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Vortex control in superconducting Corbino geometry networks
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In superconductors, vortices induced by a magnetic field are nucleated where some random fluctuations de-
termine the nucleation position, and then may be pinned by impurities or boundaries, impeding the development
of vortex-based quantum devices. Here, we propose a superconducting structure, which allows to nucleate and
control vortices on-demand by controlling magnetic fields and currents. Using time-dependent Ginzburg-Landau
theory, we study a driven vortex motion in two-dimensional Corbino geometries of superconductor-normal
metal-superconductor Josephson junctions. We remedy the randomness of nucleation by introducing normal
conducting rails to the Corbino disk to guide the nucleation process and motion of vortices towards the junction.
We elaborate on the consequences of rail-vortex and vortex-vortex interactions to the quantization of resistance
across the junction. Finally, we simulate the nucleations and manipulations of two and four vortices in Corbino
networks, and discuss its application to Majorana zero mode braiding operations. Our study provides a potential
route towards quantum computation with non-Abelian anyons.
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I. INTRODUCTION

The key feature of type II superconductors is the anoma-
lous mixed state where in the presence of magnetic fields
normal conducting regions surrounded by persistent circular
supercurrents—i.e., vortices—nucleate in the superconduct-
ing material and the motion of these vortices without pinning
causes electric dissipation [1–3]. It is well known that most
of the high- Tc superconductors are categorized as type II
superconductors, and controlling vortices on demand is one of
the important prerequisites for creating novel superconducting
devices [4–7].

In addition, there are some proposals regarding the emer-
gence of nontrivial states based on type II superconducting
hybrid systems where controllability of vortices is one of the
important features [7–10]. Moreover, recent studies proposed
that a Majorana zero mode emerges at the core of vortices
in topological superconductors, and a spatial exchange of
these Majorana zero modes (we call it braiding operation)
obey non-Abelian anyonic statistics where particle exchanges
result in nontrivial operations, which do not commute in gen-
eral. Such noncommutative braids can be used as the basis
for topological quantum computation [11–15]. In this regard,
many theoretical proposals have been put forward both for
realizing Majorana zero modes [16–24] and for performing
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Majorana braiding operations [25–29]. Despite all these ef-
forts, an experimental demonstration of the braiding operation
has not been realized yet, although signs of Majorana zero
modes have already been detected in several experimental
platforms [30–41].

A promising and natural set-up to perform braiding
operations is a Corbino geometry superconducting-normal-
superconducting topological Josephson junction in a super-
conducting thin film, where a circular junction is located
between two superconducting electrodes and an external cur-
rent flows inwards/outwards through the Josephson junction.
As a consequence, the vortices in the Corbino geometry
should be trapped on the circular junction and execute a cir-
cular motion along the Josephson junction due to the Lorentz
force. There are already some theoretical studies of such spe-
cific set-ups for the purpose of Majorana braiding and also a
few experimental investigations [42–47].

Another crucial question is how vortices enter the circular
junction when a homogeneous perpendicular magnetic field is
applied to the structure. In a perfect circular junction, vortices
are created by spontaneous symmetry breaking (which breaks
the rotation symmetry of the circle) without control of the
exact nucleation position. Here, we address the nucleation of
several vortices on a circular junction as needed for braiding
of vortices and how an enhanced control over vortex dynam-
ics can be achieved via rails guiding them into the circular
junction. We also show that the resistance across the Corbino
geometry Josephson junction develops jumps associated with
the entrance of single vortices.
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Although there are already some theoretical studies on
Corbino geometry Josephson junctions, most of them employ
the microscopic BCS model and there are only a few stud-
ies focusing on macroscopic vortex dynamics. In this paper,
we explore vortex dynamics in Corbino geometry Josephson
junctions in the presence of both an external current and an ap-
plied magnetic field using phenomenological time-dependent
Ginzburg-Landau (TDGL) theory [48–50].

Here, we focus on the simplest case of nontopologi-
cal s-wave superconductors, however, the main conclusions
of our study should carry over to the case of topological
(p− or d−wave) superconductors, where Majorana bound
state resides at the core of vortices since the vortex dynamics
is expected to be qualitatively similar regardless of the type
of pairing. At the end of this paper, we show simulations
of braiding for two vortices in real time by controlling an
external current and an applied magnetic field. Furthermore,
we also demonstrate braiding operations for two vortices in
the presence of two other vortices in the superconducting
sample where the exchange statistics of non-Abelian anyons
can be utilized for protected quantum operations. We believe
that our proposed set-ups and simulations of vortex dynamics
deliver a platform for scalable registers of Majorana-based
qubits with read-in/read-out as well as braiding capabilities.

Our focus is on the vortex motion in connection with
Corbino geometry Josephson junctions, however, there is no
reason to believe that general features shown in this paper with
respect to vortex control cannot be observed and employed
also in different type II superconductor-based hybrid systems.

The rest of this paper is organized as follows. In Sec. II,
we present our model and the computational method adopted
for this paper. In Sec. III, we show the main results of our cal-
culations and the corresponding discussion. Finally, Sec. IV
concludes this paper.

