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Pseudogap phase and fractionalization: Predictions for Josephson junction setup
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The pseudogap regime of the underdoped cuprates arguably remains one of the most enigmatic phenomena of
correlated quantum matter. Recent theoretical ideas suggest that a pair density wave (PDW) or a “fractionalized
PDW” could be a key ingredient for the understanding of the pseudogap physics. These ideas are to be contrasted
to the scenario where charge density wave order and superconductivity coexist at low temperatures. In this paper,
we present a few tests to compare the two scenarios in a Josephson junction setup. For a PDW scenario, we
observe a beatlike structure of AC Josephson current. The additional frequencies for the AC Josephson current
appear at the half-odd integer multiple of the standard Josephson frequency. We can extract the modulation wave
vector of the PDW state by studying the average Josephson current. Furthermore, the usual sharp Shapiro steps
break down. In contrast, these signatures are absent for the simple coexistence of orders. Any detection of such
signatures in a similar experimental setup will strongly support the PDW scenario for the pseudogap phase.
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I. INTRODUCTION

One of the most unusual features of the cuprates is the
proliferation of quasidegenerate orders in the underdoped
regime near the mysterious pseudogap (PG) phase [1–3].
These include experimentally established orders, such as
superconductivity (SC), charge density wave (CDW), and an-
tiferromagnetism. Additionally, it may also harbor putative
“hidden” orders such as the pair density wave (PDW) state, for
which experimental evidence is still lacking. Conceptually, it
is natural to advocate that a very unusual interplay of states is
responsible for the formation of the PG [4]. Many routes are
proposed to drive forward this set of ideas.

First, there are the proposals of a vestigial order [5–10].
In this framework, the system forms all the potentially de-
generate orders. These orders compete within a standard
Ginzburg-Landau description, resulting in some precursor or-
der that can account for the development of the pseudogap
state. For example, in this scenario, the competition between
the SC and CDW state can lead to a precursor state formed by
a long-ranged PDW order [11–13].

A more unconventional proposal affirms that such ap-
pearance of quasidegenerate states can lead to an emergent
symmetry [14–20]. Concretely, considering only the SC and
CDW orders for simplicity, the corresponding emergent sym-
metry is the SU(2) group, rotating between the two states.
However, this emergent symmetry is fragile and it is eas-
ily destroyed by a slight tuning of appropriate parameters.
Nevertheless, the idea of an emergent symmetry is the first
illustration of the presence of some entangled states, in this
particular case the SC and CDW states, which is undoubt-
edly present in the cuprates. Indeed some proposals have
suggested that around optimal doping, the cuprate supercon-
ductors form a maximally entangled state which is associated

with a strong-coupling fixed point that can be accessed within
the holographic framework [21].

Somewhere in between the ideas of an ultimately entan-
gled fixed point and a vestigial order remains yet another
proposal [22–25]. In this approach, at T ∗ the system is ripe to
form all possible particle-particle (PP) and particle-hole (PH)
pairs that symmetry allows. This includes PP pairs with zero
and finite momentum, and PH pairs with finite momentum,
some of which are magnetically inert and others active. Some
preformed pairs become unstable and fractionalize into more
robust pairs at lower temperatures. A gauge field emerges,
and the corresponding constraint generated by the fluctuations
leads to the opening of a gap and, thus, to the pseudogap
phase itself. The rest of the introduction highlights the critical
differences between fractionalized PDW and coexisting order
scenarios.

A. Theoretical concepts for “fractionalized” PDW
and coexisting orders

We focus on the idea of a PDW preformed pair, fractional-
izing into a CDW and SC pairs. The choice has the advantage
of simplicity since these two orders are ubiquitously observed
[26–31] inside the PG region. The CDW pair is given by
χ̂i j = gχ d̂i j

∑
σ c†

i,σ c j,σ eiQ0·(ri+rj )/2, where i, j are the nearest-
neighbor bonds with Q0 being the modulation wave vector,
and gχ the interaction responsible for forming CDW pairs.
d̂i j is the form factor with a d-wave symmetry. Similarly, the
SC pairs are defined as �̂i j = g�d̂i j

∑
σ σci,σ c j,−σ , where c†

(c) are the standard creation (annihilation) operators for elec-
trons and g� is the interaction forming the Cooper pairs. The
origin of such unstable boson at high temperature most cer-
tainly comes from the strong-coupling regime of the electrons
[32–34] but this is not the main focus of the paper. The PDW is
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defined as �̂PDW = gPDWci↓ci↑eiQ0·(ri+rj )/2. It turns out that it
can be written as a combination of elementary operators, i.e.,
�̂∗

PDW = gPDW

2g�gχ
[�̂i j, χ̂

∗
i j] and �̂PDW = gPDW

2g�gχ
[χ̂i j, �̂

∗
i j] where

[a, b] stands for the commutator of the operators a and b.
The key idea leading to the fractionalization of the PDW is

that at the PG temperature T ∗ a gauge field (or, equivalently,
a local phase) emerges,

�̂i j → �̂reiθi j , χ̂i j → χ̂reiθi j , (1)

and �̂PDW and �̂∗
PDW remain invariant under these transfor-

mations. Fluctuations of the gauge field in an effective field
theory generates a constraint (note that the � and χ have the
dimension of energy)

|�r |2 + |χr |2 = (E∗)2
, (2)

where E∗ is an energy scale typical of the PG, which is con-
stant in temperature, and with respect to spatial variations, but
doping dependent. Note that �r (χr) is the local expectation
value of �̂ (χ̂ ) at position r. When the coupling to the conduc-
tion electrons is considered, the constraint of Eq. (2) opens
a gap, primarily in the antinodal (AN) region of the Fermi
surface, leading to the presence of Fermi arcs in the nodal
region [22–25]. In the temperature regime T ∗ > T > Tco, the
spatial expectation values of 〈�r〉 = 0 and 〈χr〉 = 0 as well as
the relative phase remain fluctuating.

The typical effective field theory describing the �̂PDW

mode has the form of a quantum rotor model [22]

S = 1

2

∫
d2x

2∑
a,b=1

|ωab|2,

with ωab = za∂μzb − zb∂μza, (3)

with z1 = �/E∗, z2 = χ/E∗, z∗
1 = �∗/E∗, z∗

2 = χ∗/E∗. Note
that E∗ is a real quantity associated with the PG energy
scale. The gauge fluctuations within the transformation za →
zaeiθ , (z∗

a → z∗
ae−iθ ) are naturally described by the constraint∑

a |za|2 = C (where C is a constant), equivalent to Eq. (2).
The model Eq. (3) is formally equivalent to the CP1 model,

S =
∫

d2x|Dμψ |2,

with Dμ = ∂μ − iαμ,

and αμ = 1

2

∑
a

z∗
a∂μza − za∂μz∗

a, (4)

with ψ = (z1, z2)T [35]. The model in Eq. (4) is, in turn,
almost the same as a nonlinear σ model, but with an addi-
tional gauge field α taking care of the intrinsic U(1) gauge
symmetry.

By contrast in the model of coexisting phases the action
takes the form of a standard ϕ4-field theory,

S = 1

2

∫
d2x

2∑
a=1

(|∂μza|2 + μa|za|2) +
2∑

a,b=1

gab|za|2|zb|2. (5)

In Eq. (5) the two modes are in coexistence and interact with
each other, but there is no form of chirality and no emerging
gauge field as in Eq. (3).

B. Difference between fractionalized PDW and coexistence

We focus on the underdoped cuprate superconductors
within the two scenarios mentioned above for the PG [1–3].
However, note that the reality is undoubtedly much more
complicated than that due to the proximity to the Mott transi-
tion. Nevertheless, here, we restrict ourselves to discuss these
two sets of ideas and this simplifies the following analysis
enormously.

