversal sym-
metry [16] through ideal gyrator (two-port) or circulator
(N-port) devices [17–23]. These are nonreciprocal (NR) el-
ements that can be used for noise isolation or signal routing
[24], and that implement flux-charge constraints. Necessarily,
they have to be studied in the quantum regime as well [25,26].
Furthermore, to represent general linear responses [12], the
introduction of Belevitch transformers is required [27], yet
another type of multiterminal element, which provide direct
constraints between fluxes and between charges.

Thus, it has become of great interest to find a systematic
quantum circuit analysis [8–10,13–15,25,28–47] of electrical
networks that treats all linear passive lumped elements
(capacitors, inductors, ideal nonreciprocal elements, and
Belevitch transformers) on equal footing. This analysis must
deal with obstacles such as singular kinetic matrices that
would prevent straightforward Legendre transformations.
We stress a Lagrangian formulation since it gives us
both canonical Poisson brackets, later to be promoted to
commutators, and Hamiltonian functions on phase space,
later to be promoted to operators.

In this paper, we present a systematic procedure for de-
riving Hamiltonians together with canonical quantizations of
lossless lumped-element networks. This procedure is based on
a Lagrangian written in terms of an enlarged configuration
space with both flux and charges variables [35,44,48]. Such
enlargement with respect to most previous approaches (where
Lagrangians were written in either flux or charge variables)
allows us to replace the troublesome Legendre transformation
for singular kinetic matrices by a simple nonsingular matrix
inversion. Naturally, there is a cost to pay with this approach,
as redundancies will be certainly introduced in the form of
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free particles and nondynamical degrees of freedom. How-
ever, making use of the full-fledged Williamson theorem for
normal forms of quadratic systems [49], these subsectors can
be systematically disentagled from the nontrivial dynamical
sector and canonical quantization can follow effortlessly.

The underlying mathematical keystone of the present pa-
per is a simple and constructive algorithm to systematically
find the symplectic normal forms of positive semi-definite
symmetric (real) matrices (with eigenvalues λi � 0) inspired
by Hörmander’s analysis [50] of Williamson’s seminal article
[49]. We consider and propose the application of this routine
to find canonical quantum descriptions of general passive
causal systems presenting a discrete set of frequencies. We
stress that this includes the possibility of constraints that
hitherto have been considered an obstacle to achieve that
goal. In particular, we exploit it to obtain systematically ex-
act quantum descriptions of superconducting lumped-element
networks, including cases analogous to the Landau problem,
with discrete macroscopic conjugated charges and fluxes re-
placing microscopic position variables.

The results obtained here generalize systematic deriva-
tions of canonically quantized Hamiltonians for reciprocal
[9,10,32,33,35,51] and nonreciprocal [25,26] superconduct-
ing lumped-element networks based on graph theory, and will
provide support for more general quasilumped descriptions of
circuits [40,43,52]. We remark that a particular and important
consequence of the application of our algorithm is the gener-
alization of the black-box quantization methods of nonlinear
degrees of freedom coupled to nonreciprocal linear systems
[13–15].

The paper is structured as follows: In Sec. II, we
introduce an explicit constructive algorithm of Williamson’s
theorem to find symplectic transformations that diagonalize
real positive-semidefinite matrices of dimension 2n. For
illustration in a simple understandable case, we apply it to
a Landau quantization problem with two linearly coupled
charged particles in a homogeneous magnetic field. We
make full use of the main theorem in Sec. III to put forward a
systematic process to find canonically quantized Hamiltonians
of lumped-element superconducting networks described in
terms of Kirchhoff’s equations, starting from a Lagrangian
written in the enlarged configuration space. In Sec. IV, we
implement the algorithm to quantize a singular nonreciprocal
circuit containing both nondynamical degrees of freedom
and free particles using both (i) a black-box approach and
(ii) keeping the full cosine potential of the nonlinear degrees
of freedom. We finally draw some conclusions and describe
possible additional applications in Sec. V.

II. WILLIAMSON’S THEOREM FOR POSITIVE
SEMIDEFINITE SYMMETRIC MATRICES

The study of the classification, with canonical
presentations, of quadratic forms has a long history. For
instance, Weierstrass (Refs. [53] and [54]) looked into the
conditions for pairs of quadratic forms to be put in canonical
form (Gestalt). Part of the motivation of Weierstrass was
the application of these canonical forms to the theory of
small oscillations, and this reason and others kept the topic
alive. In 1936, Williamson gave the complete classification

of quadratic forms under symplectic transformations [49]
over general fields of characteristic zero. His classical work
did not provide us with explicit constructive methods nor did
it include a complete catalog of canonical forms. Laub and
Meyer [55] did provide a listing of canonical forms, which
was refined and completed by Hörmander [50]. In fact, many
other authors have looked into the issue without being aware
of each other [56,57]. An alternative source of information for
physicists is the compilation of symplectic normal forms for
quadratic Hamiltonians presented by Arnol’d in Appendix 6
of Ref. [58] and attributed by him to D. M. Galin, without
further reference.

In a more recent development, the study of quantum infor-
mation with continuous variables, and, in particular, of Gaus-
sian states [59] has brought a special case of Williamson’s
theorem to the fore, that of positive definite quadratic ma-
trices. Of special relevance in this context is the symplectic
diagonalization of covariance matrices [60]. Some attention to
the topic has also been given in the context of superconducting
circuits and other quantum systems. In these applications, a
constructive approach is required beyond the descriptions in
the theorems, and much has been made of this fact for the
simplest case of positive definite Hamiltonians [61], while that
of positive semidefinite Hamiltonians has been referred to but
not addressed. Here we remedy that deficiency.

Let us denote as H the matrix corresponding to a quadratic
Hamiltonian H = xT Hx/2, while J is the canonical symplec-
tic matrix, such that the (classical and Heisenberg) dynamics
reads

ẋ = JHx (1)

for phase-space coordinates x = (q1, ..., qn, p1, ..., pn)T =
(x1, ..., x2n)T . The content of Williamson’s theorem for pos-
itive semidefinite Hamiltonians is that there are only three
possibilities for independent degrees of freedom present in
Eq. (1) when H belongs to that class [50]: (i) harmonic oscil-
lators, evolving as ÿho = Ω2yho, where Ω is a positive definite
diagonal matrix of frequencies, (ii) free particles with ÿfp = 0,
and (iii) nondynamical variables, i.e., ynd(t ) = ynd(0). These
variables y are the desired objective, related to the initial ones
by a symplectic transformation x = Sy.

To proceed, we have to identify the linear subspaces K1 =
ker[JH] = ker[H] and K2 = ker[(JH)2]. If K1 = K2, there are
no free particles, and all the variables corresponding to K1 are
nondynamical. More generally, nf = dim(K2) − dim(K1) is
the number of free particles and dim(K1) − n f = 2nnd is even
and twice the number of nondynamical degrees of freedom
nnd. Notice that dim(K2) = 2nf + 2nnd is necessarily even.
There are nho = n − nf − nnd harmonic oscillators to com-
plete the description, with 2n the dimension of phase space.

The classification above translates into the existence of a
change of basis matrix F for which

F−1JHF = DJ =

⎛
⎜⎜⎜⎜⎜⎝

0 0 0 0 0 0
0 0 0 0 0 0
0 0 0 1 0 0
0 0 0 0 0 0
0 0 0 0 iΩ 0
0 0 0 0 0 −iΩ

⎞
⎟⎟⎟⎟⎟⎠. (2)
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The order has been chosen in the sequence nondynamical/free
particles/harmonic oscillators for the degrees of freedom. The
dimensions, not explicit in the expression above, run in the
sequence {nnd, nnd, nf , nf , nho, nho, } for the diagonal boxes.
This matrix F is the output of the usual Jordan canonical form
process for JH, up to ordering.

Generically, this change of basis matrix does not diago-
nalize H by a symplectic transformation. For starters, it is
necessarily complex. However, an adequate transformation
will be of the form

S = FΛF−1
0 , (3)

where F0 is the matrix:

F0 =

⎛
⎜⎜⎜⎜⎜⎝

1 0 0 0 0 0
0 1 0 0 0 0
0 0 1 0 0 0
0 0 0 1 0 0
0 0 0 0 1 1
0 0 0 0 i1 −i1

⎞
⎟⎟⎟⎟⎟⎠. (4)

As we show explicitly in Appendix A, the structure of F0

comes about because the real and imaginary parts of the
eigenvectors of JH with purely imaginary eigenvalues can be
arranged in symplectic pairs, while the generalized eigenvec-
tors of the zero eigenvalue are real.

To complete the description, Λ is a block diagonal matrix,
whose detailed structure depends on the existence or not of
degeneracies both in the harmonic oscillator sector and in the
generalized eigenspace of JH for eigenvalue 0. Let us first
examine its structure in the harmonic oscillator sector. If there
are no nonzero degenerate frequencies, the corresponding
block of Λ consists of two diagonal matrices of dimension nho

for the harmonic oscillator sector, with the diagonal elements
being normalization factors. This is in fact the case that has
been frequently explored in the literature, since it pertains to
the positive definite case without degeneracies, the only one
that has merited full attention, as it is the easiest. Those di-
agonal elements in this case simply give the normalization of
each eigenvector of JH for purely imaginary eigenvalue, such
that its real and imaginary parts are symplectic orthonormal.

Were there a degeneracy in the nonzero spectrum of JH,
the corresponding block for Λ would be due to symplectic
Gram–Schmidt orthonormalization of the real and imaginary
parts of the eigenvectors for that eigenvalue. Similarly, the Λ
is required, in the free particle and nondynamical sector, to
ensure that the free particle sector is symplectic orthogonal
to the nondynamical one, and that the resultant free particle
sector is symplectic orthonormal. This can be done explicitly,
as shown in Appendix A, or through the condition that

J = ST

(
ω0 0
0 Jho

)
S, (5)

where ω0 is an antisymmetric (2nnd + 2nf ) × (2nnd + 2nf )
while Jho is the canonical symplectic matrix, now for the
harmonic oscillator sector. If there are degeneracies, the har-
monic oscillator sector of Λ becomes block diagonal, with
pairs of invertible matrices for each degeneracy subspace.
Complete details are presented in Appendix A. Once Λ has
been determined, we compute ST HS, resulting in a block
diagonal matrix that is in fact canonically diagonal in the

X

Y
Bz

FIG. 1. Two coupled charged particles subjected to the action of
a magnetic field. The dynamics of this system naturally separate in
two orthogonal sectors, the in-plane (x–y) and normal (z) ones.

harmonic oscillator sector, i.e., diag(Ω, Ω). If one desires full
symplectic diagonalization, an additional symplectic Gram–
Schmidt process will be required for K2, as made explicit in
Appendix A.

A. A familiar example: The Landau problem

The Landau problem of one charged particle moving in
a homogeneous magnetic field is very well-known indeed.
Simple as its statement is, its correct solution requires a canon-
ical transformation that involves both positions and momenta.
Furthermore, it is the starting point for our understanding
of the quantum Hall effect. We consider a slight extension
of the Landau problem and address it with the symplectic
diagonalization algorithm so as to illustrate its applicability
in a simple example. Let us thus consider a pair of identi-
cal linearly coupled charged particles subjected to a constant
and homogeneous external magnetic field in the z direction
(B = (0, 0, B)), see Fig. 1.

Working in the symmetric gauge, i.e., A(qi ) = − 1
2 (B ×

qi ), a redundant minimal-coupling Hamiltonian can be written
as

H =
∑

i

(pi − eA(qi ))
2

2m
+ k

2
(q1 − q2)2, (6)

where the dynamics of the phase-space separates in two
independent subsectors, 2H = X T

z HzX z + X T
xyHxyX xy, i.e.,

vertical and in-plane motion. Williamson’s analysis of Hz

yields, as symplectic diagonal degrees of freedom, one har-
monic oscillator and one free particle. In the limit of the
coupling constant going to zero (k → 0), obviously, the har-
monic oscillator frequency tends to zero and in fact we have
two free particles.

