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We report the structural and magnetic properties of a new spin-1/2 antiferromagnet NaZnVOPO4(HPO4)
studied via x-ray diffraction, magnetic susceptibility, high-field magnetization, specific heat, and 31P nuclear
magnetic resonance (NMR) measurements, as well as density-functional band-structure calculations. While
thermodynamic properties of this compound are well described by the J1-J2 square-lattice model, ab initio
calculations suggest a significant deformation of the spin lattice. From fits to the magnetic susceptibility
we determine the averaged nearest-neighbor and second-neighbor exchange couplings of J̄1 � −1.3 K and
J̄2 � 5.6 K, respectively, resulting in the effective frustration ratio α = J̄2/J̄1 � −4.3 that implies columnar
antiferromagnetic order as the ground state. Experimental saturation field of 15.3 T is consistent with these
estimates if 20% spatial anisotropy in J1 is taken into account. Specific heat data signal the onset of a magnetic
long-range order at TN � 2.1 K, which is further supported by a sharp peak in the NMR spin-lattice relaxation
rate. The NMR spectra mark the superposition of two P lines due to two nonequivalent P sites where the broad
line with the strong hyperfine coupling and short T1 is identified as the P(1) site located within the magnetic
planes, while the narrow line with the weak hyperfine coupling and long T1 is designated as the P(2) site located
between the planes.
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I. INTRODUCTION

Low-dimensional spin systems augmented with strong
frustration reveal suppression of a conventional magnetic or-
der and may lead to a quantum disordered ground state like
quantum spin liquid (QSL) [1]. Two-dimensional (2D) spin-
1/2 frustrated square-lattice (FSL) is a well-known example
where frustration appears because of the competition between
nearest-neighbor (NN, J1) and next-nearest-neighbor (NNN,
J2) exchange interactions along the edges and diagonals of a
square, respectively (J1-J2 model). Theoretical studies have
determined a global phase diagram with different ground
states depending on the sign and relative strength of the
exchange couplings (α = J2/J1) [2,3]. Assuming antiferro-
magnetic J2, ferromagnetic (FM) state is expected for −0.5 <

α < 0, Néel antiferromagnetic state (NAF) state is expected
for 0 < α < 0.5, and columnar antiferromagnetic (CAF) state
is expected for |α| > 0.5 on the classical level. Adding quan-
tum corrections can stabilize different disordered phases at the
phase boundaries, leading to novel order parameters or the
quantum critical regimes. For instance, QSL [4–6], plaquette
valence-bond solid (PVBS) [7,8] or columnar valence-bond
solid (CVBS) [9] states are expected around α � 0.5, while
a spin nematic phase is predicted for α � −0.5 in the phase
diagram [10].
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In the recent past, a handful number of Cu2+ (3d9), V4+
(3d1), and Mo5+ (4d1) based spin-1/2 FSL magnets have
been studied as J1-J2 model compounds. The vanadates are
the most celebrated ones and include Li2VOXO4 (X= Si, Ge)
with J1, J2 > 0 and J2 � J1 [11,12], along with V4+ phos-
phates that typically show J1 < 0 and J2 > 0, also resulting
in the CAF ground state [13–18]. A few other vanadates,
such as Zn2VO(PO4)2 [19], VOMoO4 [20–22], and PbVO3

[23], feature J1 � J2 and lie in the NAF region of the phase
diagram. A further variability becomes possible with Cu2+ as
well as 4d Mo5+ compounds that span both J2 � J1 and J2 �
J1 limits [24–32]. Unfortunately, none of these compounds
fall in the quantum critical regimes of the phase diagram
around |α| = 1/2. Moreover, some of them show intricate
deformations of the magnetic square lattice, because the un-
derlying crystal symmetry is lower than tetragonal [33]. This
deformation was verified experimentally in several V4+ phos-
phates, including Pb2VO(PO4)2 [34], SrZnVO(PO4)2 [35],
and BaCdVO(PO4)2 [36]. Each of them showed an interesting
pre-saturation phase [35,37–40], which is reminiscent of the
nematic phase of the J1-J2 model [10], but deviations from
the ideal square lattice put into question the applicability of
this theoretical scenario, and alternative interpretations were
indeed proposed recently [41,42].

In this context, finding V4+ square-lattice compounds with
different magnitudes of the deformation is important. Here,
we report low-temperature magnetic behavior of the hitherto
unexplored NaZnVOPO4(HPO4) as a spin-1/2 square-lattice
candidate with a different spacer separating the magnetic
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FIG. 1. (a) Crystal structure of NaZnVOPO4(HPO4) with the hydrogen position and hydrogen bonds (dashed lines) determined in this
work. (b) Magnetic [VOPO4] layer with the square-lattice-like arrangement of the V4+ ions. (c) Deformed square lattice with five nonequivalent
interactions. VESTA software [43] was used for crystal structure visualization.

layers and, potentially, a different regime of exchange
couplings compared to the widely studied AA′VO(PO4)2

phosphates (AA′ = Pb2, SrZn, BaCd). The monoclinic crystal
structure of NaZnVOPO4(HPO4) features V4+ ions in the
square-pyramidal coordination. They are joined into layers via
P(1)O4 tetrahedra (Fig. 1), while the interlayer space is filled
with the Na+ and Zn2+ ions, as well as the P(2)O4 tetrahedra
that represent the HPO4 groups.

