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We investigate the competition between acoustic phonon mediated superconductivity and the long-range
Coulomb interaction in moiréless graphene multilayers, specifically, Bernal bilayer graphene, rhombohedral
trilayer graphene, and ABCA-stacked tetralayer graphene. In these graphene multilayers, the acoustic phonons
can realize, through electron-phonon coupling, both spin-singlet and spin-triplet pairings, and the intra-sublattice
pairings (s-wave spin-singlet and f -wave spin-triplet) are the dominant channels. Our theory naturally explains
the distinct recent experimental findings in Bernal bilayer graphene and rhombohedral trilayer graphene, and we
further predict the existence of superconductivity in ABCA tetralayer graphene arising from electron-phonon
interactions. In particular, we demonstrate that the acoustic phonon mediated superconductivity prevails over a
wide range of doping in rhombohedral trilayer graphene and ABCA tetralayer graphene while superconductivity
exists only in a narrow range of doping near the Van Hove singularity in Bernal bilayer graphene. Key features of
our theory are the inclusion of realistic band structures with the appropriate Van Hove singularities and Coulomb
repulsion effects (the so-called “μ∗ effect”) opposing the phonon-induced superconducting pairing. We also
discuss how intervalley scatterings can suppress the spin-triplet spin-polarized superconductivity. Our work
provides detailed prediction based on electron–acoustic phonon interaction induced graphene superconductivity,
which should be investigated in future experiments.
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I. INTRODUCTION

Superconductivity is a prominent and extensively studied
quantum many-body phenomenon because of its funda-
mental importance, widespread occurrence in nature, and
technological applications. One of the most active contem-
porary research directions in condensed matter physics is
the superconductivity in magic-angle moiré graphene sys-
tems including magic-angle twisted bilayer graphene [1–4],
magic-angle twisted trilayer graphene [5–8], and magic-angle
twisted graphene multilayers (n > 3) [9–11]. The single-
particle bands in such systems are tuned to be nearly flat
[12–14] such that many-body effects can become significant.
It is also worth mentioning that robust reproducible super-
conductivity has not been systematically established in other
moiré systems, making magic-angle twisted graphene systems
distinctive. In addition, the extensively studied regular mono-
layer graphene is not known to be superconducting (because
the electron-phonon coupling [15,16] is not significant enough
to produce an observable Tc for a doped monolayer graphene),
adding considerable excitement to the unexpected discovery
of superconductivity in moiré magic-angle twisted graphene
layers.

Twisting or a moiré flat band or magic angle, how-
ever, is not an essential condition for superconductivity in
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graphene-based materials as rhombohedral trilayer graphene
(RTG) [17,18] and Bernal bilayer graphene (BBG) [19]
also demonstrate robust superconducting behavior in recent

FIG. 1. Lattice structure of ABCA-stacked tetralayer graphene.
(a) Top view. For each layer, we illustrate a hexagon to specify the
relative position in the xy plane. 1A, 2A, 3A, and 4A (1B, 2B, 3B, and
4B) denote the sublattice A (B) in the layer 1, 2, 3, and 4, respectively.
Note that the lattice points in the first layer and the fourth layer are
at the same xy positions. (b) The cross-section view. At K and −K
points, the intralayer hybridizations can be ignored, and the nearest-
neighbor interlayer couplings generate dimerization in 1B-2A, 2B-
3A, 3B-4A bonds (black dashed bonds). 1A and 3B sites are the low-
energy sites in this simplified picture. The BBG (RTG) structure can
be derived from ABCA tetralayer graphene with only the first 2 (3)
layers.
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experimental studies. There are two distinct superconducting
phases in RTG, termed SC1 and SC2. The superconduc-
tivity in SC1 is suppressed by an in-plane magnetic field
within the Pauli limit, which is thought to be more con-
sistent with a spin-singlet pairing (although complicated
spin-triplet pairing/singlet-triplet mixing could in some sit-
uations also manifest similar physics); SC2 is likely to be
a (spin-polarized) spin-triplet pairing since the superconduc-
tivity persists under a large in-plane magnetic field violating
the Pauli limit. By contrast, superconductivity in BBG is
rather mysterious—a sufficiently large in-plane magnetic field
is required to induce a (spin-polarized) spin-triplet super-
conducting state in BBG. Since similar spin-singlet/spin-
triplet superconductivity has been observed experimentally
in magic-angle moiré graphene systems [1–11], a reasonable
question is whether there exists a universal pairing mecha-
nism for superconductivity in all graphene-based materials,
with and without moiré structure. In this context, acoustic
phonons are the most natural candidate for pairing since
Cooper pairings in most superconductors in nature are caused
by acoustic phonons, and in the untwisted systems with no
moiré flat bands, the most obvious arguments in favor of
strong correlation induced superconductivity become ques-
tionable. In the current work, we develop a detailed theory
for acoustic phonon induced superconductivity in “moiréless”
graphene multilayers, where no twist is involved between the
layers.

Before discussing a potential universal mechanism, it is
important to emphasize that superconductivity in graphene-
based materials is distinct from other systems (e.g., conven-
tional metals) because of the valley and sublattice degrees of
freedom. For example, electron–acoustic phonon coupling in
graphene has an enlarged SU(2) × SU(2) symmetry due to the
approximate valley symmetry [20]. As a result, the acoustic
phonon mediated intervalley pairings have a singlet-triplet
degeneracy, and the intra-sublattice pairings are typically fa-
vored [20,21]. Therefore, it is natural to ask whether acoustic
phonon mediated pairings can account for superconductivity
in graphene-based materials [20,22]. Previously, we showed
that the acoustic phonon mediated superconductivity can
explain qualitatively and semiquantitatively the distinct super-
conducting phenomenology reported in RTG [23] and BBG
[24]. Since the band structures of RTG and BBG are simpler
and better established compared with twisted moiré graphene
systems, it is easier to make direct (semi)quantitative com-
parisons between theory and experiment here. Besides the
acoustic-phonon mechanism, which we consider, a number
of alternative theoretical ideas focusing on interelectron in-
teractions have also been proposed for RTG [25–32] and BBG
[33]. We mention here that the case for robust acoustic phonon
mediated superconductivity in twisted graphene systems has
already been made in the literature, based on the enhancement
of the effective electron-phonon coupling in moiré systems
by virtue of the suppression of the graphene Fermi velocity
[20,22], but the current work, by contrast, is specifically on
moiréless graphene multilayers.

In this work, we investigate in considerable detail the
acoustic phonon mediated superconductivity in moiréless
graphene multilayers including BBG, RTG, and (the experi-
mentally not yet studied, and thus we are making a prediction)

ABCA-stacked tetralayer graphene [34]. We incorporate the
k · p band structure and the Coulomb repulsion in our phonon-
induced theory of superconductivity. For RTG and ABCA
tetralayer graphene, we find that robust observable supercon-
ductivity (Tc > 20 mK) can be realized for a wide range of
doping, even for doping away from the Van Hove singularity
(VHS) while observable and rather fragile superconductivity
is obtained only near VHS in BBG. Thus, we predict the
existence of a more generic doping-independent (and also
more robust) superconductivity in RTG and ABCA than in
BBG. Our work, while being in agreement with the existing
experimental observations, also provides a number of falsifi-
able predictions based on electron–acoustic phonon coupling
incorporating Coulomb repulsion, and we believe, based on
our finding a reasonable agreement between our theory and
experiment, that acoustic phonons are the main mediators of
superconductivity for graphene-based materials in general. A
unique feature of graphene is the fact that acoustic phonons
can lead to both singlet and triplet superconductivity because
of the enlarged SU(2) × SU(2) symmetry enabled by the val-
ley degrees of freedom.

The rest of the paper is organized as follows: In Sec. II, we
introduce the k · p band model, the electron–acoustic phonon
coupling, and the Coulomb interaction. We discuss how to in-
corporate Coulomb repulsion in the theory of acoustic phonon
mediated graphene superconductivity and present a simplified
approach in Sec. III. In Sec. IV, the main numerical results
are presented and discussed in the context of experimen-
tal results. We conclude with a brief discussion in Sec. V.
Appendices A–F complement the main text by providing var-
ious technical details used in our work.

II. MICROSCOPIC MODEL

Superconductivity is crucially dependent on density of
states (DOS) and microscopic interactions (e.g., electron-
phonon, electron-electron). In this section, we discuss the
single-particle band structures, and interactions used in this
work. We focus on untwisted moiréless pristine BBG, RTG,
and ABCA-stacked tetralayer graphene.