The analogous analysis in the x–y plane shows the ex-
istence of three harmonic conjugate pairs, and an extra
nondynamical one. Again, by taking the zero-coupling limit,
the dynamics in the plane split in two pairs of harmonic
and nondynamical conjugated variables. See Appendix B for
further details and an explicit expression for a symplectic
diagonalizing matrix.

Observe that the procedure by itself does not prescribe a
meaning for the nondynamical sector. Thus, in the case of
the mechanical system with just these two distinguishable
particles, the nondynamical sector is set to being identically
zero, and would not be detectable if the system were realized.
Not so if we take this study as part of second quantization for
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fermions, say, in which case we would understand fermions
in the same dynamical state to be allowed to be in different
states in the nondynamical sector, as is done in the analysis of
the quantum Hall effect. Nonetheless, our procedure allows us
the systematic identification of the different sectors.

In this particular case, one might wonder whether our
analysis depends in any way on having chosen the symmet-
ric gauge. However, one crucial point to be stressed in the
Williamson diagonalization procedure is that the canonical
form under symplectic transformations is a symplectic invari-
ant, by construction. And since all the gauge transformations
that preserve the quadratic character of the Hamiltonian are
actually implementable as symplectic transformations, the
physical content of the model is seen as clearly gauge in-
variant, and achieved systematically. The gauge invariance of
the problem has led to some confusion in the literature as to
the conserved quantities associated with the model. Again,
looking at the issue from the point of view of symplectic
invariance allows the immediate identification of the maxi-
mum number of linear and quadratic conserved quantities for
these families of systems. Their physical interpretation is, on
the other hand, directly dependent on how these systems are
coupled to others and is not intrinsic to the model. For more
details on symmetries and gauge invariance in this context,
see Appendices C and C 1, respectively.

III. LUMPED-ELEMENT ELECTRICAL NETWORKS

To derive a systematic, canonically quantized theory of su-
perconducting lumped-element circuits, it is useful to take as
a starting point a classical Lagrangian [9,10]. The additivity of
components in the Lagrangian is immediately obvious, while
additivity for the Hamiltonian is not necessarily as straightfor-
ward. Furthermore, a nonsingular Lagrangian determines the
Poisson brackets, and one does not need to infer them to cor-
rectly match Kirchhoff’s equations of motion [62]. One of the
problems in the analysis of circuitry, therefore, consists of the
construction of nonsingular Lagrangians in a systematic way.
This objective, however, has hitherto compelled us to restrict
the type of circuit to be analyzed so there is a well-defined
mechanism for the identification of independent variables that
still does provide us with a nonsingular Lagrangian.

In contrast, we propose directly constructing a nonsingu-
lar Lagrangian and eliminate redundancies by the systematic
application of Williamson’s symplectic diagonalization. Thus
we consider a quite possibly redundant configuration space,
such that all linear energy-bearing lumped elements are as-
signed to a kinetic energy. In this way, we are sure of the
applicability of the Legendre transform. We shall see that
there are two sources of redundancy, which, for the linear
systems that we consider, correspond to the nondynamical and
free particle degrees of freedom mentioned above.

This path followed here is inspired by the one taken to
describe transmission lines coupled by ideal NR elements in
Ref. [44], where a doubled configuration space description of
the lines was introduced to completely determine the normal
mode structure of the combined system. As stated, the ki-
netic energy will be the addition of the contributions of all
lumped inductors and capacitors in the network. This will
be the only set of linear energetic term of the Lagrangian,

Φi
Qi

Cn
Ln

FIG. 2. LC network. signing loop-charge (branch-flux) variables
for the inductors (capacitors), it is possible to systematically write a
nonsingular kinetic Lagrangian term in a double space.

which will be completed by linear nonenergetic constraint
terms and relevant nonlinear energetic terms. Naturally, a
reduction of variables in the configuration space is useful to
simplify the algorithm, but we are going to work on worst-
case (brute force) scenarios. For the sake of completeness,
we present the Lagrangian terms describing the NR ideal
elements [25,26,44,63], the Belevitch transformer [15], the
nonlinear elements like the Josephson and the phase-slip
junction [64,65], and discuss their effect on the Hamiltonian
derivation.

A. Linear reciprocal networks

Historically, the analysis of lumped element networks has
been performed using the language of graph theory [9,32,33].
Let us consider a common linear reciprocal network of two-
terminal lumped elements consisting of a set of inductors
and capacitors connected in a tree containing N number of
nodes and M number of loops such that M � N , as in the
example in Fig. 2. Currents and voltages are denoted by
time derivatives of loop charges Q̇ ≡ ∂t Q and node fluxes �̇,
respectively. However, instead of using node-flux variables,
let us assign a branch-flux variable for every capacitor (NC)
and a loop-charge variable for every inductor (ML < M). The
equations of motion of such a generic network can be written
in the form

C�̈ + DT Q̇ = 0, (7)

LQ̈ − D�̇ = 0. (8)

where C and L are positive diagonal matrices (therefore both
full rank), and D is an adjacency matrix encoding the topol-
ogy of the terminal connections. This set of equations are
a generalized discrete limit of the telegrapher’s equations in
a transmission line [44,66] and flow from the following La-
grangian, written in the doubled (doubled as both fluxes and
charges appear) configuration space description as

LLC = 1
2 �̇

T C�̇ + 1
2 Q̇

T LQ̇ − Q̇
T D�. (9)

The total apparent number of degrees of freedom is NC + ML,
but there are constraints given by D and DT . In fact, it is
well-known that the number of node-flux and of loop-charge
variables are upper bounds to the number of real harmonic
degrees of freedom of a network [35]. In contrast to previous
works on canonical quantization of electric networks, let us
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(a) (b) (c)

FIG. 3. (a) Equivalent representations of a harmonic oscillator
with (a) an LC circuit, its minimal representation, (b) two capacitors
in series, and (c) a gyrator and a capacitor replacing the inductor. Re-
dundant representations (b) and (c) may contain free-particle and/or
nondynamical degrees of freedom.

assume for the sake of generality that we describe the Hamil-
tonian with redundancy, i.e., with a configuration space of
NC + ML variables.

The invertibility of the kinetic matrices C and L permits a
Legendre transformation to obtain the Hamiltonian

HLC = 1
2�T C−1� + 1

2 (P − D�)T L−1(P − D�), (10)

where the conjugate variables are � = ∂L/∂�̇ and P =
∂L/∂Q̇. The dimension of the phase space is thus 2 × (NC +
ML ). This Hamiltonian is, on its face, positive semidefinite,
as C−1 and L−1 are positive definite. The zero modes of the
Hamiltonian will necessarily be associated with the possibility
that P − D� be zero. By Williamson’s theorem, there exists
a canonical transformation that expresses the Hamiltonian as
describing a set of free particles, harmonic oscillators, and
nondynamical conjugate pairs of variables, see Appendix D.
Studying the kernels of JH and (JH)2, it can be easily proven
that number of nondynamical pairs is the same as that of har-
monic oscillators nnd = nho = [NC + ML − n f ]/2. The free
particles are due to ignorable coordinates in the Hamiltonian,
i.e., due to some translation symmetry. Those arise from the
reducibility of the initial circuit by series/parallel equiva-
lences. The nondynamical sector, on the other hand, turns out
to be there because we have indeed doubled the number of
variables, once the full reduction in terms of those equiva-
lences has been carried out.

Let us illustrate the idea with a trivial example of a
harmonic LC oscillator with unnecessarily redundant de-
scriptions. The circuits in Fig. 3 are three different circuital
representations of an LC harmonic oscillator. It is worth real-
izing that even its simplest version Fig. 3(a) admits irreducible
representations in terms of only a flux (�) or charge coordi-
nate (Q), i.e., the equations of motion can be written in terms
of a single variable, without requiring a redundant description
with both variables in the configuration space. Even more, the
circuit in Fig. 3(b) has two capacitors in series such that the
new set of flux coordinates (�1,�2) adds an extra level of
redundancy. Indeed, upon the use of the sum rule for series
capacitances Cs = C1 ‖ C2 = (C1 + C2)/C1C2, it is possible to
eliminate a flux coordinate to reach Fig. 3(a).

We now mechanically apply the method described above to
circuit Fig. 3(b). That means assigning a variable and a kinetic
energy term to each capacitor and inductor of the system, and
computing the adjacency matrix to determine the constraint
terms. Thus, Lagrangian Eq. (9) should now be used, with

S

R(a)

(b)

(c )

ReciprocalNonreciprocal
T S = ST T S = ST

FIG. 4. Multiport lossless linear system. The (a) gyrator and
(b) circulator are two- and three-port ideal nonreciprocal elements
implementing constraints between flux and charge variables and
break of time-reversal symmetry (T ). A (c) right-hand Belevitch
transformer yields flux-flux and charge-charge constraints.

matrices

C =
(

C1 0
0 C2

)
, L = (L), D = (1 1), (11)

with vector variables � = (�1,�2)T and Q = (Q). The
Euler-Lagrange Eqs. (7) and (8) reveal the big redundancy
in the description. Traditionally, one would eliminate charge
Q by integrating Eq. (8) in time while setting to zero the
constant initial charge, i.e., Q̇ = L−1D�, in which case Eq. (7)
simplifies to C�̈ = DT L−1D�. Given these equations, one
realizes that a simpler Lagrangian exists and, after a contact
transformation of coordinates, � = E�, the harmonic oscil-
lator nature of the system is revealed with a new Lagrangian
L = 1

2 (Cs�̇
2 − L−1�2), where Cs = (C1 + C2)/C1C2.

However, in our proposal, at this stage we do not need to
perform the circuital reduction, and in fact it will come out in
the systematics, namely, we write Hamiltonian Eq. (10) and
apply Williamson’s theorem. That is, we find a symplectic-
orthonormal basis such the Hamiltonian matrix in this basis is
diagonal. This computation reveals the presence of a nondy-
namical variable and a free particle in addition to the harmonic
oscillator. The free particle is directly related to the reducibil-
ity to an equivalent capacitor of the two series capacitors,
while the nondynamical variable is a consequence of our
redundant description. See Appendix D for further details.

B. Nonreciprocal linear ideal devices

Having understood the analysis for the case of linear
lumped energetic elements, let us now discuss the introduction
of the NR ideal ones, which do not store energy. In particu-
lar, we address those breaking time-reversal symmetry. These
multiterminal devices represent constraints between fluxes
and charges, see Figs. 4(a) and 4(b) as expressed in their
constitutive equation,

(1 − S) ˙̄� = R(1 + S) ˙̄Q, (12)
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written in terms of a nonsymmetric scattering matrix S( �=
ST ), which always exists [67]. The overbar for the fluxes
and charges denotes that they have been rescaled dimension-
ally for ease of notation in the constitutive equation. In fact,
such elements are more easily introduced in the Lagrangian
formalism in terms of their impedance and/or admittance
descriptions, namely,

LY = 1
2

˙̄�T Y�̄ and LZ = 1
2

˙̄QT ZQ̄, (13)

with ports described by branch-flux or loop-charge coordi-
nates, respectively. Observe that in these descriptions only
the antisymmetric part of either admittance or impedance can
have an effect on the equations of motion, since the symmetric
part gives a total time derivative. Further, notice that there is
no energy associated with these magnetic terms.

The general NR constitutive equation described by S is
more directly read as a constraint on the evolution of the
flux and charge variables, albeit nonholonomic. This non-
holonomic character suggests that it might best be treated
with tools other than Lagrangians on a flux coordinate space.
However, Eq. (12) can always be framed in Lagrangian terms
as one of Eqs. (13) as long as one accepts the possibility of
immittance matrix being singular, in which case one further
requires an additional flux or charge constraint (which can
enter as another Lagrange multiplier) at the ports [25,68], i.e.,

P−�̇ = 0, if − 1 ∈ λS, (14)

P+Q̇ = 0, if 1 ∈ λS. (15)

In either case, starting from the doubled configuration space
construction, a Legendre transformation will be available af-
ter this reduction is properly dealt with. We remark on the
equivalence of the coupling terms in Eqs. (13) with the D term
in Lagrangian Eq. (9). In fact, there is a mapping between
both expressions by rescaling some of the flux (charge) vari-
ables by R−1 (R), i.e., Q̃i = �i/R. This is the reason for the
enlarged configuration space approach, involving both fluxes
and charges, to be natural in dealing with circuits with NR
elements. In other words, one can think of an inductor (capac-
itor) in a circuit always as an equivalent capacitor (inductor)
when seen through a gyrator, see Fig. 2(c), in which one
of the capacitors can be moved (in the sense of equivalence
of circuits) through the gyrator, thus becoming an inductor,
providing us with a read on the circuit as an LC oscillator.