In the coexistence scenario, a precursor of the SC or the
CDW orders forms at T ∗. Most of the theories [6,36] that have
been advanced so far consider the PDW as a precursor state at
T ∗. Variational calculations on the t-J model show that the
ground state energy of the PDW state is slightly higher than
the ground state energy associated with the uniform super-
conductivity regime [37,38]. Thus, the uniform PDW state is
very difficult to stabilize at low temperatures. Some studies
[36] suggest that a locally fluctuating PDW state is responsible
for opening up a pseudogap in the antinodal regions without
ever being the true ground state. At a lower temperature Tco,
two-dimensional charge modulations do form [39–43] but
they have a short-ranged nature. A genuine three-dimensional
charge order only forms under an applied magnetic field
[42,44,45]. However, at zero fields, the phase of the CDW
is fluctuating rapidly in space and this produces a very inho-
mogeneous density-wave pattern, such as χ cos(Q0 · r + φr )
with φr strongly varying from site to site [46–50]. The SC
order forms at Tc, leading to the freezing of the SC phase
� exp(iθEM ), due to the usual Meissner effect. The phase
gradient gets minimally coupled to the external EM vector
potential through a term ns(∂μθEM − 2eA)2 (where ns is the
superfluid density). Then through a gauge transformation, the
vector potential becomes massive, and the SC phase θEM

gets uniform through the sample. However, in the coexistence
scenario, even below Tc the CDW order has no mechanism
to have a uniform phase and should suffer phase fluctuations
from site to site. Hence, for the simple coexistence scenario,
the entanglement of the PP and PH pairs is expected to be
vanishingly small.

In contrast, in the fractionalization scenario [22–25], the
PDW order fails to form at T ∗. However, a gauge field (or
local phase) emerges, leading to the constraint of Eq. (2). The
difference between the two scenarios sets in below Tc, where
the two orders coexist. We have now two orders which are
related by an emergent gauge field (or, equivalently, by a local
phase θ ): χ exp(iθ ) and � exp[i(θ + θEM )]. The local phase
θ is minimally coupled to a neutral vector potential through
the term nχ (∂μθ − e∗a)2 (where nχ is the CDW density and
e∗ is the fictitious charge). On the other hand, the SC part
has a term ns(∂μθ + ∂μθEM − e∗a − 2eA)2. When both orders
coexist below Tc both vector potentials a and a + A become
massive and are expelled from the sample; in other words,
both phases θ and θEM become uniform, and insensitive to
impurities [22]. Effectively the CDW becomes active to the
external EM field and behaves as a PDW. In the fractionaliza-
tion scenario, a strong entanglement thus exists between the
PP and PH pairs. Recently a study reported [51] an intriguing
observation of a uniform CDW phase inside vortices, and
this can be explained by the fractionalized PDW scenario
[22]. In this study, we consider another consequence of a
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SC +CDW SC +CDWInsulator

FIG. 1. Josephson junction setup when the applied electric field
is parallel to the charge density wave modulation wave vector Q0.
The different possible hoppings between the pairs are presented
schematically. κ denotes a PP pair hopping from terminal A to B,
and vice versa. κ ′ represents the same for the hopping of PH pairs
across the junction. The interjunction conversion of PP pair to a PH
pair is denoted by t1 and the same within the junction by t0.

fractionalized PDW, namely, its effects on the current in a
Josephson junction setup.

II. MODEL AND METHOD

We propose the experimental setup pictured in Fig. 1.
A Josephson junction (JJ) is considered, with underdoped
cuprate compounds in two terminals A and B separated by
an insulating material. Below T ∗, the terminals in A and B
access the PG regime and we expect these terminals to display
both SC and CDW orders at low temperatures. The JJ is
oriented such that the modulation wave vector is parallel to the
junction. Moreover, in the present situation, an electric field E
is applied in the same direction as CDW wave vector Q0.

We consider the following wave functions for the A and B
subsystems,

|ψA〉 = √
nAeiθA +

√
n′

Aeiθ ′
A ,

|ψB〉 = √
nBeiθB +

√
n′

Beiθ ′
B , (6)

where (nA,B, θA,B) are the superfluid density and phases
of SC states on terminals A and B, respectively, and
(n′

A,B, θ ′
A,B) are the corresponding CDW density and phases.

At a steady state, we take θ ′
A = Q0 · r and θ ′

B = Q0 · (r +
δ). The most generic set of Schrödinger’s equations [52,53]
that can be written with these two orders, with ψ =
(
√

nAeiθA ,
√

nBeiθB ,
√

n′
Aeiθ ′

A ,
√

n′
Beiθ ′

B ), is

ih̄
∂

∂t
ψ =

⎛
⎜⎝

μ� κ t0 t1
κ −μ� t1 t0
t0 t1 VA κ ′
t1 t0 κ ′ VB

⎞
⎟⎠ψ, (7)

where κ and κ ′ are the hopping integrals for particle-particle
(PP) and particle-hole (PH) pairs across the junctions. The
parameter μ� = eU , where U is the electrical potential ap-
plied to the PP pairs. In terms of the applied electric field E,
this becomes μ� = −eErA,B, where rA,B is the distance with

respect to the center. However, in this study, μ� is assumed to
be a constant as in the standard JJ setup [52]. The parameter t1
represents the tunneling between the PP pairs in the junction
A (resp. B) to the modulated PH pairs in junction B (resp. A),
whereas t0 is the same type of tunneling within a junction. The
electric field acts on the CDW sector [54] as VA,B = eE ρ̄θ ′

A,B,
where ρ̄ = n′/Q0 is an effective CDW density divided by the
ordering wave vector Q0. We have assumed that the superfluid
density and the CDW densities are constant throughout the JJ.
Although this is not necessary, such assumption simplifies the
following analysis enormously. Equations (7) can be decou-
pled into (for details see Appendix A)

∂ n̄

∂t
= 4

h̄

[
−κn sin θ +

√
nn′ cos

φ

2

×
(

t0 sin
θ ′ − θ

2
− t1 sin

θ ′ + θ

2

)]
, (8)

∂θ

∂t
= 2

h̄

[
μ� +

√
n′

n
sin

φ

2

×
(

t0 sin
θ ′ − θ

2
− t1 sin

θ + θ ′

2

)]
, (9)

∂ n̄′

∂t
= 4

h̄

[
−κ ′n′ sin θ ′ +

√
nn′ cos

φ

2

×
(

t0 sin
θ − θ ′

2
− t1 sin

θ ′ + θ

2

)]
, (10)

∂θ ′

∂t
= 1

h̄

[
(VA − VB) − 2

√
n′

n
sin

φ

2

×
(

t0 sin
θ − θ ′

2
− t1 sin

θ ′ + θ

2

)]
, (11)

∂φ

∂t
= −1

h̄
[(VA + VB) + 2κ cos θ + 2κ ′ cos θ ′

− 2δn√
nn′

(
t0 cos

θ − θ ′

2
+ t1 cos

θ + θ ′

2

)]
, (12)

with θ = θB − θA, θ ′ = θ ′
B − θ ′

A, φ = θ ′
B + θ ′

A − θA − θB, n̄ =
nB − nA, n̄′ = n′

A − n′
B, δn = n′ − n. Furthermore, we as-

sumed that the density of PP pairs and PH pairs in both
terminals are similar, i.e., n 
 nA 
 nB, n′ 
 n′

A 
 n′
B. The

variation of φ can be simplified further in the limit where
n 
 n′, δn � n. In this limit, Eq. (12) simplifies to

∂φ

∂t
≈ −1

h̄
[(VA + VB) + 2κ cos θ + 2κ ′ cos θ ′]. (13)

Next we elucidate on the other parameters. The difference
of the electric field on the CDW sector can be simplified
to VA − VB = −(eEn′/Q0)θ ′ ≡ −r0θ

′, where we have intro-
duced a new parameter r0 = eEn′/Q0. Similarly, the average
potential acting on the CDW sector due to the applied electric
field can be treated as constant, i.e., VA + VB = η.

III. RESULTS

In this section we provide the results by solving Eqs. (8)–
(13) and finding the Josephson current. First we discuss the
terms t0 and t1 that generate the main difference between
the two scenarios. For the simple coexistence of orders, the
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phases of the CDW and SC orders are not linked as discussed
in Sec. I B. Therefore, CDW pairs have no mechanism for
having a uniform phase over the whole sample. Consequently,
it suffers phase shifts and will fluctuate widely from site to
site. Such an incoherent CDW pattern is expected to have
minimal overlap with the SC pairs. Therefore, we can safely
ignore the hopping from a PP pair to a PH pair, as the
quantum entanglement between the orders is weak. We can
set the parameters t0 = 〈ψA(B)

SC |ψA(B)
CDW |ψA(B)

SC |ψA(B)
CDW 〉 = 0 and

t1 = 〈ψA(B)
SC |ψB(A)

CDW |ψA(B)
SC |ψB(A)

CDW 〉 = 0 in Eq. (7) for the coex-
istence of orders.