A. Single-particle band structure

We are interested, following the experimental systems, in
the low-doping graphene multilayers in the presence of a
displacement field, which induces a tunable band gap at the
charge neutrality point. The single-particle bands near the
K and −K valleys can be described by k · p band models.
Generally, the single-particle Hamiltonian is described by

Ĥn,0 =
∑

τ

∑
k

�̂†
n,τ (k)ĥn,τ (k)1̂s�̂n,τ (k), (1)

where ĥn,τ=±(k) is a 2n × 2n low-energy Hamiltonian near
the ±K valley, n � 2 is the number of layers, 1̂s is the identity
matrix in the spin space, and �̂n,τ (k) is a 4n-component
column vector with a valley quantum number τ , made of the
fermionic annihilation operator ψτσ ls with sublattice σ , spin
s, and layer l . In this work, we consider BBG (n = 2), RTG
(n = 3), and ABCA tetralayer graphene (n = 4).
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The low-energy bands of the graphene multilayer systems
here have large probability on the A sites of the top layer
(1A) and B sites of the bottom layer (nB). This property arises
from the interlayer nearest-neighbor tunnelings which tend to
form dimerized bonds as illustrated in Fig. 1, where ABCA
tetralayer graphene is illustrated. One can obtain BBG (RTG)
by considering just two (three) layers in Fig. 1. To gain some
intuitive understanding, we construct an effective 2 × 2 matrix
given by [35]

ĥ′
n,+(k) ≈

[
�1 Cn(�†

k )n

Cn(�k )n −�1

]
, (2)

where 2�1 corresponds to the energy difference between two
low-energy sites induced by the displacement field, Cn =
vn

0/γ
n−1
1 , v0 is the graphene velocity, and γ1 corresponds to

the interlayer dimerization energy. The effective energy bands

are described by E ′
k = ±

√
C2

n |k|2n + �2
1, resulting in a diver-

gent DOS ρ(E ) ∝ |E ± �1|−1+1/n near the band edge (±�1).
Based on this heuristic estimate, we expect that the DOS gets
larger for a higher layer number (n). More careful analysis
should include additional hopping terms and crystal fields,
which might substantially alter the results, such as inducing
VHS away from band edges. Regardless of the details, the
low-energy bands are approximately layer and sublattice po-
larized. As a result, the superconducting states with intralayer
inter-sublattice pairings should be generically suppressed in
the low-energy bands because one of the sublattices in each
layer has higher energy.

To obtain the low-energy band structure, we formally diag-
onalize the Hamiltonian in Eq. (1) as follows:

Ĥ0 =
∑
τ=±

2n∑
b=1

∑
s=↑,↓

Eτ,b(k)c†
τbs(k)cτbs(k), (3)

where Eτ,b(k) encodes the energy-momentum dispersion
of the bth band and valley τK , and cτbs(k) is an elec-
tron annihilation operator of valley τK , the bth band,
spin s, and momentum k. The microscopic-basis opera-
tor ψτσ ls and the band-basis operator cτbs obey ψτσ ls(k) =∑

b 
τb,σ l (k)cτbs(k), where 
τb,σ l (k) is the wave function of
valley τK and band b. In addition, the (spinless) time-reversal
symmetry imposes further constraints: E+,b(k) = E−,b(−k)
and 
+b,σ l (k) = 
∗

−b,σ l (−k).
We use the k · p bands described in Appendix A and com-

pute DOS numerically for BBG, RTG, and ABCA tetralayer
graphene as shown in Fig. 2. (See Appendix B for a dis-
cussion on the numerical calculations.) Note that the DOS
in BBG is much smaller than the DOS in RTG and ABCA
tetralayer graphene. The differences in DOS imply that the
screened Coulomb interaction might show different behavior
since screening depends crucially on the DOS, as will be
discussed in detail later.

B. Electron-phonon coupling

In graphene multilayers, the electron–optical phonon
couplings [36] are generically suppressed because of the sub-
lattice polarization in the systems [37]. Thus, we focus on the

FIG. 2. Density of states based on k · p models. (a) BBG,
(b) RTG, (c) ABCA. The numerical results are obtained by com-
puting a 104 × 104 momentum grid with a momentum spacing �k ≈
2 × 10−5a−1

0 . For a given EF , we determine ne based on the DOS pro-
files illustrated here. �1 is a band parameter (defined in Appendix A)
which can be tuned by a displacement field.

in-plane longitudinal acoustic phonon, which is described by

Ĥph =
∑

l

∑
q

ωqa†
l,qal,q, (4)

where aq is the phonon annihilation operator with momentum
q, ωq = vph|q| is the acoustic phonon dispersion, and vph is
the sound velocity. For simplicity, we consider that the acous-
tic phonon modes are layer decoupled, i.e., the same as that in
monolayer graphene [15]. However, our qualitative results do
not rely on this assumption.

The electron–acoustic phonon coupling [38] is given by,
within the well-known deformation potential coupling ap-
proximation,

Ĥep = D√
A

∑
q,l

√
h̄

2ρmωq
(−iq · êq)(al,q + a†

l,−q)n̂l (−q), (5)

where ê∗
q = ê−q is the polarization vector, ρm is the

mass density of monolayer graphene, D is the defor-
mation potential, A is the area of the 2D system,
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ωq = vph|q| is the acoustic phonon dispersion, and n̂l (−q) =∑
k

∑
τ,σ,s ψ

†
τ,l,σ,s(k)ψτ,l,σ,s(k − q).

C. Coulomb interaction

In addition to electron–acoustic phonon couplings, the
electrons are directly interacting via Coulomb repulsion,
which is an important factor in determining the existence
of superconductivity, because no superconductivity would be
possible if the repulsive Coulomb coupling overwhelms the
attractive interaction induced by acoustic phonons in the asso-
ciated pairing channel. We focus on the long-range component
of the instantaneous Coulomb interaction, described by

ĤC = 1

2A
∑

q

VC (q)
∑

l

n̂l (q)
∑

l ′
n̂l ′ (−q), (6)

where VC (q) encodes the Coulomb potential and
n̂l (q) = ∑

k

∑
τ,σ,s ψ

†
τ,l,σ,s(k)ψτ,l,σ,s(k + q). The long-range

Coulomb potential given by Eq. (6) has an SU(2) × SU(2)
symmetry, which results in a singlet-triplet degeneracy.
However, the short-range contributions of the Coulomb
potential might break the SU(2) × SU(2) symmetry down to
an SU(2) symmetry [25].

In the experiments, the graphene multilayer system is
sandwiched between two metallic plates which screen the
Coulomb interaction. After solving the electrostatic problem
using the image charge approximations, we obtain

VC (q) = 2πe2

ε|q| tanh (|q|d ), (7)

where ε is the dimensionless average background lattice di-
electric constant and d is the distance between the 2D system
and the metallic plates.

In addition to the gate screening, the large DOS in
graphene multilayers (Fig. 2) results in significant intraband
screenings. To incorporate the intraband screening by the
carriers themselves, we adopt the extensively used Thomas-
Fermi approximation defined by

VTF(q, EF ) = 1

[VC (q)]−1 + ρ(EF )
= VC (q)

1 + VC (q)ρ(EF )
, (8)

where ρ(EF ) is the total DOS at Fermi energy. The Thomas-
Fermi approximation is the static limit of the random phase
approximation, which is exact under the well-controlled lim-
its of high density and/or many fermion flavors. When
VC(q)ρ(EF ) 	 1, VTF(q; EF ) ≈ 1/ρ(EF ), which is indepen-
dent of ε and d (simply because, in this large-DOS limit, the
screening by the carriers themselves dominates). In graphene
multilayers discussed here, the intraband process is the dom-
inating mechanism for the screening of Coulomb repulsion.
We will discuss the interplay between phonon-mediated pair-
ings and screened Coulomb repulsion next.

III. PHONON-MEDIATED SUPERCONDUCTIVITY
INCORPORATING COULOMB REPULSION

To achieve a more quantitative understanding, it is cus-
tomary to apply the Eliashberg theory [39,40] with the full
frequency dependence of the problem, which is typically
solved by intensive numerical methods. This is because the

retarded effective attraction can overcome the instantaneous
Coulomb repulsion even though the bare interaction is repul-
sive at all frequencies [38–41].

In the rest of this section, we present a simplified treatment
without carrying out intensive numerics, incorporating both
the acoustic-phonon attraction and Coulomb repulsion, to
solve for superconductivity in moiréless graphene multilayers.
(The full numerical solution is presented in Appendix D.)
We first discuss the effective BCS interaction and examine
the retardation effect by comparing the phonon velocity with
the estimated Fermi velocity. Then, we review the Eliashberg
theory and present a simplified mean-field approach. We sup-
port our results by solving the Eliashberg theory numerically
in Appendix D and Fig. 13, where the qualitative agreement
with our simplified almost-analytical mean-field solution is
shown.

A. BCS superconductivity and retardation

Electrons near the Fermi surface can attract each other via
a phonon-mediated interaction. Such an attractive interaction
can overcome the repulsive Coulomb repulsion and create
Cooper pairs. This is the central idea of the BCS theory.
To derive the phonon-mediated attraction, we start with the
electron-phonon couplings [given by Eq. (5)] and integrate
out the phonon fields in the imaginary-time path integral. The
effective interaction is described by an action,

Sph = − 1

2βA
∑
νn,q

Vg(νn, q)
∑

l

n̂l (νn, q)n̂l (−νn,−q), (9)

where νn is the Matsubara frequency, Vg(νn, q) = g
ω2

q

ω2
q+ν2

n
is

the phonon-mediated dynamical potential, ωq = vs|q|, vs is
the sound velocity, and g = D2/(ρmv2

s ) is the strength of
phonon-mediated attraction. The overall minus sign indicates
the effective attraction mediated by acoustic phonons, and the
effective attraction has an SU(2) × SU(2) symmetry, resulting
in a singlet-triplet degeneracy in the pairing. To estimate g0,
we use D = 30 eV, ρm = 7.6 × 10−8 g/cm2 [15,16], and vs =
2 × 106 cm/s. We obtain g ≈ 474 meV nm2 [22,23]. Here,
D = 30 eV is based on the experimentally extracted value
[16], and it might be off by a factor of 2 [15,20]. In this work,
we use g = g0 ≡ 474 meV nm2 unless noted otherwise. Our
qualitative results are independent of the choice of D and g.