II. METHODS

Pale-blue colored powder of the titled compound was
synthesized by the conventional hydrothermal method.
0.150 g Na2CO3 (Aldrich, 99.995%), 0.154 g V2O5 (Aldrich,
99.99%), and 0.115 g Zn (Aldrich, 99%) powders were mixed
with 5 ml of a 1.5 M aqueous solution of H3PO4, sealed in
a 23 ml teflon lined bomb, and heated at 240 ◦C for 8 days
followed by slow cooling (10 ◦C/hour) to room temperature.
The obtained blue color product was washed carefully with
distilled water and dried in an oven maintained at 100 ◦C for
24 hours. To check the phase purity of the compound, pow-
der x-ray diffraction (XRD) experiment was performed using
a PANalytical powder diffractometer with Cu Kα radiation
(λavg � 1.5418 Å) at room temperature. We have also per-
formed temperature-dependent powder XRD measurements
on the phase-pure powder sample in the temperature range
15 K � T � 300 K, using a low-temperature attachment (Ox-
ford PheniX) to the x-ray diffractometer. Le Bail fit of the
powder XRD patterns was performed using the FULLPROF

software package [44], taking the initial structural parameters
from the previous report [45].

Temperature variation of magnetization (M ) was measured
in the temperature range 1.8–350 K in different magnetic
fields (H ) using a SQUID magnetometer (MPMS3, Quantum
Design). The isothermal magnetization was measured at T =
1.8 K from 0 to 7 T. The high-field magnetization measure-
ment was performed at T = 1.4 K in pulsed magnetic fields
up to 30 T using the facility at the Dresden High Magnetic
Field Laboratory [46,47]. The temperature-dependent specific
heat of this sample was measured on a sintered pellet in a large
temperature range (0.5 K � T � 200 K) using the Physical
Property Measurement System (PPMS, Quantum Design) and
adopting the thermal relaxation technique. For measurements
below 2 K, 3He attachment to the PPMS was used.

The nuclear magnetic resonance (NMR) measurements
were carried out on the 31P nuclei (gyromagnetic ratio γN

2π
=

17.237 MHz/T and nuclear spin I = 1/2) in the temperature
range 1.8 K � T � 250 K. The NMR spectra at different
temperatures were obtained by varying the magnetic field
at a constant frequency of 121 MHz. The spin-lattice re-
laxation rate (1/T1) was measured by the single saturation
pulse method at two frequencies (30.2 and 121 MHz). The
temperature-dependent NMR shift, K (T )=[Href/H (T )−1],
was calculated from the resonance field of the sample H
with respect to the resonance field of a nonmagnetic reference
sample (Href ).

Magnetic couplings were determined by density-
functional-theory (DFT) band-structure calculations
performed in the FPLO code [48] using experimental structural
parameters from Ref. [45], except the hydrogen position
that was optimized as further explained in Sec. III E. The
Perdew-Burke-Ernzerhof (PBE) approximation for the
exchange-correlation potential was employed [49]. We used
superexchange theory in the vein of Kugel-Khomskii model
[50,51], as well as the mapping approach [52,53] based on
total energies of collinear spin configurations obtained from
DFT + U calculations with the on-site Coulomb repulsion
Ud = 4 eV, Hund’s coupling Jd = 1 eV, and double-counting
correction in the atomic limit [54].

Experimental thermodynamic properties were modeled by
high-temperature series expansion (HTSE) for the J1-J2 spin-
1/2 square lattice [55] as well as full diagonalization (FD)
for the 4 × 4 finite lattice with periodic boundary conditions.
Additionally, quantum Monte Carlo (QMC) simulations were
performed for the nonfrustrated spin-1/2 square lattice using
directed loop algorithm [56] in the stochastic series expansion
(SSE) [57] representation. QMC simulations were performed
for 16 × 16 finite lattices with periodic boundary conditions,
using 4 × 104 sweeps and 4 × 103 thermalization sweeps. The
ALPS package [58] was used for both FD and QMC.

III. RESULTS

A. X-ray diffraction

The powder XRD patterns of NaZnVOPO4(HPO4) are
analyzed by Le Bail fits. Figure 2 presents the data at two
end temperatures (T = 300 and 15 K). The entire XRD pat-
tern down to 15 K could be indexed using the monoclinic
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FIG. 2. Powder XRD patterns (open circles) at (a) T = 300 and
(b) 15 K. The solid line is the Le Bail fit, the vertical bars mark the
expected Bragg peak positions, and the lower solid line corresponds
to the difference between the observed and calculated intensities. The
goodness-of-fit is achieved to be χ 2 ∼ 5.4 and ∼6.2 for T = 300 and
15 K, respectively.

crystal structure with the space group P21/c. Neither struc-
tural transition nor lattice distortion are observed down to
15 K. The refined lattice parameters and unit cell volume
(Vcell ) are a = 8.5418(4) Å, b = 8.9937(5) Å, c = 9.0765(5)
Å, β = 91.186(3)◦, and Vcell � 696.46 Å3 and a = 8.5190(2)
Å, b = 8.9281(4) Å, c = 9.1029(4) Å, β = 92.013(5)◦, and
Vcell � 691.73 Å3 for T = 300 and 15 K, respectively. The
obtained lattice parameters at room temperature are in close
agreement with the values reported earlier [45]. The temper-
ature dependence of the lattice parameters (a, b, c, and β )
and Vcell are presented in Fig. 3. The lattice constants a and
b are found to decrease in a systematic way with decreasing
temperature while c and monoclinic angle β increase with
decreasing temperature and then reach a plateau. These lead to
an overall thermal contraction of the Vcell with temperature.