In the fractionalized PDW case the CDW phase θ ′ is such
that phase of the two electrodes is given by

θ ′
A = Q0 · x + δθ ′

A, θ ′
B = Q0 · (x + δ) + δθ ′

B, (14)

where δ is a dephasing from electrode A to B. δθ ′
A(B) are

the fluctuations of the phase from the initial steady state. In
the setup of Fig. 1 when the electric field and wave vector
Q0 are parallel, δ is controlled by distance between the two
electrodes. In Fig. 5(a) we study an independent configuration,
where the electric field and Q0 are perpendicular. In such a
case the dephasing is controlled by the initial phase shift of
the CDW wave vector in the direction perpendicular to the
electrodes. The main difference between the coexisting case
is that now θ and θ ′ are not independent. Since the phase of
�PDW is coupled to the EM field but has Q0 modulations as
well, we have

θ = δθ ′ + θEM , (15)

where θEM is the electromagnetic phase and δθ ′ = δθB − δθA.
Assuming that we are deep inside the SC phase, with unfrac-
tionalized Cooper pairs around, the Meissner effect leads to
a uniform EM field [22]. Thus effectively the CDW becomes
active to the external EM field, due to the Meissner effect as
the phase of the CDW becomes insensitive to the impurities
and acts like a PDW order. Therefore a uniform CDW pattern
is induced inside the SC phase, an astonishing result that has
been reported in scanning tunneling microscopy experiments
[51]. Since all the phases are fixed, we now get a finite tunnel-
ing t1 and t0 back and forth from the modulated CDW and SC
phases, and Eqs. (8)–(13) need to be solved with t, t0 �= 0.

For both scenarios, the usual Josephson current is modified
due to the presence of the CDW [52,53], with

IJ = −1

2

∂ n̄

∂t
− 1

π

∂θ ′

∂t
. (16)

Note that the two fluids couple in the opposite way to the
field—the tunneling of the charge two bosons contributes to
the conventional SC Josephson current. In contrast, the varia-
tion of the phase creates a charge imbalance in the case of the
CDW and generates an additional current. We solve Eqs. (8)–
(13) and evaluate the Josephson current by using Eq. (16).
Since the difference between the two scenarios sets in at
Tc, we focus on the zero-temperature limit of the Josephson
current. Next we study the alternating current (AC) Josephson
effect by applying a constant potential difference between the
terminals.

A. AC Josephson effect

1. Coexistence case

For the simple coexistence of orders since the parameters
t0 and t1 vanish, Eqs. (8)–(13) simplify enormously. Solving
for Eq. (16) we get

IJ = 2κn

h̄
sin

(
2μ�

h̄
t + C1

)
+ C2r0

π h̄
e−r0t . (17)

Here C1 and C2 are constants of integration and depend on
the initial experimental setup. The first term in Eq. (17) is the
standard AC Josephson current with the primary Josephson
frequency, ω0 = (2eU )/h̄. Similarly, one can define the stan-
dard Josephson time period by T = 2π/ω0. The second term
arises due to CDW in the situation of coexisting order. Since
the SC and CDW orders are disconnected, we only observe
a transient response from the CDW phase variation. We have
plotted the current IJ as a function of time t in Fig. 2(a) for
the coexistence of CDW and SC. The parameters used to
obtain Fig. 2(a) are given by μ� = 1.0, n = 1.0, n′ = 1.0,
r0 = 3.0, η = 0.3, κ = 0.5, κ ′ = 0.6, with t1 = t0 = 0. We
measure all the energies in units of 2κ which we have set to
unity. Furthermore, we have also set the constants e = 1 and
h̄ = 1. We have also used the initial conditions θ (t = 0) = 0,
φ(0) = 0, and θ ′(0) = 0.6. The transient CDW regime near
t = 0 paves the way to a standard form of the Josephson
current for a standard SC current for t � r0. In this situation,
IJ (t ) from the numerical calculations presented in the black
dotted trace and the analytical form of Eq. (17) depicted in
the red thick trace in Fig. 2(a) match exactly.

2. Fractionalized PDW case

In the fractionalized PDW scenario the terms t0 and t1 are
nonvanishing. We have obtained an approximate solution of
the Josephson current in Appendix B. The Josephson current
in the first-order perturbation in t0 and t1 is given by

IJ = 2κn

h̄
sin

(
2μ�

h̄
t + C1

)
+ C2r0

π h̄
e−r0t

− 2
√

nn′

h̄
cos

φ0

2

(
t0 sin

θ ′
0 − θ0

2
− t1 sin

θ ′
0 + θ0

2

)

+ 2

π h̄

√
n′

n
sin

φ0

2

(
t0 sin

θ0 − θ ′
0

2
− t1 sin

θ0 + θ ′
0

2

)
. (18)

The time evolution of zeroth-order (t0 = 0, t1 = 0) solutions
of θ0, θ ′

0, and φ0 is given by

θ0 = 2μ�

h̄
t + C1, (19)

θ ′
0 = C2

h̄
e−r0t , (20)

φ0 = −η

h̄
t + C3 + 2κ ′

r0h̄
Ci[C2e−r0t ] − κ

μ�

sin

(
2μ�

h̄
t + C1

)
,

(21)

where again C3 is a constant of integration and Ci[x] is the
cosine integral function.

We have displayed the current of Eq. (18) in Fig. 2(b) for
the same set of parameters as in Fig. 2(a) albeit with a finite
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FIG. 2. The variation of Josephson current with time for the
setup presented in Fig. 1, i.e., the applied electric field, is parallel
to the charge modulation wave vector. Here we compare the exact
numerical results with the analytical form of the current calculated
perturbatively. Panel (a) shows the situation when the two orders
coexist, for a vanishing t0 and t1. In this situation, the perturbative
calculations are exact. The initial transient current regime for CDW
order vanishes at a long-time limit, and we are left with the simple
AC Josephson effect. Panel (b) presents the Josephson current for
the situation when the entanglement between the orders forms a
fractionalized PDW or PDW with a finite t0 = 0.3, t1 = 0.03. The
perturbative calculations and the numerical analysis show a good
match. Interestingly, the presence of entanglement between CDW
and SC orders induces a beatlike modulation of the Josephson cur-
rent, which can be contrasted with the simple coexistence scenario
presented above.

t0 = 0.3, t1 = 0.03. The perturbative analytical calculations
match well with the exact numerical form of the current.
The Josephson current for the fractionalized PDW displays a
beatlike structure which is strikingly distinguishable from the
coexistence case. This provides us with the first prediction: If
the PG phase of the underdoped cuprates supports a PDW or
fractionalized PDW state, the AC Josephson current should
develop a beatlike form as shown in Fig. 2(b), whereas if
the orders simply coexist in the PG phase the AC Josephson
current in long times will follow the conventional form.

3. Frequency of the AC Josephson current

The Josephson current for a fractionalized PDW state
shows a beatlike structure that suggests multiple frequencies
contribute to the AC Josephson current. To get the frequency,

we need to perform a Fourier transform of the AC Josephson
current to the frequency domain.

