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Electronic chiralization as an indicator of the anomalous Hall effect
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The anomalous Hall effect (AHE) can appear in certain antiferromagnetic metals when it is allowed by
symmetry. Since the net magnetization is usually small in such anomalous Hall antiferromagnets, it is useful
to have other physical indicators of the AHE that have the same symmetry properties as the latter and can be
conveniently measured and calculated. Here we propose such indicators named as electronic chiralization (EC),
which are constructed using spatial gradients of spin and charge densities in general periodic crystals, and can
potentially be measured directly by scattering experiments. Such constructions particularly reveal the important
role of magnetic charge in the AHE in unconventional magnetic systems with vanishing net magnetization.
Guided by the EC we give two examples of the AHE when magnetic charge is explicitly present: A minimum
honeycomb model inspired by the magnetic-charge-ordered phase of kagome spin ice, and skew scattering of
two-dimensional Dirac electrons by magnetic charge.
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I. INTRODUCTION

The anomalous Hall effect (AHE) describes the transverse
flow of charge currents driven by a longitudinal electric field
in the absence of external magnetic fields [1–3]. The mecha-
nisms of the AHE in ferromagnets have been well understood
by now [3–8]. In recent years particular interests have been
devoted to the AHE appearing in certain antiferromagnets
with vanishing net magnetization [9–21], in contrast to the
conventional wisdom that the anomalous Hall response is
proportional to net magnetization. Although it is now clear
that the AHE is generally nonvanishing as long as it is not
forbidden by symmetry, it remains an open question whether
one can find a convenient indicator of the AHE, that is similar
to the net magnetization as a gauge-invariant observable but
is not small because of energetic reasons in the AHE anti-
ferromagnets. Such indicators, once identified, can help to
understand the existence and variation of the AHE in inhomo-
geneous and disordered systems or across phase transitions,
the dependence of the AHE on reorientation of the micro-
scopic spin density field, and the scaling of the AHE with
continuously tunable parameters such as temperature, doping,
and strain, etc.

There have been a couple of proposals on constructing such
indicators of the AHE in general magnetic crystals [22,23],
based on the idea of multipole expansion. Reference [22]
considered the magnetic (spherical) multipole moments of a
finite atomic cluster having the same point-group symmetry
as the parent magnetic crystal. By decomposing the repre-
sentation of a given point group in the basis of such cluster
magnetic multipoles, the ones that resemble that formed by
a magnetic dipole can be identified. The basis functions of

such irreducible representations then transform in the same
way as the magnetic dipole or the Hall conductivity vector
under symmetry operations in the given point group, but not
necessarily so under general O(3) operations applied on the
whole magnetic crystal. More recently, Ref. [23] proposed to
use the anisotropic magnetic dipole (AMD) as an indicator
of the AHE. The AMD is a time-reversal-odd pseudovector
and transforms in the same way as the Hall conductivity
vector under general O(3) operations. However, to calculate
the AMD for a given magnetic structure one still needs to first
construct a finite atomic cluster using the approaches of [22]
or [24].

The difficulty of defining multipole moments of an infinite
crystal is long standing. In classical electromagnetism it is
known that only the lowest-order nonvanishing multipole mo-
ment of a given charge or current distribution is independent
of the choice of origin. Moreover, it has been realized through
the studies on the electric polarization [25,26], orbital magne-
tization [27–29], and magnetic toroidization [30,31] that even
these low-order multipole moments cannot be directly ob-
tained from the local charge and current densities in a unit cell,
but require the information of the ground-state wave functions
of the whole crystal. However, for the purpose of finding
a physical indicator of the AHE in antiferromagnets, it is
more convenient to base the construction on readily available
data of the magnetic structure such as that from neutron and
x-ray experiments. Such scattering experiments directly probe
the Fourier components of spin and charge distributions in a
periodic crystal which themselves are gauge-invariant quanti-
ties. Moreover, constructions based on scattering amplitudes
may allow direct determination of the AHE indicators without
having to first fix the magnetic order. Finally, the indicators
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may point out new mechanisms or prototypical examples for
the AHE in unconventional magnetic systems.

In this paper we propose a class of indicators of the
AHE, which we name as electronic chiralization (EC) due
to resemblance to their optical counterparts [32–35], based
on spatial gradients of periodic spin and charge densities of
infinite crystals. In Sec. II we first introduce EC based on
the symmetry properties of the AHE and then give convenient
formulas for calculating EC in realistic systems. In Sec. III we
demonstrate EC’s computation and behavior in several model
examples: Anomalous Hall antiferromagnets Mn3X (X = Ir,
Pt, Sn, Ge, etc.) and a two-dimensional (2D) ferromagnetic
Rashba model in plane-wave basis. In Sec. IV we give two
nontrivial examples of the AHE inspired by the prominent role
of magnetic charge in the EC: A minimal model based on the
charge-ordered kagome spin ice [36–47] and skew scattering
of 2D Dirac electrons by magnetic charge. Finally, in Sec. V
we briefly discuss further implications of the EC.

II. SYMMETRY PROPERTIES OF THE AHE
AND CONSTRUCTION OF THE EC

A. Symmetry properties of the AHE

We first discuss the symmetry properties of the AHE of
a crystal. The AHE is described by the anomalous Hall
(pseudo)vector (σAH)α = 1

2εαβγ σβγ . σAH changes sign under
time reversal (TR, acting on the equilibrium state of the sys-
tem) as a consequence of the Onsager relation; it rotates as
a pseudovector under O(3) and is invariant under continuous
translation operations because it is the response of a uniform
current to a uniform electric field.

It is obvious why σAH must transform as a vector un-
der proper rotations. By transform we mean the comparison
between σAH of two systems that are related to each other
by such a transformation. Suppose that system 2 is obtained
from system 1 by rigidly rotating the former. Then, σAH for
system 2 is measured by applying the external electric field
and attaching the current probes in the same manner as that
for 1. In other words, we have the response relation

E
1−→ j1, E

2−→ j2 (1)

and the linear response function is defined as

σ
αβ

1,2 = ∂ jα1,2

∂Eβ

. (2)

However, because the rotation is equivalent to a coordinate
transformation, we immediately know that if the electric field
is rotated together with the system, the result should not
change. In other words,

RE
2−→ Rj1 = j2, (3)

where R is a rotation matrix. Therefore,

σ
αβ

2 = ∂ (Rj1)α

∂ (RE)β
= (Rσ1R−1)αβ. (4)

It then follows that σAH,2 = RσAH,1. A similar argument can
be made for improper rotation and continuous translation.
Alternatively, one can use linear response theory and show

that all unitary transformations due to O(3) operations cancel
out when taking the trace.