The variation of Vcell with temperature can be expressed in
terms of the internal energy [U (T )] of the system [59,60]:

Vcell(T ) = γU (T )

K0
+ V0. (1)

Here, V0 is the unit cell volume at T = 0 K, γ is the Grüneisen
parameter, and K0 is the bulk modulus of the system.

FIG. 3. (a) Lattice constants (a, b, and c) as a function of tem-
perature. (b) Monoclinic angle (β ) along with the unit cell volume
(Vcell ) are plotted as a function of temperature from 15 to 300 K. The
solid line represents the fit of Vcell using Eq. (1).

According to the Debye model, U (T ) can be written as

U (T ) = 9NkBT

(
T

θD

)3 ∫ θD
T

0

x3

(ex − 1)
dx, (2)

where N is the total number of atoms per unit cell, kB is the
Boltzmann constant, and θD is the Debye temperature [61].
The variable x inside the integration stands for the quantity
h̄ω

kBT with phonon frequency ω and Planck constant h̄. Here,

θD = h̄ωD
kB

and ωD is the upper limit of ω. The best fit of
the Vcell(T ) data using Eq. (1) [solid line in Fig. 3(b)] yields
the parameters: θD = 312(8) K, V0 = 691.7(5) Å3, and γ

K0
�

8.84 × 10−12 Pa−1.

B. Magnetization

The magnetic susceptibility [χ (T ) ≡ M/H] of
NaZnVOPO4(HPO4) measured in an applied field of
H = 0.5 T is shown in Fig. 4(a). In the high-temperature
region, χ (T ) follows a typical Curie-Weiss (CW) behavior
and shows a rounded maximum at T max

χ � 4.6 K. Such
a maximum represents the short-range AFM order in the
low-dimensional spin systems. Below about 2.6 K, a small
upturn is likely due to paramagnetic impurities and/or
defects present in the powder sample. No trace of magnetic
long-range-order (LRO) is detected down to 2 K. We have
also measured χ (T ) in different applied fields [inset of
Fig. 4(b)] but no obvious features associated with magnetic
LRO is found, except the suppression of a broad maximum
towards low temperatures.
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FIG. 4. (a) χ (T ) measured in the magnetic field of H = 0.5 T.
The lines (solid and dashed) are the HTSE fits using the isotropic
spin-1/2 FSL model, with two different solutions (solutions a and
solution b). (Inset) The simulated χ (T ) using the FD method taking
the J1 and J2 values from solutions a and b, respectively. (b) 1/χ vs
T . The red solid line is the CW fit. (Inset) χ (T ) in the low-T region
measured in different fields.

The inverse susceptibility, 1/χ (T ), is shown in Fig. 4(b).
In the paramagnetic regime, 1/χ (T ) was fitted by the CW law

χ (T ) = χ0 + C

T − θCW
, (3)

where the first term (χ0) represents the combination of
temperature-independent diamagnetic and Van Vleck para-
magnetic susceptibilities. The second term is the CW law
where C is the Curie constant and θCW is the CW tem-
perature. The fit above 25 K returns the parameters: χ0 �
4.26 × 10−5 cm3 mol−1/V4+, C � 0.393 cm3 K mol−1/V4+,
and θCW = −4.3(3) K. Using the value of C, the effective
moment is calculated to be μeff [= (3kBC/NAμ2

B)
1
2 , where

NA is the Avogadro number and μB is the Bohr magneton]
� 1.77 μB/V4+. This value of μeff is close to the actual value
1.73 μB for a spin-1/2 transition-metal ion with g = 2. The
negative value of θCW indicates the dominant AFM exchange
coupling between the V4+ ions. The core diamagnetic sus-
ceptibility (χcore) of the compound caused by the core orbital
electrons was calculated to be −1.37 × 10−4 cm3/mol by
adding the χcore of Na+, Zn2+, V4+, P5+, and O2− ions [62].
The Van-Vleck paramagnetic susceptibility (χvv) was calcu-
lated to be ∼1.8 × 10−4 cm3/mol by subtracting χcore from
χ0, which is very close to the value reported for other V4+
based compounds [63].

As evident from the structural data (Fig. 1), the system de-
viates from the isotropic square lattice. This spatial anisotropy
is mainly due to five nonequivalent exchange couplings, three

between nearest neighbors (J1, J ′
1, and J ′′

1 ) and two between
next-nearest neighbors (J2 and J ′

2). Previous studies suggest
that this anisotropy has only a minor effect on thermody-
namic properties at higher temperatures [33]. Therefore fits
with the isotropic J1 − J2 model return averaged values of
the NN and NNN couplings, J̄1 = (2J1 + J ′

1 + J ′′
1 )/4 and J̄2 =

(J2 + J ′
2)/2, respectively. We fitted the data with

χ (T ) = χ0 + χspin(T ) (4)

using the temperature-independent term (χ0) and the nineth-
order HTSE [χspin(T )],

χspin(T ) = NAg2μ2
B

kBT

∑
n

(
J̄1

kBT

)n ∑
m

cmn

(
J̄2

J̄1

)m

. (5)

The values of the coefficients cmn are taken from
Ref. [55]. Our fit for T � 7 K yields two solutions: so-
lution a with χ0 � 6 × 10−5 cm3 mol−1/V4+, g � 2.04,
J̄1 � 5.18 K, J̄2 � −0.66 K and solution b with χ0 � 6.6 ×
10−5 cm3 mol−1/V4+, g � 2.04, J̄1 � −1.28 K, J̄2 � 5.59 K.