C. Belevitch transformers

The final ideal passive linear element to be considered
is the Belevitch transformer [27], another even (multi) 2N-
terminal device which represents direct constraints between
voltages and currents on NL pairs of terminals on the left side
and NR pairs on the other (N = NL + NR); see Fig. 4(c). As
such, they can be written as Lagrange multipliers and can
be directly eliminated before the Legendre transformation in
the configuration; see further in Refs. [15,40]. They can be
classified in right (R), and left (L) transformers, such that their
constraints are expressed as the Lagrangian terms

LET = ΛE Q̇ + ΞE �̇, (16)

EJCJ

EPS

(a) (b)

FIG. 5. Conventional symbols for (a) a Josephson junction
lumped element, with its intrinsic parallel capacitance and (b) and
its dual circuit, a phase-slip junction with a series inductor.

where E = {R, L}, and

ΛRQ̇ = Λ(Q̇R + NQ̇L ), (17)

ΞR�̇ = Ξ(�̇L − NT �̇R), (18)

and analogously for LLT, where N is the turn-ratio (rectan-
gular) matrix describing the transformer. Such elements are
known to be required for the systematic analysis and synthesis
of generic linear electrical systems. For instance, in Eq. (8) we
have assumed the inductance matrix to be full rank. However,
this may not be the case generally (say when tightly coupled
mutual inductances appear, e.g., Mi j = √

LiL j). In such situa-
tions, the system could, among other possibilities, be written
in terms of transformers and a full rank inductance matrix.
In our context, Belevitch transformers will not impinge on
the nonsingular character of the Lagrangian and, insofar as
they introduce constraints and therefore redundancies, they
are taken care of in the Williamson analysis.

D. Nonlinear lumped elements

Finally, let us discuss the addition of the nonlinear elements
typically used in superconducting circuits, the Josephson
junctions (JJs) [5] and its dual element, the phase-slip
junction [64,65]. The unitary dynamics of the Josephson
junction can be modeled by a linear capacitor in parallel
with an element whose current-flux relation is nonlinear, IJ =
Ic sin(2π�J/�0) = ∂�JU (�J ). The complementary phase-
slip element also presents a sinusoidal nonlinear relation, in
this case voltage-charge, VPS = Vc sin(πQPS/2e); see Fig. 5.
The nonlinear nature of these elements suggests their inclu-
sion in a Lagrangian description in the form of potential terms:

L = Llinear − UJ (�J ) − UPS(QPS). (19)

No issue arises in moving to a Hamiltonian description, as
both flux and charge variables belong to the configuration
space and because a Josephson (phase-slip) junction will al-
ways be in parallel (series) to a capacitor (inductor), thus
ensuring that a kinetic term always exists for the correspond-
ing variable and maintaining the nonsingular character of the
Lagrangian:

H = Hlinear + UJ (�J ) + UPS(QPS). (20)

Once the complete classical and nonlinear Hamiltonian has
been obtained, several different strategies could be applied for
its quantum analysis and additional considerations come into
play. For definiteness, let us focus on circuits with Joseph-
son junctions. It is now well established that the topology
of the connection of the superconducting islands in a chip
can dramatically change in which way we are to model these
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FIG. 6. The Josephson junctions can always be modeled with
compact variables in a general network if they appear in pure islands
(left). In more general topological connections (right), it cannot be
known a priori.

nonlinear terms [69]. In the analysis of the Josephson effect,
one sees that a real junction island must be modeled by a
compact phase variable ϕJ = �J ( 2π

�0
) ∈ [0, 2π ], where �J is

the flux variable of the junction and �0 the flux quantum con-
stant. This has an impact on which canonical pair to consider
in quantization, since the boundedness of the phase variable
forces its conjugate operator to have a discrete spectrum, if
self-adjointness is to be maintained. This is conveniently ex-
pressed with commutation relations of the form [n̂J , e±iϕJ ] =
±e±iϕJ and the demand that n̂J have a discrete (integer) spec-
trum. The experimental data confirming this idealization is in
fact the discreteness of the spectrum of energies.

However, if the Josephson junction is biased by an induc-
tance, necessarily the phase variable decompactifies and the
spectrum of its quantization is the whole real line ϕ ∈ R. The
conjugate operator is also a generator of translations in this
case, but its spectrum is not discrete in this situation. The
potential energy term is now a periodic function on the real
line instead of being defined on the circle. To see the dif-
ference in character, consider two free-particle Hamiltonians
of identical form, namely, the usual kinetic term, in the two
situations of compact and full real line variables. In the first
case, there is a discrete spectrum of eigenenergies, while for
the real line all the eigenstates of energy are scattering states,
and the spectrum is continuous.

The first question before us in this regard is whether our
proposed analysis is applicable in either case, and the sec-
ond one, if indeed applicable, is what the best strategy can
be. The answer to the first question is that conceptually it
is only applicable to noncompact variables. In the form we
have presented the argument to this point, we have assumed
systematically that the configuration space is indeed a linear
space, in such a way that phase space is also a linear space and
linear symplectic transformations are global and canonical.
If we are to consider more general manifolds, it is a fact
that locally we can use Williamson’s theorem to diagonalize
symplectically the quadratic part of the Hamiltonian, but the
global validity and usefulness of the construction remain to be
explored, and we set that exploration aside for future work.

Even within this limited purview, we shall apply the
method in situations in which there are compact variables
present. Observe again that the presence of these compact
variables in superconducting circuits is highly dependent on
the topology of the circuit, see Fig. 6. The central physical
criterion, nonetheless, is that a proper superconducting is-
land will be associated with a compact variable. In the class

of circuits we consider, this will be ensured if a Josephson
junction is in series with a capacitor as part of a one-port
element.

Now assuming that there are indeed compact variables, we
examine two situations in which we can apply the Williamson
analysis. A first case takes place when the harmonic oscilla-
tor approximation is adequate for compact variables and, as
long as the small-oscillation condition is maintained, one can
effectively consider the Josephson flux variable as decompact-
ified. One such situation is that of the transmon qubit, with
compact flux variable [70]. The kinetic energy term is due to
the Josephson capacity CJ and its characteristic kinetic energy
scale, EC , behaves as EC ∝ 1

C̃J
. The potential energy due to the

Josephson inductance presents a characteristic potential en-
ergy scale EJ = Ic( �0

2π
). Under the condition that EC � EJ , the

low-energy sector can be studied in the harmonic approxima-
tion, with additional small quartic terms (Duffing oscillator)

U (�J ) ≈ �2
J

2LJ
− U �2

J
4! , with L−1

J = EJ ( 2π
�0

)2 and U = EJ ( 2π
�0

)4.
On coupling to a linear system, therefore, one can study the
quadratic Hamiltonian, with inclusion of the quadratic part of
the Josephson inductance, with the Williamson diagonalizing
procedure. Once that has been carried out, one should check
that the weak nonharmonicity is mantained in the new diago-
nalizing phase-space variables.

An alternative way of stating that this possibility, namely,
of being able to apply the symplectic diagonalization proce-
dure to the compact case, is that if the minima of the compact
sector are very deep and essentially remain deep after the
procedure, then it can be relied upon. Other than the issue
of compact/noncompact variables, the question remains as
to whether the nonlinear variables are to be kept separate or
rather taken into account in an application of the Williamson
procedure. The criterion is the usefulness of either choice
in providing us with tools for the quantum treatment of the
system.

In the transmon regime mentioned above, for which the
nonharmonicity is weak in the fashion presented above, it
would be sensible to perform Williamson’s symplectic trans-
formation on the whole set of coordinates in the network,
i.e., including the flux variable of the Josephson junction in
the analysis as a position variable and carrying out the har-
monic approximation for its potential. Thus, in this regime, if
we have a network with capacitors, inductors, NR elements,
and JJs, one could start with a maximal set of coordinates
X = (�J ,�C, QL ), where �C are fluxes other than those of
the junctions, perform the harmonic approximation and sym-
plectic diagonalization, and later check that the excursions of
the coordinates inside the nonlinear terms are indeed small.

A second interesting case in which we can use the quanti-
zation procedure associated with Williamson diagonalization
in the presence of compact variables is when the Lagrangian
coupling of those compact fluxes to the rest of the circuit can
be written as involving only their time derivatives. Observe,
however, that in so doing one must ensure that the compact
character is maintained properly. We will see a complete ex-
ample of this idea in the next section. Then we can carry out a
Williamson analysis of the Hamiltonian, in which the compact
variables would appear as ignorable, i.e., as free particles, and
after diagonalization add the periodic potentials.
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More generally, one could envisage carrying out the linear
Williamson analysis just on the non-JJ subsector of the phase
space, and only then consider the coupling to the Josephson
junctions, in all their nonlinearity, to the rest of the system.
In the next section, we delve more deeply on the two possi-
bilities, with the objective of expanding the methodology of
black-box quantization to generic immittance descriptions.

IV. NONRECIPROCAL BLACK-BOX ADMITTANCE
QUANTIZATION

As of late, there has been an increasing interest in the use
of black-box linear models to describe complex 3D volumes
in superconducting circuitry [13–15,42,71,72]. Most of them
rely on having an immittance description of the linear system,
and typically an impedance decomposition is used. This bias
toward one of the descriptions is linked to (i) the generally
prevalent preference of flux coordinates as configuration-
space independent variables for the whole network, which is
in turn due to the interest in Josephson junctions, for which
it is most convenient as the nonlinearity is expressed as a
potential energy, and (ii) the fact that the derivation of a
Hamiltonian for the admittance expansion is more easily per-
formed in terms of loop-charge variables.

In this section we use the systematic Williamson diago-
nalization, as applied to an enlarged configuration space, to
quantize in a consistent and systematic way a two-port NR
black-box generic admittance Y(ω) capacitively coupled at its
ports to Josephson junctions. We show that it does not present
any further obstacle with respect to its impedance counter-
part. In particular, if one were to use a purely flux-variable
based quantization, the Lagrangian of this circuit would be
necessarily written in terms of a singular kinetic (capacitance)
matrix. We sidestep this singularity by working in an enlarged
configuration space [35].

The general Foster decomposition of an admittance
response is composed of inductor-gyrator series stages con-
nected to the output ports through a Belevitch transformer,
see Fig. 7. For the sake of simplicity, and without loss of
generality, we restrict the analysis to a one-stage resonance
circuit. From a physical perspective, the Belevitch transformer
finally yields oriented energy participation ratios between the
internal (non)reciprocal modes in the black box and the exter-
nal ports [42].

In line with the discussion above, we quantize along two
different routes: (i) by expanding the cosine potentials of the
JJs and diagonalizing the quandratic part of the Hamiltonian
of the whole system and (ii) by diagonalizing a harmonic
subsector having set aside the JJs coordinates for later (which
would permit the inclusion of the whole cosine in the posterior
analysis). We show the match of both paradigms in the full
linear approximation, i.e., two-step versus one-step symplec-
tic diagonalizations.

The Lagrangian for Josephson junctions coupled to a
generic admittance can be written by adding up energetic and
constraint terms for all the different lumped elements, i.e.,
L = LLC + LJ + LLT + LY. Here LLC, LY, and LLT are defined
in Eqs. (9), (13), and (16), respectively, and we collect the JJ
terms in LJ . By elimination of the trivial constraints, arising
from the Belevitch right fluxes and left charges through the

FIG. 7. Josephson junctions capacitively coupled to a two-port
nonreciprocal device Y(ω) explicitly showing the (a) multiport Fos-
ter representation of the admittance. (b) The Josephson junctions are
broken into quadratic (LJ ) and quartic and higher potential terms.