1. Single-band approximation and pairing symmetry

To simplify the calculations, we adopt the single-band
approximation to where the Fermi energy EF lies. This is
a valid approximation keeping only the band because low-
energy bands of the graphene multilayers are separated by
a gap ∼2|�1| due to the applied displacement field, and the
high-energy bands are also away by at least ∼100 meV. The
BCS channel of the phonon-mediated interaction [Eq. (9)] is
given by

Sph = −1

βA
∑
k,k′

V (b)
g (k, k′)c̄+bs,k c̄−bs′,−kc−bs′,−k′c+bs,k′ , (10)
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where

V (b)
g (k, k′) = g(b)

k,k′
ω2

k−k′

ω2
k−k′ + (ωn − ω′

n)2 , (11)

g(b)
k,k′ = g

∑
σ,l

|
+b;lσ (k)|2|
+b;lσ (k′)|2, (12)

b is the index of the projected band, cτbs,k , c̄τbs,k are the Grass-
mann variables representing the fermionic fields, k = (ωn, k)
denotes the frequency-momentum index, and V (b)

g (k, k′) is the
phonon-mediated BCS attractive potential after the single-
band projection.

Before we proceed, it is worthwhile discussing the pairing
symmetry in the low-energy bands of graphene multilayers.
We consider only the intervalley Cooper pairs here because
Eτ,b(k) �= Eτ,b(−k) generically suppresses the intravalley su-
perconductivity [42,43]. Following the classification scheme
based on valley and sublattice degrees of freedom [20–23],
the intervalley pairing symmetry (i.e., s, p, d , f wave) can be
determined from C3z (threefold rotation about hexagon center)
and spin SU(2) symmetry. s-wave spin-singlet and f -wave
spin-triplet pairings are intra-sublattice; p-wave spin-triplet
and d-wave spin-singlet are inter-sublattice. For graphene
multilayers, we find that the intralayer inter-sublattice pairings
are strongly suppressed in the low-energy bands since one of
the sublattices in each layer is at high energy. Thus, we focus
only on the intralayer intra-sublattice pairings, i.e., s-wave
spin-singlet and f -wave spin-triplet pairings. In fact, s-wave
spin-singlet and f -wave spin-triplet pairings are degenerate
due to the SU(2) × SU(2) symmetry in the acoustic phonon
mediated attraction.

2. Mean-field approximation

In the standard BCS approximation, the frequency de-
pendence is suppressed completely. As such, V (b)

g (k, k′) is

reduced to g(b)
k,k′ . With the mean-field approximation, we de-

rive the linearized gap equation as follows:

�s′s(k) = 1

A
∑

k′
g(b)

k,k′
tanh

[E+b(k′ )−EF

2kBT

]
2E+b(k′) − 2EF

�s′s(k′), (13)

where kB is the Boltzmann constant, EF is the Fermi energy,
and the superconducting order parameter is defined by

�s′s(k′) = 1

A
∑

b

∑
k′

g(b)
k,k′ 〈c−bs′ (−k′)c+bs(k′)〉. (14)

The transition temperature Tc is determined by the highest T
such that Eq. (13) is satisfied. The obtained Tc here is for both
the s-wave spin-singlet and f -wave spin-triplet pairings be-
cause of the singlet-triplet degeneracy in the acoustic phonon
mediated pairing.

3. Validity of BCS approximation

The validity of BCS theory relies on the retardation effect,
indicating that phonon velocity is smaller than electron ve-
locity. In such a case, the Migdal theorem applies, and vertex
corrections can be ignored. However, the graphene multilayer
systems contain VHS in the low-energy bands, which can
result in a small Fermi velocity, and our theory incorporating

FIG. 3. Estimate of averaged Fermi velocity v̄F based on k · p
bands. We use v̄F = 2

√|ne|/(h̄
√

πρ ). (a) BBG, (b) RTG, (c) ABCA-
stacked tetralayer graphene. �1 is a band parameter (defined in
Appendix A) which can be tuned by a displacement field.

the Migdal theorem would break down for vs exceeding the
Fermi velocity. To check this, we estimate the average Fermi
velocity, v̄F = 2

√|ne|/(h̄
√

πρ), where ne is the carrier den-
sity and ρ is the total DOS (incorporating spin and valley,
assuming unpolarized states). In Fig. 3, we find that v̄F is
larger than the sound velocity vs (gray dashed line) at generic
dopings, suggesting the validity of the Migdal theorem and
BCS approximation holding generally in BBG, RTG, and
ABCA tetralayer graphene. For doping densities with v̄F < vs

(e.g., near VHS), the non-adiabatic vertex corrections [44,45]
become important, and Tc is generically suppressed by these
vertex corrections except for situations that are deep in the
anti-adiabatic limit [45]. In particular, the vertex correction
for doping densities close to the VHS can increase Tc [44]. We
neglect all vertex corrections in the current work. For a fixed
|�1|, one can see that the v̄F away from VHS gets smaller for
a larger n (number of layers). This property is consistent with
the effective two-band model description in Eq. (2), where
dispersion is approximately proportional to |k|2n near the band
edge.
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FIG. 4. Numerical Tc based on pure electron–acoustic phonon
pairing. (a) BBG, (b) RTG, (c) ABCA. We solve Eq. (13) with
5000 energy levels from a fine momentum grid with a spacing
�k ≈ 0.002a−1

0 . (a) is the same as Ref. [24]. (b) is slightly different
from Ref. [23] (in the low doping) due to the finer momentum mesh
and the way of determining ne. �1 is a band parameter (defined in
Appendix A) which can be tuned by a displacement field.

4. Superconductivity without Coulomb repulsion

We numerically solve Eq. (13) and plot Tc versus ne in
Fig. 4 for BBG, RTG, and ABCA tetralayer graphene. The
numerical parameters are provided in Appendix B. The re-
sults show that observable Tc is produced for a wide range
of doping for all systems, suggesting that acoustic phonons
can induce superconductivity in these systems. We emphasize
that Tc is determined by a wide window of energy states near
EF but not just the states precisely at EF [23,46]. Thus, the
Fermi energy precisely being at the VHS is not crucial for
the emergent superconductivity. Technically, this is due to the
kernel tanh[x/T ]

2x in Eq. (13) having a finite width, which has a
power-law falling off in x for x 	 T . This is distinct from the
Stoner-type instability where the kernel is reduced to a Dirac-
delta function at T = 0. Typically, the Tc values predicted in
Fig. 4, without any Coulomb repulsion effects, overestimate
the actual Tc because Coulomb effects suppress Tc. To provide
quantitative predictions, Coulomb repulsion has to be incor-
porated. Next, we turn to a framework incorporating both the
phonon-mediated attraction and Coulomb repulsion.

B. Eliashberg theory and renormalization
of Coulomb interaction

To investigate the interplay between phonon-mediated
attraction and direct Coulomb repulsion, the frequency depen-

dence, which is ignored in BCS theory, should be taken into
account. We review the celebrated Eliashberg theory [39,40]
within the single-band approximation (projection onto the bth
band) in the following. There are two sets of equations in
Eliashberg theory, a self-consistent equation for determining
the Eliashberg self energy, and another self-consistent equa-
tion for determining the order parameter. See Appendix C for
a derivation based on the path integral. The main results are
summarized in the following.

1. Eliashberg equations

We focus on T ≈ Tc where the order parameter is in-
finitesimal. In such a situation, the Eliashberg self energy is
determined by

i�+s(k
′) = 1

βA
∑

k

−W (k′, k)

−iωn + E+,b(k) − EF + i�+s(k)
, (15)

where i�+s(k) is the Eliashberg self energy of valley +K , spin
s, W (k, k′) = V (b)

g (k, k′) − V (b)
TF (k, k′), and V (b)

TF (k, k′) denotes
Eq. (8) after projecting onto the bth band. The Eliashberg
self energy can be written as i�+s(k) = (−Zk + 1)iωn + χk ,
where Zk is the wave function renormalization and χk encodes
the dispersion renormalization and quasiparticle lifetime. Us-
ing the Eliashberg self energy, the linearized gap equation is
expressed as

�ss′ (k′) = 1

βA
∑

k

W (k′, k)�ss′ (k)

(Zkωn)2 + [E+,b(k) − EF + χk]2 , (16)

where we have ignored the infinitesimal |�ss′ (k)| term in
the denominator. To simply the calculations, we set Zk = 1
and ignore χk . Equation (16) becomes a frequency-dependent
BCS gap equation given by

�ss′ (k′) = 1

βA
∑

k

W (k′, k)�ss′ (k)

ω2
n + [E+,b(k) − EF ]2 . (17)

This approximation is valid in the weak electron-phonon cou-
pling limit, which certainly applied to the multilayer graphene
systems under consideration in the current work. Our qualita-
tive results do not rely on this assumption. Note that Eq. (17) is
reduced to the frequency-independent BCS gap equation (13)
after suppressing the frequency dependence in � and W̃ .