The main difficulty of the HTSE fit is choosing the ap-
propriate T -range. The convergence of the HTSE depends
on the J̄2/J̄1 ratio, hence the lower limit of the fitting range
(Tmin) should be chosen with caution depending on the results
of the fit [15]. For a precise estimation of the J values, we
varied the lower limit of the fitting T -range (Tmin) between 5
and 9 K and estimated the exchange couplings for both the
solutions. Figures 5(a) and 5(b) present the variation of J̄1 and
J̄2 with Tmin for the solutions-a and b, respectively. To check
the convergence of the HTSE, we calculated the ratio of the
ninth-order term to the total susceptibility [χ9(T )/χtotal(T )]
using the parameters obtained from HTSE fits with a different
Tmin. Both solutions are stable above 7 K. We also performed
the FD simulations of χ (T ) using the values of χ0, g, J̄1, and
J̄2 and found a good agreement with the experimental data
[inset of Fig. 4(a)]. From the dependence on Tmin we estimate
the error bar less than 0.1 K for the exchange couplings J̄1

and J̄2. Discriminating between the solutions-a and b may be
possible using measurements of the saturation field [47]. The
M versus H data measured up to 25 T in pulsed magnetic
fields at T = 1.4 K are shown in Fig. 6. We have scaled
the high-field data with respect to the magnetic isotherm at
T = 1.8 K measured up to 7 T using a SQUID magnetometer.
M increases linearly with H in the low-field region, shows a
positive curvature in the intermediate fields, and then saturates
at around HS � 15.3 T. The positive curvature is typical for
low-dimensional and frustrated spin systems [64].

Saturation field of an FSL magnet depends on the type
of magnetic order. In the NAF case (solution a), HS =
4J̄1kB/(gμB) � 15.1 T in good agreement with the exper-
iment. On the other hand, in the CAF case HS = (J1 +
2J̄2)2kB/(gμB) where J1 is the weaker of the couplings
J1 and (J ′

1 + J ′′
1 )/2. In the CAF state, spins align anti-

ferromagnetically along the direction of this coupling and
ferromagnetically along the orthogonal direction. Therefore
only the weaker coupling enters the saturation field. Using
J1 = J̄1 leads to HCAF

S � 14.45 T for the solution-b, lower
than in the experiment. On the other hand, the actual value
of J1 can be reduced owing to the deformation of the square
lattice. Assuming 20% spatial anisotropy in the NN couplings
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FIG. 5. Results of the χ (T ) fit using HTSE for isotropic spin-1/2
FSL model by varying the minimum temperature of the fitting range
(Tmin). [(a) and (b)] Averaged exchange interactions (J̄1 and J̄2) vs
Tmin for the solutions a and b, respectively. (c) Convergence test of the
HTSE fit for both solutions, χ9(T )/χtotal (T ) vs Tmin. (d) Saturation
fields for the solutions a and b vs Tmin.

(J1 = 0.8J̄1) according to the DFT results (Sec. III E), we
arrive at HCAF

S � 15.15 T, which is on par with the result for
the solution a and also matches the experimental value.

Interestingly, the magnetization curve can be also well
described by the simple NN square-lattice model with an
effective coupling Jeff = 5.1 K (Fig. 6), which is in good
agreement with the leading exchange couplings extracted
from the HTSE fits.

C. Specific Heat

In Fig. 7(a), we have plotted the temperature-dependent
specific heat [Cp(T )] measured from 0.5 to 140 K in zero
applied field. It decreases systematically with temperature and
passes through a broad maximum at T max

C � 3.7 K, typical
for low-dimensional oxides. An anomalous behavior was ob-
served in a narrow temperature range TN = 2–2.2 K where we

FIG. 6. Magnetization (M) vs field (H ) at T = 1.4 K measured
using pulse magnetic field and scaled with respect to the SQUID
data. The solid line represents the QMC simulation, assuming the
spatially isotropic nonfrustrated spin-1/2 square-lattice model with
Jeff = 5.1 K. The arrow indicates the position of the saturation
field (HS).

couldn’t stabilize the temperature. This is a possible indication
of the onset of a magnetic LRO.

In a magnetic insulator, the total specific heat Cp(T ) is the
sum of two main contributions: one is the phonon/lattice con-
tribution [Cph(T )], which dominates in the high-temperature
region, and another one is the magnetic contribution
[Cmag(T )], which dominates in the low-temperature region de-
pending upon the strength of the exchange coupling. In order
to bring out the magnetic part of the specific heat, we first
quantified the lattice contribution and then subtracted it from
the total specific heat. We simulated the high-temperature
Cph(T ) data taking into account the sum of one Debye [CD(T )]
and three Einstein [CE(T )] terms, i.e., Cph(T ) = CD(T ) +∑3

i=1 CEi(T ). The Debye and Einstein terms are expressed as

CD(T ) = 9nDR

(
T

θD

)3 ∫ θD
T

0

x4ex

(ex − 1)2
dx (6)

and

CEi(T ) = 3nEiR

(
θEi

T

)2 e( θEi
T )

[
e( θEi

T ) − 1
]2 . (7)