We simplify the Eq. (18) by assuming that the interjunction
PP to PH hopping amplitude is small compared to the intra-
junction hoppings, i.e., t1 � t0. In an experimental scenario,
this requires using a barrier to decay the PH hoppings across
the junction. However, for a finite but small t1, will not create
any qualitative difference to the discussion below. Also, in the
long-time limit, the transient current regime from the CDW
vanishes, i.e., θ ′

0 → 0. Following the manipulations detailed
in Appendix C, we obtain

IJ ≈ t0
√

nn′

h̄
(J0(b)(sin a+t + sin a−t )

+ J1(b){sin[(a+ + ξ )t] − sin[(a− + ξ )t]

+ sin a−t − sin a+t}) + 2κn

h̄
sin ξ t, (22)

where Jν (x) is the Bessel function of first kind of the νth
order. Also we have redefined

a± = 1

2

(
2μ�

h̄
± η

h̄
± 2κ ′

h̄

)
, (23)

b = κ

2μ�

, (24)

ξ = 2μ�

h̄
. (25)

Since all the terms are directly proportional to t , one can easily
read off the frequencies for the AC current, by performing a
Fourier transform. This is given by

ĨJ (ω) = κn

h̄
δ(ω − ξ ) + t0

√
nn′

2h̄
{[J0(b) + J1(b)]δ(ω − a−)

+J1(b)δ(ω − a+ − ξ ) − J1(b)δ(ω − a− − ξ )

+ [J0(b) − J1(b)]δ(ω − a−)}. (26)

The primary frequency ξ is the usual AC Josephson frequency.
The other frequencies are the additional ones originating due
to the entanglement of the two orders. The ratio of the primary
to the few additional frequencies is given by

ω1

ω0
= 1

2
−

(
η + 2κ ′

4eU

)
, (27)

ω4

ω0
= 1

2
+

(
η + 2κ ′

4eU

)
, (28)

ω2

ω0
= 3

2
+

(
η + 2κ ′

4eU

)
, (29)

ω3

ω0
= 3

2
−

(
η + 2κ ′

4eU

)
, (30)

where ωi−1 are the ith delta-function peak of Eq. (26) and
we used the fact that μ� = eU , where U is the DC potential
applied across the terminals. For large potential difference
between the two junctions, i.e., U � η + 2κ ′, the second
term of all the ratios vanishes. Moreover, the ratio between
the primary and additional frequencies will occur at half-odd
integers, i.e., 1/2, 3/2, 5/2, . . .. However, the peak intensity
will diminish for the higher-order peaks as the higher-order
Bessel functions determine their strength.
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(a) (b)

(d)(c)

FIG. 3. Exhibits the primary ω0 and additional frequencies ωi of AC Josephson current for t0 = 0.3, t1 = 0.0. Here κ ′ and η are material-
dependent parameters. As the potential difference between the two terminals dominates the material-dependent parameters, the number of
peaks reduces due to the merging of peaks as shown in (c) and (d). The additional peaks for U � η + 2κ ′ are at the half-odd integer multiples
of the primary peak ω0.

We have presented in Fig. 3 the Fourier transform of the
Josephson current given in Eq. (18) solved numerically com-
pared with the perturbative solution of Eq. (26). The dominant
peaks of the AC Josephson junction are captured within our
approximate analysis. The primary peak ω0 arising from the
normal AC Josephson effect remains unchanged for all the
parameters. In Figs. 3(a) and 3(b) when U ∼ η + 2κ ′, the
four additional peaks are separated and well resolved. The
separation of the peaks ω1 and ω4 from 0.5ω0 (similarly ω2

and ω3 from 1.5ω0) should reduce monotonically as the po-
tential difference between the two electrodes increases. This
is illustrated in Figs. 3(b) to 3(d). When U � η + 2κ ′, the two
peaks merge as shown in Figs. 3(c) and 3(d) which leads to an
apparent reduction in the number of peaks. Therefore when
the potential difference between the terminals is large com-
pared to the material-dependent parameters, the additional
frequencies occur at half-odd integers of ω0. Studying such
frequency dependence of the AC Josephson current peaks will
give strong evidence for the fractionalized PDW scenario.

4. Envelope of the AC Josephson current

We have also obtained the envelope for the oscillation
observed for the fractionalized PDW situation. The details for
obtaining the same are presented in Appendix D. To do this we
performed a few simplifications. First, we assume that the in-
terjunction PP to PH hopping amplitude is small compared to
the intrajunction hoppings, i.e., t1 � t0. This is not necessary
a priori but it simplifies the following discussion. Experimen-

tally, this requires hindering the t1 hopping by using a suitable
barrier. Second, since the envelope exists even in the long-time
limit the transient response can be safely ignored. Third, the
expressions of current are first-order perturbative solutions in
t0. We find that the expression for the current in this limit
becomes

IJ ≈ n

h̄

[√
κ2 + t2

0 + 2κt0 cos χ1

+
√

κ2 + t2
0 + 2κt0 cos χ2

]
sin (θ0), (31)

where χ1 = (φ0 − θ0)/2 and χ2 = (φ0 + θ0)/2.
The total envelope is shown by the red trace in Figs. 4(a)

and 4(b) which is the term inside the square brackets in
Eq. (31). The envelope term which captures the slower oscilla-
tion is exhibited by the blue traces in Fig. 4. We note that this
is controlled by the χ1 term. Additionally, the beatlike oscilla-
tions for the fractionalized PDW become better resolved as the
entanglement between the two orders increases. Experimental
observation of such dependence will also signal the fraction-
alized PDW in the pseudogapped phase of the underdoped
cuprates.

5. Extracting modulation wave vector

It is also possible to detect the PDW modulation wave
vector by varying the dephasing parameter δ between the
two electrodes and by investigating its effect on the average
Josephson current. The initial phases for the particle-hole
pairs are given in Eq. (14), θ ′ = Q0δ and φ = Q0δ + γ , where
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FIG. 4. Presents the evolution of the beatlike form of the Joseph-
son current for two different parameters (a) t0 = 0.3, (b) t0 = 1. The
total envelope for the oscillation is governed by the red traces, which
still contain some modulations. The blue trace shows the slower
oscillation of the envelope which is controlled by the first term of
Eq. (31) and hence by χ1 = (φ0 − θ0)/2. This additional oscillation
of the envelope is due to the entanglement between the SC and CDW
order.

γ can be set to a constant. Similarly, the phase difference for
the particle-particle pairs, θ = C1, is also a constant at t = 0,
which depends on the initial condition of the JJ setup.

We average the Josephson current, 〈IJ〉, using Eq. (18)
over a time of 10% of the primary Josephson period T . For
the coexistence of order the 〈IJ〉 is presented in Fig. 5(a)
in the red trace for r0 = 1.2, C1 = 0, and Q0 = (1/4)2π/a0,
where a0 is the lattice spacing set to unity. The expression is
linearly increasing with the width of the junction. The slope
of the linear increase is proportional to the modulation wave
vector Q0.

However, for the fractionalized PDW scenario, along with
the linear increase of the current with δ, there is also weak
oscillation as shown in the black trace in Fig. 5(a). The mod-
ulation can be better identified by the derivative of 〈IJ〉 with
respect to δ. We depicted the same in Fig. 5(b), and it shows
oscillations with the primary wavelength of 2π/Q0. However,
higher moments of oscillations make it challenging to deter-
mine the magnitude of the PDW wave vector (for details, see
Appendix E 1). We also note that such Josephson junction
is difficult to set up in practice. In this setup, the width of
the insulating region increases, which should also modify the
interjunction hopping for different δ. Moreover, fabricating JJ
with varying sizes of the insulating region is challenging.

(a)

(b)

FIG. 5. Panel (a) depicts the variation of average Josephson cur-
rent with the width of the insulating region, δ. The current shows
a linear increase for a simple coexistence of two orders, with the
slope proportional to the CDW modulation wave vector. However,
for a fractionalized PDW state, the Josephson current reveals a weak
modulation with δ. Panel (b) shows the derivative of the current
presented in panel (a). The PDW modulation wave vector Q0 con-
trols the oscillation of the Josephson current with δ, albeit higher
harmonics of oscillations are also present.

Next, we discuss another complementary Josephson junc-
tion setup better suited to extracting the modulation wave
vector Q0. Figure 6(a) shows a JJ setup where the modula-
tion wave vector is perpendicular to the electric field. Here
δ denotes the phase shift of the CDW wave vector in the B
electrode with respect to the A. In this situation, VA and VB

vanish and hence r0 = η = 0. In Fig. 6(b) we plot the variation
average Josephson current with δ, time-averaged over 0.1 of
the usual SC Josephson period. The details of the calculations
are presented in Appendix E 2. Here, the fractionalized PDW
scenario displays modulation controlled by 2π/Q0. In con-
trast, the coexistence scenario gives a flat average current with
varying δ. In Fig. 6(c), we also establish that the modulation
of the IJ with δ remains robust when time averaging is done
over 20% of the primary Josephson period. Therefore, in this
setup, it should be possible to extract the modulation wave
vector of the PDW.