Lagrange multipliers (16), it can be rewritten as

L = 1
2 (�̇

T C�̇
T + Q̇

T LQ̇ − 2Q̇
T D� + Q̇

T ZQ) − U (�J ),

(21)

with flux coordinates describing the external variables �T =
(�T

J ,�T
c ) = (�Ja,�Jb,�ca,�cb), and charge coordinates for

the internal variables in the admittance representation QT =
(QL1, QL2). The matrices read for the concrete example of
Fig. 7(a),

C =
(

CJ 0
0 Cc

)
, L = L112, D = DRNT DL,

DL =
(

1 0 1 0
0 1 0 1

)
= −DR,

N =
(

n11 n12 0 0
0 0 n21 n22

)
, (22)

where CJ = CJ12, Cc = Cc12, and Z = −RJ2. On the other
hand, the nonlinear potential of the modeling nonlinear
Josephson element is U (�J ) = −∑

i EJi cos(ϕJi). A Leg-
endre transformation is readily available and results in the
Hamiltonian

H = 1

2

(
P − 1

2
ZQ + D�

)T

L−1

(
P − 1

2
ZQ + D�

)

+ 1
2�T C−1�T + U (�J ), (23)

where the conjugate canonical pairs are defined by the Poisson
brackets {�,�T } = {Q, PT } = 1. Please notice the similarity
between the coupling of branch fluxes � and conjugated flux
momenta P through the skew-symmetric matrix Z and the
minimal-coupling Hamiltonian in the Landau problem.
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Having obtained this Hamiltonian, it is a pedagogical exer-
cise to perform an analytical study of the Hamiltonian Eq. (23)
in the absence of the Josephson junctions, i.e., setting U to be
zero. Given that dim(ker[DT ]) = 0, which happens whenever
the transformer matrix is nontrivial, the kernels of K1 and K2

can be parametrized as

v1 =

⎛
⎜⎜⎝

q
φ

Z
2 q − Dφ

0

⎞
⎟⎟⎠ ∈ K1, v2 =

⎛
⎜⎜⎝

q
φ

Z
2 q − Dφ

CeD

⎞
⎟⎟⎠ ∈ K2. (24)

Here eD is a generic element of ker[D], and φ and q span vec-
tor spaces of dimension NC and ML, respectively. Note that the
coordinates are written in the order (QT ,�T , PT ,�T ). The
dimensionality can be directly read as dim(K1) = NC + ML,
and dim(K2) = NC + ML + dim(ker[D]), such that the num-
ber of free particles is n f = dim(eD) = 2, and nnd = 1

2 (NC +
ML − n f ) = nho = 2. It can be easily proven that removing a
pair of capacitors, e.g., Cci, dim(ker[D]) = dim(ker[DT ]) =
0, and no free particles would appear in this description
with such a choice of coordinates. In other words, by tak-
ing together the limits Cci → ∞, �c → �J and �c → �J ,
the associated free-particle dynamics vanish, i.e., in algebraic
terms ker[JH] = ker[(JH)2].

However, in the presence of the Josephson junctions,
the corresponding fluxes are compact variables, as signaled
above, and one should be more cautious in the application of
the symplectic diagonalization idea. Observe to this point that
the coupling of the Josephson fluxes to the rest of the system
is through the term Q̇

T D� in Lagrangian Eq. (21), which
gives rise to the corresponding couplings in the Hamiltonian
Eq. (23). It is therefore convenient to perform a change of
variables in configuration space, shifting the coupling to the
time derivative of the Josephson fluxes, given by

Q = Q̃ + 2Z−1DJ�̃J . (25)

This is accompanied by no change in the flux coordinates,
�J = �̃J and �c = �̃c. Observe that this point transforma-
tion does not change the topology of configuration space and
it induces a canonical transformation on the full phase space
(whose topology remains unchanged as well), even taking into
account that it is compact along some directions. The change
of coordinates in momentum space reads

P = P̃,�c = �̃c,�J = �̃J + 2DT
J Z−1P̃. (26)

Under this canonical transformation, the new Josephson flux
variables only appear in the potential energy terms, U (�̃J ),
and the couplings of the junctions to the rest of the system
appear only in the kinetic part of the Hamiltonian.

Let us now apply to this situation the two most com-
mon points of view in the literature regarding quantization
of Josephson junctions connected to an impedance (as op-
posed to an admittance as we do here), namely, either (i) a
two-tier process, in which we select the part of the Hamil-
tonian in which neither the flux variables for the JJs nor
their conjugate variables appear, symplectically diagonalize
that part, and then study the full Hamiltonian with these new
variables, or (ii) separating the cosine potentials in a quadratic
and higher order terms, setting aside the quartic and higher

terms, computing the normal modes of the quadratic part
of the Hamiltonian (with the quadratic part of the cosines
included), and then expanding the quartic and higher terms
in terms of the new collective normal mode coordinates. This
last approach is known for impedance coupling as the black-
box approach [13–15], see Fig. 7(b). We complete the study
by showing the equivalence of both perspectives under some
specific conditions.

To facilitate further analysis of this Hamiltonian, we per-
form trivial rescaling (symplectic) transformations in such
a way that all the new coordinates of phase space share
the same dimensions. The inductive loop-charge variables
(and their conjugated flux momenta) transform into Q̄ =√

RQ̃ ( p̄ = p̃/
√

R), whereas the capacitive branch fluxes (and

conjugated charge momenta) turn into �̄c/J = C
− 1

4
c/J L

1
4 �̃c/J

(�̄c/J = C
1
4
c/JL− 1

4 �̃c/J ). The Hamiltonian with exclusion of
the Josephson potentials is then parameterized in the example
of Fig. 7(a), for these homogeneous dimension coordinates in
terms of the frequencies 	J = 1/

√
CJL, 	c = 1/

√
CcL, and

	 = R/L. For numerical illustration (see Appendix E), we
set the transformer turn-ratio matrix to n11 = n12 = n22 = 1
and n21 = 0, and we work with homogeneous frequencies
	 = 	c = 	J = 1.

Let us now show explicitly the two-tier quantization of
this system. Performing a symplectic transformation that only
mixes the subset of coordinates Ȳ = (Q̄, �̄c, P̄, �̄c) and di-
agonalizes Hlin, i.e., (S−1

Y Y )T = (ȳT
nd, π̄

T
nd, ȳT

ho, π̄
T
ho),we obtain

(two) harmonic oscillators linearly coupled (through mo-
menta) to the (dressed) nonlinear system

H =
2∑

n∈ho

	n

2

(
ȳ2

n + π̄2
n

) + (ȳT G + π̄T M)�̄J

+
2∑

n=1

[
	J
̄

2
Jn − EJn cos(ϕ̄Jn)

]
, (27)

where {ȳi, π̄ j} = δi j , and G and M are coupling matrices be-
tween the Josephson momenta and the partially diagonalized
coordinates. A canonical quantization of this system can now
be performed given that the nondynamical sector has been
singled out and set to zero [68], promoting to quantum opera-
tors only the dynamical ones. After reexpressing the harmonic
conjugate variables in terms of annihilation and creation op-
erators, we obtain the Hamiltonian

Ĥ/h̄ =
2∑

n,m

[	na†
nan + (gnman + g∗

nma†
n)
̄Jm] + HJ ,

where HJ stands for all the terms involving only the Josephson
sector in Eq. (27), namely, the second line. Specific values for
eigenfrequencies and coupling vectors for this set of parame-
ters can be seen in Appendix E.

If, on the other hand, a black-box approach [13] is pre-
ferred, we separate out the quartic and higher terms of the
Taylor expansion of the cosine potentials of the junctions.
The remaining quadratic part (in which a �̄

T
J L−1

J �̄J term ap-
pears) is susceptible to symplectic diagonalization. Observe,
however, that the compactness of the Josephson fluxes has
been discarded, and only in a transmonlike regime would
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this process be valid. After this symplectic diagonalization,
quantize the resulting (four) harmonic oscillators and expand
the nonlinear potential in terms of normal modes to obtain the
Hamiltonian:

Ĥbb =
4∑
n

h̄	̄nb†
nbn + EJ

∑
l=1,2

∞∑
m=2

(−1)m+1ϕ̄2m
Jl

(2m)!
. (28)

It is worth remarking that the flux variables of the Josephson
junctions depend in this case only on the dynamical sector
after the appropriate symplectic transformations, i.e., ϕ̄Ji ≡
ϕ̄Ji(zho,πho), with Z = S−1X̄ = (znd, zho,πnd,πho) thus set-
ting the correct grounds for a low-lying energy investigation.
Naturally, we remind the reader that the previously described
routines match, as can be easily proven by expanding to sec-
ond order the cosine in Eq. (27) and performing a secondary
symplectic transformation, see Appendix E for details.

As a final note, we observe that in more general sce-
narios the Josephson variables might indeed depend on
the nondynamical coordinates of the linear problem, i.e.,
ϕ̄Ji(zT

nd,π
T
nd, zT

ho,π
T
ho). Thus, the black-box approach as pre-

sented here would not set out an immediately obvious path
for the investigation of the low-lying energy sector and the
two-tier process, e.g., Eq. (27), should always be preferred.
Furthermore, the problem here stated would indeed increase
in complexity if the Hamiltonian had extra time-dependent
classical forces, as is the case when dealing with pulses for
quantum computation or readout [73–75], and the two-tier
picture is recommended as the basis for further analysis.

V. CONCLUSIONS AND OUTLOOK

In this paper, we have put forward a consistent quantiza-
tion procedure for superconducting lumped-element networks
modeled in an enlarged configuration space description, with
both flux and charge variables. The manifest redundancy is
eliminated in the Hamiltonian through a symplectic trans-
formation provided systematically by Williamson’s theorem,
for which we have given a constructive algorithm for real
positive-semidefinite Hamiltonian matrices. The full-fledged
Williamson’s theorem has been recurrently referenced in the
quantum physics community but, to our knowledge, only
positive-definite matrices have been explicitly provided with
either proof and explicit construction [76–78]. Given its sim-
plicity, this algorithm will find use in a plethora of Gaussian
systems beyond electrical circuits.

In the context of the specific problem here tackled, we
emphasize that the enlarged configuration space idea becomes
a useful starting point for the identification and quantization of
the dynamical degrees of freedom in circuits with frequency-
dependent NR devices where mixed charge-flux configuration
space variables may result inevitable. This reinforces the idea
we put forward for circuits with transmission lines coupled
through ideal NR devices [68]. Naturally, our algorithm will
also prove useful to single out free-particle dynamics in recip-
rocal circuits where a redundant choice of either flux or charge
variables is chosen as the configuration space.

As an example of the power of our technique, we have
reduced the problem of quantizing a circuit composed of
Josephson junctions capacitively coupled to a general linear

system described in terms of an admittance matrix to that of
correctly identifying the dynamical and nondynamical sectors
of a redundant Hamiltonian. Such analysis would have been
much more cumbersome had we started the analysis with a
Lagrangian written in terms of just flux variables because the
kinetic matrix would be singular. In fact, we have presented
and compared the two most standard methods to quantize
canonically superconducting circuits, i.e., performing (i) a
partial diagonalization of the purely linear sector, setting aside
at that point of the analysis the full nonlinear cosine potentials
of the Josephson junctions and (ii) a full diagonalization of
the linear sector within a generalized black-box quantization
paradigm. We point out that in some cases the black-box
approach may require further refinement when the nonlinear
potentials are written in the transformed basis. This would
arise from a (possibly) nonlinear coupling between those sec-
tors that in the linear approximation had been identified as
dynamical and nondynamical, respectively.