Here, the Einstein temperatures θEi = h̄ωEi
kB

, ωEi are the re-
spective Einstein frequencies, and R denotes the universal gas
constant. The values of nD and nEi are chosen in such a way
that the sum nD + ∑3

i=1 nEi matches with the total number
of atoms per formula unit. The best fit of the Cp data in the
high-temperature regime using one Debye and three Einstein
branches yields the characteristic temperatures: θD � 122 K,
θE1 � 307 K, θE2 � 850 K, and θE3 � 161 K with nD = 1,
nE1 = 5, nE2 = 7, and nE3 = 2, respectively [65]. The red
solid line in Fig. 7(a) is the total phononic contribution to
the specific heat (Cph) extrapolated down to low temperature,
while the dashed and dash-dotted lines are the Einstein and
Debye contributions, respectively. The average of θD and θE
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FIG. 7. (a) Variation of Cp with temperature in the absence of
magnetic field. The red solid line represents the simulated phonon
contribution (Cph) taking into account the Debye (dash-dotted line)
and Einstein (dashed line) terms. (Inset) Cp/T vs T at low tem-
peratures and in different applied fields. The blue solid line is the
magnetic contribution (Cmag). (b) Cmag/R vs T (left y axis). The solid
line represents the change in the magnetic entropy, Smag vs T (right y
axis). The red (dash-dotted) and blue (solid) lines are the HTSE fits
corresponding to the two solutions, respectively. The green (dashed)
line is the QMC simulation for an isotropic nonfrustrated spin-1/2
square lattice model with Jeff = 6.3 K.

values reasonably matches θD estimated from the Vcell versus
T analysis.

Cmag estimated after subtracting Cph from Cp is plotted in
Fig. 7(b) as a function of temperature. The pronounced broad
maximum at T max

C � 3.7 K mimics short-range antiferromag-
netic correlations. The change in magnetic entropy [Smag(T )]
is obtained by integrating Cmag/T over temperature. It satu-
rates to a value of ∼5.6 J mol−1 K−1 at around T � 25 K,
which is close to the expected value R ln 2 = 5.76 Jmol−1 K−1

for a two-level (spin-1/2) system, thus justifying our subtrac-
tion procedure and the evaluation of Cmag.

The magnetic LRO is highlighted by plotting Cp/T ver-
sus T in the inset of Fig. 7(a) in different applied fields.
While the anomaly associated with the magnetic LRO is not
pronounced in the zero-field data, the peak at TN � 2.1 K
becomes more pronounced with increasing the field. This is
due to the transfer of entropy from the broad maximum to
the transition anomaly. Surprisingly, no visible shift in TN is

perceived even with the field change of 9 T, indication of a
robust AFM transition.

One can estimate the exchange couplings by analyzing
Cmag(T ) using the HTSE of a spin-1/2 FSL model [55],

Cmag(T )

R
= J̄1

kBT

∑
n

(−n)

(
J̄1

kBT

)n ∑
m

emn

(
J̄2

J̄1

)m

. (8)

We have fitted the Cmag(T )/R data at T > 6 K [see Fig. 7(b)]
and arrived at two solutions that strongly resemble the two so-
lutions from the susceptibility fit: solution a (J̄1/kB � 5.9 K,
J̄2/kB � −0.2 K) and solution b (J̄1/kB � −1.6 K, J̄2/kB �
6.1 K). Alternatively, we can compare our experimental data
with the QMC simulation for the nonfrustrated square-lattice
model [see Fig. 7(b)]. The position of the maximum in Cmag

is reproduced with Jeff = 6.3 K, which is notably higher than
in the M(H ) fit (Fig. 6). Moreover, the maximum value of
Cmag(T )/R is higher than in the experiment. The simple NN
square-lattice model is thus insufficient to describe the mag-
netic behavior of NaZnVOPO4(HPO4). Both frustration and
deformation of the square lattice affect thermodynamic prop-
erties of this compound.

D. 31P NMR

NMR is a convenient local probe of both static and dy-
namic properties. In NaZnVOPO4(HPO4), the P(1) site is
strongly coupled to the V4+ ions within the VOP(1)O4 layer,
while the P(2) site which is located between the adjacent
layers is weakly coupled to the V4+ ions [see Fig. 1(a)].
This difference allows a useful comparison and highlights the
magnetic behavior of the square-lattice planes.

1. 31P NMR spectra

The field-sweep 31P NMR spectra above TN measured in
a radio frequency of 121 MHz are shown in Fig. 8. Each
spectrum is normalized by its maximum amplitude and offset
vertically by adding a constant. At high temperatures, the line
is found to be narrow but asymmetric and the central peak
appears at the zero-shift position. As the temperature is low-
ered, the line width increases drastically and becomes more
anisotropic with two shoulders on either side of the central
peak. This abnormal spectral shape can be attributed to two
nonequivalent P sites in the crystal structure [45]. Remark-
ably, the complete shape of the spectra could be reproduced
considering the superposition of two spectral lines [66,67].
The inset of Fig. 8 portrays the spectral fit at T = 12 K. We
have a narrow central line with weak anisotropy and a broad
asymmetric background with two distinct shoulders.

The narrow central peak shifts weakly, whereas the shoul-
ders move significantly with decreasing temperature. Thus
the narrow central line with a weak shift can be assigned to
the P(2) site, which is weakly coupled, while the broad line
with the strong temperature-dependent behavior corresponds
to the in-plane P(1) site, which is strongly coupled to the
V4+ spins. The asymmetric shape of both P(1) and P(2) sites
is likely due to the anisotropy in χ (T ) or asymmetry in the
hyperfine coupling constant between the P nuclear spins and
the V4+ electronic spins. The overall spectral shape matches
exactly with the spectral shape reported for other V4+-based
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FIG. 8. Temperature evolution of the 31P NMR spectra of
NaZnVOPO4(HPO4) measured at 121 MHz. The dashed line in-
dicates the reference field position. (Inset) 31P NMR spectrum at
T = 12 K with the dashed and dotted lines are the fits of the P(1) and
P(2) sites, respectively, and the solid line (final fit) is the superposi-
tion of the P(1) and P(2) fits. The NMR shift values along the x, y,
and z directions, obtained from the fitting are K (1)

x � 0.48%, K (1)
y �

−0.68%, and K (1)
z � 0.24% for P(1) site and K (2)

x � 0.13%, K (2)
y �

−0.1%, and K (2)
z � −0.09% for P(2) site, respectively.