B. Inverse Josephson effect

In the previous section, we used a constant DC voltage U
across the junction, leading to an AC Josephson current. It is
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SC +CDW SC +CDWInsulator
(a)

(b) (c)

FIG. 6. Panel (a) shows a Josephson junction setup in which
the electric field is perpendicular to the charge modulation wave
vector. The CDW modulations in the two terminals are dephased
by a factor of δ here. Panel (b) depicts the evolution of the average
Josephson current with the dephasing parameter δ. Here the 〈IJ〉
is time-averaged over 10% of the primary Josephson period. For
the coexistence of orders, the average current with the dephasing
parameter is constant. However, for the fractionalized PDW scenario,
the Josephson current modulates with the modulation proportional to
the CDW wave vector Q0. (c) The same as (b) but averaged over 20%
of the primary Josephson period.

also possible to apply a microwave AC voltage to the junc-
tion, such that U (t ) = U + Ũ cos ωt . Here U is the constant
DC voltage. Note that we have used an insulating barrier, so
the normal current passing through the junction will vanish.
Solving for the Josephson current, for the simple coexistence
of orders, the Josephson current is given by

IJ = 2κn

h̄

∞∑
m=−∞

[
(−1)m sin

(
C1 + 2eU

h̄
t − mωt

)

×Jm

(
2eŨ

h̄ω

)]
+ C2r0

π h̄
e−r0t , (32)

where m is an integer and Jm is the Bessel function of the first
kind of order m. The time average of this quantity gives the
DC current IDC . The long-time average of the oscillatory term
vanishes unless the frequency ω is some integral multiple of
the applied DC voltage U in the units where we set (2e)/h̄ =
1. The transient current also fades away in the long-time limit.
The DC current in that scenario is given by

|IDC | ≈ 2κn

h̄

∞∑
m=−∞

δmω,U (−1)mJm

(
Ũ

ω

)
sin C1, (33)

which leads to sharp δ peaks at the integer multiples of the AC
frequency ω. These peaks are known as Shapiro spikes. We
have presented the details of Shapiro spikes in Appendix H.

Usually, in experiments, the circuit is driven by current
instead of voltage. The nature of current versus voltage char-
acteristics can be qualitatively explained from the Shapiro

FIG. 7. Demonstration of the current-voltage characteristics in
the inverse Josephson setup. In (a) we set t0 = 0, t1 = 0 the pa-
rameter corresponding to the simple coexistence of CDW and SC
orders. The sharp Shapiro steps can be observed when the applied
DC voltage U is equal to the integer multiple of the frequency ω.
In (b)–(d) we plot the same for finite t0, t1 which corresponds to the
fractionalized PDW scenario. In (b) t0, t1 is small, and other steps
start developing in between the two steps. In (c) and (d) these addi-
tional steps become stronger as the entanglement between the two
orders is increased and some of the integer steps vanish completely.

spikes. For instance, when the external driven current exceeds
the strength of the Shapiro spike at some voltage, the voltage
increases abruptly with almost zero slopes until the voltage
reaches the next spike. In the subsequent level, again, as the
current increases to that of the spike strength, the voltage
remains stable. As the current exceeds the spike strength,
the voltage again shoots up until the next spike is reached.
This pattern keeps repeating itself, creating a steplike current-
voltage characteristic known as Shapiro steps.

We have solved Eqs. (8)–(13) for an AC voltage of the form
U (t ) = U + Ũ cos ωt and plotted the DC current as a function
of the U in the units where we set (2e)/h̄ = 1 in Fig. 7. In
all these figures we have used the parameters the same as in
Fig. 2 with AC frequency ω = 1 and AC voltage amplitude
Ũ = 3.0, C1 = π/2. We have presented the predicted current-
driven nature of the current-voltage characteristics in Fig. 7.
For the coexistence case, t0, t1 = 0 and we find in Fig. 7(a)
the expected sharp Shapiro steps at the integer multiples of ω.

Next, we solve Eqs. (8)–(13) numerically for an AC voltage
of the same form but a finite t0, t1 and track the evolution
of the Shapiro steps. In Fig. 7(b) we present the results for
t0 = 0.1, t1 = 0.01, i.e., a small entanglement between the
two orders leading to a weak PDW state. We find that the
Shapiro steps become broader as soon as the entanglement
between the two orders is turned on. New steps start to appear
as the overlap between the charge and SC order increases
in Fig. 7(c). Finally, for a strong entanglement between the
two orders, some steps appear at different DC voltage than
the integer multiples of ω. Interestingly, in Fig. 7(d), the first
integer Shapiro step at U = 1 is thoroughly washed away as
new steplike feature forms at U = 1/2. Therefore, our calcu-
lations suggest that additional fractional Shapiro steps in the
inverse Josephson junction setup will strongly favor the PDW
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scenario. However, the conventional nature of voltage-current
characteristics will manifest for a competing order scenario.

IV. SUMMARY AND CONCLUSIONS

We propose a Josephson junction setup that can distinguish
between two possible scenarios which can be observed in the
enigmatic pseudogap phase of the cuprates. We focused on
the case of a fractionalized PDW state which can turn into
interconverted SC and CDW pairs and compare this with the
scenario where the SC and the CDW orders simply coexist
with each other. Our findings are that in the case of a fraction-
alized PDW phase,

(i) we observe a beatlike structure of AC Josephson cur-
rent when a constant DC voltage is applied across the junction;

(ii) the additional frequencies for the AC Josephson cur-
rent are at the half-odd integer multiples of the normal
Josephson frequency for a large value of constant DC voltage;

(iii) we can detect modulations of the Josephson current
with a period proportional to the CDW wave vector Q0 by
varying the dephasing parameter of the CDW modulation in
two terminals;

(iv) in the inverse Josephson setup, the induced DC cur-
rent has additional steps other than the standard integer
Shapiro steps.

Identification of these signatures will strongly indicate the
fractionalized PDW scenario for the pseudogap phase. Re-
cently signatures of PDW order are seen in Bi2Sr2CaCu2O8+x

using a Josephson scanning tunneling microscopy setup
[11,26]. We therefore expect to observe these effects on such
materials. Moreover, the predictions presented here are not de-
pendent on the fine-tuning of material-dependent parameters.

We note that the Josephson junction setup is shown in
Fig. 1 and Fig. 6(a) presents just the two representative cases.
For instance, in Fig. 1, the applied electric field is parallel to
the modulation wave vector and in Fig. 6(a), the modulation
wave vector is perpendicular to the applied field. However,
only short-ranged domains of unidirectional modulations are
observed in cuprates [55]. Therefore, the samples in both
terminals can contain an admixture of unidirectional domains
of modulated orders. Importantly, our analysis shows that the
presence of one scenario cannot critically affect the other.
Consequently, we expect to discern a superposition of these
two effects presented in this paper.

Recent studies have used Josephson scanning tunneling
microscopy to observe the modulation of the Josephson cur-
rent [11,26]. In such studies, both the tip and sample are in
the underdoped regime of the cuprates. The tips have been
fabricated from the flakes of the sample itself, leading to the
possible detection of the pair density wave states in cuprates.
If the wave vectors of both the tip and sample align perpendic-
ular to the applied field, the situation of Fig. 6(a) will manifest.
As the tip is moved parallel over the sample, it changes the
dephasing parameter δ. The Josephson current modulates with
the wave vector Q0 as a function of δ [11,26], very similar to
our observation in Fig. 6.

Our calculations provide several predictions of the Joseph-
son setups to detect PDW states. Any experiments that can test
these features will be instrumental in differentiating between

the simple coexistence of orders and the proposed pair density
wave scenario.
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APPENDIX A: THE SCHRÖDINGER EQUATIONS

In this section we provide complementary details on how
to derive Eq. (7). We rewrite Eq. (7) as

ih̄
∂

∂t
(
√

nAeiθA ) = μ�

√
nAeiθA + κ

√
nBeiθB

+ t0
√

n′
Aeiθ ′

A + t1
√

n′
Aeiθ ′

B , (A1)

ih̄
∂

∂t
(
√

nBeiθB ) = −μ�

√
nBeiθB + κ

√
nAeiθA

+ t0
√

n′
Beiθ ′

B + t1
√

n′
Aeiθ ′

A , (A2)

ih̄
∂

∂t
(
√

n′
Aeiθ ′

A ) = VA

√
n′

Aeiθ ′
A + κ ′

√
n′

Beiθ ′
B

+ t0
√

nAeiθA + t1
√

nBeiθB , (A3)

ih̄
∂

∂t
(
√

n′
Beiθ ′

B ) = VB

√
n′

Beiθ ′
B + κ ′

√
n′

Aeiθ ′
A

+ t0
√

nBeiθB + t1
√

nAeiθA . (A4)

Expanding Eq. (A1) and taking the complex conjugate of
it yields

ih̄( ˙√
nA + iθ̇A

√
nA)eiθA = μ�

√
nAeiθA + κ

√
nBeiθB

+ t0
√

n′
Aeiθ ′

A + t1
√

n′
Aeiθ ′

B , (A5)

−ih̄( ˙√
nA − iθ̇A

√
nA)e−iθA = μ�

√
nAe−iθA + κ

√
nBe−iθB

+ t0
√

n′
Ae−iθ ′

A + t1
√

n′
Ae−iθ ′

B .