II. FORMALISM

We employ TDGL equations to simulate the dynamics of
a complex superconducting order parameter � = |�|eiφ in a
two-dimensional disk geometry in the presence of both an
external magnetic field B directed perpendicular to the two-
dimensional superconductor and an external current created
by a source and drain of particles whose strength is denoted by
Q (r). The electromagnetic field is represented by the vector
potential A and the scalar potential �. Denoting the charge
density as ρ and current density as J and taking h̄ = c = e =
1 as units, the equations are given as follows [2,51–53]:

1

D
(∂t + 2i� )� = 1

ξ 2β
�[α(r) − β|�|2] + [∇ − 2iA]2�,

(1)

J = σ [−∇� − ∂t A] + στs�[�∗(−i∇ − 2A)�], (2)

ρ = � − �

4πλ2
T F

, (3)

∂tρ + ∇ · J = Q(r), (4)

∇2� = −4πρ, (5)

where D is the normal state diffusion constant, � is the
electrochemical potential per electron charge, ξ = √

6D/τs,
and the superconducting coherent length is given as ξ0 =
ξ/

√
α(r)/β. τs is the spin-flip scattering time. β is a system-

dependent constant, which sets the magnitude of the order
parameter. α(r) ∝ [Tc − T ] is the spatially dependent param-
eter, which governs the superconducting or normal state at
r and where T (Tc) is the (critical) temperature. σ and λT F

are the normal state conductivity and the Thomas-Fermi static
charge screening length, respectively. We measure length in
units of ξ and time in units ξ 2/D (since ξ is the unit of
length, we write this as D−1). The parameters are chosen
as β = 1, τs = 6D/ξ 2, λT F /ξ = 1, and σ/(D/ξ 2) = 1 and
we employ the coulomb gauge ∇ · A = 0 [54]. TDGL is
a standard approach for the framework of vortex dynam-
ics [2,50,55] and employed for analyzing many experimental
observations [52,53,56–58]. We acknowledge the limitation
of TDGL, i.e., strictly speaking, the considered temperature
should be close to Tc and the theory is only applicable to the
gapless superconductor [2].

The radius of the finite disk geometry is set to be 17ξ .
We chose these parameters for definiteness, but verified that
none of the general conclusions is affected by this particular
choice. To model Corbino geometry superconducting-normal-
superconducting Josephson junction, the α(r) parameter is set
accordingly, namely α > 0 and α < 0 in superconducting and
normal region, respectively [4,51,59–65]. We define the cir-
cular normal metallic region to be on a disk with radius 6.8ξ

and width 0.5ξ and assign α = −1 while the other region in
the sample is superconducting with α = 1. We refer to this as
a normal Corbino geometry set-up and later in this paper, we
introduce metallic regions in addition to the normal Corbino
geometry to improve the control of vortices (see Sec. III). It
is noteworthy that with |α| = β = 1, the order parameter � is
dimensionless and equal to one in the homogeneous infinite
system.

The simulations are performed using a finite-element
method in space implemented in FEniCS [66]. As is a stan-
dard approach to the time-dependent problem within our
finite element method, we discretize the time derivative by
a finite difference approximation. Specifically, the discretiza-
tion used here is in steps of D�t = 0.5. This allows to
obtain numerically converged results, which was verified by
decreasing this numerical parameter and checking that the
results remain unaffected [67]. In the calculations, we impose
superconductor-vacuum boundary condition along the outer
circle edge of the finite sample:

�[(−i∇ − 2A)� · n] = 0 on boundary, (6)

�[(−i∇ − 2A)� · n] = 0 on boundary, (7)

(−∇� − ∂t A) · n = 0 on boundary, (8)

where n is the unit vector normal to the boundary. To integrate
the partial deferential equation, initial conditions at time t = 0
are needed, which we set to zero for all variables except
�, while we choose �(x, y, t = 0) to be in the supercon-
ducting state with some random fluctuation over the entire
2D sample [68].
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We consider very thin films for which the London penetra-
tion depth, λ is much larger than the thickness of the sample,
d . Consequently, the Pearl length 2λ2/d is much larger than
the sample length and width. Therefore, the magnetic field
can be taken to be spatially uniform [69–72] and described
by the Coulomb-gauged vector potential A = (−By, Bx, 0)/2,
simplifying the boundary condition, Eqs. (6)–(8).

The external current is introduced by defining source and
drain sections through Q(r) in Eq. (4) at the vicinity of the
open boundary of the superconducting disk and that of the
center, respectively (see Appendix A for details). The width
of the source region is 0.5ξ and the drain section is set to be a
disk whose radius is 2.9ξ as shown in Fig. 10 in Appendix A.
Note that the total source charge should be the same as that of
drain at any time of the simulation,

∫
S Q(r)dS = 0, where S is

the entire sample domain. Thus, the current flow is homoge-
neous in almost the entire sample (except for the source and
drain sections) while the current density, J decrease as 1/|r|.
The current flows from the circle boundary towards the center
of the sample. We hereafter denote Q ≡ Q(rs), rs ∈ Ss, where
Ss is the source section.

III. RESULTS

A. Basis of vortex control

In order to connect our simulation results to experimentally
accessible quantities, we consider the resistances R = ��̄/Q,
where ��̄ is the difference of the electrochemical poten-
tial averaged in time and radially between two measurement
points. Since the externally sourced current is constant in
our system (except in the source and drain sections), we can
consider differences of the electrochemical potential ��̄ to
be directly proportional to the resistance (thus, we denote ��̄

as resistance hereafter) [74]. Specifically, in this paper we
calculate ��̄ from the source and drain points, denoted by
�̄s − �̄d and two nearby points across the Josephson junction,
denoted by �̄c+ − �̄c− .

First, we show the results of the normal Corbino geometry
set-up, which is summarized in Fig. 1, where we plot the
averaged resistances �̄s/c+ − �̄d/c− in (a), (b), and (c) the
absolute value of the order parameter ¯|�| as a function of
the applied magnetic field B (upper panel) and snapshots of
the absolute value of the order parameter in the lower panel.
The upper panel shows successive resistance plateaus with
jumps in between [(a),(b)] while in (c) ¯|�| displays an almost
linear decrease as B increases with jumps at the same points
as the plateau transitions in (a) and (b). These jumps coincide
with an increase in the number of vortices as shown in the
lower panel (see the Supplemental Material, SM, video1 [73]).