In addition to the system-independent properties above,
σAH must also be invariant under any symmetry operations of
the crystal, as dictated by Neumann’s principle. In particular,
for symmetry operations that combine a point-group operation
R with a spatial translation T , since σAH is invariant under
continuous translation, it must be invariant under R even if R
is not a symmetry of the crystal.

B. Definition of the electronic chiralization

Based on the discussion above, a suitable indicator of the
AHE should be (1) a TR-odd pseudovector, and (2) invariant
under all symmetry operations of the crystal. Then, σAH will
be linearly dependent on this indicator to the lowest order of
the latter. An important consequence of (1) is that the indicator
must be translationally invariant.

The TR-odd property of σAH is fundamentally due to the
microscopic magnetization density m(r) in equilibrium. In
ferromagnets the spatial average of m(r), m̄ serves as a suit-
able indicator of the AHE. When m̄ nearly vanishes, it is
reasonable to associate the AHE with the spatial variation
of m(r). We thus propose indicators of the AHE constructed
from the spatial gradients of m(r). For definiteness we only
consider the first-order spatial derivative of m(r) in this
work, although indicators based on higher orders in m or its
derivatives can be constructed similarly and may be useful in
different cases. We start from a Cartesian tensor Ti jk defined
as

Ti jk ≡ 1

V

∫
d3r ∂iφ∂ jmk = 1

Vuc

∫
uc

d3r ∂iφ∂ jmk, (5)

where φ is a TR-even scalar field observable of the crystal,
which can be the charge density ρ(r) or the nonmagnetic
potential V (r); uc stands for unit cell. We ignore any boundary
contributions to m(r) and φ(r) so that they have the same
discrete translation symmetry as the infinite crystal. The in-
clusion of φ ensures that Ti jk does not become a boundary
term and also signifies the role of orbital degrees of freedom
in the AHE. Ti jk is a TR-odd rank-3 pseudotensor and is trans-
lationally invariant. It is also invariant under any symmetry
operations of the crystal since both φ(r) and m(r) are physical
observables of the crystal. A pseudovector can be obtained
from Ti jk by contracting it with Kronecker δ or Levi-Civita
symbol ε. The only two independent pseudovectors obtained
from this construction are

χ1 ≡ 1

V

∫
d3r(∇φ)(∇ · m),

χ2 ≡ 1

V

∫
d3r(∇φ) × (∇ × m). (6)

We name χ1,2 generally as “electronic chiralization” to
emphasize their electronic origin and pseudovector nature,
analogous to the optical chirality (flow) in optics [32–35].
Several comments are in order:

(i) One can define χ3 ≡ 1
V

∫
d3r(∇2φ)m which is a linear

combination of χ1,2. However, a nonzero χ3 in antiferromag-
nets suggests an AHE that is due to compensated m located on
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structurally inequivalent sites (different ∇2φ) and is relatively
trivial. We thus focus on χ1 in this work only.

(ii) χ1 and χ2 are, respectively, related to the magnetic
charge density ρm ≡ −∇ · m and the electric current density
j = ∇ × m. When m can be approximated by gμBs(r) with
s(r) the spin density, ∇ × s(r) is the “spin-current” contribu-
tion to the conserved charge current in the Dirac theory of
electrons.

(iii) Using the electron charge density ρ(r) as the scalar
field φ, one can potentially obtain χ1,2 directly from mag-
netic neutron or x-ray diffraction data since it only requires
the knowledge of ρ∗

KmK, where K is a reciprocal lattice
vector (see Sec. II C below). Such a combination can ap-
pear, e.g. (for χ2), in the interference term of elastic neutron
scattering cross section between magnetic and electrostatic
scatterings [48].

(iv) EC exists in ferromagnets as well, though in this case
the net magnetization is a more straightforward indicator. In
Sec. III B we show that in a modified Rashba model [3,49]
the local spin and charge densities exhibit the characteristic
textures that lead to nonzero χ1,2,3.

(v) One can generalize the above definition of EC by con-
sidering higher powers of φ or its derivative. For example,

χ′
1 = 1

V

∫
d3r φ(∇φ)(∇ · m),

(7)

χ′′
1 = 1

V

∫
d3r(∇φ)(∇2φ)(∇ · m), . . .

which are also nonzero in general if χ1,2 �= 0. In a particular
model it may be that χ1,2 accidentally become zero due to
certain artificial symmetry of the model (e.g., assuming a
spherical charge or spin distribution for each atom). In such
cases the alternative constructions above may be used. One
example is hematite (Fe2O3) in the canted antiferromagnetic
phase. We found that the EC calculated using the formula (10)
are zero, but χ′′

1 is nonzero.

C. Formulas for computing EC in realistic systems

In this section we discuss how to efficiently calculate EC
in realistic systems. Since crystallographic models are usu-
ally represented by localized atomic charge and magnetic
moments, we consider such cases first by assuming that the
atomic charge and spin densities are described by Gaussians,
which gives

ρ(r) =
∑

R

∑
n

Qng(r − R − rn),

(8)
m(r) =

∑
R

∑
n

Mng(r − R − rn),

where Qn and Mn are the charge and magnetic moments on a
lattice site located at rn in the unit cell, R stands for Bravais

lattice vectors, and g(r) = (2πσ 2)−
3
2 e− r2

2σ2 is the Gaussian

function whose Fourier transform is gk = e− σ2k2

2 . The Fourier

transforms of ρ(r) and m(r) are therefore

ρK = 1

Vuc

∑
n

QngKe−ıK·rn , (9)

mK = 1

Vuc

∑
n

MngKe−ıK·rn ,

from which we can obtain χ1,2:

χ1 =
∑

K

Kρ∗
K(K · mK ) = 1

V 2
uc

∑
K

g2
KK(K · XK ),

χ2 =
∑

K

Kρ∗
K × (K × mK ) = 1

V 2
uc

∑
K

g2
KK × (K × XK ),

(10)

where

XK ≡
∑
mn

QmMneıK·(rm−rn ). (11)

Because of the g2
K in Eq. (10) the summation will converge

quickly if σ is comparable to the lattice constant.
Although the momentum-space expressions above can be

directly applied to scattering data (with the gK replaced by
appropriate form factors) and plane-wave-based DFT calcula-
tions (see Sec. III B for an example), they do not necessarily
provide a transparent picture on the real-space charge and
magnetization distributions. Moreover, when the charge and
magnetization densities are very localized around individual
atoms, and have fine structures at small length scales (or
equivalently at high-energy scales) that can be irrelevant to
transport phenomena, the values of χ1,2 can be sensitive to the
cutoff in K. We therefore discuss real-space expressions of
χ1,2 next, still assuming that the local densities for each atom
are described by Gaussians.