FSL compounds, AA′VO(PO4)2 (AA′ = Pb2, SrZn), on the
polycrystalline sample [13,16]. The nature of the magnetic
ordering can also be gleaned from the analysis of NMR
spectra below TN. Figure 9 shows the normalized 31P NMR
spectra measured at 121 MHz around TN. Neither significant
change in the line shape nor any visible line broadening are
observed below TN. This indicates that the 31P site experiences
only a weak static field in the ordered state. This observation
is quite opposite to that reported for Pb2VO(PO4)2 [13] but
similar to the 29Si NMR results on Li2VOSiO4 where local
field on the Si site cancels out [68]. All these compounds
show a similar type of magnetic layers and a similar mutual
arrangement of the V4+ ions and PO4/SiO4 tetrahedra. How-
ever, only in Pb2VO(PO4)2 the magnetic [VOPO4] layers are
strongly buckled [33]. This may explain why the hyperfine
couplings to V4+ spins with the opposite alignment do not
lead to the cancellation of the local field. On the other hand,
in NaZnVOPO4(HPO4) the layers are almost flat (Fig. 1), and
the absence of the 31P NMR line broadening below TN can be
still ascribed to the filtering of the hyperfine fields due to the
AFM spin alignments in the ground state.

2. 31P NMR shift

The spectrum at each temperature was fitted following
the same procedure as described above for T = 12 K. The

FIG. 9. Temperature-dependent 31P NMR spectra of
NaZnVOPO4(HPO4) measured at 121 MHz around TN. The
dashed line indicates the reference field position.

estimated temperature-dependent NMR shift [K (T )] along
different orientations (Kx, Ky, and Kz) for both P(1) and P(2)
sites are plotted in Figs. 10(a) and 10(b), respectively. All
the components of K (T ) exhibit a broad maximum/minimum
at around 4.3 K, an indication of the 2D AFM short-range-
ordering. Further, the magnitude of K (T ) for the P(2) site
is weaker than for the P(1) site, as expected. The isotropic
NMR shift was calculated as Kiso = (Kx + Ky + Kz )/3, which
is found to be almost temperature-independent for both the
31P sites. This also suggests that the isotropic part of hyperfine
coupling at the P site from the four neighboring V4+ spins is
nearly averaged out.

As K (T ) is an intrinsic measure of the spin susceptibility
χspin(T ) and is free from extrinsic contributions, one can write

K (T ) = K0 + Ahf

NA
χspin(T ). (9)

FIG. 10. Anisotropic components of K along the x, y, and z
directions as a function of temperature for (a) P(1) and (b) P(2) sites,
respectively. K vs χ measured at 7 T are plotted for all the three
orientations for (c) P(1) and (d) P(2) sites, respectively. The solid
lines are the linear fits.

024426-7



S. GUCHHAIT et al. PHYSICAL REVIEW B 106, 024426 (2022)

Here, K0 is the temperature-independent chemical (orbital)
shift and Ahf is the hyperfine coupling constant between the
31P nucleus and V4+ spins. In order to estimate Ahf , we have
plotted K vs χ , assuming temperature as an implied variable
in Figs. 10(c) and 10(d) for P(1) and P(2) sites, respectively.
In every case, K vs χ plot is linear in the whole temper-
ature range. Linear fits return A(1)

hf = (1134 ± 19) Oe/μB,
(−1716 ± 20) Oe/μB, and (582.59 ± 11) Oe/μB along the
x, y, and z directions for the P(1) site and A(2)

hf = (343 ± 13)
Oe/μB, (−248 ± 4) Oe/μB, and (−192 ± 3) Oe/μB along
the x, y, and z directions for the P(2) site, respectively. Clearly,
the magnitude of A(1)

hf is almost one order of magnitude larger
than A(2)

hf in all the three directions, thus proving the stronger
coupling for P(1) than P(2).

For the P(1) site, the transferred hyperfine coupling mainly
arises from the interactions with the four nearest-neighbor
V4+ spins in the plane. The isotropic and anisotropic trans-
ferred hyperfine couplings originate from P(3s)-O(2p)-V(3d)
and P(3p)-O(2p)-V(3d) covalent bonds, respectively. Since
P(1) is surrounded by four V4+ ions forming a nearly square
lattice in the plane, the experimentally observed asymmetry
in hyperfine field indicates nonequivalent P(3p)-O(2p)-V(3d)
bonds for the four NN V4+ ions and hence a distortion in the
square lattice, consistent with the low symmetry of the crystal
structure as pointed out earlier.

3. Spin-lattice relaxation rate 31 1/T1

We have performed 31P spin-lattice relaxation rate (1/T1)
measurements as a function of temperature down to 1.7 K at
two different frequencies, 30.2 and 121 MHz. The recovery of
the longitudinal nuclear magnetization after a saturation pulse
could be fitted by a double exponential function

1 − M(t )

M(∞)
= Ae−t/T11 + Be−t/T12 , (10)

where M(t ) is the nuclear magnetization at a time t after the
saturation pulse and M(∞) is the equilibrium nuclear mag-
netization. As each NMR spectrum is a superposition of two
P-sites, which are inseparable, a double exponential function
is used to fit the recovery curves. In Eq. (10), 1/T11 and 1/T12

are the spin-lattice relaxation rates for P(1) and P(2) sites,
respectively, and A and B account for their respective weight
factors. At 121 MHz, the total spectral width was large and we
were not able to saturate the whole spectrum using a single
saturation pulse. Therefore 1/T1 is also measured at a lower
frequency of 30.2 MHz where the spectral width is reduced
significantly and we were able to saturate the whole spectrum
above TN.