For the first plateau in Figs. 1(a) and 1(b) and linear slope
in Fig. 1(c), there is no corresponding vortex in the sample
as shown in the snapshot (A) of the lower panel. After this, a
sudden jump is observed in both the resistances �̄s/c+ − �̄d/c−
and the absolute value of the order parameter ¯|�| at around
Bξ 2 = 0.0425 in Figs. 1(a), 1(b), and 1(c). This signifies a
nucleation of vortices, followed by a circular stationary mo-
tion along the Josephson junction due to the Lorentz force
created by the inward sourced current; compare the snapshots
of (A) and (B) in the lower panel. Then, the first nonzero
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FIG. 1. Upper panels [(a),(b),(c)] show the resistance ��̄ and
the time-space-average of the absolute value of the order param-
eter |�̄| as a function of the applied field B, respectively. Here,
we calculate the resistance by taking differences of the averaged
electrochemical potential �̄ between (a) two nearby points across
the Josephson junction, denoted by �̄c+/− and (b) source and drain
points, denoted by �̄s/d . The average is taken over both time and
space. For the electrochemical potential �̄ in (a) and (b), the space-
average is taken over 100 central angles from 0 to 2π while the
order parameter |�̄| in (c) is calculated by averaging over all |�|
values in the entire sample. The time-average is taken over 200
time steps for both |�| and � after the space-average has been
performed. The applied field B is increased in steps of 5 × 10−4ξ−2

every 400 time steps from which the second 200 time steps are
used for the time averaging when the stationary vortex motions
have been established. The strength of the source term is chosen
to be Q/(D2/ξ 6) = 0.2. Lower panel shows snapshots of the abso-
lute value of the order parameter |�| at the labeled points (A)–(F)
in the upper panel [(a),(b),(c)]. The corresponding video is avail-
able in the Supplemental Material (SM) [73] (see also Table I in
Appendix D).
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resistance plateau in Figs. 1(a), 1(b) and linear decrease of
¯|�| in Fig. 1(c) follow, and the vortex configuration stays the

same as shown in the snapshots (B) and (C) [75]. After this,
another vortex nucleates as shown in the snapshot (D) of the
lower panel, and a new resistance plateau shown in panel (a),
(b) and a new linear slope in (c) develop. This correspondence
among (a), (b), and (c) in the upper panel and the snapshots of
|�| in the lower panel holds even with increasing B field.

The height of the resistance plateau in Figs. 1(a) and 1(b)
are almost the same among the last three resistance plateaus
as expected as newly nucleated vortices are always trapped
on the Josephson junction. Here, one thing to note is that the
height differences between the first to second of the resistance
plateaus in (b) of the upper panel is smaller than the second
to third even though the number of vortices change from 0
to 3 and 3 to 4, respectively. This is due to the existence of
a vortex at the center of the sample, which gives rise to a
deep downward slope toward the center in �̄ (see Fig. 11 in
the Appendix B for details), which results in relatively large
jumps in the resistance measured from the source and drain
points �̄s − �̄d in (b) of the upper panel. This can also be
understood from the fact that the height differences between
the second to third and the third to fourth resistance plateau
in (b) of the upper panel are very different and the latter is
almost 3 times as small as the one of the first to second, which
corresponds to an increase in the number of vortices from 0 in
the snapshot (A) to 3 in (B) and 4 in (D) to 5 in (E).

Overall, we identify mainly three issues in the normal
Corbino geometry set-up as far as controlling vortex motion is
concerned. First, the number of vortices does not increase one
by one as is seen by comparing the snapshots of (A) and (B)
in the lower panel. Second, nucleation points of the vortices
cannot be controlled [76]. Third, vortices also go into the cen-
ter of the sample rather than being trapped on the Josephson
junction as shown in (C)–(F) of the lower panel. Thus, the
number of vortices to nucleate and spatial points of nucle-
ation are out of control [77]. However, the vortices that are
trapped in the circular Josephson junction are equally spaced
on the circular junction, which is consistent with findings in
Refs. [42–44].

In order to avoid the three issues above, we add other
metallic regions to the normal Corbino geometry set-up to
stabilize vortex nucleation. In this paper, we introduce narrow
metallic lines connected to the outside of the superconducting
film, with the suggested geometries shown in Figs. 3 and 4.
We call them as follows: the set-up of Fig. 3(a) “defect edge”,
Fig. 3(b) “1 rail”, Fig. 4(a) “2 rails”, and Fig. 4(b) “4 rails”.
We perform the same analysis as in Fig. 1 with these new
set-ups and compare the pros and cons with respect to be-
ing able to control vortices. The summarized results and the
corresponding snapshots of the absolute value of the order
parameter for each set-up are shown in Figs. 2–4.

First, in the case of the defect edge set-up, we observe that
vortices nucleate one by one at the defect point and nucleation
coincides with jumps of the average of the absolute value
of the order parameter ¯|�| [see the blue line in panel (c)
of Fig. 2 and Fig. 3(a)]. However, the first nucleated vortex
goes into the center of the sample rather than being trapped
on the Josephson junction as can be seen in snapshot (C) in
Fig. 3(a). This vortex configuration can be also understood
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FIG. 2. Comparison of the the resistances ��̄ in (a), (b), and
(c) a spatiotemporal average of the absolute value of the order param-
eter ¯|�| among the different set-ups (compare Figs. 3 and 4 for defect
edge/1 rail and 2/4 rails set-ups, respectively) as a function of the ap-
plied field B. The resistance is calculated by taking differences of the
averaged electrochemical potential �̄ between (a) two nearby points
across the Josephson junction, denoted by �̄c+/− and (b) source and
drain points, denoted by �̄s/d (see Appendix B for details). The same
averaging procedure and a strength of the source term Q/(D2/ξ 6)
are used as in Fig. 1. For the black data points labeled (A)–(G) at the
top of the figure (black-dotted-vertical lines in the figure are guide
for the eye), the corresponding snapshots of the absolute value of the
order parameter |�| for each set-up are shown in Figs. 3 and 4. All
corresponding videos are available in the SM [73] (see also Table I
in Appendix D).

by comparing the results from the two types of resistance
measurements, namely there is no change in �̄c+ − �̄c− while
there is a jump in �̄s − �̄d [see the blue line up to the point
(C) in Figs. 2(a) and 2(b)]. From the points (C) to (D), an-
other vortex is nucleated and two vortices are trapped on the
Josephson junction executing their stationary circular mo-
tions. Then, further increase of B induces one by one vortex
nucleation and all vortices stay on the Josephson junction.
It is noteworthy that now all the vortices nucleate from the
defect point although the randomness is introduced in the
initial condition of the order parameter �. This indicates that
the noise might be less relevant in the presence of the defect.