For χ1 we have

χ1 = 1

Vuc

∑
mn

∑
R

∫
d3r QnMm · [∇g(r − rm)]

× [∇g(r − R − rn)]

≡ 1

Vuc

∑
mn

∑
R

QnMm · ←→
I (R + rn − rm) (12)

in which the integral

Ii j (a) = −∂ai∂a j

∫
d3r g(r)g(r + a)

= 1

16π
3
2 σ 5

(
δi j − aia j

2σ 2

)
e− a2

4σ2 . (13)

Because of the Gaussian factor in
←→

I one can potentially
truncate the summation in Eq. (12) at, e.g., nearest neigh-
bor. Note that the second term in

←→
I has the form of an

electric quadrupole. The main difference between it and the
quadrupole moment in [23] is that the origin of the former is
different for different pairs of ions.
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Using the same
←→

I one can express χ2 as

χ2k = 1

Vuc

∑
mn

∑
R

QnMb
mεi jkεab jIai(R + rmn)

= 1

Vuc

∑
mn

∑
R

QnMb
m(Ibk − δbkTr

←→
I ). (14)

The contributions due to the traceless part of
←→

I to χ1,2 are

therefore the same. The trace of
←→

I gives rise to a weighted
sum of electric charge surrounding a given magnetic mo-
ment Mm. A compensated ferrimagnet will have a nonzero
χ1 mainly due to this contribution. We will focus the traceless
part of

←→
I in Sec. III below since it is less trivial. This also

makes it sufficient to consider χ1 only. Real-space formulas
for the generalized EC introduced in Eq. (7) are given in
Appendix A.

III. EC IN MODEL EXAMPLES

In this section we calculate the EC using the formulas given
in the last section and discuss their connections with the AHE
in several model examples.

A. EC in AHE antiferromagnets

We first calculate χ1 using crystallographic models for
the noncollinear AHE antiferromagnets Mn3X (X = Ir, Pt,
Sn, Ge, etc.) and the real-space formula (12). Considering
nearest neighbors and the traceless part of

←→
I only, we have

χ1 = C
∑

m Mm · Qm, where C = −e
r2
nn

4σ2 /(32π
3
2 σ 7Vuc) is a

system-dependent constant and rnn is the distance between
a magnetic atom and its nearest neighbors. Qm is the total
electric quadrupole relative to the position of site m:

Qm =
∑

i∈{i}m

Qi

(
rmirmi − 1

3
r2

nnI

)
, (15)

where {i}m stands for the set of nearest neighbors of site m.
Qm has the same symmetry as a second-order, i.e., easy-axis
or easy-plane, magnetic anisotropy. The origin of weak fer-
romagnetism and hence the AHE in systems with a nonzero
χ1 is thus a site-dependent second-order anisotropy, which
applies to the known examples of Mn3X and collinear AHE
antiferromagnets [20,21]. If such a site-dependent second-
order anisotropy is forbidden by symmetry, as in the case of
hematite, one needs to consider the generalizations of EC as
mentioned in Sec. II C.

For the structure of cubic Mn3X , e.g., Mn3Ir [Fig. 1(a)],
Qm is diagonal with the principal axis of the largest eigenvalue
along the fourfold axis on each Mn atom. One can then obtain
the dependence of χ1 on rigid rotations of the sublattice mo-
ments, which is very different from rotating the pseudovector
χ1 directly since the latter is not required to transform as a
pseudovector under separate rotations of the lattice and mag-
netic moments. For example, the length of χ1 depends on the
rotation about its direction as | cos γ | [Fig. 1(b)], where γ is
the rotation angle, similar to σAH (see below) and the orbital
magnetization [50]. For the structure of hexagonal Mn3X ,
e.g., Mn3Sn [Fig. 1(c)], one can follow the same procedure

(a) (b)

(c) (d)

FIG. 1. (a) Crystal structure and magnetic order of cubic Mn3X .
(b) Dependence of |χ1| on rigid rotation of all sublattice magnetic
moments about [111] (perpendicular to the initial kagome plane that
all moments are parallel with) and [1̄1̄2] (along the initial direction of
a sublattice moment), respectively. (c) Crystal structure and magnetic
order of hexagonal Mn3X . (d) Dependence of |χ1| on rigid rotation of
all sublattice magnetic moments about [0001] (perpendicular to the
kagome plane) and [011̄0] [along the initial direction of the moment
on the topmost atom in (c)], respectively.

and obtain a compact expression

χ1 ∝ cos2

(
β

2

)
[sin(α + γ )x̂ + cos(α + γ )ŷ], (16)

where α, β, γ are Euler angles about the z, y′, z′′ axes, re-
spectively. Here, z and y are the original crystalline axes
[0001] and [011̄0], while the primed and double-primed axes
correspond to those corotated with the local moments succes-
sively by α and β, respectively. The expression captures the
phenomenon that a counterclockwise rotation about [0001]
of all sublattice moments leads to clockwise rotation of the
weak magnetization and σAH [12]. Moreover, rotation about
the [011̄0] axis in Fig. 1(c) by π makes χ1 vanish [Fig. 1(d)]
since in this case the magnetic order becomes triangular rather
than inverse triangular, and the AHE or weak ferromagnetism
are forbidden by a C3 symmetry.