The extracted 1/T11 and 1/T12 as a function of temperature
at 30.2 and 121 MHz and for both the P sites are presented in
Fig. 11(b). In the high-temperature (T � 4.3 K) region, 1/T1

for both the P sites are almost constant, typically expected in
the paramagnetic regime [69]. At low temperatures, 1/T11 and
1/T12 show sharp peaks at around TN � 2.04 and 2.36 K for
30.2 and 121 MHz, respectively, indicating the slowing down
of fluctuating moments as we approach the magnetic LRO.
Below TN, both 1/T11 and 1/T12 decrease toward zero due to
the scattering of magnons by the nuclear spins [70].

FIG. 11. (a) Longitudinal recovery curves at three selected tem-
peratures. The solid lines are fits using Eq. (10). (b) 31P spin-lattice
relaxation rates for P(1) (1/T11) and P(2) (1/T12) sites as a function of
temperature measured in 30.2 and 121 MHz. The data are shown in a
log-log scale in order to highlight the peak at TN. The vertical dash-
dotted lines indicate the magnetic LRO at TN � 2.04 and � 2.36 K
for 30.2 and 121 MHz data, respectively.

E. Microscopic magnetic model

Before discussing the magnetic model, we determine the
position of hydrogen, which may be crucial for the correct
evaluation of exchange couplings [71]. In hydrophosphates,
one expects a deformation of PO4 tetrahedra because one of
the oxygens is linked to hydrogen and should thus weaken its
bond to phosphorous in order to keep the overall bond valence
unchanged. Such a deformation is observed in the P(2)O4

tetrahedra with the P–O bond distances of 1.490 [O(1)],
1.530 [O(7)], 1.537 [O(2)], and 1.585 Å [O(9)] [45]. We
thus considered different hydrogen positions in the vicinity
of O(9) and found the lowest energy for hydrogen located
at (0.7658,0.2823,0.7588) and separated from oxygen by
0.988 Å. The O–H bond is directed toward the [VOPO4] layer,
with the H atom forming three hydrogen bonds of 2.2–2.4 Å
to oxygen atoms of the VO5 pyramids and P(1)O4 tetrahedra
(Fig. 1).

We now adopt this hydrogen position in DFT calculations
and evaluate exchange couplings using two complementary
methods. The first one is superexchange model [50] based on
electron hoppings extracted from Wannier fits to the PBE band
structure, resulting in

Ji = 4t2
xy→xy

Ueff
−

∑
α

4t2
xy→αJeff

(Ueff + 
α )(Ueff + 
α − Jeff )
, (11)
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TABLE I. Interatomic V–V distances (in Å) and exchange cou-
plings (in K). The FM and AFM contributions are obtained from the
superexchange model, Eq. (11), whereas total exchange couplings Ji

are calculated via the DFT + U mapping procedure and thus deviate
from JFM

i + JAFM
i .

dV−V JAFM
i JFM

i Ji

J1 4.616 1.4 −5.6 −5.1
J ′

1 4.542 1.4 −7.4 −7.9
J ′′

1 4.785 2.6 −3.1 −1.0
J2 6.380 18.7 −0.4 8.1
J ′

2 6.395 9.1 −0.4 4.6

where dxy is the half-filled orbital of V4+, α labels unoccupied
d orbitals, and 
α is the crystal-field splitting. The first term
stands for AFM superexchange arising from electron hop-
pings between the half-filled orbitals, whereas the second term
is FM superexchange due to electron hoppings between the
half-filled and empty orbitals. Using the effective Coulomb
repulsion of Ueff = 4 eV and Hund’s coupling of Jeff = 1 eV1

from Refs. [51,53], we arrive at the exchange couplings JAFM
i

and JFM
i listed in Table I. Additionally, we compute total

exchange couplings Ji via the DFT + U mapping approach
[52,53].

Both methods arrive at qualitatively similar results. The
NN couplings are FM, whereas the NNN couplings are AFM
in nature, thus favoring solution-b for the susceptibility fits.
The largest anisotropy is observed between J ′

1 and J ′′
1 . How-

ever, on average these couplings–both running along c–differ
from J1 (along b) by 20% only. The spatial anisotropy of
the NNN couplings is more significant with J2/J ′

2 � 1.8. The
overall energy scale of the NNN couplings, J̄2 � 5.6 K, is
similar to Li2VOSiO4 (J2 � 5.9 K [55]) and Na1.5VOPO4F0.5

(J̄2 � 6.6 K) and much lower than in Pb2VO(PO4)2 with
J̄2 � 9.3 K [13] or SrZnVO(PO4)2 with J̄2 = 8.6 K [16]. This
difference can be traced back to the buckling of the magnetic
layers in AA′VO(PO4)2 (AA′ = Pb2, SrZn), while the lay-
ers are almost or even perfectly flat in NaZnVOPO4(HPO4)
(Fig. 1), Li2VOSiO4, and Na1.5VOPO4F0.5.