In the case of the 1 rail and 2 rails set-ups, again the first
vortex cannot be trapped on the Josephson junction but goes
into the center of the sample as shown in the snapshots of
(B) in Figs. 3(b) and 4(a) although the 1 rail set-up shows
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FIG. 3. Snapshots of the absolute value of the order parameter
|�| at the black points in the plots of Fig. 2 for the defect edge set-up
(a) and the 1 rail set-up (b). All corresponding videos are available in
the SM [73] (see also Table I in Appendix D).

one by one vortex nucleation. The resistance behavior of the
1 and 2 rail set-ups are almost identical with overlapping
plots in Figs. 2(a) and 2(b) except for the final plateau in the
magnetic field range from approximately Bξ 2 = 0.043 till the
end, where the number of vortices change from 4 to 5 in the 1
rail set-up while it does change from 4 to 6 in the 2 rail set-up,
see the snapshots (E) and (F) in Figs. 3(b) and 4(a), respec-
tively. Also, ¯|�| is slightly smaller in the 2 rails set-up than 1
rail set-up due to an additional metallic railing in the 2 rails
set-ups, which reduces the overall order parameter. Finally,
unlike the other 3 set-ups, the 4 rails set-up shows perfect one
by one nucleation, followed by a circular stationary vortex
motion on the Josephson junction rather than vortices going
into the center of the sample. This can be clearly seen from
the snapshots of the absolute value of the order parameter
Fig. 4(a). Furthermore, the transition points in both resistances
�̄s/c+ − �̄d/c− and the absolute value of the order parameter

¯|�| perfectly coincide as seen in Figs. 2(a), 2(b), and 2(c),
where each plateau in (a) and (b) and each linear slope in
(c) indicate different numbers of vortices in the system. Also,
the fact that ¯|�| is smaller as in the other set-ups is due to
the additional metallic railings as already suggested for the
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FIG. 4. Snapshots of the absolute value of the order parameter
|�| at the black points in the plots of Fig. 2 for the 2 rails set-up
(a) and the 4 rails set-up (b). All corresponding videos are available
in the SM [73] (see also Table I in Appendix D).

comparison between 1 and 2 rails set-ups. Overall, the 4 rail
set-up provides the best on-demand control of vortices among
these four set-ups. One drawback of the railing set-ups (1, 2,
and 4 rails in this paper) is that the vortex motion becomes
dragged by the intersections between the Josephson junction
and the rails when they circulate around the Josephson junc-
tion, which disturbs a smooth stationary vortex motion on
the Josephson junction and this effect does not arise in the
case of the normal Corbino and defect edge set-up (compare
video1-video5 in the SM [73]).

Next, we further investigate the defect edge and the 4 rails
set-ups by studying the dependence on the strength of the
source term Q. Its effect on the resistance �̄s/c+ − �̄d/c− for
the defect edge and the 4 rails set-ups are shown in Figs. 5
and 6, respectively.

In the case of the defect edge set-up, as we have seen
from the analysis of this set-up discussed in the Fig. 2, the
first nucleated vortex goes into the center of the sample rather
than being trapped on the Josephson junction for any value
of the source term Q, which is clearly seen by comparing
the resistance values in Figs. 5(a) and 5(b) where there is no
resistance jump in �̄c+ − �̄c− shown in Fig. 5(a) while there
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FIG. 5. Phase diagram of the defect edge set-up from the resis-
tance ��̄ as a function of strengths of the source term Q and the
applied field B, where the resistances are calculated by taking differ-
ences of the averaged electrochemical potential �̄ between (a) two
nearby points across the Josephson junction, denoted by �̄c+/− and
(b) source and drain points, denoted by �̄s/d . The same averaging
procedure is used as in Fig. 1. All corresponding videos are available
in the SM [73] (see also Table I in Appendix D).

is a relatively large jump in �̄s − �̄d plotted in Fig. 5(b) at the
magnetic field strength approximately Bξ 2 = 0.030. Another
notable point is that there is a relatively large jump approx-
imately Bξ 2 = 0.0425 for Q/(D2/ξ 6) = 0.40 in Fig. 5(b).
This is because one of the vortices moves into the center of
the sample when a new vortex is nucleated (see video12 in
the SM [73]), which causes the large jump in the resistance

Q/(D
2 /ξ

6 )0.05
0.10

0.15
0.20

0.25
0.30

0.35
0.40

ξ 2
B 0.02

50.03
00.03

50.04
00.04

5

(Ψ̄
c
+ −

Ψ̄
c− )/(D

/ξ
2)

0.00

0.05

0.10

0.15

0.20

0.25

0.30

(a)

Q/(D
2 /ξ

6 )0.05
0.10

0.15
0.20

0.25
0.30

0.35
0.40

ξ 2
B 0.02

50.03
00.03

50.04
00.04

5

(Ψ̄
s −

Ψ̄
d )/(D

/ξ
2)

0.0

0.1

0.2

0.3

0.4

(b)

FIG. 6. Phase diagram of 4 rails set-up from the resistance ��̄

as a function of strengths of the source term Q and the applied field
B, where the resistances are calculated by taking differences of the
averaged electrochemical potential �̄ between (a) two nearby points
across the Josephson junction, denoted by �̄c+/− and (b) source and
drain points, denoted by �̄s/d . The same averaging procedure is used
as in Fig. 1. All corresponding videos are available in the SM [73]
(see also Table I in Appendix D).