To compare the angular dependence of |χ1| with that of
|σAH|, we use the following generic tight-binding model [50]
adapted to the structures of cubic and hexagonal Mn3X to
calculate the intrinsic contribution to the anomalous Hall con-
ductivity:

H = Ht + Hso + HJ

≡ −t
∑
〈i j〉α

c†
iαc jα + ıλso

∑
〈i j〉αβ

(r̂i j × ηi j ) · σαβc†
iαc jβ

− J
∑
iαβ

n̂i · σαβc†
iαciβ, (17)

where i, j label lattice sites, 〈. . . 〉 means nearest neigh-
bor, α, β label spin, t > 0 is the spin-independent hopping
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(a) (b)

(c) (d)

FIG. 2. (a) Band structure of the model in Eq. (17) for the cubic
Mn3X structure, obtained using t = 1, λso = 0.1, J = 1, μ = −6,
where μ is the chemical potential. (b) Angular dependence of the
norm of the AHC vector for the cubic Mn3X model. (c) Band struc-
ture for the hexagonal Mn3X structure, obtained using t = 1, λso =
0.2, J = 1, μ = −7. (d) Angular dependence of the norm of the
AHC vector for the hexagonal Mn3X model.

amplitude and is chosen as the energy unit, λso is the spin-
orbit coupling strength, r̂i j is a unit vector along the position
vector r j − ri, ηi j is the electric field or electric dipole mo-
ment vector at the center of the nearest-neighbor i j bond [50]
(normalized using the largest |ηi j |), J is the strength of a local
exchange field along n̂i mimicking the noncollinear magnetic
order in a given material.

The anomalous Hall conductivity is calculated as

σ
γ

AH = 1

2
εαβγ σ αβ (ω = 0)

= e2h̄εαβγ

2NkVuc

∑
n �=m;k

fnk − fmk

(εnk − εmk )2 + η2
Im

(
vα

nmkv
β

mnk

)
,

(18)

where σαβ (ω) is the optical conductivity tensor, Nk is the
number of points of the k mesh, and η is a band-broadening
parameter that depends on disorder. To facilitate rapid con-
vergence of the Brillouin zone integration we have used η =
0.1 (in units of t) and a thermal smearing with kBT = 0.3.
Such smearing parameters also help to eliminate any spurious
abrupt changes of the zero-temperature intrinsic AHC in a
perfect crystal versus smooth changes of tuning parameters
such as the rotation angle since the former is sensitively
dependent on small band splittings at the Fermi energy. In
reality, the dependence of transport coefficients on orienta-
tions of the magnetic order parameter is expected to consist
of low-order Fourier components due to both thermal and
disorder effects. The Brillouin zone integration is performed
using a 31 × 31 × 31 mesh.

Figures 2(b) and 2(d) agree qualitatively with the angular
dependence of the EC in Figs. 1(b) and 1(d). Such an agree-
ment to some extent depends on the parameter values used,

but is generally expected based on symmetry arguments: For
an arbitrary rotation of the local magnetic moments along a
closed path one can generally expand the σAH and EC as
Fourier series. The high-symmetry points on the rotation path,
either corresponding to exact vanishing of the σAH and EC
(e.g., π rotation about [111] in Mn3Ir), or equivalent to certain
magnetic space-group operations (e.g., 2π/3 rotation about
[0001] in Mn3Sn), place identical constraints on the Fourier
coefficients of σAH and EC. As a result, when the angular
dependence is smooth so that only a few low-order Fourier
coefficients are relevant, it is expected that σAH and EC should
behave similarly. Such a symmetry analysis is analogous to
that commonly used in ferromagnetic crystals [51]. Nonethe-
less, σAH and EC are not required to have the same angular
dependence, which is also similar to the relation between σAH

and the net magnetization in a ferromagnet.

B. EC in a ferromagnetic Rashba model

In this section we give an example of a microscopic calcu-
lation of χ1 by using a 2D Rashba-type continuum model. The
procedure can be straightforwardly applied to plane-wave-
based density functional theory calculations. The model also
serves as an example of the applicability of EC for con-
ventional ferromagnets. The Hamiltonian describes itinerant
electrons subject to periodic scalar, Zeeman, and Rashba spin-
orbit coupling potentials on a square lattice:

H = − h̄2

2m
∇2 + ı

2
λR{G(r), ẑ · (σ × ∇)} − JG(r)σz

− V G(r), (19)

where λR is the strength of the Rashba spin-orbit coupling,
J is that of a Zeeman field along ẑ, and V is that of a scalar
confinement potential. {. . . , . . . } stands for anticommutation
and is needed to ensure that the position-dependent Rashba
term is Hermitian. G(r) is a periodic Gaussian-type function

G(r) = 1

Vuc

∑
K

∫
uc

d2r′g(r′)eıK·(r−r′ ) ≡
∑

K

GKeıK·r, (20)

where uc stands for unit cell defined by the lattice vectors
a1 = ax̂, a2 = aŷ, K are reciprocal lattice vectors, and g(r)

is the 2D Gaussian g(r) = 1
2πσ 2 e− r2

2σ2 . In practice we will set
GK = 0 when max(|Kx|, |Ky|) > KG, KG being a parameter.
We choose a as the length unit, and E0 = h̄2/(2ma2) as the en-
ergy unit. An illustration of G(r) with KG = 10( 2π

a ) is shown
in Fig. 3(a). In the plane-wave basis an arbitrary eigenfunction
can be written as

ψ =
∑

k

ckeık·r ≡
∑
k∈BZ

∑
K

cK(k)eı(k+K)·r, (21)

where c are 2 × 1 column vectors. Substituting this wave
function into the eigenequation Hψ = εψ for the dimension-
less Hamiltonian and using the orthogonality between plane
waves we obtain

(k + K)2cK(k) +
∑
K′

GK−K′UKK′ (k)cK′ (k)

− εcK(k) = 0, (22)
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(a) (b)

(c) (d)

(e) (f)

FIG. 3. (a) Spatial profile of the periodic confinement poten-
tial G(r) in Eq. (20); KG = 10( 2π

a ). (b) Band structure along the
high-symmetry lines in the Brillouin zone. The parameter values
are t = 1, λR = 0.2, J = 0.5, V = 2, μ = 0, KH = KG = 10( 2π

a ).
Only the six lowest bands are shown. (c) In-plane components of
the spin density in the unit cell. The color coding represents the
size of the local in-plane spin density in units of h̄

2a2 . The arrows
represent both the size and direction of the spin density. (d) Out-of-
plane component of the spin density in the unit cell. (e) Bragg peaks
corresponding to the summand of χ z

1 in Eq. (28) plotted in logarithm
scale. (f) Bragg peaks for χ z

2 in Eq. (29).

where

UKK′ (k) ≡ −Jσz − V + λR

[(
kx + Kx + K ′

x

2

)
σy

−
(

ky + Ky + K ′
y

2

)
σx

]
. (23)