2. Frequency-dependent gap equation

Solving the integral equation defined by Eqs. (16) or
(17) is a highly challenging computational task since a large
momentum mesh and a large frequency mesh are required.
Our goal here is to map the frequency-dependent Eliash-
berg theory into an effective frequency-independent BCS
theory incorporating the so-called μ∗ effect of Coulomb re-
pulsion. To derive the μ∗ effect, we first assume that the
phonon-mediated attraction is only nonzero around the Fermi
level in the low-frequency regime (|ωn|, |ω′

n| < ωc) while
the Coulomb repulsion is essentially frequency independent.
Now, we rewrite the frequency-dependent BCS gap equa-
tion [given by Eq. (17)] as follows:

�(k) = 1

βA
∑

k′
[χC (k; k′) + χph(k; k′)]�(k′), (18)
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FIG. 5. Diagrammatic representation of self-consistent ladder
equation for renormalization from high-energy states. The single
wiggly lines denote the bare interaction V ; the double wiggly lines
denote the renormalized interaction Ṽ ; the solid lines with arrows
denote the electron propagators. Note that k, k′, and p are in valley K
while −k, −k′, and −p are in valley −K .

where

�(k) = �(ωc − |ωn|)�<(k) + �(|ωn| − ωc)�>(k), (19)

χC (k; k′) = −V (b)
TF (k, k′)

1

ω′2
n + [E+,b(k) − EF ]2 , (20)

χph(k; k′) = V (b)
g (k, k′)

�(ωc − |ωn|)�(ωc − |ω′
n|)

ω′2
n + [E+,b(k) − EF ]2 . (21)

If we assume that the high-frequency (|ωn| > ωc) gap func-
tion does not depend on ωn, i.e., �>(k) = �∞(k), Eq. (18)
reduces to two coupled equations as follows:

�<(k) = 1

βA
∑

k′,|ω′
n|<ωc

[χC (k, k′) + χph(k, k′)]�<(k′)

+ 1

βA
∑

k′,|ω′
n|>ωc

χC (k, k′)�∞(k′), for |ωn| < ωc,

(22)

�∞(k) = 1

βA
∑

k′,|ω′
n|<ωc

χC (k, k′)�<(k′)

+ 1

βA
∑

k′,|ω′
n|>ωc

χC (k, k′)�∞(k′), for |ωn| > ωc.

(23)

Formally, one can eliminate �∞(k) and derive an effective
gap equation [39] as follows:

�<(k) = 1

βA
∑

k′,|ω′
n|<ωc

[χ̃C (k, k′) + χph(k, k′)]�<(k′), (24)

where χ̃C (k, k′) encodes the Coulomb repulsion after inte-
grating out the high-frequency degrees of freedom. Note that
χph(k, k′) is unchanged during this process as χph(k, k′) = 0
in the high-frequency regime.

3. μ∗ effect

The renormalization from the high-energy states can also
reduce the Coulomb repulsion in the BCS channel, which we
treat by solving the ladder self-consistent equation [38] shown
in Fig. 5. The self-consistent ladder Dyson equation corre-

sponds to an algebraic equation as follows:

Ṽ (k′, k) = V (k′, k) − 1

βA
∑
νn,q,

ωc<|νn|<�,

|Ẽq|<�

Ṽ (k′, q)V (q, k)

ν2
n + Ẽq

, (25)

where Ẽq = E+(q) − EF , Ṽ is the renormalized interaction,
and V is the bare interaction. This is equivalent to deriving
χ̃C in Eq. (24). If we ignore the momentum dependence of the
screened Coulomb interaction and use U0(EF ) ≡ VTF(kF ; EF ),
the renormalized interaction is given by

UR(EF ) = U0(EF )

1 + U0(EF )�(EF ; ωc; �)
, (26)

where �(EF ; ωc; �) encodes the renormalization from the en-
ergies satisfying ωc < |Eτb(k) − EF | < �, ωc = 2vskF , and
� is the energy cutoff. We discuss how to numerically eval-
uate � for arbitrary band structures in Appendix E. If we
assume a constant DOS (ρ0), the well-established μ∗ formula
[38] is reproduced,

μ∗ = μ

1 + μ ln(�/ωc)
, (27)

where μ∗ = UR(EF )ρ0 and μ = U0(EF )ρ0 are the dimension-
less renormalized and bare interaction, respectively.

C. BCS theory with effective attraction

To achieve superconductivity, the phonon-mediated at-
traction must be stronger than the renormalized Coulomb
repulsion in the low-energy regime so that effective Cooper
pairing may occur, which then condenses into the symmetry-
broken superconducting BCS ground state. Equation (26)
provides a quantitative estimate of the renormalized Coulomb
repulsion within an energy window [EF − ωc, EF + ωc]. We
can construct an effective BCS theory by replacing g with the
effective interaction g∗ = g − UR(EF ). We note that g∗ > 0 is
a necessary condition for superconductivity, and the new gap
equation is given by

�s′s(k) = 1

A
∑

k′
g∗

k,k′
tanh

[E+b(k′ )−EF

2kBT

]
2E+b(k′) − 2EF

�s′s(k′), (28)

where

g∗
k,k′ = g∗ ∑

σ,l

|
+b;lσ (k)|2|
+b;lσ (k′)|2. (29)

In Eq. (28), we have ignored the explicit frequency depen-
dence and mapped the frequency-dependent gap equation (17)
to an effective BCS (frequency-independent) gap equation in-
corporating the μ∗ effect. We emphasize the obvious fact
that any superconductivity can only emerge if the effective
interaction is attractive, i.e., g > UR(EF ). Also, Tc would
obviously depend on the relative strengths of the Coulomb
repulsion UR(EF ) and phonon-induced attraction g. The
effective BCS approach here allows us to predict Tc quantita-
tively without solving the extremely numerically demanding
frequency-dependent Eliashberg equations. Strictly speaking,
the Coulomb repulsion has a different form of matrix element
after projecting to a single band. However, the difference is
negligible because of the layer-sublattice polarization in the
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FIG. 6. Effective attraction g∗ in unpolarized normal states.
(a) BBG, (b) RTG, (c) ABCA tetralayer graphene. We choose energy
cutoff � = min(2|�1|, 100 meV) and kF is estimated by

√
4π |ne|/ f ,

where f is the spin-valley degeneracy factor. �1 is a band parameter
(defined in Appendix A) which can be tuned by a displacement field.

low-energy bands of graphene multilayers. Thus, we stick to
the current simplified approach, thus also avoiding possible
large uncontrolled numerical errors in trying to solve the full
frequency-dependent self-consistent Eliashberg theory in a
brute-force computational approach.

The value of g∗ depends on the “isospin” polarization in the
normal states. We discuss the unpolarized (fourfold degener-
ate) normal states in Fig. 6 and the spin-polarized (twofold
degenerate) normal states in Fig. 7. The g∗ with unpolarized
normal states is larger than g∗ with spin-polarized normal
states because the Thomas-Fermi screening (intraband screen-
ing) crucially depends on DOS in the graphene multilayer. For
BBG, g∗ is positive only in the vicinity of VHS, indicating
that superconductivity is most likely found near VHS [24].
For RTG and ABCA tetralayer graphene, we find that g∗ > 0
for a wide range of dopings, suggesting that superconductivity
can prevail for a wide range of doping [23].

It is interesting to ask whether tuning gate distance (2d) or
dielectric constant (ε) can considerably modify g∗. For most
doping ne, g∗ is not sensitive to d or ε because the large DOS
strongly screens the Coulomb interaction (and, therefore, any

FIG. 7. Effective attraction g∗ in spin-polarized normal states.
(a) BBG, (b) RTG, (c) ABCA tetralayer graphene. We choose energy
cutoff � = min(2|�1|, 100 meV) and kF is estimated by

√
4π |ne|/ f ,

where f is the spin-valley degeneracy factor. �1 is a band parameter
(defined in Appendix A) which can be tuned by a displacement field.

additional screening by the gate and the background dielectric
constant is quantitatively unimportant). For the regime where
g∗ � 0.2 eV nm2, we find that smaller d (for d < 5 nm) and
larger ε can considerably increase g∗, implying an enhance-
ment in Tc. We note that g∗ is not sensitive to d for d > 5 nm.
Similar conclusions were reported previously for RTG [26]
and for BBG [24]. In the next section, we show our calculated
superconducting Tc in various cases and discuss the interplay
between phonon-mediated attraction and Coulomb repulsion.