�̄s − �̄d . Comparison among different Q values shows that
a larger source current yields a larger resistance jump, as
faster vortex motion induces a larger resistance [2,42–44,78]
(one new citation here) while the jumps between different
plateaus happen at almost the same Bξ 2 value regardless of the
strength of Q.
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For the 4 rails set-up in Fig. 6, in the region 0.10 �
Q/(D2/ξ 6) � 0.20, the resistances �̄s/c+ − �̄d/c− show a
similar behavior for these Q values. The first vortex is suc-
cessfully trapped on the Josephson junction performing a
stationary circular motion. For 0.25 � Q/(D2/ξ 6) � 0.35, al-
though the resistance �̄c+ − �̄c− shows a plateau between
approximately Bξ 2 = 0.025 and 0.030 [Fig. 6(a)], this plateau
does not persist and the resistance vanishes again for larger B
fields. The resistance �̄s − �̄d , however, shows another jump
at around Bξ 2 = 0.030. This signifies that the first vortex stays
on the Josephson junction from its nucleation time to around
Bξ 2 = 0.030 and then moves into the center of the sample
afterwards (see video16-18 in the SM [73]).

In the case Q/(D2/ξ 6) = 0.40, we can observe the same
feature concerning the entrance of the first vortex as in the
defect edge set-up, namely there is no signal in the resistance
�̄c+ − �̄c− between approximately Bξ 2 = 0.025 and 0.030
while there are large jumps in �̄s − �̄d , which indicates that
the first vortex goes into the center of the sample rather than
being trapped on the Josephson junction (see video19 in the
SM [73]).

Furthermore, there appear resistance drops in �̄s/c+ −
�̄d/c− between Bξ 2 = 0.0375 and 0.045 for Q/(D2/ξ 6) =
0.05. Here, all four vortices in the system are stuck at each
of the intersections of the Josephson junction with the rails
because the source current is not large enough to drive all
vortices pass the intersections against the attractive force
and intricate vortex-vortex interaction (see video13 in the
SM [73]). Overall, if the strength of source term Q is too
small, the railing intersections strongly disturb the smooth sta-
tionary motion of vortices on the Josephson junction whereas
too large currents fail to trap the first vortex on the Josephson
junction.

B. Application of vortex control

Finally, as one of the applications for the vortex-control
paradigm, we simulate a series of operations using the 2 rails
set-up investigated above. It consists of initialization/read-out
(fusion) and exchange processes, which are what a quantum
processor with Majorana zero modes bound to vortices is
supposed to do [79].

In Fig. 7, we simulate the exemplary basic operations for
initialization/read-out (fusion) and exchange processes em-
ploying two vortices. Snapshots of the absolute value of the
order parameter |�| and an operation protocol are shown in
the lower and upper panels, respectively (see video22 for the
absolute value of the order parameter |�| and video23 for that
of phase φ [80] in the SM [73]). For times t with Dt < 50,
the system is in equilibrium with B = Q = 0 and there is
no vortex in the system as shown in the snapshot (A) of the
lower panel.

At Dt = 50, a finite magnetic field B is applied to create
two vortices in the superconducting thin film as shown in the
snapshot (B) of the lower panel. Here, the applied value of B is
determined corresponding to the one, which gives two vortices
in the 2 rails set-up shown as the orange line in Fig. 2. The
two vortices stay at the intersections between the Josephson
junction and the rails shown in snapshot (C) since there is no
driving current (Q = 0 at this time).
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FIG. 7. Upper panel shows an operation scheme for
initialization/read-out (fusion) and exchange processes of a
pair of Majorana zero modes (bound to vortices) controlled by
varying the applied field B (red line with left axis) and the source
term Q (blue line with right axis). Lower panel shows snapshots of
the absolute value of the order parameter |�| for the black points
(A)–(L) in the upper panel. The arrows in the lower panel indicate
the evolution of vortices (guide for the eye). The corresponding
video is available in the SM [73] (see also Table I in Appendix D).

To initialize a pair of Majorana zero modes one can bring
them close to each other having their wave functions over-
lapping. This corresponds to moving the two corresponding
vortices close to each other, which splits the energy levels of
the two parity states the two Majoranas can be fused to [12].
This distinction can be used to initialize the Majorana qubit
(see Sec. III C) by putting each pair into a definite parity state
(e.g., the ground state parity). We demonstrate this scheme by
applying an inhomogeneous magnetic field [81]. Specifically,
in our current set-up, the inhomogeneous magnetic field is
implemented in such a way that B becomes nonzero only on
the upper half of the outer superconductor of the Josephson
junction. At Dt = 100, the inhomogeneous field is generated
and the two vortices move closer to each other as shown in
snapshot (D) [82].
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Once the inhomogeneous magnetic field is set back to the
homogeneous one at Dt = 150, the two vortices go back to
the original stable position, namely the intersections of the
Josephson junction with the rails as observed in snapshot
(E). At Dt = 200, the source current is also applied, thus the
system has both a finite B and Q, and the two vortices start
to move along the Josephson junction as shown in snapshot
(F) and (G). Just before the two vortices exchange their po-
sitions, the current source Q is switched off (at Dt = 245).
This switch-off time is determined by how long it takes for
two vortices to exchange their positions. An exact timing is
not necessary here since slight deviations are corrected as
each vortex is attracted towards the closest intersection of the
Josephson junction with the rails (compare video20, 22, 24 in
the SM [73]).

After Q has been set to zero, the two vortices stay at
the intersections of the Josephson junction with the rails,
see snapshot (H). The result of such an exchange (braiding)
operation can be read-out by fusing again corresponding pairs
of Majorana zero modes by bringing their vortices in close
proximity again (read-out scheme) [83]. This is done by ap-
plying the inhomogeneous magnetic field at Dt = 295, see
snapshot (I). At Dt = 345, the inhomogeneous magnetic field
is switched off and the original homogeneous field is applied.
Then, at Dt = 395, the magnetic field is also turned off and the
two vortices move out of the system since there is no magnetic
field anymore as shown in snapshot (K). Finally, the system
goes back to the original equilibrium state with B = Q = 0,
see snapshot (L).