Looking to the future, further work will be required to
extend these ideas for an exact quantization prescription in the
case of quasilumped circuits containing frequency-dependent
NR black boxes, as well as transmission lines and nonlinear
elements, along the lines first suggested in Ref. [52].
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APPENDIX A: SYMPLECTIC DIAGONALIZATION
OF POSITIVE SEMIDEFINITE HAMILTONIANS

As introduced in the text, we investigate the symplectic
diagonalization of (even-dimensional) positive semidefinite
matrices. We shall denote them as H, and the canonical sym-
plectic matrix J is

J =
(

0 1
−1 0

)
. (A1)

If necessary, we will distinguish canonical symplectic matri-
ces for different dimensions with an explicit mention of the
dimension.

Williamson’s theorem concerns the canonical forms under
symplectic transformations of even-dimensional matrices over
fields of nonzero characteristics. The crucial fact underly-
ing the full Williamson’s theorem and its restrictions is that
the conjugacy normal forms of JH determine completely the
symplectic normal forms of H. This comes about because
the space of states is a direct sum of symplectically orthog-
onal subspaces, and those are associated with generalized
eigenspaces of JH.

The detailed proof of Williamson’s theorem for the real
field consists of the analysis of each possible structure of
generalized eigenspaces and the determination of the corre-
sponding canonical form for that sector. We refer to Ref. [50]
for the complete proof. Here we simply give a general guide
to the concepts involved in the next subsection, and later on
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we will concentrate on the case of interest, that of positive
semidefinite Hamiltonians, taking the theorem as a starting
point.

1. Generalities of Williamson’s theorem for
real symmetric matrices

For real symmetric matrices, as is the case of interest to us,
the characteristic polynomial of JH, p(λ), has real coefficients
and is even, p(−λ) = p(λ). This simple fact comes about
because J2 = −1 and det(J) = 1. Thus,

p(λ) = det[JH − λ1] = det[H + λJ]

= det[(H + λJ)T ] = det[H − λJ] = p(−λ). (A2)

Therefore, if λ is an eigenvalue (possibly generalized), then so
are −λ, the complex conjugates λ∗ and −λ∗. Thus, there are in
principle four types of eigenvalues: (i) the generic μ + iν with
real μ and ν in a quartet {μ + iν, μ − iν,−μ − iν,−μ + iν},
(ii) purely imaginary ±iμ, (iii) purely real ±μ, and (iv) 0.

We shall use the notation 〈•, •〉 for the canonical inner
product both for the real space R2n on which H and J act
and for the sesquilinear inner product of its complexification
and of C2n. In matrix terms, 〈u, v〉 = u†v, with † denoting the
Hermitian conjugate.

Let us now consider v1 and v2 proper eigenvectors of JH,
with eigenvalues λ1 and λ2, respectively. Then

(λ2 + λ∗
1 )〈v1, Jv2〉 = 〈v1, J(JHv2)〉 + 〈JHv1, Jv2, 〉

= −〈v1, Hv2〉 + 〈Hv1, v2〉 = 0. (A3)

Therefore, if λ∗
1 + λ2 �= 0 the corresponding two eigenvectors

are symplectic orthogonal. In fact, we can extend this property
to the generalized eigenspaces if there are nontrivial Jordan
chains, by induction. To this point, let us consider that the
respective Jordan chains are of the form

JHv(k)
i = λiv

(k)
i + v(k−1)

i . (A4)

Then, along the lines of Eq. (A3), we have(
λ2 + λ∗

1

)〈v(k)
1 , Jv(l )

2 〉 = 〈
v(k)

1 , J
(
JHv(l )

2 − v(l−1)
2

)〉
+ 〈(

JHv(k)
1 − v(k−1)

1

)
, Jv(l )

2

〉
= −〈

v(k)
1 , Hv(l )

2

〉 + 〈
Hv(k)

1 , v(l )
2

〉
− 〈

v(k)
1 , Jv(l−1)

2

〉 − 〈
v(k−1)

1 , Jv(l )
2

〉
= −〈

v(k)
1 , Jv(l−1)

2

〉 − 〈
v(k−1)

1 , Jv(l )
2

〉
(A5)

and, by induction, the respective chains are symplectic orthog-
onal if λ2 + λ∗

1 �= 0.
Please observe that 〈•, J•〉 is not antisymmetric for com-

plex vectors, namely, given two real vectors u and v, one has

〈u + iv, J(u + iv)〉 = 2i〈u, Jv〉. (A6)

Let Vλ be the generalized eigenspace of JH for the eigen-
value λ. Then the result above is that the full complexified
vector space V = R2n

C can be written as a direct sum of sym-

plectic orthogonal subspaces,

V = V0 ⊕
⊕
λ �=0

(Vλ ⊕ V−λ∗ ), (A7)

where the sum avoids double counting, i.e., if λ is in the index
set, then −λ∗ is not.

The relevant issue at this point is the construction
of a canonical symplectic basis using these generalized
eigenspaces. We remind the reader that a symplectic basis
of {R2n, J} is a basis with elements {e1, e2, . . . , en, f1, . . . , fn}
such that

〈ei, Je j〉 = 0, 〈fi, Jf j〉 = 0, 〈ei, Jf j〉 = δi j . (A8)

As JH is real, the generalized eigenvector v correspond-
ing to a complex eigenvalue λ has an associated generalised
eigenvector corresponding to the complex conjugate eigen-
value λ∗, namely v∗. Thus, in the construction of the real
symplectic basis we desire, we shall have to use combinations
of Vλ and Vλ∗ . Summarizing, there are four types of symplec-
tic subspaces to consider. First, the generic λ = μ + iν with
μ, ν > 0, for which the symplectic space to be considered is
the direct sum:

Vλ ⊕ V−λ∗ ⊕ Vλ∗ ⊕ V−λ. (A9)

Second, the purely imaginary case for which we have the sym-
plectic space Viμ ⊕ V−iμ. Third, the purely real case Vμ ⊕ V−μ

and, finally, V0. As stated above, the theorem relies on the
detailed analysis of these four cases separately.

In the construction of the relevant symplectic basis, it is
important to notice that the generalized eigenspaces of the
different elements of the quartet (or doublet) will have the
same structure. That is to say, if λ is a generalized eigenvalue
with a Jordan chain of length nλ, then −λ, λ∗ and −λ∗ will
all have Jordan chains of the same length, and similarly for
the doublets. Similarly, if λ is degenerate then the degeneracy
structure is shared by the other elements of the multiplet.

For definiteness, consider now a nondegenerate quartet,
with shared Jordan chain length nλ. We have a set of gener-
alized eigenvectors of JH, obeying the Jordan chain structure
of Eq. (A4) that we will denote as {v(k), u(k), v̄(k), ū(k)}, corre-
sponding to λ,−λ∗, λ∗,−λ, respectively. Here we use ū to de-
note the complex conjugate to avoid an overburden of super-
scripts. According to the general result above, 〈v(k), Ju(k)〉 is
not trivial but 〈v(k), Jū(k)〉 = 〈v(k), Jv̄(k)〉 = 〈u(k), Jū(k)〉 = 0.
Let us choose to normalize v(k) and u(k), including phases,
such that

〈v(k), Ju(k)〉 = 2. (A10)

We now define the real vectors

e2k−1 = 1
2 [v(k) + v̄(k)], e2k = −i

2 [v(k) − v̄(k)],

f2k−1 = 1
2 [u(k) + ū(k)], f2k = −i

2 [u(k) − ū(k)]. (A11)

It is easy to check that they form a symplectic basis for
this level. The only remaining task to handle is to complete
Gram–Schmidt symplectic orthogonalization (sGS, in what
follows) for the whole Jordan chain. The change of basis
matrix provided by the components of the symplectic basis
is a symplectic matrix, by construction, and provides us with
the canonical form of the corresponding block.
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If the eigenvalue is real, the generalized eigenvectors are
real and one carries out sGS similarly for each sector. We set
aside the case of imaginary eigenvalues and that of eigenvalue
zero since they are relevant to the positive semidefinite case
that we investigate in the next subsection.

2. Positive semidefinite Hamiltonians

Let us now address the case of interest to us here, that
of positive semidefinite Hamiltonians. In this situation, there
are only three possible types of canonical symplectic blocks,
namely, (i) simple harmonic oscillators, with canonical form

Hho =
(

ω 0
0 ω

)
, (A12)

(ii) free particles, with canonical form

H f =
(

0 0
0 1

)
, (A13)

and (iii) nondynamical variables with identically zero blocks.
The Hamiltonian will thus be symplectic diagonalizable.

The issue for an effective algorithm applicable to the cases
of interest is the disentangling of the free particle sector.
It arises in the difference between the kernel of JH, K1 =
ker[JH] and that of K2 = ker[(JH)2]. For this case of positive
semidefinite H, the generalized eigenspace of eigenvalue 0,
V0, is precisely K2. In other words, the maximum length of a
Jordan chain for this eigenvalue is two.

If K2 = K1, there are no free particles and JH is diagonaliz-
able. In this situation, the speediest way of achieving our goal
of symplectic diagonalization of H in the relevant sector is to
compute ker[H] = K1, and thus the orthogonal decomposition
R2n = K1 ⊕ K⊥

1 . The restriction of H to K⊥
1 , denoted here as

H+, is positive definite, and all the existing methods apply
(see, for instance, Sec. 8.3 of Ref. [78]).

Let us examine the general case, which will provide us with
one such method for the simpler situation as well. Define the
linear subspace

E = JH[K2] ⊆ K1, (A14)

and identify formally

F̃ = (JH)−1[E ]. (A15)

To be definite, this means the following: obtain a basis of E ,
{ẽI}n f

I=1, and assign to each element of the basis its Jordan
chain, i.e., a vector f̃I such that JHf̃I = ẽI . F̃ is the linear span
of these vectors:

F̃ = span{f̃I}n f

I=1. (A16)

Complete {ẽI}n f

I=1 to a basis of K1 with a set of vectors {w̃i}2nnd
i=1

and denote the span of these as W̃ :

W̃ = span{w̃i}2nnd
i=1 . (A17)

It is important to note that 〈w̃i, JẽI〉 = 0 (W̃ belongs to the
symplectic complement of E ), and, similarly, 〈ẽI , JẽJ〉 = 0 (E
is isotropic), because

〈w̃i, JẽI〉 = 〈w̃i, J[JHf̃I ]〉 = −〈w̃i, Hf̃I〉 = −〈Hw̃i, f̃I〉 = 0.

(A18)

We now carry out sGS for the free particle sector, making use
of the fact that E is isotropic, defining recursively for I = 1 to
n f

eI = aI

[
ẽI −

∑
J<I

〈ẽI , JfJ〉eJ

]
,

fI = aI

[
f̃I −

∑
J<I

〈f̃I , JfJ〉eJ +
∑
J<I

〈f̃I , JeJ〉fJ

]
. (A19)

The normalization factors are determined to be

a−2
I = 〈f̃I , Hf̃I〉 −

∑
J<I

〈ẽI , JfJ〉〈eJ , Jf̃I〉. (A20)

By induction, one can prove that for all I from 1 to n f JHfI =
eI , so the canonical Jordan form is preserved in the new basis
for this sector. Observe that E is also the span of {eI}n f

I=1,
and with the sGS we have constructed a linear space F =
span{fI}n f

I=1 that satisfies both the condition JHF = E and that
of forming the symplectic subspace WF = E ⊕ F . Now we
want to obtain the symplectic complement of WF in K2. To
that purpose, we have to substract from W̃ the symplectic
projection of WF on it, defining

wi = w̃i −
n f∑

J=1

〈w̃i, JfJ〉eJ (A21)

and their linear span W = span{wi}2nnd
i=1 . This is a symplectic

subspace and it is symplectic orthogonal to Wf and to the
harmonic oscillator sector.