IV. NUMERICAL RESULTS FOR SUPERCONDUCTING Tc

In this section, we present our numerical results for su-
perconducting Tc incorporating Coulomb repulsion. The Tc

is obtained by solving Eq. (28) numerically with a fine mo-
mentum mesh as discussed in Appendix B. The results here
are qualitatively consistent with the results of the phonon
mediated attraction only (i.e., the μ∗ effect is unimportant)
for RTG and ABCA tetralayer graphene in Figs. 4(b) and 4(c);
the Coulomb repulsion significantly suppresses the supercon-
ducting region in BBG [Fig. 4(a)] because the DOS is not

024507-8



ACOUSTIC-PHONON-MEDIATED SUPERCONDUCTIVITY … PHYSICAL REVIEW B 106, 024507 (2022)

FIG. 8. Superconducting Tc for superconductivity incorporating
Coulomb repulsion from unpolarized normal states. We use a dielec-
tric constant ε = 10 and a gate distance parameter d = 20 nm for all
the data. (a) BBG, (b) RTG, (c) ABCA tetralayer graphene. �1 is a
band parameter (defined in Appendix A) which can be tuned by a
displacement field.

significantly large in BBG, making screening less significant
and hence producing a relatively large μ∗. A thorough study
for BBG has been done by us in Ref. [24]. In this section, we
focus on RTG and ABCA tetralayer graphene, especially for
the experimentally relevant regimes in RTG.

A. Superconductivity from unpolarized normal states

We first discuss how the superconductivity arises from
fourfold degenerate unpolarized normal states. As we dis-
cussed in the previous section, g∗ remains positive, indicating
attractive interaction, for a wide range of doping in all three
systems. In Fig. 8, we plot Tc as a function of ne with varied �1

for all three systems. Figures 8(b) and 8(c) show that observ-
able superconductivity (say, Tc > 20 mK) occurs in RTG and
ABCA tetralayer graphene for a wide range of dopings, not
just near VHS. However, this is not true for BBG as shown in
Fig. 8(a), where observable superconductivity exists only near
VHS, and the highest Tc is about 0.3 K (1.2 K) for the hole
(electron) doping. The very different results between BBG
and other cases can be understood as arising from the quanti-
tative difference in the DOS [24], which results in different g∗
in Fig. 6 due to the quantitatively different μ∗ effects.

B. Superconductivity from spin-polarized normal states

For spin-polarized (twofold degenerate) normal states,
ρ(EF ) is half of the value of an unpolarized state at the same

FIG. 9. Tc for superconductivity incorporating Coulomb repul-
sion. We use a dielectric constant ε = 10 and a gate distance
parameter d = 20 nm for all the data. (a) RTG, (b) ABCA tetralayer
graphene. �1 is a band parameter (defined in Appendix A) which can
be tuned by a displacement field.

EF , so the intraband screening is weaker, resulting in a smaller
g∗. We plot Tc as a function of ne with varied �1 for RTG and
ABCA tetralayer graphene in Fig. 9. (The superconducting
Tc for BBG, which is simply too small, is not quite visible
with the same scale, and it was reported previously [24].) As
expected, we find that Tc is smaller in Fig. 9 as compared to
Figs. 8(b) and 8(c), due to larger Coulomb repulsion because
of weaker screening. Despite the reduction in Tc, observable
superconductivity still prevails for a range of dopings, qual-
itatively similar to the unpolarized case. Again, this is quite
different from spin-polarized normal states in BBG where any
observable superconductivity is only expected near VHS [24].
In Ref. [24], the highest Tc is around 20 mK (0.5 K) in the
hole (electron) doping.

C. Superconductivity in RTG: Tuning Coulomb repulsion

Based on the acoustic-phonon mechanism, suppressing
Coulomb repulsion will boost Tc because of the enhanced ef-
fective attraction near the Fermi surface. This can be achieved
by decreasing the gate distance (2d) and increasing the effec-
tive dielectric constant (ε). The main question is the amount of
quantitative change in Tc. In our previous work on BBG [24],
we provided the evolution of Tc with different values of d and
ε. Here, we focus on the regime where superconductivity is
observed in RTG [18].

In the RTG experiment, both spin-singlet (coined SC1) and
non-spin-singlet (coined SC2) superconducting states were
observed [18]. We assume �1 = 30 meV (�1 corresponds
to the displacement field), ne ≈ −1.9 × 1012 cm−2, and un-
polarized normal states for SC1; we assume �1 = 20 meV,
ne ≈ −0.5 × 1012 cm−2, and spin-polarized normal states for
the SC2 regime. First of all, we do not find observable Tc at
ne ≈ −1.9 × 1012 cm−2 for SC1 or ne ≈ −0.5 × 1012 cm−2

for SC2. This is likely a quantitative issue due to parameters
used in our theory (such as g, band parameters, and ne).
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FIG. 10. Tc for RTG with different dielectric constant ε. We
use a gate distance parameter d = 20 nm for all the data. (a) SC1
regime corresponds to �1 = 30 meV and unpolarized normal states.
(b) SC2 regime corresponds to �1 = 20 meV and spin-polarized
normal states. �1 is a band parameter (defined in Appendix A) which
can be tuned by a displacement field.

Therefore, we investigate the regimes with observable Tc close
to SC1 and SC2 dopings. In Fig. 10, Tc with a few repre-
sentative dielectric constants (ε) is plotted. Larger ε indeed
enhances Tc, but the enhancement is not significant for states
near the SC1 or SC2 regime. In Fig. 11, we vary the gate
distance (2d) and plot the corresponding Tc. Tc gets larger
for a smaller d , but the enhancement is not outstanding for
d > 5 nm, consistent with our finding in the g∗ previously.
Note that the Tc remains essentially independent of ε or d

FIG. 11. Tc for RTG with different gate distance parameter d .
We use a dielectric constant ε = 10 for all the data. (a) SC1 regime
corresponds to �1 = 30 meV and unpolarized normal states. (b) SC2
regime corresponds to �1 = 20 meV and spin-polarized normal
states. �1 is a band parameter (defined in Appendix A) which can
be tuned by a displacement field.

FIG. 12. Superconductivity with different values of phonon-
mediated attraction g. We use a dielectric constant ε = 10 and
a gate distance parameter d = 20 nm for all the data, and g0 =
474 meV nm2. (a) SC1 regime corresponds to �1 = 30 meV and
assumes unpolarized normal states. (b) SC2 regime corresponds to
�1 = 20 meV and assumes spin-polarized normal states. �1 is a
band parameter (defined in Appendix A) which can be tuned by a
displacement field.

for regimes with Tc > 0.5 K. This can be understood by the
associated large DOS in those regimes, where Coulomb repul-
sion is strongly screened by the graphene carriers themselves,
essentially independent of ε or d .

D. Superconductivity in RTG: Varying g

Based on our theory with g = g0 = 474 meV nm2, we
cannot reproduce observable Tc in the SC1 (ne ≈ −1.9 ×
1012 cm−2) or SC2 regime (ne ≈ −0.5 × 1012 cm−2). This is
a quantitative issue because the value of g is not precisely
known since the deformation potential coupling is often un-
known [15,20], and the Tc is quite sensitive to g. To investigate
this issue, we vary the value of g and plot the corresponding
Tc in Fig. 12. We find that comparable Tc (to the experiment
[18]) can be reproduced with an enhanced value of phonon-
mediated attraction 1.4g0. Since g = D2/(ρmv2

s ), a slightly
larger D and/or a slightly smaller vs can result in a larger g.
An interesting finding here is that our predicted Tc for SC1 is
slightly smaller than the Tc for SC2, while it is found that SC1
is stronger than SC2 in the RTG experiment [18]. We discuss
possible explanations in Sec. V.

V. DISCUSSION

We study acoustic phonon mediated superconductivity in
untwisted graphene multilayers—BBG, RTG, and ABCA
tetralayer graphene—including effects of direct Coulomb
repulsion. The SU(2) × SU(2) symmetric acoustic phonon
mediated attraction naturally favors intra-sublattice pairings in
untwisted graphene multilayers, making s-wave spin-singlet
and f -wave spin-triplet pairings dominant and degener-
ate. We develop a simplified, but quantitatively predictive,

024507-10



ACOUSTIC-PHONON-MEDIATED SUPERCONDUCTIVITY … PHYSICAL REVIEW B 106, 024507 (2022)

theory incorporating both phonon-mediated attraction and
direct Coulomb repulsion. Within the mean-field approxi-
mation, we reproduce the recently experimentally observed
superconductivity phenomenology in BBG and RTG, and
we further predict the existence of superconductivity in
ABCA tetralayer graphene, which should be experimentally
investigated. Our theory captures the qualitative and semi-
quantitative features of the experiments [18,19], suggesting
that superconductivity in graphene untwisted multilayers is
likely due to acoustic phonons.

To understand why and how the acoustic-phonon mecha-
nism can explain the BBG [19] and RTG [18] experiments,
one has to take into account the Coulomb repulsion which
causes a suppression of the predicted Tc leading to agreement
with experiments. Because the BBG band generates a smaller
DOS resulting in weaker screening, the Coulomb repulsion
suppresses superconductivity for most doping densities except
near VHS. On the other hand, the large DOS of RTG effi-
ciently screens Coulomb repulsion and results in observable
superconducting states for a wide range of doping. Thus, our
results provide natural explanations to the BBG and RTG
experiments without any fine-tuning or arbitrary data fitting,
as we explain in the following.

In the BBG experiment, a sufficiently large in-plane mag-
netic field, which suppresses a competing order, is required to
observe superconductivity [19]. Based on our theory, observ-
able superconductivity (i.e., T > 20 mK) can happen only
near VHS. The applied in-plane magnetic field likely sup-
presses the competing order, which, if present, preempts
superconductivity, and spin-triplet superconductivity mani-
fests itself in the absence of the competing order.