Equation (22) represents infinite coupled linear equa-
tions for a given k, or a matrix equation for the column vector
cK(k), with K understood as a row or column index. We trun-
cate the Hamiltonian matrix by requiring max(|Kx|, |Ky|) �
KH . Note that KH is generally different from KG defined
above. The dimension of the Hamiltonian matrix for our
model is therefore N × N , N = 2(2KH + 1)2 (KH is in units
of 2π/a). Figure 3(b) shows a typical band structure of the
model [KH = 10( 2π

a ), only the lowest six bands are plotted].
The spin density (at position τ) operator has the following

matrix elements (taking h̄
2 as the units of spin)

sKK′ (τ) = σe−ı(K−K′ )·τ (24)

whose Fourier transform at reciprocal lattice vector K0 is

sKK′ (K0) = σδK0,K′−K. (25)

The expectation value of the spin density for a given chemical
potential is therefore

s(τ) =
∑
nk

〈nk|s(τ)|nk〉 fnk, (26)

where fnk is the Fermi-Dirac distribution function at eigenen-
ergy εnk. Its Fourier transform at reciprocal lattice vector K0

is

sK0 =
∑
nk

〈nk|s(K0)|nk〉 fnk. (27)

The ferromagnetic Rashba model [49] is known to have
the AHE with an out-of-plane σAH [3]. Therefore, we only
consider the out-of-plane components of the EC. Taking the
spatial dependence of the Rashba coefficient as ∂zφ(r) in the
definition of χ1, we can finally obtain

χ z
1 = ı

∑
K

G∗
KK · sK. (28)

Moreover, the spatial dependence of the Gaussian potentials
allows us to calculate χ2 and χ3 as well, for which we will
directly use the electron density ρ(τ) as the scalar field, whose
expressions are similar to Eqs. (24)–(27) but with σ replaced
by σ0. Then,

χ z
2 = −

∑
K

K2ρ∗
Ksz

K = χ z
3 . (29)

Note that in the present case χ3 is not a linear combination of
χ1,2 any more.

Figures 3(c)–3(f) show representative results of the spin
densities and the EC from this model. The in-plane spin com-
ponents have a nonzero divergence near the center of the unit
cell, and become large when the gradient of the confinement
potential is significant, which leads to a finite χ z

1. The out-
of-plane spin component is largest near the center of the unit
cell, where the Laplacian of the confinement potential is also
largest, leading to a finite χ z

2. The summands of Eqs. (28)
and (29) are plotted in Figs. 3(d) and 3(f), respectively. The
bright dots represent the (Bragg) peaks in diffraction exper-
iments and the color coding in logarithm scale suggests fast
decay versus increasing crystal momentum. The final results
are χ z

1 = 0.026 85, χ z
2 = −0.030 58 [in the units implied in

Eqs. (28) and (29)] for the parameter values listed in the
caption of Fig. 3.

IV. AHE INDUCED BY MAGNETIC CHARGE

The EC introduced above not only serves as an indicator
of the AHE in known materials, but also provides intuitive
guidance for the search of new AHE systems with vanish-
ing net magnetization. To give a glimpse of the predictive
power of EC, in this section we show two experimentally rel-
evant model examples in which the magnetic charge appears

024421-6



ELECTRONIC CHIRALIZATION AS AN INDICATOR OF … PHYSICAL REVIEW B 106, 024421 (2022)

(a) (b)

(c)

FIG. 4. (a) Honeycomb lattice model with opposite magnetic
charges residing on the two sublattices, respectively. The arrows
correspond to the magnetic field lines. (b) Band structure (top) and
Berry curvature summed over occupied bands (bottom) of the model.
M′ = −M and K′ = −K. The parameter values are t = 1, tM =
0.7, λR = 0.2, � = 0.5. (c) Berry curvature obtained using the
same parameters as in (b) but plotted in the 2D momentum space.

explicitly and leads to the AHE, inspired by the way that ∇φ

and the magnetic charge density ρm cooperatively give rise to
finite χ1.

A. Minimal model of the AHE due to magnetic charge order

We first consider a minimal tight-binding model hav-
ing the essential ingredients for magnetic-charge-induced

AHE. The model describes s electrons hopping between
nearest neighbors on a honeycomb lattice, with magnetic
charge of opposite signs residing on the two sublattices
[Fig. 4(a)]:

H = −t
∑
〈i j〉α

c†
iαc jα − tM

∑
〈i j〉αβ

ηi jσαβ · r̂i jc
†
iαc jβ

+ ıλR

∑
〈i j〉αβ

σαβ · (ẑ × r̂i j )c
†
iαc jβ + �

∑
iα

γic
†
iαciα, (30)

where the four terms, respectively, correspond to spin-
independent hopping, spin-dependent hopping due to the
magnetic charge, Rashba spin-orbit coupling, and an onsite
potential breaking the sublattice symmetry; ηi j = +1 (−1) if
r̂i j points from sublattice A (B) to B (A); ηi j together with
σ · r̂i j capture the spin-dependent hopping due to the magnetic
field (H field) lines between neighboring magnetic charges;
γi = +1 (−1) on A (B) sublattice. The Rashba term is needed
to provide the direction of χ1 along z as suggested by the
expression of χ1, and the sublattice potential is needed to
break the degeneracy between the opposite magnetic charges
on the two sublattices.

Figure 4(b) shows the typical band structure and Berry
curvature of model (30). The Berry curvature is generally
nonzero and is largest near the Brillouin zone corners K, K ′.
However, the Berry curvatures at opposite momenta do not
cancel each other due to the broken time-reversal symmetry
by the tM term, which is also evident from the 2D plot in
Fig. 4(c). Therefore, the AHE is generally nonzero, except
when the Fermi energy is in the gap opened by � which we
explain next.