The only complication in the harmonic oscillator sector
might come from the presence of degenerate frequencies, i.e.,
from the presence of degenerate iωa eigenvalues of JH. Let
us denote with v(α)

a an eigenvector of JH for eigenvalue iωa,
where the superscript α is a degeneracy index. Then v̄(α)

a
is an eigenvector of JH for eigenvalue −iωa. Furthermore,
let Va be the (proper) eigenspace of JH for eigenvalue iωa,
and V̄a its complex conjugate. Then Va ⊕ V̄a is a symplectic
subspace. Alternatively, we can write this as Re(Va) ⊗ Im(Va)
as a real symplectic subspace. Thus, the only remaining task
is to construct a symplectic basis of this subspace, again by
sGS, namely, define

ẽ(α)
a = Re

(
v(α)

a

)
, f̃ (α)

a = Im
(
v(α)

a

)
. (A22)

We perform this assignment because 〈Re(v(α)
a ), J Im(v(α)

a )〉 is
positive. This statement might seem surprising since one can
change the phase of v(α)

a ad libitum. However, as JHv(α)
a =

iωav(α)
a , it follows that

JH Re
(
v(α)

a

) = −ωa Im
(
v(α)

a

)
, JH Im

(
v(α)

a

) = ωa Re
(
v(α)

a

)
,

(A23)

whence

ωa
〈
ẽ(α)

a , J f̃ (α)
a

〉 = −〈
Re

(
v(α)

a

)
, ẽ(α)

a J JH
[
ẽ(α)

a

]〉
= 〈

ẽ(α)
a , H ẽ(α)

a

〉
> 0. (A24)

Now, from this assignment and, as usual, define recursively

e(a)
a = A(α)

a

[
ẽ(a)

a −
∑
β<α

〈
ẽ(α)

a , Jf (β )
a

〉
e(β )

a +
∑
β<α

〈
ẽ(α)

a , Je(β )
a

〉
f (β )
a

]
,

(A25)
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and similarly for f (α)
a , with the normalization selected to en-

sure that we obtain a symplectic basis. We choose the same
factor A(α)

a for both e(α)
a and f (α)

a , to ensure that their combina-
tion e(α)

a + if (α)
a is also an eigenvector of JH and therefore that

the relations Eqs. (A23) hold as

JH e(β )
a = −ωaf (β )

a , JH f (β )
a = ωae(β )

a . (A26)

We now prove this statement inductively. To do so, define

u(α)
a = e(α)

a + if (α)
a . (A27)

If the inductive hypothesis Eqs. (A26) holds for β < α, then
for those β < α,

JH u(β )
a = iωau(β )

a , (A28)

and therefore

JH ū(β )
a = −iωaū(β )

a . (A29)

Consequently, 〈
v(α)

a , J ū(β )
a

〉 = 0, (A30)

as follows from Eq. (A3), from which one can conclude that〈
ẽ(α)

a , J e(β )
a

〉 − 〈
f̃ (α)
a , J f (β )

a

〉 = 0,〈
ẽ(α)

a , J f (β )
a

〉 + 〈
f̃ (α)
a , J e(β )

a

〉 = 0 (A31)

for β < α if the inductive hypothesis holds. Clearly, Eq. (A26)
holds for β = 1, the first inductive step. It is now easy to check
that if it holds for β < α, then Eq. (A25) and its f companion
allow us to conclude that Eq. (A26) also holds for β = α.

Now we complete our task. The matrix constructed as

S = ({
wi

}2nnd

i=1

{
eI

}n f

I=1

{
fI

}n f

I=1

{
e(α)

a

} {
f (α)
a

})
(A32)

is not necessarily symplectic, because the first set, {wi}2nnd
i=1 ,

need not be a symplectic basis. If insisted upon, sGS can also
be applied to the nondynamical sector, and after the procedure
S will indeed be symplectic (up to reordering, as we shall see).
But even without going through that step, it is indeed the case
that

ST HS = HD = diag(0 0 1 Ω Ω), (A33)

where Ω is the diagonal matrix constructed with ωa with its
possible degeneracies.

Let us prove this statement, making use of all the previ-
ous analysis. To do so, let us use a more compact notation
introducing the rectangular matrices W, E, F, E , and F whose
columns are, respectively, the vectors wi, eI , fI , e(α)

a and f (α)
a .

Bearing in mind that J is invertible and considering the action
of JH on each of this rectangular matrices, we have

H W = 0, H E = 0, H F = −J E, (A34)

H E = JFΩ, HF = −J EΩ. (A35)

The first two are simply the statement that the wi and eI

vectors belong to the kernel of H and the third line that F and
E are related as elements of a Jordan chain. The last two lines
are actually a restatement of Eqs. (A26).

We now see that

H S = H(W E F E F )

= (0 0 −J E JFΩ −J EΩ). (A36)

From here, we compute Eq. (A33) explicitly:

ST HS =

⎛
⎜⎜⎜⎝

WT

ET

FT

ET

FT

⎞
⎟⎟⎟⎠(0 0 −J E JFΩ −J EΩ)

=

⎛
⎜⎜⎜⎝

0 0 −WT J E WT JFΩ −WT J EΩ

0 0 −ET J E ET JFΩ −ET J EΩ

0 0 −FT J E FT JFΩ −FT J EΩ

0 0 −ET J E ET JFΩ −ET J EΩ

0 0 −FT J E FT JFΩ −FT J EΩ

⎞
⎟⎟⎟⎠,

(A37)

=

⎛
⎜⎜⎜⎜⎜⎝

0 0 0 0 0
0 0 0 0 0
0 0 1 0 0
0 0 0 Ω 0
0 0 0 0 Ω

⎞
⎟⎟⎟⎟⎟⎠ = HD. (A38)

In the first row, the third zero follows from Eq. (A18). The
fourth and the fifth from that row, as well as from the second
and third one, are a consequence of Eq. (A3). Similarly for
the third zero of the fourth and fifth rows. The third zero of the
second row is from the analog of Eq. (A18) in the E subspace.
The identity in the third element of the third row follows from
the fact that {eI , fI}n f

I=1 is a symplectic basis. And analogously
for the harmonic oscillator block.

Regarding whether this matrix S is symplectic or not, we
can compute ST JS explicitly, using the same arguments, and
it results in

ST JS =

⎛
⎜⎜⎜⎝

WT JW 0 0 0 0
0 0 1 0 0
0 −1 0 0 0
0 0 0 0 1
0 0 0 −1 0

⎞
⎟⎟⎟⎠. (A39)

We are guaranteed that WT JF = 0 because we have reor-
ganized W̃ into W in Eq. (A21). The other entries are due
to sGS in the different sectors and Eq. (A18). We are not
overly concerned with the presence of the antisymmetric entry
WT JW, because it pertains to the nondynamical sector which
will be eliminated from any posterior analysis. To make this
statement abundantly clear, consider the classical equations of
motion for the initial variables, Eq. (1), that we restate here:

ẋ = JHx.

Let us define now y by x = Sy, with S defined in Eq. (A32),
i.e.,

S = (W E F E F ). (A40)
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From Eq. (A39), one can determine its inverse,

S−1 =

⎛
⎜⎜⎜⎜⎝

(WT JW)−1 0 0 0 0
0 0 −1 0 0
0 1 0 0 0
0 0 0 0 −1
0 0 0 1 0

⎞
⎟⎟⎟⎟⎠ST J. (A41)

Thus,

ẏ = S−1JH Sy =

⎛
⎜⎜⎜⎝

0 0 0 0 0
0 0 1 0 0
0 0 0 0 0
0 0 0 0 Ω
0 0 0 −Ω 0

⎞
⎟⎟⎟⎠y, (A42)

as promised throughout the analysis. The possibly nontrivial
WT JW plays no role, as it pertains to the nondynamical sector.

APPENDIX B: LANDAU QUANTIZATION

Working on the symmetric gauge, we can write the Hamiltonian for the two linearly coupled charged particles in a magnetic
field (z direction) as H = 1

2 X T
z HzX z + 1

2 X T
xyHxyX xy, where

Hz =

⎛
⎜⎜⎝

k −k 0 0
−k k 0 0
0 0 1

m 0
0 0 0 1

m

⎞
⎟⎟⎠, (B1)

Hxy =

⎛
⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎝

k̃ −k 0 0 0 0 −g
m 0

−k k̃ 0 0 0 0 0 −g
m

0 0 k̃ −k g
m 0 0 0

0 0 −k k̃ 0 g
m 0 0

0 0 g
m 0 1

m 0 0 0
0 0 0 g

m 0 1
m 0 0

−g
m 0 0 0 0 0 1

m 0
0 −g

m 0 0 0 0 0 1
m

⎞
⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎠

, (B2)

with g = eB/2, k̃ = k + g2

m , X z = (z1, z2, pz,1, pz,2)T and X xy = (x1, x2, y1, y2, px,1, px,2, py,1, py,2)T . The harmonic oscillator in
the z direction has frequency 	z = √

2k/m. Now, let us show how to perform a blindfold diagonalization of the dynamics in the
x–y. By first making a rescaling of the variables to simplify the parameters, the configuration space variables in the plane are
modified as qi → qi√

m	c
and the momenta accordingly pi → √

m	c pi, where 	 = g/2m = 	c/4, with 	c = eB/m the cyclotron
frequency. This Hamiltonian can thus be written as

Hxy = 	c

⎛
⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎝

χ2 + 1
4 −χ2 0 0 0 0 − 1

2 0
−χ2 χ2 + 1

4 0 0 0 0 0 − 1
2

0 0 χ2 + 1
4 −χ2 1

2 0 0 0
0 0 −χ2 χ2 + 1

4 0 1
2 0 0

0 0 1
2 0 1 0 0 0

0 0 0 1
2 0 1 0 0

− 1
2 0 0 0 0 0 1 0

0 − 1
2 0 0 0 0 0 1

⎞
⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎠

, (B3)

where we have defined the unitless parameter χ = 	z/	
√

2. The normal frequencies of this sector can be found by
diagonalizing JxyHxy, and correspond to the cyclotron motion (	), and one symmetric and one antisymmetric mode

(	
√√

1 + 8χ2 ± (1 + 4χ2)/2). Following the algorithm, we can obtain systematically symplectic transformations that diag-
onalize Hamiltonian Eq. (B3). For example, at the degeneracy point χ = 1,

S|χ=1 = (W E F ) =

⎛
⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎝

1√
2

0 − 1√
2

− 1√
6

1√
6

0 0 0
1√
2

0 − 1√
2

1√
6

− 1√
6

0 0 0

0 − 1√
2

0 0 0 − 1√
2

1√
6

1√
6

0 − 1√
2

0 0 0 − 1√
2

− 1√
6

− 1√
6

0 1
2
√

2
0 0 0 − 1

2
√

2
−

√
3
8

√
3
8

0 1
2
√

2
0 0 0 − 1

2
√

2

√
3
8 −

√
3
8

1
2
√

2
0 1

2
√

2
−

√
3
8 −

√
3
8 0 0 0

1
2
√

2
0 1

2
√

2

√
3
8

√
3
8 0 0 0

⎞
⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎠

, (B4)
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such that the diagonalized Hamiltonian becomes

HD|χ=1 = 	

⎛
⎜⎜⎜⎜⎜⎜⎜⎜⎜⎝

0 0 0 0 0 0 0 0
0 0 0 0 0 0 0 0
0 0 1 0 0 0 0 0
0 0 0 1 0 0 0 0
0 0 0 0 2 0 0 0
0 0 0 0 0 1 0 0
0 0 0 0 0 0 1 0
0 0 0 0 0 0 0 2

⎞
⎟⎟⎟⎟⎟⎟⎟⎟⎟⎠

. (B5)

APPENDIX C: CONSERVED LINEAR AND QUADRATIC
QUANTITIES

In any study of the Landau problem, one will immediately
encounter a description of the linear and quadratic conserved
quantities. For the one-particle Landau problem, the latter is
the angular momentum, which reduces to the energy minus
a constant associated with the nondynamical sector when
on-shell. The characterization and identification of all linear
and quadratic conserved quantities for a linear system is, as
that example shows, useful and relevant, most importantly
with a view toward the nonlinear case. In this section, we ob-
serve that the application of Williamson’s theorem to positive
semidefinite Hamiltonians allows us to give a complete set of
independent linear and quadratic conserved quantities.

The idea is the following: As there is a canonical sym-
plectically diagonalized form of the Hamiltonian matrix, we
characterize the invariants in that canonical form and undo
the symplectic transformation to write the full set in the
initial variables. We shall carry out the analysis using the
classical equations of motion, because for operators linear and
quadratic in the initial variables the classical equations match
Heisenberg’s equations of motion.