In the RTG experiment, superconductivity is observed
away from VHS without a magnetic field, and spin-singlet
(spin-triplet) superconductivity emerges from unpolarzied
normal states (spin-polarized normal states) [18]. Our theory
can naturally explain the results because the SU(2) × SU(2)
symmetry in acoustic phonon mediated attraction favors s-
wave spin-singlet and f -wave spin-triplet pairings [20,23].
The s-wave spin-singlet is usually the dominating pairing for
unpolarized normal states (fourfold degenerate) because the
subleading pairings (e.g., optical phonons [36]) can enhance
s-wave spin-singlet pairings also. For spin-polarized normal
states (twofold degenerate), spin-singlet pairings are sup-
pressed, and f -wave spin-triplet pairing becomes the leading
pairing instability. In RTG, the absence of superconductivity
near VHS or in the regime with large DOS is due to the
competing correlation-induced instabilities from interaction.
Note that the Stoner-type instability is very sensitive to the
value of DOS at EF , but this is not true for the superconduct-
ing instability [46]. As a result, observable superconducting
states can be found away from VHS in the RTG experi-
ment. Based on our results, both the SC1 and SC2 doping
densities correspond to the tail regions of observable super-
conductivity, implying that the majority of superconductivity
is superseded by correlation-induced instabilities (partially
isospin polarized states [18]) except for narrow regions of SC1
and SC2.

An interesting question is whether the predicted supercon-
ductivity is robust against disorder or scatterings introduced
at the sample boundary (e.g., Refs. [47] and [48]). While

intervalley scattering can be suppressed in clean devices near
perfect charge neutrality [49], charge impurities at edges
can cause intervalley scattering [47]. The s-wave spin-singlet
superconductivity is robust against weak charge (but not mag-
netic) disorder as showed by the Anderson theorem. However,
the f -wave spin-polarized spin-triplet (valley-singlet) pairing,
which we predict for SC2 in RTG and superconductivity in
BBG, is fragile in the presence of intervalley scatterings. This
is mathematically analogous to the suppression of s-wave
spin-singlet pairing due to spin-flipping scatterings [50]. To
examine the role of intervalley scattering, we first estimate
the coherence lengths of SC2 in Ref. [18]. We obtain the
BCS coherence length ξBCS = h̄vF

π�0
≈ 1.38 μm (using Tc =

50 mK and vF = 5 × 104 m/s) and Ginzburg-Landau coher-

ence length ξGL =
√

h/(2e)
2πBc,⊥

≈ 0.57 μm (using Bc,⊥ = 1 mT).

The distance between nearby contacts is around 2 μm, which
is not significantly larger than the coherence lengths, sug-
gesting that scatterings at the boundary might affect the
superconductivity. Assuming an intervalley scattering time τs

and following Ref. [51], we obtain an expression of the pairing
potential strength (�̃) perturbed by intervalley scatterings (at
the second order) as follows (see Appendix F for derivations):

|�̃(τs,�)| = |�|
[

1 − 1

21/3

( C
|�|τs

)2/3]
, (30)

where � is the pairing potential without intervalley scatterings
and C is a constant encoding the average over Fermi surface
and DOS at EF . Equation (30) describes the pair-breaking
effect due to weak intervalley scatterings in spin-polarized
spin-triplet superconductivity. Assuming that the intervalley
scattering is strong at the edges, the intervalley scattering rate
is limited by the sample size L, i.e., τs ∼ L/vF . This results
in the quantity |�|τs ∼ L/ξBCS. Thus the superconductivity
can survive for devices that are larger than the coherence
length. This can also be understood as superconductivity in
the presence of pair-breaking edge disorder, where the super-
conducting order parameter goes to zero at the edges. The
superconductivity is expected to revive on the scale of ξ ,
which can occur if the system is larger than the coherence
length. The results here also qualitatively apply to supercon-
ductivity in BBG.

Since the pairing glue comes from phonons in our the-
ory, suppressing Coulomb repulsion (i.e., increasing ε or
decreasing d) generically enhances superconducting Tc. As
we discussed in Secs. III C and IV C, changing ε and d
might not result in significantly different Tc in RTG because
the Coulomb repulsion is in the strong-screening regime. In
particular, the gate distance dependence is quite weak for
d > 5 nm. (A similar conclusion was drawn in Ref. [26].)
For BBG, Tc is more sensitive to the value of ε and d as we
pointed out previously in Ref. [24]. This can be understood by
the smaller DOS in BBG, such that the intraband screening is
not fully suppressing the dependence of d or ε. The possible
enhancement of Tc by reducing gate/dielectric screening is a
testable theoretical prediction of our theory.

Another important question is whether the electron-phonon
coupling constant is correctly estimated in our theory as
the deformation potential D is not precisely known [15,20].
In Sec. IV D, we find that g = 1.4g0 can reproduce the
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comparable Tc for SC1 and SC2 in RTG. In the RTG experi-
ments, TBKT ≈ 100 mK for SC1 and TBKT < 50 mK for SC2
were reported [18]. However, our theory with g = 1.4g0 gives
Tc ≈ 80 mK for SC1 and Tc ≈ 100 mK for SC2. This raises a
puzzle as our predicted Tc’s are in the opposite order of the
experimental results. The discrepancy might be understood
by the fragile nature of non-spin-singlet superconductivity
(SC2), which can be suppressed easily by disorder or inter-
valley scatterings (e.g., scattering at sample boundary) in the
experiments. Another possible explanation is that there exists
a subleading pairing mechanism (such as optical phonons [36]
or other interaction-induced pairings [25–30]) that contributes
to SC1 but not SC2. Regardless of the possible explanation,
the acoustic phonon mediated pairing is still the dominating
gluing mechanism. We leave the puzzling discrepancy as an
open question for future studies, which also requires the avail-
ability of more experimental results.

Now, we discuss a number of predictions based on the
acoustic-phonon theory. An interesting prediction based on
our theory is that a sufficient large in-plane magnetic field
can destroy the s-wave spin-singlet pairing, and then the f -
wave equal-spin pairing becomes the leading superconducting
instability [23]. In addition, it is possible that an applied in-
plane magnetic field can induce new superconducting phases
in RTG by suppressing the competing ordered states, similar
to the field-induced superconductivity in BBG. Our theory
predicts observable superconductivity not just for hole dop-
ing but also for electron doping for BBG, RTG, and ABCA
tetralayer graphene, and we find that a larger |�1| generally
enhances the superconducting Tc for electron doping.

One important consequence of strong electron–acoustic
phonon coupling is that the finite-temperature resistivity
should develop a linear-in-T resistivity for T > Tonset and a T 4

resistivity for T < Tonset [15]. We estimate that Tonset is above
10–20 K [15,52] for both BBG and RTG. The electron-phonon
coupling parameter extracted from such a linear-in-T resistiv-
ity should have approximate consistency with the observed
Tc [20,52–56]. The same is true for spin or valley fluctuation
mediated superconductivity, too. In the RTG experiment [18]
(BBG experiment [19]), a linear-in-T resistivity is not seen
for T � 20 K (T � 1.5 K), where the highest temperature
appears to be smaller than our estimated Tonset > 20 K. Again,

based on our theory, there should be a phonon-induced linear-
in-T resistivity for T > 20 K above the superconducting state.
This should be investigated experimentally by extending the
conductivity measurements to the T = 10–50 K regime.

Finally, we comment on the universal theory of supercon-
ductivity in graphene-based materials (including twisted and
untwisted materials). It is likely that the electron–acoustic
phonon mechanism accounts for superconductivity in all
graphene-based materials provided that acoustic phonons
can explain the distinct superconductivity phenomenology in
BBG [19], in RTG [18], and in twisted bilayer graphene
[20]. In addition, several experiments on magic-angle moiré
graphenes show that superconductivity is more robust [4,57–
59]; i.e., it can exist without any nearby correlated insu-
lating states, hence arguing against a correlation-induced
mechanism. Thus, it is natural to suspect that superconduc-
tivity and correlated states most likely come from different
origins [20,36,60–63], and the acoustic-phonon mechanism
can explain the superconductivity phenomenology. We em-
phasize that the interactions are still essential as they can
induce competing orders, suppressing and preempting su-
perconductivity. Our qualitative picture is that all graphene
superconductivity is induced by acoustic phonons, but com-
peting strongly correlated nonsuperconducting phases arising
from electron-electron interactions may arise, competing with
and occasionally suppressing the superconducting phase.
In summary, we present a systematic theory, incorporating
electron-phonon couplings and Coulomb repulsion, for super-
conductivity in untwisted graphene multilayers. We obtain Tc

in reasonable agreement with the experimental observation,
and we speculate that acoustic phonons are responsible for all
superconductivity in graphene-based materials in general.
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APPENDIX A: BAND STRUCTURE

1. BBG band structure

We adopt the k · p Hamiltonian from Ref. [64]. The ĥτ (k) in the main text is given by