In order to profit from the exchange statistics of non-
Abelian anyons, as we mentioned in Sec. I, we need at
least four Majorana zero modes. Here, we show results
of a simulation for controlling four vortices using three
Corbino geometry Josephson junctions with additional rails.
The representative result is shown in Fig. 8, where snap-
shots of the absolute value of the order parameter |�|
and a protocol for the braiding operation are shown in
the lower and upper panels, respectively (see video26 in
the SM [73]).

Unlike the disk geometry we use above, here, we employ
a rectangular geometry with periodic boundary conditions
along the y direction, e.g., �(y + Ly) = �(y), where Ly is
the length of the sample in y-direction. The length of the
finite strip geometry in x and y directions are set to be Lx =
35ξ (≡ L) and Ly = 4L, respectively. We choose the vector
potential A = (0, B(x − L/2), 0), which satisfies the bound-
ary conditions of the current set-up. Four Corbino geometry
Josephson junctions are prepared on the sample (we call these
four Corbino geometries first, second, third, and fourth with
respect to y = 0). The radius and width of the ring-shaped
normal metallic regions are 8.5ξ (≡ R) and 0.5ξ , respectively.
Even though the fourth Corbino geometry is not used in this
simulation, we introduce it because together with periodic
boundary conditions, the current set-up essentially demon-
strates a register of qubits, which is more practical since
multiple qubits are required for the operation of a quantum
processor. Thus, there is no reason to believe, that the general
results presented here cannot be incorporated and extended
into columns of such interconnected quasi-1D Corbino geom-
etry sequences on 2D superconducting materials.
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FIG. 8. Upper panel shows an operation scheme for an appli-
cation of Majorana qubits controlled by the strength of the applied
magnetic field B (red line with left axis) and the source term Q (blue
line with right axis). Lower panel shows snapshots of the absolute
value of the order parameter |�| for the black points (A)–(K) in the
upper panel. The arrows in the lower panel indicate the evolution of
vortices (guide for the eye). The corresponding video is available in
the SM [73] (see also Table I in Appendix D).

Now, let us look into a result of the simulation. We begin
with the equilibrium situation as in Fig. 7, namely B = Q = 0.
At Dt = 50, we switch on the magnetic field B to create four
vortices on the superconducting thin film as shown in the
snapshot (A) of the lower panel, where two vortices nucle-
ate in the first and third Corbino geometries via their rails.
After the nucleation of vortices, these four vortices sponta-
neously slide to x = L/2 through Josephson junctions since
there is open space between the first and third Corbino ge-
ometry Josephson junctions, and the two vortices in the same
Josephson junctions repel each other This dynamics is shown
in the snapshot (B). After the two vortices achieve x = L/2 in
each Corbino geometry, they stay at the intersections between
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the Josephson junction and the nonconnected rails at x = L/2
as shown in the snapshot (C).

Next, one of the two vortices in each junction is sent to
the second Corbino geometry Josephson junction. For this
purpose, we induce current flow in x direction around the
close vicinity of vortices in such a way that two vortices
located around y = L/2 + R and y = 2.5L − R are pushed
toward the second Corbino geometry Josephson junction due
to the Lorentz force. Thus, following the same implementa-
tion for creating source current as demonstrated in the disk
geometry, we introduce an external current created by a source
and drain of particles whose strength is denoted by Q (r),
on both sides of the open boundaries, i.e., x = 0 and x = L
with width ξ (see also Appendix C). Since the all vortices
have the same chiralities, the directions of the current flow
induced here should be opposite at the each vortex loca-
tion. These sections are extended between y = L/2 (middle
point of the first Corbino geometry) and y = 1.5L − R (the
lower intersection between the second Corbino geometry and
nonconnected rail) and between y = 1.5L + R (the upper in-
tersection between the second Corbino geometry and noncon-
nected rail) and y = 2.5L (middle point of the third Corbino
geometry).

Before switching on the source current, we reduce the
strength of the magnetic field to ensure that additional vortices
do not nucleate in the system. Here, we choose the magnetic
field to be half of the original value, which does not change
the number of vortices in the system as shown in the snapshot
(D) [84]. This also shows that vortices are so strongly trapped
at the intersection that they do not leave the system.

Then, the externally applied source current we defined
above is switched on and one of the two vortices in each
junction is sent to the second Corbino geometry Josephson
junction as shown in the snapshot (E). At Dt = 300, the
source current is switched off and the two transported vortices
are trapped at an intersection between the Josephson junc-
tion and nonconnected rails of the second Corbino geometry.
Then, the braiding operation is performed as demonstrated in
the case of the single Corbino geometry as shown in Fig. 7.
Thus, the source and drain are created at the outside and inside
of the second Corbino geometry whose shapes are a ring with
radius/width 16.75ξ/0.5ξ and a disk with radius 2.9ξ , re-
spectively. (The structure of the source and drain sections are
same as for the case of the disk geometry used before. See
also Appendix A for details.) The corresponding snapshots are
shown in (G), (H). After the externally applied source current
is turned off, the two vortices used for the braiding operation
stay at the intersection between the Josephson junction and
the nonconnected rails as shown in snapshot (I).

Finally, these exchanged vortices are sent back to the first
and third Corbino geometries, respectively by the externally
applied source current from the edge as used before which is
shown in snapshot (J). This time, the direction of current flow
should be opposite to the case of (E) to induce the reverse
vortex motion. In the numerical simulation, this can be done
simply by switching the sign of the charge in the source and
drain sections compared to the case of (E) (±Q → ∓Q). After
this, the externally sourced current is set to zero and all four
vortices are trapped at the intersection between the Josephson
junction and the nonconnected rails.