The classical equations of motion for functions on phase
space without explicit time dependence are

ḟ = { f , H}, (C1)

which for the case under consideration become

ḟ = Jαβ∂α f Hβγ xγ . (C2)

Alternatively,

ḟ = −xT HJ∇ f . (C3)

If f is a linear function on phase space, f (x) = xT f + d , with
f a column vector, and thus the condition of being a conserved
quantity is that for all points of phase space x, one has

xT HJf = 0. (C4)

It follows that Jf must belong to the kernel of H. Thus we
identify the set of linear conserved quantities with Jker[H].
If the reader is wondering about the need for the symplectic
matrix, please observe, first, that it is invertible, so we indeed
have that a linear space of linear conserved quantities that is
isomorphic to the kernel of H and, second, that we have seen
that the ker[H] consists of the nondynamical sector of phase
space and the position like part of the phase space of free
particles, since it is the E space. The conserved quantity for

a free particle is its momentum, i.e., F space in the notation
above, and thus the result from applying J to E , essentially.

Coming now to quadratic conserved quantities, we write
the symmetric matrix associated with one such f as B = BT

(to avoid confusion with a previous use of F), as

f (x) = 1
2 xT Bx. (C5)

Now Eq. (C3) becomes

ḟ = −xT HJBx. (C6)

For f to be a conserved quantity, we need the right-hand
side to vanish for all points on phase space. Therefore, the
symmetric part of the matrix must be zero, that is,

HJB − BJH = 0, (C7)

which is the condition we must now study, given a Hamil-
tonian matrix H. In fact, premultiplying with the symplectic
matrix J, one obtains the satisfactory physical interpretation
that the evolution in time controlled by H commutes with
that generated by B. Quantum mechanically, the associated
Hamiltonians must commute and in terms of the matrices we
have

[JH, JB] = 0. (C8)

Thus the problem is reduced to the study of the commutant
of the normal form of JH. If H is positive, the normal form
is diag(i	,−i	) and is obtained from JH by conjugation. If
there are no degeneracies, the commutant is given by diagonal
matrices. A further condition, however, must be met, namely,
that B be real and symmetric. Given va eigenvector of JH with
eigenvalue −iωa, it must be the case that it be an eigenvector
of JB, with eigenvalue βa. It follows that v∗

a must also be an
eigenvector of JB, now with eigenvalue β∗

a . In terms of the
real and imaginary parts of va, va = ea + ifa, and denoting
the real and imaginary parts of βa as βa = μa + iνa, we have
that in the real symplectic basis {ea, fa} (or proportional to
symplectic), JB has the matrix

JB
∣∣∣
a

=
(

μa νa

−νa μa

)
, (C9)

and thus, in the same basis,

Ba =
(

νa −μa

μa νa

)
. (C10)

Since B is symmetric, this means that (as expected) μa = 0.
Let us now examine the positive definite degenerate case

and use the notation of Eq. (A27) in Appendix A 2. The matrix
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B restricted to the ωa eigenspace in the basis {e(α)
a } ∪ { f (α)

a }
will be of the form

Ba =
(

Na −Ma

Ma Na

)
, (C11)

with Ma and Na matrices. As B is symmetric, this means that
Ma must be antisymmetric and Na symmetric.

For example, two harmonic oscillators with different fre-
quencies have no quadratic invariants other than their separate
energy functions and linear superpositions thereof. On the
other hand, the isotropic harmonic oscillator on the plane
presents a basis of four quadratic invariants: the two en-
ergy functions (x2

i + p2
i ), the canonical angular momentum

x1 p2 − x2 p1, and a final x1x2 + p1 p2 [or, alternatively, (x1 +
x2)2 + (p1 + p2)2].

Before examining the general positive semidefinite case,
let us illustrate the difference with the one-particle Landau
problem. After some symplectic transformations, the Hamil-
tonian matrix is proportional to

H =

⎛
⎜⎝

1 0 0 1
0 1 −1 0
0 −1 1 0
1 0 0 1

⎞
⎟⎠, (C12)

with one nondynamical degree of freedom and one harmonic
oscillator. Thus the canonical form is proportional to

H̃D = diag(0 1 0 1). (C13)

On inserting this form in Eq. (C8), one obtains that in the
canonical basis the quadratic invariants are the trivial ones
involving the nondynamical sector (three independent ones,
ξ 2, p2

ξ , and ξ pξ , with ξ, pξ canonical coordinates of the non-
dynamical sector) and the energy invariant of the oscillator,
x2 + p2

x.
In this example, one sees a feature of the general case:

the harmonic oscillator sector will not couple with the nondy-
namical and free-particle sectors in invariant quadratic forms.
On the other hand, as can readily be seen from the trivial
example of one free particle and one nondynamical, these do
couple into invariants. These invariants, however, are in that
sector not independent from the linear invariants that gener-
ate all possible invariants. In summary, the only independent
quadratic invariants are to be found in the harmonic oscillator
sector.

We can rephrase the presentation above in more abstract
terms as follows: (i) JH belongs to the Lie algebra for the
symplectic group, (2) by using symplectic transformations on
H, JH can be written as being upper triangular, and (3) the
quadratic conserved quantities are determined by the commu-
tant of JH in the Lie algebra.

Gauge invariance and symplectic diagonalization

The physical content of Hamiltonians such as the minimal
coupling example of Eq. (6) is independent of the gauge in
which it is written. However, there is a limited set of gauges
in which the Hamiltonian is a quadratic function on phase
space, namely, the symmetric gauge and those obtained from
the symmetric gauge vector potential and adding the gradient

of a quadratic function,

A = AS + ∇ξ, (C14)

with

ξ = 1
2 xT Ξx. (C15)

In fact, this induces a symplectic transformation.
As the symplectic diagonalization approach is precisely

a tool to identify the evolution of a system in terms of its
symplectic invariants, changes of gauge such as these have
no impact on the process and the result.

APPENDIX D: LINEAR RECIPROCAL NETWORKS:
COUNTING OF DEGREES OF FREEDOM

The Hamiltonian in Eq. (10) is evidently positive semidef-
inite. The corresponding Hamiltonian matrix is

H =

⎛
⎜⎜⎝

0 0 0 0
0 DT L−1D −DT L−1 0
0 −L−1D L−1 0
0 0 0 C−1

⎞
⎟⎟⎠. (D1)

C and L are positive definite matrices defined on vectors with
NC and ML components, respectively. The adjacency matrix
D has dimension NC × ML and is possibly not of maximum
rank. Denote with ẽ a generic element of the kernel of D and
with ẽT a generic element of ker[DT ]. Similarly, represent a
generic element of RNC as φ, and a generic element of RML as
q.

To assess the number of nondynamical, free-particle, and
harmonic oscillator degrees of freedom, we have to compute
the dimensions of K1 = ker[JH] and K2 = ker[(JH)2]. In this
case, it is easy to compute an explicit form for the generic
elements of K1 and K2, namely,⎛

⎜⎝
q
φ

Dφ

0

⎞
⎟⎠ ∈ K1 and

⎛
⎜⎝

q
φ

Dφ + LẽT

Cẽ

⎞
⎟⎠ ∈ K2. (D2)

We read directly the dimensions and the number of free
particles:

dim(K1) = NC + ML, dim(K2) = NC + ML + n f ,

n f = dim(ker[D]) + dim(ker[DT ]). (D3)

It is easy to build E and F̃ spaces, in the notation of Ap-
pendix A, as being generated, respectively, by vectors of the
form ⎛

⎜⎝
ẽT

ẽ
0
0

⎞
⎟⎠ ∈ E and

⎛
⎜⎝

0
0

LẽT

Cẽ

⎞
⎟⎠ ∈ F̃ . (D4)

Since the dimension of K1 is the number of free particles
plus twice the number of nondynamical variables, we express
the number of nondynamical variables for this case of linear
reciprocal networks as

nnd = 1
2 (dim(K1) − n f ) = 1

2 [NC + ML − n f ]. (D5)

024510-16



ALGEBRAIC CANONICAL QUANTIZATION OF LUMPED … PHYSICAL REVIEW B 106, 024510 (2022)

Passing now to the harmonic oscillator sector, notice that
nho + n f + nnd is the total number of configuration space vari-
ables, in our case NC + ML, whence we compute

nho = NC + ML − n f − nnd = 1

2
[NC + ML − n f ] = nnd,

(D6)

so the number of harmonic oscillators is the same as that
of nondynamical variables in this case of linear reciprocal
networks, as stated in the main text.

Example

In the text, the example of Fig. 3(b) has been put forward.
In this situation, with D = (1 1), we see that ker[DT ] = ∅,
while ker[D] is one-dimensional, so n f = 1. We have NC =
2, ML = 1, whence nnd = nho = 1. Applying Eqs. (A19) and
(A20), we obtain for the free-particle sector

e f = 1√
C1 + C2

⎛
⎜⎜⎜⎜⎜⎝

0
1

−1
0
0
0

⎞
⎟⎟⎟⎟⎟⎠ and f f = 1√

C1 + C2

⎛
⎜⎜⎜⎜⎜⎝

0
0
0
0

C1

−C2

⎞
⎟⎟⎟⎟⎟⎠.

(D7)

From inspection of K1 in Eqs. (D2) and comparison Eqs. (D7),
we construct W̃ , as defined in Eq. (A17), and by symplectic
orthogonalization, Eq. (A21), we obtain

w1 =

⎛
⎜⎜⎜⎜⎜⎝

1
0
0
0
0
0

⎞
⎟⎟⎟⎟⎟⎠, w2 = 1

C1 + C2

⎛
⎜⎜⎜⎜⎜⎝

0
C2

C1

C1 + C2

0
0

⎞
⎟⎟⎟⎟⎟⎠. (D8)

The full symplectic basis is completed with the harmonic
oscillator sector,

e = 1√
	L

⎛
⎜⎜⎜⎝

1
0
0
1
1

⎞
⎟⎟⎟⎠, f = −1

	3/4L1/2

⎛
⎜⎜⎜⎜⎜⎝

0
1/C1

1/C2

0
0
0

⎞
⎟⎟⎟⎟⎟⎠, (D9)

where 	 = 1/
√

L(C1 + C2).

APPENDIX E: EXAMPLE CIRCUIT: JJS COUPLED TO A
NR BLACK-BOX ADMITTANCE

Here we provide details for the quantization of the NR
two-port admittance capacitively coupled to Josephson junc-
tions in Fig. 7. After writing systematically the Lagrangian
Eq. (21) and Hamiltonian Eq. (23), let us perform a triangular

transformation (shift) of the internal charge degrees of free-
dom with the Josephson fluxes,

Q̃ = Q − 2Z−1DJ�J , P̃ = P, (E1)

�̃J = �J , �̃J = �J − 2DT
J Z−1P, (E2)

while not modifying the coupling capacitor variables �̃c =
�c and �̃c = �c. The Hamiltonian can then be rewritten,

H = 1
2

(
P̃ − 1

2
ZQ̃ + Dc�̃c

)T

L−1

(
P̃ − 1

2
ZQ̃ + Dc�̃c

)

+ 1
2

(
�̃J + 2DT

J Z−1P̃
)T

C−1
J

(
�̃J + 2DT

J Z−1P̃
)

+ 1
2�̃cC−1

c �̃c + U (�̃J )

=X̃
T
HX̃ + U (�̃J )

= 1
2

[
Ỹ

T
HlinỸ + �̃

T
J C−1

J

(
�̃J + 4DT

J Z−1P̃
)] + U (�̃J ),

(E3)

where we have defined vectors Ỹ
T = (Q̃

T
, �̃

T
c , P̃

T
, �̃

T
c )

and X̃
T = (Q̃

T
, �̃

T
c , P̃

T
, �̃

T
c , �̃

T
J , �̃

T
J ), the nonlinear poten-

tial U (�J ) = −∑
n EJn cos(ϕJn), with the matrices

H =
(

Hlin Hint

HT
int HJ

)
, (E4)

Hlin =

⎛
⎜⎜⎜⎝

ZT L−1Z
4

−ZT L−1Dc
2

−ZT L−1

2 0
−DT

c L−1Z̃
2 DT

c L−1Dc DT
c L−1 0

−L−1Z
2 L−1Dc L̃−1 0
0 0 0 C−1

c

⎞
⎟⎟⎟⎠, (E5)

where L̃−1 = L−1 − 4Z−1DJC−1
J DT

J Z−1. Note that the
Josephson variables �̃J only appear in the nonlinear potential
and, as previously mentioned, they should be modeled with
compact variables ϕJn = (2π )�Jn

�0
∈ S1. We then perform a

rescaling transformations (another trivial transformation) so
all classical coordinates have the same units:

Q̄ =
√

RQ̃, P̄ = P̃/
√

R, �̄c/J = C
− 1

4
c/J L

1
4 �̃c/J ,

�̄c/J = C
1
4
c/JL− 1

4 �̃c/J . (E6)

The matrix of Hamiltonian Eq. (23) can now be written, for
the specific example at hand, Eqs. (22), in terms of three
frequencies, 	J = 1/

√
CJL, 	c = 1/

√
CcL, and 	 = R/L.