ĥ(2)
τ (k) =

⎡
⎢⎢⎣

−�1 v0�
†(k) −v4�

†(k) −v3�(k)
v0�(k) �′ − �1 t1 −v4�

†(k)
−v4�(k) t1 �′ + �1 v0�

†(k)
−v3�

†(k) −v4�(k) v0�(k) �1

⎤
⎥⎥⎦, (A1)

where �(k) = τkx + iky, a0 is the lattice constant of graphene, and �1 encodes the electric potential difference from the
displacement field. The other parameters are given by v0/a0 = 2.261 eV, v3/a0 = 0.245 eV, v4/a0 = 0.12 eV, t1 = 0.361 eV,
and �′ = 0.015 eV. The basis of the matrix is (1A, 1B, 2A, 2B).
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2. RTG band structure

The 6 × 6 matrix ĥτ (k) is given by [17,35]

ĥ(3)
τ (k) =

⎡
⎢⎢⎢⎢⎢⎢⎣

�1 + �2 + δ 1
2γ2 v0�

†
k v4�

†
k v3�k 0

1
2γ2 �2 − �1 + δ 0 v3�

†
k v4�k v0�k

v0�k 0 �1 + �2 γ1 v4�
†
k 0

v4�k v3�k γ1 −2�2 v0�
†
k v4�

†
k

v3�
†
k v4�

†
k v4�k v0�k −2�2 γ1

0 v0�
†
k 0 v4�k γ1 �2 − �1

⎤
⎥⎥⎥⎥⎥⎥⎦

, (A2)

where �k = τkx + iky (τ = 1,−1 for valleys K and −K , respectively), v j =
√

3
2 γ ja0, γ j is the bare hopping matrix element,

and a0 = 0.246 nm is the lattice constant of graphene. The basis of ĥτ (k) is (1A, 3B, 1B, 2A, 2B, 3A). Note that the first two
elements, 1A and 3B, are the low-energy sites as discussed in the main text.

We use the same parameters in Ref. [17]. Specifically, γ0 = 3.1 eV, γ1 = 0.38 eV, γ2 = −0.015 eV, γ3 = −0.29 eV, γ4 =
−0.141 eV, δ = −0.0105 eV, and �2 = −0.0023 eV. The value of �1 corresponds to the out-of-plane displacement field, and
we vary it from 10 to 40 meV.

3. ABCA band structure

Building on the k · p band model for RTG [17,35], we obtain a k · p band model for ABCA-stacked tetralayer graphene,
given by

ĥ(4)
τ (k) =

⎡
⎢⎢⎢⎢⎢⎢⎣

δ − �1 + �2 v0�
†
k v4�

†
k v3�k 0 1

2 γ2 0 0
v0�k �2 − �1 γ1 v4�

†
k 0 0 0 0

v4�k γ1 − �1
3 − 2�2 v0�

†
k v4�

†
k v3�k 0 1

2 γ2

v3�
†
k v4�k v0�k − �1

3 − 2�2 + �3 γ1 v4�
†
k 0 0

0 0 v4�k γ1
�1
3 − 2�2 + �3 v0�

†
k v4�

†
k v3�k

1
2 γ2 0 v3�

†
k v4�k v0�k

�1
3 − 2�2 γ1 v4�

†
k

0 0 0 0 v4�k γ1 �1 + �2 v0�
†
k

0 0 1
2 γ2 0 v3�

†
k v4�k v0�k δ + �1 + �2

⎤
⎥⎥⎥⎥⎥⎥⎦

. (A3)

The parameters in ĥ(4)
τ (k) are the same as the band parameters

in RTG. The basis of the matrix is (1A, 1B, 2A, 2B, 3A, 3B,
4A, 4B).

The hole-doping low-energy band is qualitatively similar
to RTG while the electron-doping low-energy band is distinct
from RTG or BBG; i.e., it manifests only one Fermi pocket
(instead of three) for a given valley and spin. The k · p band
structure here is qualitatively similar to the rhombohedral
graphite system [65].

APPENDIX B: NUMERICAL PROCEDURES

The DOS profiles in Fig. 2 are constructed with a 104 ×
104 momentum mesh with a momentum spacing �k ≈ 2 ×
10−5a−1

0 . We use this momentum mesh to construct a map
between EF and ne for all the numerical results. This causes
some quantitative difference between Fig. 4(b) and Ref. [23],
where ne is determined by a much smaller momentum mesh.

The linearized gap equation can be viewed as an eigenvalue
problem. The goal is to find the highest temperature such that
Eq. (13) or (28) is satisfied. To evaluate this numerically, we
consider a fine momentum mesh with �k ≈ 0.002a−1

0 and
keep 5000 low-energy states. We have tested finer momentum
meshes with more states kept, and the results are essentially
the same, suggesting convergence.

In Eq. (28), the DOS is needed for estimating g∗. We use
the DOS profiles in Fig. 2 to construct a map between EF

and DOS. Note that the momentum mesh used in the calcu-
lations of Fig. 2 is much finer than the momentum mesh for
extracting Tc.

APPENDIX C: ELIASHBERG THEORY

In this Appendix, we present a derivation of the Eliashberg
theory with a path-integral approach [66]. In the low-
temperature, low-doping limit, we focus only on one of the
low-energy bands. The imaginary-time action with projection
to band b (the b index is sometimes dropped for simplicity) is
given by S = S0 + SI , where

S0 =
∑
τ,s

∑
k

c̄τ s,k[−iωn + Eτ (k) − EF ]cτ s,k, (C1)

SI ≈ 1

2βA
∑
τ,s

∑
k,k′

W (k, k′)c̄τ s,kcτ s,k c̄τ s,k′cτ s,k′

− 1

βA
∑
s,s′

∑
k,k′

W (k, k′)c̄+s,k c̄−s′,−kc−s′,−l ′c+s,k′ . (C2)

In the above expressions, Wk,k′ = V (b)
g (k, k′) − V (b)

TF (k, k′),

V (b)
g (k, k′) = Vg(ωn − ω′

n, k − k′)

×
∑
σ,l

|
+,b;l,σ (k)|2|
+,b;l,σ (k′)|2, (C3)

V (b)
TF (k, k′) = VTF(k − k′)

∣∣∣∣∣
∑
σ,l


∗
+,b;l,σ (k)
+,b;l,σ (k′)

∣∣∣∣∣
2

. (C4)

In SI , only the intravalley u channel and the intervalley BCS
channel are included. We note that the band projection matrix
elements are the same for the intravalley u channel and the
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intervalley BCS channel. This choice of interaction terms
allows us to derive Eliashberg equations straightforwardly.

To decouple interactions, we introduce the Hubbard-
Stratonovich field, and SI becomes

SI →
∑
s,s′

∑
k

[�̄ss′ (k)c−,s′,−kc+,s,k + c̄+,s,k c̄−,s′,−k�ss′ (k)]

+
∑

τ

∑
s

∑
k

[i�τ s(k)c̄τ,s,kcτ,s,k]

+ βA
∑
s,s′

∑
k,k′

�̄ss′ (k)W −1(k, k′)�ss′ (k′)

+ βA
2

∑
τ

∑
s

∑
k,k′

�τ s(k)W −1(k, k′)�τ s(k
′), (C5)

where we have introduced �τ s, �ss′ , and �̄ss′ for decoupling
the intravalley u channel and the intervalley BCS channel,
respectively. Together with the S0 term, we can express our
theory in terms of a BdG form. We focus on the pairing
channel �ss′ in the following:

S0 + SI →
∑

k

[c̄+s,k c−s′,−k]

[
G−1

+s (k) �s,s′ (k)
�̄s,s′ (k) G−1

−s′ (k)

][
c+s,k

c̄−s′,−k

]

+ βA
∑
k,k′

�̄s,s′ (k)W −1(k, k′)�s,s′ (k′)

+ βA
2

∑
k,k′

�+s(k)W −1(k, k′)�+s(k
′)

+ βA
2

∑
k,k′

�−s′ (k)W −1(k, k′)�−s′ (k′), (C6)

where

G−1
+s (k) = −iωn + E+(k) − μ + i�+s(k), (C7)

G−1
−s′ (k) = −iωn − E−(−k) + μ − i�−s′ (−k). (C8)

Then, we formally integrate out the Grassmann variable in
the imaginary-time path integral and construct a free-energy
density, given by

F = − 1

βA
∑

k

ln
[
G−1

+s (k)G−1
−s′ (k) − |�ss′ (k)|2]

+
∑
k,k′

�̄ss′ (k)W −1(k, k′)�ss′ (k′)

+ 1

2

∑
τ

∑
k,k′

�+s(k)W −1(k, k′)�+s(k
′)

+ 1

2

∑
τ

∑
k,k′

�−s′ (k)W −1(k, k′)�−s′ (k′). (C9)

Now, we are in the position to derive the self-consistent equa-
tions. We perform functional derivative of F with respect to
�+s(k), �−s′ (k), and �ss′ (k) and obtain saddle point equa-
tions as follows:

�+s(k
′) = 1

βA
∑

k

W (k′, k)iG−1
−s′ (k)

G−1
+s (k)G−1

−s′ (k) − |�ss′ (k)|2 , (C10)

�−s′ (k′) = 1

βA
∑

k

W (k′,−k)(−i)G−1
+s (k)

G−1
+s (k)G−1

−s′ (k) − |�ss′ (k)|2 , (C11)

�ss′ (k′) = 1

βA
∑

k

−W (k′, k)�ss′ (k)

G−1
+s′ (k)G−1

−s′ (k) − |�ss′ (k)|2 . (C12)

Without loss of generality, we can parametrize the self ener-
gies as follows:

i�+s(k) = (−Zk + 1)iωn + χk, (C13)

−i�−s(−k) = (−Zk + 1)iωn − χk, (C14)

where Zk is the wave function renormalization and χk con-
tributes to the dispersion renormalization as well as the
quasiparticle lifetime.