After Fourier transform the toy model becomes [for
convenience we rotate the honeycomb lattice in Fig. 4(a)
clockwisely by π/6]

H =
∑

k

C†
k

(
�σ0 −t fkσ0 − [tMgk − ıλR(ẑ × gk )] · σ

−t f ∗
k σ0 − [tMg∗

k + ıλR(ẑ × g∗
k )] · σ −�σ0

)
Ck

≡
∑

k

C†
kh(k)Ck, (31)

where C†
k = (c†

kA↑, c†
kA↓, c†

kB↑, c†
kB↓),

fk =
3∑

n=1

eı a√
3

k·rn , (32)

gk =
3∑

n=1

rneı a√
3

k·rn ,

and r1 =
√

3
2 x̂ − 1

2 ŷ, r2 = ŷ, r3 = −
√

3
2 x̂ − 1

2 ŷ. a is the lat-
tice constant. Near ±K = ± 4π

3a x̂ we have

fq±K ≈ −
√

3a

2
(±qx − ıqy) + O(q2),

gq±K ≈ 3

2
(±ıx̂ + ŷ) + O(q). (33)

The Dirac Hamiltonian at each valley ±K ≡ ηvK is therefore

h(q + ηvK) ≈ �τzσ0 +
√

3at

2
(ηvqxτx + qyτy)σ0

− 3

2
(tM + ηvλR)(τxσy − ηvτyσx ), (34)
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where τ is the Pauli matrix vector in the sublattice space. One
can see that the magnetic-charge contribution only changes
the magnitude of the Rashba terms in each valley. Since the
Rashba terms do not gap the Dirac Hamiltonian by themselves
[52], the magnetic charge contribution cannot lead to topolog-
ical phase transitions. Separately, since tM effectively changes
the relative strength of the Rashba spin-orbit coupling at the
two valleys, when the Fermi energy is not within the gap, the
Berry curvature at the two valleys will not cancel out, leading
to the finite anomalous Hall conductivity.

The minimal model can be connected with the magnetic-
charge-ordered state of the kagome spin ice [37,38,45] by
the duality between honeycomb and kagome lattices. The
background magnetic field connecting neighboring magnetic
charges can be regarded, as a first approximation, as the ho-
mogenized effect of the fluctuating magnetic dipole moments
in the charge-ordered state of the kagome spin ice on itinerant
electrons. In comparison with the models studied in [53,54]
where the local spins on the kagome lattice are noncoplanar,
the present model has a vanishing net magnetization. More
importantly, the essential symmetry breaking in the nonmag-
netic part of model (30) is already present in the pyrochlore
iridate Pr2Ir2O7 [9], in which an AHE in the absence of
long-range dipolar order and of net magnetization has been
observed [55]. Although the ground state of Pr2Ir2O7 may
be elusive and the direct measurement [56] of scalar spin
chirality by scattering techniques is challenging, it is possible
to alternatively measure the EC which, if nonzero, can help to
solve the puzzle of the zero-field AHE in [55].

B. Skew scattering by magnetic charge

In this section we predict an extrinsic contribution to
the AHE by magnetic charge through skew scattering.
Again motivated by the expression of χ1, we consider the
following model of 2D Dirac electrons with Rashba-type spin-
momentum locking scattered by a magnetic charge whose
magnetic field is truncated at finite radius R:

H = −ı h̄λ(σx∂y − σy∂x ) − �

2πr
r̂ · σ�(R − r)

≡ HD + H�, (35)

where �(x) is the step function. H� represents the Zeeman
coupling between the electron spin and the magnetic field
h(r) = −m(r) = �r̂/(2πr) generated by a magnetic charge
located at the origin within a radius R. Here we consider the
analytically simpler case of α ≡ �/(2π h̄λ) = 1 and relegate
the more general solution to Appendix B. Assuming a pos-
itive chemical potential, the solution for r < R with energy
E = h̄λk0 > 0 is

�< =
∞∑

n=−∞
an

(
Jn−1(k0r)eınθ

Jn(k0r)eı(n+1)θ

)
(36)

while that for r > R with an incident plane wave traveling
along x̂ is

�> = �in + �scatt

= eık0x

2
√

2π

(
ı

1

)
+

∞∑
n=−∞

bn

(
Hn(k0r)eınθ

Hn+1(k0r)eı(n+1)θ

)
, (37)

where Hn = Jn + ıYn is the Hankel function of the first kind,
and Yn is the Bessel function of the second kind. The appear-
ance of the Hankel function is because �> does not include
the origin where Yn diverges. Also, the Hankel function of the
first kind represents outgoing waves [5]. Solving bn from the
boundary condition �<|r=R = �>|r=R and taking the large-
distance asymptotic form of �scatt , we obtain the scattering
cross section

σ (θ ) ∝ 〈j · r̂〉scatt (r, θ ) = 4λ

πk0r

∣∣∣∣∣
∑

n

bneın(θ− π
2 )

∣∣∣∣∣
2

. (38)

When k0R � 1 one can consider up to p-wave contributions to
σ (θ ). The Hall angle due to scattering by the magnetic charge
only can be calculated as [57]

tan θH =
∫

σ (θ ) sin θ dθ∫
σ (θ )(1 − cos θ )dθ

≈ Re

(
b−1 + b1

b0

)

≈ π

8
(k0R)2. (39)

The result in the last line above turns out to be a good approx-
imation even at k0R ∼ 1, for which tan θH ≈ 0.39. We also
found that when α = −1, tan θH ≈ −π

8 (k0R)2, confirming the
time-reversal-odd property of the AHE.

Experimental detection of such an effect may be performed
using topological insulator surface states [58] or 2D electron
gas with large Rashba spin-orbit coupling that are proxi-
mate coupled to magnetic textures [59,60] having a nonzero
2D magnetic charge density. With h̄λ ∼ 101 eV Å and R ∼
1/k0 ∼ 100 Å, the Zeeman coupling �/(2πR) ∼ 0.1 eV is
reasonable to achieve experimentally.

V. DISCUSSION

The electronic chiralization introduced in this work is
a construction based on charge and spin densities that
themselves are physical observables measured by scatter-
ing techniques. Therefore, it does not directly correspond
to a thermodynamic variable that is conjugate to a sin-
gle external field configuration, such as the magnetization
or toroidization. However, a corresponding thermodynamic
variable for EC may be defined through the coupling with
multipole moments of non-Gaussian electromagnetic waves.
First-principles calculations of the EC in plane-wave basis
are also straightforward, as demonstrated in Sec. III B, but to
get meaningful values a proper treatment of the cutoff (e.g.,
by using an atomic form factor) may be essential due to the
fluctuation of the gradients of charge and spin densities at
high energies. Alternatively, one may use the expressions of
EC derived by assuming localized atomic magnetic moments
and charge.