(A6)

Adding Eqs. (A5) and (A6) leads to

∂nA

∂t
= 2

h̄
[κ

√
nAnB sin θ + t0

√
nAn′

A sin(θ ′
A − θA)

+ t1
√

n′
BnA sin(θ ′

B − θA)], (A7)

where θ = θB − θA. Next subtracting Eq. (A5) from Eq. (A6)
leads to

∂θA

∂t
= − 1

h̄

[
μ� + κ

√
nB

nA
cos θ + t0

√
n′

A

nA
cos(θ ′

A − θA)

+t1

√
n′

B

nA
cos(θ ′

B − θA)

]
. (A8)
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Next repeating the same procedure for Eq. (A2), we obtain the
corresponding equations for nB and θB as follows,

∂nB

∂t
= 2

h̄
[−κ

√
nAnB sin θ + t0

√
nBn′

B sin(θ ′
B − θB)

+ t1
√

n′
AnB sin(θ ′

A − θB)], (A9)

∂θB

∂t
= 1

h̄

[
μ� − κ

√
nA

nB
cos θ − t0

√
n′

B

nB
cos(θ ′

B − θB)

−t1

√
n′

A

nB
cos(θ ′

A − θB)

]
. (A10)

We define n̄ = nB − nA, subtracting Eq. (A7) from Eq. (A9),
leading to

∂ n̄

∂t
= 2

h̄
{−2κ

√
nAnB sin θ

+ t0[
√

nBn′
B sin(θ ′

B − θB) −
√

nAn′
A sin(θ ′

A − θA)]

+ t1[
√

n′
AnB sin(θ ′

A − θB) −
√

n′
BnA sin(θ ′

B − θA)]}.
(A11)

Approximating that the density of particle-particle pairs and
particle-hole pairs in both the terminals is similar in the steady
state, i.e., nA ≈ nB = n and n′

A ≈ n′
B = n′, and defining φ =

θ ′
A + θ ′

B − θA − θB, we obtain

∂ n̄

∂t
= 4

h̄

[
−κn sin θ +

√
nn′ cos

φ

2

×
(

t0 sin
θ ′ − θ

2
− t1 sin

θ ′ + θ

2

)]
, (A12)

where θ ′ = θ ′
B − θ ′

A. Following the same procedure and ap-
proximation we can obtain the differential equation for θ ,
which is given by

∂θ

∂t
= 2

h̄

[
μ� +

√
n′

n
sin

φ

2

×
(

t0 sin
θ ′ − θ

2
− t1 sin

θ + θ ′

2

)]
. (A13)

Repeating the procedure for Eqs. (A3) and (A4), we obtain
the differential equation for n̄′ and θ ′:

∂ n̄′

∂t
= 4

h̄

[
−κ ′n′ sin θ ′ +

√
nn′ cos

φ

2

×
(

t0 sin
θ − θ ′

2
− t1 sin

θ ′ + θ

2

)]
, (A14)

∂θ ′

∂t
= 1

h̄

[
(VA − VB) − 2

√
n′

n
sin

φ

2

×
(

t0 sin
θ − θ ′

2
− t1 sin

θ ′ + θ

2

)]
. (A15)

Using all these forms for the θ ’s we can obtain the time
evolution equation for φ:

∂φ

∂t
= − 1

h̄
[(VA + VB) + 2κ cos θ + 2κ ′ cos θ ′

−2(n − n′)√
nn′

(
t0 cos

θ − θ ′

2
+ t1 cos

θ + θ ′

2

)]
. (A16)

The fourth term on the right-hand side can be approximately
taken to be small when the particle-particle pairs and the
particle-hole pairs are of similar strength, i.e., δn/n � 1, and
thus we obtain

∂φ

∂t
≈ −1

h̄
[(VA + VB) + 2κ cos θ + 2κ ′ cos θ ′]. (A17)

We need to solve the five coupled differential equations (A12),
(A13), (A14), (A15), and (A17).

APPENDIX B: EVALUATION OF JOSEPHSON CURRENT

The Josephson current is obtained by the expression
[52,53]

IJ = −1

2

∂ n̄

∂t
− 1

π

∂θ ′

∂t
. (B1)

To find this, we need a solution to the equations presented
in the previous section, using the forms for the difference
of potential between the two terminals due to charge density
modulations as VA − VB = −eE ρ̄θ ′ ≡ −r0θ

′, with the aver-
age of the same VA + VB = η set to constant. The coupled
differential equations can be written in a condensed form as

∂ n̄

∂t
= 4

h̄

[
−κn sin θ +

√
nn′ cos

φ

2
f (t0, t1, θ, θ ′)

]
, (B2)

∂θ

∂t
= 2

h̄

[
μ� +

√
n′

n
sin

φ

2
f (t0, t1, θ, θ ′)

]
, (B3)

∂ n̄′

∂t
= 4

h̄

[
−κ ′n′ sin θ ′ +

√
nn′ cos

φ

2
g(t0, t1, θ, θ ′)

]
, (B4)

∂θ ′

∂t
= 1

h̄

[
−r0θ

′ − 2

√
n′

n
sin

φ

2
g(t0, t1, θ, θ ′)

]
, (B5)

∂φ

∂t
= −1

h̄
[η + 2κ cos θ + 2κ ′ cos θ ′]. (B6)

Here we have defined

f (t0, t1, θ, θ ′) =
(

t0 sin
θ ′ − θ

2
− t1 sin

θ ′ + θ

2

)
, (B7)

g(t0, t1, θ, θ ′) =
(

t0 sin
θ − θ ′

2
− t1 sin

θ + θ ′

2

)
. (B8)

These equations can be solved using numerical means for any
parameter, and the Josephson current can be evaluated using
Eq. (B1). However, here we discuss an approach to calculate
when the t0 and t1 are small parameters that can be incorpo-
rated perturbatively in the expression. In this approach, we
expand the solutions

n̄ = n̄0 + (t0 + t1)n̄1 + (t0 + t1)2n̄2 + · · · , (B9)

θ ′ = θ ′
0 + (t0 + t1)θ ′

1 + (t0 + t1)2θ ′
2 + · · · , (B10)
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and so on for other variables, and the subscript represents the
perturbative order of the solution. The zeroth-order solution is
readily obtained by putting t0 = 0 and t1 = 0 in Eq. (B2) to
Eq. (B6). The relevant equations become

∂ n̄0

∂t
= −4κn

h̄
sin θ0, (B11)

∂θ0

∂t
= 2μ�

h̄
, (B12)

∂θ ′
0

∂t
= − r0

h̄
θ ′

0, (B13)

∂φ0

∂t
= −1

h̄
[η + 2κ cos θ0 + 2κ ′ cos θ ′

0]. (B14)

The solutions for these equations are readily obtained and
these are given by

θ0 = 2μ�

h̄
t + C1, (B15)

θ ′
0 = C2

h̄
e−r0t , (B16)

and the zeroth-order Josephson current becomes

I (0)
J = 2κn

h̄
sin

(
2μ�

h̄
t + C1

)
+ C2r0

π h̄
e−r0t , (B17)

where C1 and C2 are the constants of integration. Notice that
the first term is the usual Josephson current for a super-
conducting junction, whereas the second term is a transient
current due to the presence of charge orders. When the en-
tanglement between the orders is small, i.e., for a simple
coexistence of order, Eq. (B17) gives the exact form of the
current.