Furthermore, without loss of generality, we set the transformer
turn-ratios matrix to n11 = n12 = n22 = 1 and n21 = 0.

1. No Josephson junctions

Let us begin the analysis of the circuit by setting to zero
the nonlinear potential, i.e., EJn → 0 such that U (�J ) = 0
in Hamiltonian Eq. (23). In the example, Eqs. (22), after the
transformations of Eqs. (E6) and using the transformer turn
ratios mentioned above, the Hamiltonian in this case becomes
2HU=0 = X̄ T HX̄ , with
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H =

⎛
⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎝

	
4 0

√
		c

2

√
		c

2 0 −	
2 0 0 0 0 0 0

0 	
4 −

√
		c

2 0 	
2 0 0 0 0 0 0 0√

		c

2 −
√

		c

2 2	c 	c −√
		c −√

		c 0 0 0 0 0 0√
		c

2 0 	c 	c 0 −√
		c 0 0 0 0 0 0

0 	
2 −√

		c 0 8	2
J

	
+ 	 − 4	2

J
	

0 0 0 0 2	
3/2
J√
	

2	
3/2
J√
	

−	
2 0 −√

		c −√
		c − 4	2

J
	

4	2
J

	
+ 	 0 0 0 0 − 2	

3/2
J√
	

0
0 0 0 0 0 0 	c 0 0 0 0 0
0 0 0 0 0 0 0 	c 0 0 0 0
0 0 0 0 0 0 0 0 0 0 0 0
0 0 0 0 0 0 0 0 0 0 0 0

0 0 0 0 2	
3/2
J√
	

− 2	
3/2
J√
	

0 0 0 0 	J 0

0 0 0 0 2	
3/2
J√
	

0 0 0 0 0 0 	J

⎞
⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎠

(E7)

and X̄ T = (Q̄T
, �̄

T
c , P̄T

, �̄
T
c , �̄

T
J , �̄

T
J ). Solving the eigenvalue problem for JH, we can find the symplectic transformation. For

the homogeneous case of frequencies 	 = 	c = 	J = 1, say, we have

S|	α=1
num=

⎛
⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎝

−1 1 −1 −1
√

2 1√
2

0 0 1.38612 0.435045 0. 0.

1 0 0 1 −√
2 0 0 0 −0.634047 0.634047 0.800274 −0.251173

0 0 0 1
2 − 1√

2
0 0 0 0.317023 −0.317023 −0.125587 0.400137

0 0 1
2 0 0 − 1

2
√

2
0 0 0.217523 0.693058 0. 0.

− 1
2 0 0 0 0 0 0 0 0. 0. 0.27455 0.27455

− 1
2

1
2 0 0 0 0 0 0 −0.158512 0.158512 −0.125587 0.400137

0 0 0 0 0 0 − 1√
2

0 0.317023 −0.317023 0.800274 −0.251173

0 0 0 0 0 0 0 − 1√
2

0. 0. 0.5491 0.5491

0 0 0 1
2

1√
2

0 0 0 0.317023 −0.317023 −0.125587 0.400137

0 0 1
2 0 0 1

2
√

2
0 0 0.217523 0.693058 0. 0.

0 1 0 0 0 0 1√
2

0 0. 0. 0. 0.

1 0 0 0 0 0 0 1√
2

0. 0. 0. 0.

⎞
⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎠

(E8)

such that the diagonalized Hamiltonian has the form Eq. (A37), where the matrix of frequencies is

Ω =
(

2.52434 0
0 0.792287

)
. (E9)

As previously advanced in the analysis of the main text, this system has two free particles (which correspond to the fact that we
have two pairs of capacitors in series and we have used a redundant description), two nondynamical pairs of conjugated variables
(associated with the intrinsically redundant gyrator description), and two harmonic oscillators.

2. Keeping the full cosine

Let us now analyze the full problem with the Josephson junctions. One of the routines suggested for the quantization of this
problem is to perform Williamson’s analysis only on the fully linear subsector, in this case, Hlin of Eq. (E5), i.e., taking into
consideration only the inductor and coupling capacitor variables. This partial classical diagonalization will be followed by a
quantum one on the coupled quantized system, thus the name two tier method. The partial symplectic diagonalization of the
Hamiltonian yields

HpD = ST
Y HSY =

⎛
⎜⎜⎜⎝

0 0 0 0 0
0 Ω 0 0 G
0 0 Ω 0 M
0 0 0 0 0
0 GT MT 0 ΩJ

⎞
⎟⎟⎟⎠, (E10)
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with particular numbers for the set of parameters chosen

HpD
num=

⎛
⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎝

0 0 0 0 0 0 0 0 0 0 0 0
0 0 0 0 0 0 0 0 0 0 0 0
0 0 0 0 0 0 0 0 0 0 0 0
0 0 0 0 0 0 0 0 0 0 0 0
0 0 0 0 2.52434 0 0 0 0 0 0.800274 0.5491
0 0 0 0 0 0.792287 0 0 0 0 −0.251173 0.5491
0 0 0 0 0 0 2.52434 0 0 0 −0.317023 0
0 0 0 0 0 0 0 0.792287 0 0 0.317023 0
0 0 0 0 0 0 0 0 0 0 0 0
0 0 0 0 0 0 0 0 0 0 0 0
0 0 0 0 0.800274 −0.251173 −0.317023 0.317023 0 0 1. 0
0 0 0 0 0.5491 0.5491 0 0 0 0 0 1.

⎞
⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎠

, (E11)

where the coordinates have been transformed accordingly
to the partially-diagonalizing symplectic transformation such
that (S−1

Y X̄ )T = (ȳT , π̄T , �̄
T
J , �̄

T
J ), and ȳT = (ȳT

nd, ȳT
ho) are

diagonalized position coordinates conjugated to the canonical
momenta π̄T = (π̄T

nd, π̄
T
ho). After the canonical quantization

of purely oscillator conjugated pairs and their transformation

to annihilation and creation operators, i.e., ȳi =
√

h̄
2 (ai + a†

i ),

and π̄i = i
√

h̄
2 (a†

i − ai ), we obtain

Ĥ/h̄
q.=

2∑
n,m

[	na†
nan + (gnman + g∗

nma†
n) ˆ̄
Jm] + ĤJ/h̄,

(E12)

where gnm =
√

1
2h̄ [Gnm − iMnm]. The purely quadratic part of

the Josephson Hamiltonian can be read from the lower right
corner 4 × 4 submatrix of HpD (or H), and thus the Josephson
part of the total Hamiltonian becomes

ĤJ/h̄ =
2∑

n=1

ˆ̄
2
Jn − EJn cos( ˆ̄ϕJn), (E13)

where the renormalized phase variable is ϕ̄Jl = 2π �̄Jl
�0

.

3. Black-box quantization approach

Let us now present a black-box quantization approach. Un-
der the condition that the Josephson flux variables have small
fluctuations, we carry out an extended harmonic analysis. To
this point, extract the quadratic term of the cosine potentials,
and include its contribution, �̄

T
J L−1

J �̄J , to the Hamiltonian

matrix (E4), with

L−1
J =

√
L

LJ
	J12. (E14)

Setting LJ , as way of illustration, to be equal to L, one
would obtain now four independent harmonic dynamics (the
two free particles now are trapped in confining potentials)
whereas the nondynamical sector remains unchanged (two
pairs of conjugated variables) such that the final canonical
block diagonal matrix HD = ST HS [Eq. (A37)] has for its
frequency block matrix

Ω =

⎛
⎜⎝

2.61227 0 0 0
0 1.20569 0 0
0 0 0.73029 0
0 0 0 0.434761

⎞
⎟⎠. (E15)

The final black-box Hamiltonian, after quantization and trans-
formation to annihilation (bn) and creation (b†

n) operators,
reads

Ĥbb
q.=

4∑
n

h̄	nb†
nbn + EJ

∑
l=1,2

∞∑
m=2

(−1)m+1 ˆ̄ϕ2m
Jl

(2m)!
. (E16)

The frequencies 	n can also be obtained by going through
Hamiltonian Eq. (E12) by separating out the quadratic part
of HJ , Eq. (E13), and carrying out symplectic diagonalization
of the small oscillations approximation. Naturally enough, the
results match.

As already mentioned in the main text, in this specific
case the rescaled Josephson coordinates do not depend on the
nondynamical sector of the Williamson diagonalization. This
statement follows from the explicit form of the diagonaliz-
ing symplectic transformation in the black-box approach, i.e.,
SZ = X̄ ,
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S =

⎛
⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎝

−1 −1 1 −2 ∗ ∗ ∗ ∗ ∗ ∗ ∗ ∗
1 1 0 0 ∗ ∗ ∗ ∗ ∗ ∗ ∗ ∗
0 1 0 0 ∗ ∗ ∗ ∗ ∗ ∗ ∗ ∗
0 0 0 1 ∗ ∗ ∗ ∗ ∗ ∗ ∗ ∗

− 1
2

1
2 0 0 ∗ ∗ ∗ ∗ ∗ ∗ ∗ ∗

− 1
2

1
2

1
2 0 ∗ ∗ ∗ ∗ ∗ ∗ ∗ ∗

0 0 0 0 ∗ ∗ ∗ ∗ ∗ ∗ ∗ ∗
0 0 0 0 ∗ ∗ ∗ ∗ ∗ ∗ ∗ ∗
0 0 0 0 ∗ ∗ ∗ ∗ ∗ ∗ ∗ ∗
0 0 0 0 ∗ ∗ ∗ ∗ ∗ ∗ ∗ ∗
0 0 1 0 ∗ ∗ ∗ ∗ ∗ ∗ ∗ ∗
1 −1 0 0 ∗ ∗ ∗ ∗ ∗ ∗ ∗ ∗

⎞
⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎠

, (E17)

where the ninth and tenth rows have zeros in the
first four columns, meaning that ϕ̄Ji(zho,πho), as ZT =
(zT

nd,π
T
nd, zT

ho,π
T
ho).

However, we must remark that this could be not the case
in generic networks with Josephson junctions and ideal NR
elements. In a more general scenario, e.g., by removing the
coupling capacitors Cci in circuit of Fig. 7, the Josephson
variables would mix with conjugate position and momenta
variables that are nondynamical in the linear approximation,
but change character for the full problem, i.e., we would have
a dependence of the (rescaled) Josephson variables of the form

ϕ̄Ji(zT
nd,π

T
nd, zT

ho,π
T
ho), in such a way that the Hamiltonian

would be presented as

H = Hho
(
zT

ho,π
T
ho

) + Hnl
(
zT

nd,π
T
nd, zT

ho,π
T
ho

)
. (E18)

As both Williamson nondynamical positions and momenta are
present, their classical equations of motion are no longer triv-
ial, and they become dynamical. Thus, the black-box approach
would provide a starting point for the study of the low-lying
energy sector of such classes of circuits but would require
refinement additional to the symplectic diagonalization step
we put forward.
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