IV. DISCUSSION

Our data suggest that NaZnVOPO4(HPO4) is well de-
scribed by the spin-1/2 FSL model if deformation of the
square lattice is taken into account. Although individual data
sets such as field-dependent magnetization may be consistent
even with a nonfrustrated square lattice, the reduced size
of the specific heat maximum, Cmag

max /R � 0.41, indicates the
presence of frustration. Indeed, the value of the frustration
parameter f = |θCW|

TN
� 2.1 reflects a moderate frustration in

the compound. The value of α = J̄2/J̄1 � −4.3 (with J̄1 �
−1.3 K, J̄2 � 5.6 K) locates this compound in the CAF regime
of the J1-J2 phase diagram.

1Note that Ueff and Jeff apply to V-based Wannier functions that
include both V 3d and O 2p orbitals, while the DFT + U parameters
Ud and Jd mentioned in Sec. II describe, respectively, the Coulomb
repulsion and Hund’s coupling in V 3d orbitals only.

In a spin system, the spin-lattice relaxation rate carries
information on the low-lying excitations or spin dynamics in
the momentum space. Typically, 1

T1T can be expressed in terms
of the dynamic susceptibility χM (�q, ω0) as [72]

1

T1T
= 2γ 2

N kB

N2
A

∑
�q

| A(�q) |2 χ ′′
M (�q, ω0)

ω0
, (12)

where the sum is over the wave vector �q within the first
Brillouin zone, A(�q) is the form-factor of the hyperfine
interaction, and χ ′′

M (�q, ω0) is the imaginary part of the dy-
namic susceptibility at the nuclear Larmor frequency ω0.
The dominance of different q components [�q = 0 and �q =
(±π/a,±π/b)] is often visible in the 1/T1 data when plotted
against temperature, especially for the low-dimensional spin
systems with strong exchange coupling. At very high tempera-
tures (T > J/kB), 1/T1 is almost temperature-independent due
to uncorrelated moments and can be expressed as [13]

(
1

T1

)
T →∞

= (γN gμB)2
√

2πz′S(S + 1)

3ωex

×
(Ax

z′
)2 + (Ay

z′
)2 + (Az

z′
)2

3
, (13)

where ωex = [max(|J1|, |J2|)kB/h̄]
√

2zS(S+1)
3 is the Heisenberg

exchange frequency, z is the number of NN spins of each V4+
ion, and z′ is the number of NN V4+ spins of the P(1) site. In
the above expression, the hyperfine couplings along different
directions are divided by z′ in order to account for the coupling
of P site with the individual V4+ ion. As the measurements
are carried out on the powder sample, we have taken the rms
average of the couplings along three directions.

For a tentative estimation of the in-plane exchange cou-
pling between the V4+ ions we took the high-temperature
value of 1/T11 for the strongly coupled P(1) site. Using
the experimental parameters obtained for this site (A1

x �
1134 Oe/μB, A1

y � −1716 Oe/μB, A1
z � 582 Oe/μB, γN =

108.303 × 102 rad sec−1/Oe, z′ = 4, z = 4, g = 2.04, S =
1/2, and 1/T11 � 150 sec−1), the magnitude of the maximum
exchange coupling strength between V4+ ions is estimated to
be max(|J1|, |J2|) � 4.2 K. This value is indeed very close to
the dominant in-plane AFM exchange coupling for both the
solutions (a and b), obtained from the χ (T ) analysis.

It is also instructive to compare the transition tempera-
tures of V4+-based FSL magnets. NaZnVOPO4(HPO4) and
Li2VOSiO4 feature almost the same J̄2 � 6 K but different
signs of J1 (FM and AFM, respectively), while the former
compound has a much lower TN � 2.1 K than the latter (TN �
2.8 K [11]). This indicates that FM couplings J1 together
with the deformation of the square lattice lead to a visi-
ble reduction in TN in NaZnVOPO4(HPO4). On the other
hand, Pb2VO(PO4)2 shows an even higher TN � 3.65 K [13]
because of the 30% increase in the magnitude of J̄2. This com-
parison illustrates that buckling of the [VOPO4] layers caused
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by variable spacers between the magnetic layers effectively
tunes magnetic interactions in FSL-like compounds.

V. SUMMARY

We have studied the magnetism of NaZnVOPO4(HPO4)
using wide variety of experimental techniques and comple-
mentary ab initio calculations. The unit cell volume as a
function of T could be fitted well using the Debye model
with θD � 312 K. From thermodynamic measurements we
infer that the ideal FSL model captures all main features of
the NaZnVOPO4(HPO4) magnetism. However, including the
spatial anisotropy of nearest-neighbor couplings is essential
to reproduce the experimental saturation field. The reduced
maximum of the magnetic specific heat further signals this
spatial anisotropy, whereas asymmetric hyperfine couplings of
the 31P nuclei with the V4+ spins provide a direct experimental
evidence for the deformation of the frustrated square lattice.

The averaged exchange couplings extracted from the mag-
netic susceptibility and specific heat data are J̄1 � −1.3 K
and J̄2 � 5.6 K, resulting in the effective frustration ratio α �
−4.3. Consequently, the magnetic LRO transition observed

at TN � 2.1 K is expected to lead to the CAF type order.
A slightly larger value of f (>1) further implies moderate
frustration in the spin system.

With almost flat magnetic layers, NaZnVOPO4(HPO4)
shows weaker next-nearest-neighbor couplings (J̄2) than other
V4+ phosphates. This reduction in J̄2 along with the deforma-
tion of the square lattice lead to a lower magnetic transition
temperature than in most of the other FSL candidates.
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and O. Prokhnenko, Presaturation phase in the frustrated ferro-
antiferromagnet Pb2VO(PO4)2, Phys. Rev. B 102, 094414
(2020).

[41] K. M. Ranjith, F. Landolt, S. Raymond, A. Zheludev, and M.
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