Next we focus on obtaining the first-order correction to this
current. To this end, we need the zeroth-order expression for
φ0, which can be obtained by using θ0 and θ ′

0 in Eq. (B14),

φ0 = −η

h̄
t + C3 + 2κ ′

r0 h̄
Ci[C2e−r0t ] − κ

μ�

sin

(
2μ�

h̄
t + C1

)
,

(B18)

where again C3 is a constant of integration and Ci[x] is the
cosine integral function. The first-order equations can now be
evaluated by taking the derivative of Eq. (B2) and Eq. (B5)
with respect to t0 and t1 individually and subsequently setting
these small parameters to zero. Therefore the first-order cor-
rection for the terms relevant for the Josephson current thus
becomes

∂ n̄1

∂t
= 4

√
nn′

h̄
cos

φ0

2

(
t0 sin

θ ′
0 − θ0

2
− t1 sin

θ ′
0 + θ0

2

)
,

(B19)

∂θ ′
1

∂t
= −2

h̄

√
n′

n
sin

φ0

2

(
t0 sin

θ − θ ′
0

2
− t1 sin

θ0 + θ ′
0

2

)
.

(B20)

Therefore up to the first order the Josephson current is given
by

IJ = 2κn

h̄
sin

(
2μ�

h̄
t + C1

)
+ C2r0

π h̄
e−r0t

− 2
√

nn′

h̄
cos

φ0

2

(
t0 sin

θ ′
0 − θ0

2
− t1 sin

θ ′
0 + θ0

2

)

+ 2

π h̄

√
n′

n
sin

φ0

2

(
t0 sin

θ0 − θ ′
0

2
− t1 sin

θ0 + θ ′
0

2

)
,

(B21)

where we can use the time evolution of θ0, θ ′
0, and φ0 from

Eq. (B15), Eq. (B16), and Eq. (B18), respectively. In the main
text, this form is compared favorably with the exact current
evaluated by solving the equations numerically.

APPENDIX C: EXTRACTING THE FREQUENCIES
OF THE AC JOSEPHSON CURRENT

The Josephson current for a fractionalized PDW state
shows a beatlike structure. This suggests multiple frequen-
cies are contributing to the AC Josephson current. This
section provides the details to obtain the Josephson current
frequencies. To do so, we need to perform a Fourier transform
of the AC Josephson current to the frequency domain.

We simplify Eq. (B21) by assuming that the interjunction
PP to PH hopping amplitude is small compared to the intra-
junction hoppings, i.e., t1 � t0. In an experimental scenario,
this requires using a barrier to decay the PH hoppings across
the junction. However, for a finite but small t1, this will not
create any qualitative difference to the discussion below. Also,
in a long-time limit, the transient current regime from the
CDW vanishes, i.e., θ ′

0 → 0. Hence the current reduces to

IJ ≈2κn

h̄
sin θ0 + 2t0

√
nn′

h̄
cos

φ0

2
sin

θ0

2

− 2t0
π h̄

√
n′

n
sin

φ0

2
sin

θ0

2
. (C1)

Furthermore, since n ≈ n′, the second term dominates over
the third. The expression for the current further simplifies to

IJ ≈2κn

h̄
sin θ0 + 2t0

√
nn′

h̄
cos

φ0

2
sin

θ0

2
. (C2)

Using trigonometric identities, the second term becomes

I2 ≈ t0
√

nn′

h̄

[
sin

(
θ0 + φ0

2

)
+ sin

(
θ0 − φ0

2

)]
. (C3)

Here θ0 and φ0 are given by Eq. (B15) and Eq. (B18), respec-
tively. The constant terms do not contribute to the frequency
of the AC Josephson frequency, and hence we can ignore
them for the following analysis. Next we make a series ex-
pansion for the Ci[. . .] function and neglecting the constant
and higher-order terms, we obtain

I2 ≈ t0
√

nn′

h̄
[sin (a+ + b sin ξ t ) + sin (a− − b sin ξ t )],

(C4)
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where we have defined

a± = 1

2

(
2μ�

h̄
± η

h̄
± 2κ ′

h̄

)
, (C5)

b = κ

2μ�

, (C6)

ξ = 2μ�

h̄
. (C7)

Next, we expand

cos(x sin θ ) = J0(x) + 2
∞∑

p=1

J2p(x) cos(2pθ ), (C8)

sin(x sin θ ) = 2
∞∑

p=1

J2p+1(x) sin[(2p + 1)θ ], (C9)

where Jν (x) is the Bessel function of the first kind of the
νth order. Neglecting the higher-order terms the current in
Eq. (C1) becomes

IJ ≈ t0
√

nn′

h̄
(J0(b)(sin a+t + sin a−t )

+ J1(b){sin [(a+ + ξ )t] − sin [(a− + ξ )t]

+ sin a−t − sin a+t}) + 2κn

h̄
sin ξ t . (C10)

Since all the terms are directly proportional to t , one can easily
read off the frequencies for the AC current, by performing a
Fourier transform. This is given by

ĨJ (ω) = κn

h̄
δ(ω − ξ ) + t0

√
nn′

2h̄
{[J0(b) + J1(b)]δ(ω − a−)

+J1(b)δ(ω − a+ − ξ ) − J1(b)δ(ω − a− − ξ )

+[J0(b) − J1(b)]δ(ω − a−)}. (C11)

The primary frequency ξ is the usual AC Josephson frequency.
The other frequencies are the additional ones originating due
to the entanglement of the two orders. The ratio of the primary
to the few additional frequencies is given by

ω1

ω0
= 1

2
−

(
η + 2κ ′

4eU

)
, (C12)

ω4

ω0
= 1

2
+

(
η + 2κ ′

4eU

)
, (C13)

ω2

ω0
= 3

2
+

(
η + 2κ ′

4eU

)
, (C14)

ω3

ω0
= 3

2
−

(
η + 2κ ′

4eU

)
, (C15)

where ωi−1 are the ith delta function peak of Eq. (C11). For
large potential difference between the two junctions, i.e., U �
η + 2κ ′, the second term of all the ratios vanishes. Moreover,
the ratio between the primary and additional frequencies will
occur at half-odd integers, i.e., 1/2, 3/2, 5/2, . . .. However,
the peak strength will diminish for the higher-order term as it
is determined by the higher-order Bessel function. Studying
such frequency dependence of the AC Josephson current will
give an indication of the fractionalized PDW order.

APPENDIX D: EXTRACTING THE ENVELOPE

The Josephson current for a PDW state or fractionalized
PDW state shows a beatlike structure. Such a beatlike form
can be distinguished in experiments establishing an entan-
glement between the superconducting and the charge orders.
To provide a detailed description, it becomes necessary to
determine the parameters that control such a current envelope.
In this section, we provide the details of the envelope of the
Josephson current. We start with Eq. (C2). Using trigonomet-
ric identities, we obtain

IJ = κn

h̄
sin θ0 + t0

√
nn′

h̄
sin

(
θ0 + φ0 − θ0

2

)

+ κn

h̄
sin θ0 + t0

√
nn′

h̄
sin

(
θ0 − φ0 + θ0

2

)
. (D1)

Before adding the sine waves we define (φ0 − θ0)/2 = χ1

and (φ0 + θ0)/2 = χ2. Therefore, using n ≈ n′, the expres-
sion current becomes

IJ = n

h̄

[√
κ2 + t2

0 + 2κt0 cos χ1 sin (θ0 + ξ1)

+
√

κ2 + t2
0 + 2κt0 cos χ2 sin (θ0 − ξ2)

]
. (D2)

Here the phase angles ξi are given by

ξi = sin−1

⎛
⎝ t0 sin χi√

κ2 + t2
0 + 2κt0 cos χi

⎞
⎠, (D3)

where i = 1, 2. In the perturbative limit, t0 is the small param-
eter in our calculations; the phase shifts can be assumed to be
small, such that ξi = 0. Therefore the current becomes

IJ = n

h̄

2∑
i=1

[√
κ2 + t2

0 + 2κt0 cos χi
]

sin (θ0). (D4)

Here the amplitude of the envelope is controlled by two
phases. The faster oscillation is governed by χ2 = (φ0 +
θ0)/2 and the slower one by χ1 = (φ0 − θ0)/2. The total en-
velope is the sum of the square root term in Eq. (D4), and
therefore contains further oscillations given by χ1 and χ2.