FIG. 9. Schematic illustration of Majorana vortices γi, denoted
by magenta balls, in three Corbino Josephson junctions connected
by rails. (a) A sequence of operations by adopting the simulations
in Figs. 7 and 8. (b) Bloch sphere representation of the evolution of
Majorana qubit, indicated by arrows in magenta, corresponding to
the process in (a).

C. Operations on Majorana qubits

The proposed operation schemes for vortices can be im-
plemented to perform operations on Majorana zero modes by
proximity-inducing the order parameter of a s-wave super-
conductor into the surface of a three-dimensional topological
insulator (TI) where spin-helical electrons reside [16]. In the
TI-based Corbino Josephson junctions, an effective p-wave
pairing is produced and each vortex binds a single Majorana
zero mode, which we call Majorana vortex. In this section,
we interpret the simulation of vortex dynamics shown in
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FIG. 10. Structure of the source and drain creating an externally
sourced current whose strength is denoted by Q (r) in Eq. (4). The
source and drain sections are in the vicinity of the open boundary of
the superconducting disk and in its center, respectively. The width of
the source section is 0.5ξ . The drain section is implemented as a disk
whose radius is 2.9ξ . This set-up is used for all simulations except for
the one in Fig. 8. Here, we show the structure with Q/(D2/ξ 6) = 0.2
as an example.
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Sec. III B in terms of Majorana vortices, and illustrate how
the operations shown in Figs. 7 and 8 act on a Majorana qubit.

The Majorana vortex is a quasiparticle, which is its own
antiparticle appearing at the Fermi level of a TI, γ = γ †,
where γ and γ † are respectively the annihilation and cre-
ation operators for the Majorana vortex [11,13–15]. As the
Majorana zero mode is bound to the vortex, braiding and fu-
sion dynamics of the Majorana vortices follows the dynamics
of the vortices discussed in Sec. III B. The prerequisite knowl-
edge on Majorana vortices necessary in the context of this
section is that two Majorana vortices γ1 and γ2 can be com-
bined into a single complex fermion as c12 = (γ1 + iγ2)/2 and
c†

12 = (γ1 − iγ2)/2, and therefore, two complex fermions can
be formed with the help of four Majorana vortices, which is
the minimum number of Majoranas necessary to define a qubit
as defined in Eq. (9), see also Ref. [12]. The braiding of γ1 and
γ2 results in the change γ1 → −γ2 and γ2 → γ1 [29]. Based
on these properties, we translate the vortex dynamics into the
operation of a Majorana qubit.

We consider four Majorana vortices γi with i ∈ {1, 2, 3, 4}
in three Corbino Josephson junctions connected by rails, see
Fig. 9(a). We prepare the configuration where one pair of
Majorana vortices is in the left junction and the other is in the
right junction, and assume that the total number of fermions in
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FIG. 11. Distribution of the averaged electrochemical poten-
tial �̄ for the normal Corbino set-up used for making plots in
Figs. 1(a) and 1(b). As explained in Fig. 1, the resistance ��̄ are
calculated by taking differences of the averaged electrochemical po-
tential �̄ between two nearby points across the Josephson junction,
denoted by �̄c+/− and source and drain points, denoted by �̄s/d .
Specifically, the two dot points in this figure are used for the former
while the origin and the end of each line are used for the latter. The
vertical-black line corresponds to the middle of the Josephson junc-
tion. r is the radial coordinate from the center to the open boundary
of the sample. The chosen parameters Bξ 2 correspond to the values
of the black dot points denoted by (A)–(F) for the normal Corbino
set-up in Fig. 1.

the system is conserved. They define a single Majorana qubit,

|0〉 ≡ |012034〉, |1〉 ≡ |112134〉, (9)

where |112134〉 = c†
12c†

34|012034〉 with complex fermion oper-
ators, c†

12 = (γ1 − iγ2)/2 and c†
34 = (γ3 − iγ4)/2, built from

the Majorana modes; note that one can also define a qubit
with odd fermion number states, |112034〉 ≡ c†

12|012034〉 and
|012134〉 ≡ c†

34|012034〉. Here, the eigenvalues ni = 0, 1 of the
occupation number operators c†

i ci corresponding to the empty
and filled states of the fermions, respectively, reflect the fusion
of two Majorana vortices. In this basis, the braiding operations
depicted in Fig. 9(a) are represented as [29]

U1 = U3 = 1√
2

(1 − iσx ), U2 = −iσz, (10)

where σi are the Pauli matrices in the qubit space. Here, U2

describes the braiding of a pair of Majorana in each junction
by adjusting the source currents shown in Fig. 7 and U1,3 are
that of Majorana vortices from different junctions based on
the simulation in Fig. 8. A sequence of the operations U3U2U1

acting on the Majorana qubit on a Bloch sphere is illustrated
in Fig. 9(b). The unitary operations can be used to produce the
Pauli gates up to a phase factor,

U 2
1 = −iσx, U2U

2
1 = −iσy, U2 = −iσz. (11)
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FIG. 12. Distribution of the averaged electrochemical potential
�̄ for the 4 rails set-ups used for making plots in Figs. 2(a) and 2(b).
As explained in Fig. 2, the resistance ��̄ is calculated by taking
differences of the averaged electrochemical potential �̄ between two
nearby points across the Josephson junction, denoted by �̄c+/− and
source and drain points, denoted by �̄s/d . Specifically, the two dot
points in this figure are used for the former while the origin and
the end of each line are used for the latter. The vertical-black line
corresponds to the middle of the Josephson junction. r is the radial
coordinate from the center to the open boundary of the sample. The
chosen parameters Bξ 2 correspond to the values of the black dot
points denoted by (A)–(F) for the 4 rail set-up in Fig. 2.
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The read-out of the quantum operation can be done in the
computational basis |012034〉, |112134〉 (or |112034〉, |012134〉)
by bringing two vortices close together [as shown in (D)
of Fig. 7], e.g., by controlling a local magnetic field [81],
which lifts the degeneracy between the empty and filled
fermion states.