Although we mainly focused on the magnetic-charge re-
lated χ1, it is possible to predict the existence of the AHE
in other systems based on the forms of χ2,3 and their gener-
alizations. For example, the use of a sublattice potential in
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the honeycomb model in Sec. IV A makes the AHE more
precisely correspond to χ′′

1 in Eq. (7). We stress that such pre-
dictions based on the grounds of symmetry do not necessarily
yield universal microscopic mechanisms for the AHE since,
similar to ferromagnets, in a given system with nonzero EC
all mechanisms relevant to the AHE should generally coexist
if without fine tuning. Nonetheless, the examples given in
Sec. IV suggest that there are new “building blocks” for the
intrinsic and extrinsic mechanisms of the AHE inspired by the
EC, similar to the case of scalar spin chirality [60,61]. Finally,
EC can be used as an indicator of other anomalous response
functions such as the anomalous Nernst effect or magneto-
optical Kerr effect that have similar symmetry properties as
the AHE.
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APPENDIX A: REAL-SPACE FORMULAS
FOR THE GENERALIZED EC

Real-space formulas for the generalized EC constructions
in Eq. (7) can be generated by integrals of three or more
Gaussians:

I (a1, a2, . . . , an) =
∫

d3r
n∏

i=1

g(r − ai )

= (2πσ 2)−
3(n−1)

2 n− 3
2

× exp

[
− n

2σ 2
(〈a2〉 − 〈a〉 · 〈a〉)

]
,

(A1)

where

〈a2〉 = 1

n

n∑
i=1

a2
i , 〈a〉 = 1

n

n∑
i=1

ai. (A2)

Using Eq. (A1) we can obtain

Ii j (a, b, c) ≡
∫

d3r g(r − a)∂ig(r − b)∂ jg(r − c)

= ∂bi∂c j I (a, b, c)

= 1

24π33
3
2 σ 8

[
δi j + 1

3σ 2
(2bi − ai − ci )

× (2c j − a j − b j )

]

× exp

[
− 1

3σ 2
(a2 + b2 + c2

− a · b − b · c − c · a)

]
(A3)

which enters the real-space expression of χ′
1:

χ ′
1i = 1

Vuc

∑
RR′

∑
mnp

QmQnM j
pIi j (rm, rn + R, rp + R′).

(A4)

Because the exponent in Ii j is proportional to the standard
deviation of the positions of the three sites in the summand,
only near neighbors need to be considered.

For the calculation of χ′′
1 we need

Ii jkl (a, b, c) ≡ ∂ai∂b j ∂bk ∂cl I (a, b, c). (A5)

The evaluation of this quantity can be simplified by defining
the following Feynman rules. Writing the exponent in I as f ,
one can see that derivatives of f higher than second order
will vanish. One can therefore represent the variables in the
derivatives as nodes and f as lines. First and second deriva-
tives of f can be represented by an open-ended line and a
line connecting two nodes, respectively. Ii jkl can therefore be
represented by a sum over topologically distinct diagrams of
4 nodes. There are in total 10 diagrams: 1 with 4 lines, 6 with
3 lines, and 3 with 2 lines. If j = k, there are 7 terms in the
expression of Ii j jl :

Ii j jl = e f

8π33
3
2 σ 6

[
2
(
∂ai∂b j f

)(
∂b j ∂cl f

) + (
∂ai∂cl f

)(
∂2

b j
f
) + 2

(
∂ai∂b j f

)(
∂b j f

)(
∂cl f

)
+ (

∂ai∂cl f
)(

∂b j f
)2 + (

∂ai f
)(

∂2
b j

f
)(

∂cl f
) + 2

(
∂ai f

)(
∂b j f

)(
∂b j ∂cl f

) + (
∂ai f

)(
∂b j f

)(
∂b j f

)(
∂cl f

)]
= e f

8π33
3
2 σ 6

[
− 4

9σ 4
δil − 2

27σ 6
(2bi − ai − ci )(2cl − al − bl ) − 1

27σ 6
δil |2b − a − c|2

+ 2

9σ 6
(2ai − bi − ci )(2cl − al − bl ) − 2

27σ 6
(2ai − bi − ci )(2bl − al − cl )

+ 1

81σ 8
(2ai − bi − ci )(2cl − al − bl )|2b − a − c|2

]

≡ e f

72π33
3
2 σ 10

[
−

(
4 + |b̃|2

3σ 2

)
I − 2

3σ 2
(b̃c̃ + ãb̃) +

(
2

σ 2
+ |b̃|2

9σ 4

)
ãc̃

]
il

. (A6)

For Fe2O3 the cluster with two Fe atoms sandwiched between three layers of O has D3 symmetry [62,63]. The EC would have
been forbidden if the symmetry were D3h, i.e., if the top and bottom oxygen layers were not distorted. The nonzero contribution
to χ′′

1 comes from the last term in Eq. (A6).
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APPENDIX B: DIRAC ELECTRONS SCATTERED
BY A MAGNETIC CHARGE

Ignoring the step function �(R − r) first, the Hamiltonian
in Eq. (35) can be written in the polar coordinates as

H =
(

0 f
f † 0

)
, (B1)

where f ≡ e−ıθ [h̄λ(∂r − ı
r ∂θ ) − �

2πr ]. Since the Hamiltonian
is invariant under rotation with respect to the z axis going
through the origin, the total angular momentum along z is a
good quantum number:

Jz = Lz + sz = −ı h̄∂θ + h̄

2
σz. (B2)

Jz satisfies the following eigenequation:

Jz

(
eınθ

eı(n+1)θ

)
=

(
n + 1

2

)
h̄

(
eınθ

eı(n+1)θ

)
. (B3)

Therefore, we can take the following trial solution:

ψ =
(

u(r)eınθ

v(r)eı(n+1)θ

)
. (B4)

The resulting radial equations are

E

h̄λ
u −

(
∂r + n + 1

r

)
v + α

r
v = 0, (B5)

E

h̄λ
v −

(
− ∂r + n

r

)
u + α

r
u = 0,

where α ≡ �/(2π h̄λ).
When α is an integer, using the recurrence relations of the

Bessel functions one can immediately see u ∝ Jn−α (κr), v ∝
Jn−α+1(κr), and E = ±h̄λκ . The normalized eigenfunction is

ψp,n,κ =
√

κ

4π

(
Jn−α (κr)eınθ

pJn−α+1(κr)eı(n+1)θ

)
, (B6)

where p = ±. Note that when α is an integer, the H� term can
be removed by a gauge transformation:

ψ → ψeıαθ , (B7)

which is the reason why ψp,n,κ becomes an eigenstate
(ψp,n−α,κ ) of HD in this case. The magnetic charge is nonethe-
less still able to induce skew scattering because the truncation
�(R − r) makes it impossible for the H� term to be removed
by a pure gauge transformation.