APPENDIX E: JOSEPHSON CURRENT
WITH DEPHASING PARAMETER

1. Electric field parallel to Q0

This Appendix discusses the procedure to obtain the aver-
age Josephson current with the dephasing parameter. Initially
at t = 0, the phase of the CDW order is given by θ ′(0) =
Q0δ = C2. Similarly, one can set φ(0) = Q0δ + γ , where γ

is a constant. The zeroth-order solution for φ thus becomes

φ0 = − η

h̄
t + (Q0δ + γ ) + 2κ ′

r0h̄
Ci[Q0δe−r0t ]

− κ

μ�

sin

(
2μ�

h̄
t + C1

)
. (E1)

Putting this in Eq. (18), we obtain the IJ (t ), which we integrate
numerically over a fixed time to get the average 〈IJ〉. Notice
that the cosine-integral dependence of δ in φ0 generates a
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FIG. 8. The AC Josephson current for different values of r0. The
beatlike structure for the AC current remains robust for all the values
of r0. Only the initial transient nature of the current vanishes for
smaller r0.

higher harmonics of oscillation of 〈IJ〉 with δ. Thus, it be-
comes difficult to extract the PDW modulation wave vector
in this setup.

2. Electric field perpendicular to Q0

No such complications arise when the JJ is set up such
that the wave vector is perpendicular to the electric field.
In this case, although r0 = η = 0 and the transient current
cannot survive, the initial θ ′

0(0) = Q0δ. Similarly, one can set
φ(0) = Q0δ + γ , where γ is a constant. Here δ denotes the
phase difference between the CDW wave vector in the two
terminals. Consequently, the zeroth-order solutions become

θ0 = 2μ�

h̄
t + C1, (E2)

θ ′
0 = Q0δ, (E3)

φ0 = (Q0δ + γ ) − 2κ ′

h̄
cos (Q0δ)t − κ

μ�

sin

(
2μ�

h̄
t + C1

)
.

(E4)

Putting these expressions in Eq. (18), we can evaluate average
current, which shows clear modulations with δ.

APPENDIX F: CURRENT DUE TO CDW PHASE

The CDW phase can be strongly pinned by the boundary
of the junctions and the disorder of the samples. However,
here we consider the general possibility for the current arising
due to the phase of the CDW order. We note that the term
VA − VB = −(eEn′/Q0)θ ′ ≡ −r0θ

′ generates only a transient
current response at short times. The parameter r0 characterizes
the strength of the phase current from the CDW. The long-time
behavior of the AC Josephson current remains invariant when
we vary this term. In Fig. 8, we have shown the evolution of
the AC Josephson current for the PDW scenario. The param-
eters used here are the same as those presented in Fig. 2(b) of
the main text. As we increase r0, the AC response changes
for t → 0, whereas it remains invariant at long times. The
frequency of the oscillation is independent of r0 and thus
remains the same. The amplitude of the oscillation changes
weakly when r0 < 1. Therefore, the results presented in the
paper remain robust while we change this parameter.

APPENDIX G: JOSEPHSON CURRENT
WITH COMPLEX HOPPINGS

Here we consider the complex hoppings between the
particle-particle and particle-hole hoppings. Since this term
is connected by the PDW order, it can be complex in general.
We confirm here whether the imaginary part of these hoppings
considerably modifies our results.

The set of Schrödinger’s equations is written, with ψ =
(
√

nAeiθA ,
√

nBeiθB ,
√

n′
Aeiθ ′

A ,
√

n′
Beiθ ′

B ),

ih̄
∂

∂t
ψ =

⎛
⎜⎝

μ� κ t0 t1
κ −μ� t1 t0
t∗
0 t∗

1 VA κ ′
t∗
1 t∗

0 κ ′ VB

⎞
⎟⎠ψ. (G1)

By following the procedure similar to Appendix A, we
arrive at the set of Schrödinger equations

∂ n̄

∂t
= 4

h̄

{
−κn sin θ +

√
nn′

[
cos

φ

2

(
Re t0 sin

θ ′ − θ

2
− Re t1 sin

θ ′ + θ

2

)
− sin

φ

2

(
Im t0 sin

θ ′ − θ

2
− Im t1 sin

θ ′ + θ

2

)]}
,

(G2)

∂θ

∂t
= 2

h̄

{
μ� +

√
n′

n

[
sin

φ

2

(
Re t0 sin

θ ′ − θ

2
− Re t1 sin

θ ′ + θ

2

)
− cos

φ

2

(
Im t0 sin

θ ′ − θ

2
− Im t1 sin

θ ′ + θ

2

)]}
,

(G3)

∂ n̄′

∂t
= 4

h̄

{
−κ ′n′ sin θ ′ +

√
nn′

[
cos

φ

2

(
Re t0 sin

θ − θ ′

2
− Re t1 sin

θ ′ + θ

2

)
− sin

φ

2

(
Im t0 sin

θ − θ ′

2
− Im t1 sin

θ ′ + θ

2

)]}
,

(G4)

∂θ ′

∂t
= 1

h̄

{
VA − VB − 2

√
n

n′

[
sin

φ

2

(
Re t0 sin

θ − θ ′

2
− Re t1 sin

θ ′ + θ

2

)
− cos

φ

2

(
Im t0 sin

θ − θ ′

2
− Im t1 sin

θ ′ + θ

2

)]}
,

(G5)
∂φ

∂t
= −1

h̄
[η + 2κ cos θ + 2κ ′ cos θ ′]. (G6)
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FIG. 9. AC Josephson current for two scenarios. In both, Re t0 =
0.3 and Re t1 = 0.03. Moreover, all other parameters are the same
as those used in Fig. 2(b). The dashed lines manifest the effects of
the imaginary part of t0, and t1 is finite. Although the amplitude of
the current changes slightly as we increase the imaginary part of the
hoppings, the oscillation frequencies remain the same.

We solve the equations numerically and derive the Joseph-
son current using Eq. (16). The results are presented in Fig. 9.

This shows that the Josephson current as the imaginary
part of the hoppings is increased. Although the amplitude
of the current changes with the increasing imaginary part of
the hoppings, the frequency remains the same. The oscillation
frequencies in Eqs. (27)–(30) are independent of the t0 and t1.
Consequently, our other results presented in the main paper
remain robust if we consider these hoppings to be complex.
The results are also expected to hold even if we consider
different values for t0 in two terminals.

APPENDIX H: SHAPIRO SPIKES

The main paper shows the qualitative voltage-current char-
acteristics in a current-driven Josephson circuit, similar to the
experimental situation. Here we present the Shapiro spikes
for the voltage-driven Josephson systems for completeness.
In this setup, the current shows sharp δ peaks at the integer

FIG. 10. Demonstration of the total DC current with the applied
DC voltage U across the junctions in the inverse Josephson setup. In
(a) we set t0 = 0, t1 = 0 the parameter corresponding to the simple
coexistence of CDW and SC orders. The sharp Shapiro spikes can
be observed when the applied DC voltage U is equal to the integer
multiple of the applied frequency ω. In (b)–(d) we plot the same for
finite t0, t1 which corresponds to the fractionalized PDW scenario. In
(b) t0, t1 is small, and other peaks start developing in between the two
Shapiro spikes. In (c) and (d) these additional peaks become stronger
as the entanglement between the two orders is increased.

multiples of the AC frequency ω which is set to unity. These
peaks are known as Shapiro spikes.

For the coexistence of orders t0, t1 = 0 and we find in
Fig. 10(a) the expected sharp Shapiro spikes at the integer
multiple of ω. We also solve Eqs. (8)–(13) numerically for
an AC voltage of the same form but a finite t0, t1 and track
the evolution of the Shapiro spikes. In Fig. 10(b) we present
the results for a weak entanglement between the two orders.
We see that multiple weak peaks emerge as soon as the entan-
glement between the two orders increases. Such extra peaks
get stronger as the overlap between the charge and SC order
becomes large in Fig. 10(c). Finally, for a strong fractionalized
PDW state, the Shapiro spikes appear at different DC voltage
than the integer multiple of ω. For instance, a spike appears at
U = 1/2 in Fig. 10(d) whereas the expected integer spike at
U = 1 completely vanishes.
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