Close to Tc, the order parameter �ss′ is infinitesimal. Thus,
the above equations can be reduced to

i�+s(k
′) = 1

βA
∑

k

−W (k′, k)

−iZkωn + E+(k) − EF + χk
, (C15)

i�−s(k
′) = 1

βA
∑

k

−W (k′, k)

−iZkωn + E−(k) − EF + χk
, (C16)

�ss′ (k′) = 1

βA
∑

k

W (k′, k)�ss′ (k)

(Zkωn)2 + [E+,b(k) − EF + χk]2 . (C17)

APPENDIX D: NUMERICALLY EXTRACTED Tc FROM
ELIASHBERG THEORY

In this Appendix, we show numerical results based on
Eq. (17), which is the Eliashberg linearized gap equation with-
out including the self energy corrections. We consider the
RTG band and focus on three cases: (a) phonon-mediated at-
traction only; (b) unpolarized normal states; (c) spin-polarized
normal states. The results are summarized in Fig. 13. Despite
the quantitative differences between Fig. 13 and results in
the main text, they all show the same qualitative features,
i.e., observable superconductivity prevails for a wide range of
dopings. Here, we use a rather small momentum mesh with
�k ≈ 0.015a−1

0 and keep 100 low-energy levels as well as
100 Matsubara frequencies. We test the numerical procedure
with 200 Matsubara frequencies and find essentially the same
results. At the lowest temperature, T = 0.1 K, the frequency
cutoff � is around 5 meV in our numerical calculations. (Note
that the lowest temperature is 10 mK for results discussed in
main text.) We confirm that the gap function has a Lorentzian-
like profile in frequency for case (a). For cases (b) and (c), the
gap functions, which look like shifted Lorentzian functions,
change signs at some particular frequency. The sign-changing
feature is consistent with the general expectation for Eliash-
berg theory [38,67].

APPENDIX E: EVALUATING �

The function �(EF ; ωc; �) in Eq. (26) can be evaluated as
follows:

�(EF ; ωc; �) = 1

βA
∑
ωn,q,

ωc<|ωn|<�,

|Ẽp|<�

1

ω2
n + Ẽ2

p

. (E1)
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FIG. 13. Superconducting Tc in RTG based on Eliashberg theory
[Eq. (17)]. (a) Phonon-mediated attraction only. (b) Superconduc-
tivity from unpolarized normal states. (c) Superconductivity from
spin-polarized normal states. We use a dielectric constant ε = 10
and a gate distance parameter d = 20 nm for all the data. �1 is a
band parameter (defined in Appendix A) which can be tuned by a
displacement field.

To simplify �(EF ; ωc; �), we consider the zero-temperature
limit (i.e., β → ∞) and derive

�(EF ; ωc; �) = 2

A
∑

p,|Ẽp|<�

∫ �

ωc

dω

2π

1

ω2 + Ẽ2
p

= 1

A
∑

p,|Ẽp|<�

1

π |Ẽp|
[
− tan−1

( |Ẽp|
�

)

+ tan−1

( |Ẽp|
ωc

)]
. (E2)

The above expression can be efficiently evaluated numeri-
cally, and �(EF ; ωc; �) converges for the mesh sizes used in
this work.

APPENDIX F: EFFECT OF INTERVALLEY SCATTERINGS
ON SPIN-POLARIZED SUPERCONDUCTIVITY

In this section, we discuss how spin-polarized supercon-
ductivity is suppressed by intervalley scatterings. First of all,
we consider a spin-polarized spin-triplet superconductor de-
scribed by

H =
∑

k

�†(k)ĥBdG(k)�(k), (F1)

where �T (k) = [c+,k; c†
−,−k] and

ĥBdG =
[
E+(k) − EF �(k)

�∗(k) −E−(−k) + EF

]
, (F2)

where �k is the pairing potential. Note that the spin indices
are suppressed in the above expression because spins are
polarized to the same direction. The system obeys the spinless
time-reversal symmetry. As a consequence, E+(k) = E−(−k)
is satisfied.

Although the untwisted graphene multilayer systems are
clean, the intervalley scatterings (with large momentum trans-
fer) can take place at the sample boundary. In principle, one
can study superconductivity with an open boundary condition
that exactly facilitates intervalley scattering at the sample
termination. However, this is a complicated task as one has
to check multiple configurations of the terminated boundary
[49]. To simplify the calculations, we treat the intervalley
scattering as a potential in the bulk, and we treat the potential
scattering perturbatively up to the second order. The interval-
ley scattering can be expressed by

V = 1√
A

∑
k,k′

[Vk,k′c†
−,kc+,k′ + H.c.], (F3)

where Vk,k′ encodes the intervalley scatterings. Note that the
spinless time-reversal symmetry gives rise to a condition that
Vk,k′ = V ∗

−k,−k′ . We can extract the mean intervalley scattering
τs within the Born approximation,

1

τs
=

〈
1

A
∑

p′
|Vk,p′ |2δ(E+(k) − EF )

〉
k∈kF

, (F4)

where we have averaged over k for k on the Fermi surface.
To incorporate the intervalley scattering to superconduc-

tivity, we treat V perturbatively at second order and construct
renormalized Gorkov Green’s functions as follows:

Ĝ−1(ω, k) = Ĝ−1
0 (ω, k) − �̂(ω, k), (F5)

where Ĝ is the renormalized Gorkov Green’s function, Ĝ0 is
the bare Gorkov Green’s function, and �̂ is the self energy
due to intervalley scattering. The inverse bare Gorkov Green’s
function is expressed by

Ĝ−1
0 (ω, k) =

[
ω − E+(k) + EF −�(k)

−�∗(k) ω + E−(−k) − EF

]
, (F6)

and the self energy is expressed by

�̂(ω, k) =
∑

p

[
�++(ω, k) �+−(ω, k)
�−+(ω, k) �−−(ω, k)

]
, (F7)

where

�++(ω, k) = 1

A
∑

p

|Vk,p|2 ω + E+(p) − EF

ω2 − |E+(p) − EF |2 − |�(p)|2 ,

(F8)

�+−(ω, k) = − 1

A
∑

p

Vk,pV ∗
−k,−p|�(p)|2

ω2 − |E+(p) − EF |2 − |�(p)|2 ,

(F9)
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�−+(ω, k) = − 1

A
∑

p

V−k,−pV ∗
k,p|�(p)|2

ω2 − |E+(p) − EF |2 − |�(p)|2 ,

(F10)

�−−(ω, k) = 1

A
∑

p

|Vk,p|2 ω − E+(p) − EF

ω2 − |E+(p) − EF |2 − |�(p)|2 .

(F11)

To simplify the expression of the self energy, we adopt
a number of approximations used in Ref. [51]. Specifically,
we assume that Fermi surfaces are circularly symmetric,
Vk,k′ depends only on the relative angle between k and k′,
�(k) = �, and a constant DOS in the integrated energy
range. With the above approximations, we can express G−1 as
follows:

G−1(ω, k) = a0(ω, k)1̂κ + az(ω, k)κ̂z

+ a+(ω, k)κ̂+ + a−(ω, k)κ̂−, (F12)

where 1̂κ is an identity matrix on the Nambu space, and κx,y,z

represents the Pauli matrices in the Nambu space, κ± = (κx ±
iκy)/2, and

a0(ω, k) ≈ω

[
1 + α0

τs

1√
|�|2 − ω2

]
, (F13)

az(ω, k) ≈ − E+(k) + EF , (F14)

a+(ω, k) ≈�

[
1 + α1

τs

1√
|�|2 − ω2

]
, (F15)

a−(ω, k) = [a+(ω, k)]∗. (F16)

In the above expression, α0 and α1 are constants encoding
the structure of Vk,k′ . With the approximations stated above,
one can easily show that α0 = 1. If we further impose that
〈Vk,k′ 〉k′∈kF

= 0 (“statistical valley symmetry”), α1 = 1 would
be obtained.

Now, we are in the position to derive the reduction of the
pairing potential (corresponding to the quasiparticle excitation
energy) in the presence of intervalley scatterings. Following
Ref. [51], we obtain the similar equation as follows:

ω

[
1 + α0

τs

1√
|�|2 − ω2

]
= |�|

[
1 + α1

τs

1√
|�|2 − ω2

]
.

(F17)

Assuming x = |�| − ω � |�| and using α0 − α1 = C, we
obtain

x ≈ |�|
21/3

( C
|�|τs

)2/3

. (F18)

The quasiparticle excitation energy ω equals the magnitude of
the pairing potential in the presence of intervalley scattering,
as described by Eq. (30).
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