When α is not an integer the solution is less trivial. To
avoid ambiguity we consider the magnetic charge potential
regularized by replacing � with ��(r − r0). The solution for
r < r0 is simply (the arguments of the Bessel functions are
omitted for brevity)

ψ< =
√

κ

4π

(
Jneınθ

pJn+1eı(n+1)θ

)
(B8)

while that for r > r0 involves both Jν and J−ν which are
linearly independent solutions of the Bessel equation when ν

is not an integer. More explicitly,

ψ> =
√

κ

4π

(
(AJn−α + BJ−n+α )eınθ

p(AJn−α+1 − BJ−n+α−1)eı(n+1)θ

)
, (B9)

where A, B are coefficients depending on n.
Using the boundary condition ψ<(r = r0) = ψ>(r = r0)

leads to

A = J−n+α−1Jn + J−n+αJn+1

J−n+αJn−α+1 + J−n+α−1Jn−α

, (B10)

B = Jn−α+1Jn − Jn−αJn+1

J−n+αJn−α+1 + J−n+α−1Jn−α

,

where the arguments of the Bessel functions are all κr0. To
understand the asymptotic behavior as r0 → 0 we consider
the ratio A/B:

A

B
= J−n+α−1Jn + J−n+αJn+1

Jn−α+1Jn − Jn−αJn+1
. (B11)

We found that when α > 0, A/B diverges when n > α − 1
and vanishes when n < α − 1. However, when α < 0, A/B
diverges when n > α and vanishes when n < α. Therefore,
the solution is, for α > 0,

ψp,n,κ

=
√

κ

4π
×

⎧⎪⎪⎨
⎪⎪⎩

(
Jn−α (κr)eınθ

pJn−α+1(κr)eı(n+1)θ

)
n > α − 1,(

J−n+α (κr)eınθ

−pJ−n+α−1(κr)eı(n+1)θ

)
n < α − 1,

(B12)

and for α < 0,

ψp,n,κ

=
√

κ

4π
×

⎧⎪⎪⎨
⎪⎪⎩

(
Jn−α (κr)eınθ

pJn−α+1(κr)eı(n+1)θ

)
n > α,(

J−n+α (κr)eınθ

−pJ−n+α−1(κr)eı(n+1)θ

)
n < α.

(B13)

One can check that when α = 0, the above solution returns to
Eq. (B8). In addition, when α is an arbitrary integer, by using
the relation

J−n(x) = (−1)nJn(x), (B14)

Eq. (B6) is recovered.
We next calculate the skew scattering by considering the

truncated magnetic charge potential:

H� = − �

2πr
r̂ · σ�(R − r). (B15)

The solution for r < R with energy h̄λk0 is

�< =
∞∑

n=−∞
an

√
4π

k0
ψ+,n,k0 , (B16)

where ψ+,n,k0 is given in Eqs. (B6), (B12), or (B13) depending
on the value of α, while that for r > R is

�> =
∞∑

n=−∞

1

2
√

2π
ınJn(k0r)eınθ

(
ı

1

)

+
∞∑

n=−∞
bn

(
Hn(k0r)eınθ

Hn+1(k0r)eı(n+1)θ

)
, (B17)
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FIG. 5. Skew scattering cross section plotted against α. k0R = 1.
The solid line is the result by using Eqs. (B12) and (B13) as the
solution for r < R, while the dashed line is the result by using the
regularized solution (B9) for r < R, with k0r0 = 0.01.

where Hn = Jn + ıYn is the Hankel function of the first kind
[5], and Yn is the Bessel function of the second kind. The
boundary condition �<(r = R) = �>(r = R) leads to the fol-
lowing relation for n > α − 1 (α > 0) or n > α (α < 0):

anJn−α − bnHn = ın+1

2
√

2π
Jn, (B18)

anJn−α+1 − bnHn+1 = ın+1

2
√

2π
Jn+1,

which has the solution(
an

bn

)
= ın+1

2
√

2π

1

HnJn−α+1 − Hn+1Jn−α

×
(

HnJn+1 − Hn+1Jn

Jn+1Jn−α − JnJn−α+1

)
. (B19)

The above result also applies to any n when α is an integer.

When n < α − 1 (α > 0) or n < α (α < 0), we have(
an

bn

)
= − ın+1

2
√

2π

1

HnJ−n+α−1 + Hn+1J−n+α

×
(

HnJn+1 − Hn+1Jn

Jn+1J−n+α + JnJ−n+α−1

)
. (B20)

To go further, we consider the limit k0r � 1 and use the
asymptotic form of Hν :

Hν (x) ≈
√

2

πx
eı(x− νπ

2 − π
4 ), (B21)

so that the scattered wave becomes

�scatt = �> − �in

≈
∞∑

n=−∞

√
2

πk0r
bn

⎛
⎜⎜⎜⎝ e

ı

[
k0r− nπ

2 − π
4 +nθ

]

e
ı

[
k0r− (n+1)π

2 − π
4 +(n+1)θ

]
⎞
⎟⎟⎟⎠. (B22)

The scattering cross section is

σ (θ ) = �
†
scatt (j · r)�scatt

�
†
in jx�in

= 16π

k0

∣∣∣∣∣
∑

n

bneın(θ− π
2 )

∣∣∣∣∣
2

. (B23)

The skew cross section is therefore

σskew ≡
∫ 2π

0
sin θσ (θ )dθ = 32π2

k0

∑
n

Re(b∗
n+1bn). (B24)

Figure 5 (solid black line) plots σskew versus α. It is ev-
ident that σskew is odd under α → −α. That the skewness
decreases quickly with increasing α > 2 is because the large
α effectively suppresses the contributions at small n which
give the dominant scattering amplitudes. The apparent dis-
continuity of ∂σskew/∂α at integer values of α �= 0 originates
from the singularity of ψp,n,κ in Eqs. (B12) and (B13) when
α − 1 < n < α. Such singularity can be removed by regular-
izing the magnetic charge potential at r → 0 as in Eq. (B9).
For example, by choosing k0r0 = 0.01, the discontinuities of
the derivative of σskew are absent (gray dashed line in Fig. 5).
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