IV. CONCLUSIONS

We study dynamics of vortex motion in Corbino ge-
ometry superconducting-normal-superconducting Josephson
junctions on a superconducting thin film in the framework of
the time-dependent Ginzburg-Landau theory. As expected, we
observe that vortices move along the Josephson junction due
to the Lorentz force created by an externally sourced current
flowing from the boundary of the circle to the center, and
this circular motion of vortices on the Josephson junction can
be captured through the jumps between resistance plateaus.
Results of our simulation for the conventional Corbino ge-
ometry indicate difficulties of controlling vortices, namely
the one by one increase in the number of vortices with in-
creasing an applied magnetic field, unpredictable nucleation
points of vortices, and trapping all the vortices on the circular
Josephson junction. This could explain the absence of quan-
tization in recent experiments [47]. By installing additional
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FIG. 13. Structure of the source and drain for creating an exter-
nally sourced current used in Fig. 1 snapshots (E) and (J), whose
strength is denoted by Q(r) in Eq. (4). The source and drain
sections are located on both side of the open boundary of the su-
perconducting stripe x = 0, L with width ξ . They are extended from
y = L/2 (y = 1.5L + R) to 1.5L − R (2.5L). Here, we show the
structure with Q/(D2/ξ 6) = 1.08 as an example.

railings to the Corbino geometry set-up, these three issues can
be resolved and, specifically, the 4 rails set-up ensures that all
vortices stay on the Josephson junction after the one by one
vortex nucleation within certain externally sourced current
and applied magnetic field regimes.

Further analysis for the defect edge and the 4 rails set-
ups by sweeping through the source current and the applied
magnetic field reveals that a larger source current yields a
larger resistance due to an increase in the speed of the vortex
motion on the Josephson junction, and the 4 rails set-up with
up to moderate strength of the source currents can prevent the
first nucleated vortex from going into the center of the super-
conductor sample rather than being trapped on the Josephson
junction.

As a prospective application of the vortex control in
Corbino geometry Josephson junctions, we demonstrated the
braiding (spatial exchange) of two vortices that can be brought
close together (fused) before and after the exchange by
tuning the external magnetic field and the source current.
These basic control elements would allow to read-in, op-
erate and read-out qubits based on Majorana zero modes.
Isolated Majorana zero modes are non-Abelian anyons (Ising

TABLE I. Short explanation of the videos in the SM [73]. This
table presents an overview of the video in the SM and links them to
all the figures in the main text.

Video Set-up Quantity Q/(D2/ξ 6) Figs. Ton/off
a

1 Normal |�| 0.20 1
2 Defect edge |�| 0.20 2, and 3 5
3 1 rail |�| 0.20 2, 3
4 2 rail |�| 0.20 2, 4
5 4 rail |�| 0.20 2, 4, 6
6 Defect edge |�| 0.05 5
7 Defect edge |�| 0.10 5
8 Defect edge |�| 0.15 5
9 Defect edge |�| 0.25 5
10 Defect edge |�| 0.30 5
11 Defect edge |�| 0.35 5
12 Defect edge |�| 0.40 5
13 4 rail |�| 0.05 6
14 4 rail |�| 0.10 6
15 4 rail |�| 0.15 6
16 4 rail |�| 0.25 6
17 4 rail |�| 0.30 6
18 4 rail |�| 0.35 6
19 4 rail |�| 0.40 6
20 2r ail |�| 0.20 7 200/240
21 2 rail φ 0.20 7 200/240
22 2 rail |�| 0.20 7 200/245
23 2 rail φ 0.20 7 200/245
24 2 rail |�| 0.20 7 200/250
25 2 rail φ 0.20 7 200/250
26 Specialb |�| 0.54c 8 375/420

aThe time of switching on/off the source current for exchanging
vortices. The unit is D−1. This column is applicable only for the
simulations involving the vortex exchange.
bA special set-up used for the qubit simulation in Sec. III C.
cThe Q/(D2/ξ 6) value for exchanging vortices.
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anyons) that are confined at the center of vortices in spin-
less p-wave superconductors. We also proposed a (scalable)
platform of interconnected Corbino rings where four vortices
can be manipulated in a way that corresponds to non-Abelian
state operations for Majorana zero modes bound to the
vortices.
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APPENDIX A: STRUCTURE OF SOURCE AND DRAIN

The structure of the source and drain is shown in Fig. 10.
This implementation induces homogeneous (except for the
source and drain sections) current flow from the circle bound-
ary to the center of the sample. This structure is employed for
all simulations except for the one in Fig. 8.

APPENDIX B: DISTRIBUTION OF AVERAGED
ELECTROCHEMICAL POTENTIAL �̄

In this section, we show the distributions of the averaged
electrochemical potential �̄ over both space and time for the
normal Corbino and 4 rails set-ups shown in Figs. 11 and 12,
respectively. As is mentioned in the main text, when a vortex
resides in the center of the sample, the distributions of the
averaged electrochemical potential �̄ at that vicinity (also
known aa around the center of the drain section) shows the
deep downward slope toward the center, which is clearly seen
by comparing the blue, green, orange and red, purple, brown
curves in Fig. 11. They correspond to the snapshots (A)–(C)
and (D)–(F) in the lower panel of Fig. 1, respectively.

APPENDIX C: STRUCTURE OF SOURCE AND DRAIN FOR
STRIPE GEOMETRY

In Fig. 13, we show another structure of the source and
drain for creating an externally sourced current employed in
Fig. 8 snapshots (E)/(J), where two out of four vortices are
send to/from the second Corbino geometry Josephson junc-
tion by the current flow along the x directions.

APPENDIX D: SHORT EXPLANATION OF THE VIDEOS

In this section, we illustrate an overview of the videos
found in the SM [73] and connect them to all the figures in
the main text. This is summarized in Table I.
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