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Micromagnetically integrated numerical model of spin pumping based on spin diffusion
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We present a nanoscopic numerical model of spin pumping, complete with spin-torque effects, as an extension
of a spin-diffusion solver. The model is fully integrated in a micromagnetics finite-element framework. It is
shown that this model can recreate analytical solutions for standard problems. Furthermore, the Gilbert damping
of a propagating magnon can be properly modeled. The model can be used to examine spin-pumping effects,
and those caused by it, e.g., inverse spin Hall, on a nanoscopic scale.
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I. INTRODUCTION

The interaction between localized and mobile spins in
magnetic materials has long been understood. It has been
modeled in various forms [1–3] and is successfully used to
model and design spintronic devices [4,5]. In those cases, the
interest lies in the effect that a spin current (usually originating
from a charge current) has on the dynamics (i.e., preces-
sion) of local magnetization. But the reverse is also true (by
virtue of Onsager’s reciprocity relation [6]): The precession
of magnetization has an effect on spin current, in that it can
be the origin of it. This is generally known as spin pumping.
More specifically, the term means the outflow of spins from a
magnetic material into a nonmagnetic material [7]. This effect
has been proven in numerous experiments (e.g., Refs. [7–9]).

As such, it enables one to create a spin current without
a corresponding charge current. The effect is too weak to
realistically compete with direct spin-injection and spin-Hall
methods for spin-transfer torque and spin-orbit torque appli-
cations (see Ref. [6] for some formulaic comparisons)—while
spin torque and spin pumping are reciprocal, the amount of
spin current (and therefore spin torque) generated by spin
transfer can easily be many magnitudes larger than by spin
pumping. It is, however, used, in conjunction with the inverse-
spin-Hall effect, as a detection scheme for magnons, i.e., spin
waves [8,10,11]. Moreover, the spin accumulation created by
the effect changes the local magnetization dynamics by gen-
erally increasing Gilbert damping and decreasing the rate of
precession [2,7].

Analytical treatments of spin pumping are generally calcu-
lated using the formalism of Büttiker et al. [12]. As this does
not lend itself too well to numerical computations, a numerical
model in a micromagnetic setup is still missing. Note that
Omelchenko et al. used such a Büttiker-type formulation for
their numerical results [13], with their system using single
spins.
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Such a micromagnetic implementation is of prime interest,
since this can use all the already implemented magnetiza-
tion dynamics, and would therefore be well suited to support
magnonic simulations (and experiments). Based upon the
spin-diffusion model [3], we now introduce such a model.
Aside from our own previous work on spin diffusion [14],
and associated research (e.g., Ref. [15]), the spin-diffusion
model is also employed by other groups (cf. Refs. [16,17]).
But even though a formulation of the spin-diffusion model
incorporating spin pumping has been presented already
in 2004 [2], to date, numerical implementations of the
model have not incorporated spin pumping. Note that the
package exhibited in Ref. [17] is able to simulate spin
pumping, but only by a prebuilt current term (similarly to
Ref. [13]).

First, we show the derivation of spin pumping in the
spin-diffusion framework and the resulting changes to the
governing equation. We then modify our self-consistent spin-
diffusion model [14], which is part of our finite-element
(FE)-based solver suite MAGNUM.PI, an evolution of the earlier
MAGNUM.FE [18], to incorporate those changes. We then test
the model against two literature cases where analytical terms
in a spin-diffusion setup have been presented, for diffusionless
pumping in bulk, and pumping from the surface of a magnetic
insulator. Finally, to demonstrate the implementation in a dy-
namical, micromagnetic case, we explore the damping of a
magnon by spin pumping.

II. DERIVATION AND METHOD

Magnetism is a property emerging from the spin property
of a quantum-mechanical object. In a first-order approxima-
tion, the spins in a material can be decomposed into those
supplied by quasistatic objects, i.e., cations localized on their
lattice sites, and those from mobile objects, i.e., conduction
electrons. We can then treat the spins, or, in a continuous
sense, the magnetization of those conduction electrons, as
a transport quantity. This makes it possible to start with
a Boltzmann-type transport equation for the magnetization
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carried by conduction electrons Me [2],

∂Me

∂t
= −∇ · ĵs − J

h̄
Me × m − 1

τsf
s, (1)

where ĵs is the magnetization (or spin) current matrix. m is
then the normalized magnetization of the material (i.e., the
metal cations without the conduction electrons) and s is the
spin accumulation. τsf is the spin-flip time of the conduction
electrons, J the exchange coupling between the conduction
electrons and the metal cations, and h̄ is the reduced Planck’s
constant. To link the magnetization of the conduction elec-
trons and the spin accumulation together, the former can be
decomposed into a component parallel to m and an additional
one, such that

Me = χe MS m + s. (2)

These two components represent a permanently existing
one (where it is assumed that the conduction electrons’ spins
will align in the cations field at equilibrium), and the spin
accumulation as an additional one (the deviation from that
equilibrium). This does not mean that the two components
are necessarily orthogonal to each other; for multi-magnetic-
layer systems (as in Ref. [13]) they are not. For the systems
described herein, with single magnetic layers, they are. There-
fore m · s = 0, which can be shown for the analytical results
in the next section. MS is the saturation magnetization of
the material. We use the prefactor that was introduced by

Takahashi [19]. It offers the advantage that it can be easily
calculated using material parameters that are already in use in
our framework. He defines the susceptibility of the conduction
electrons χe as

χe = μ0 μ2
B n(EF)

J

h̄ μ0 γe MS
= μB C0 J

e2 MS D0
, (3)

where C0 = n(EF)e2D0/2 is used, a variant of Sommerfeld’s
conductivity formula. This susceptibility is a product of the
paramagnetic susceptibility of the conduction electrons and a
dimensionless interaction constant. μ0 is the magnetic con-
stant, μB Bohr’s magneton, γe the free-electron gyromagnetic
ratio (i.e., 2μB/h̄), e the elementary charge, n(EF) the density
of states for conduction electrons at the Fermi level, D0 the
electronic diffusion constant, and C0 = σ/2 the conductivity
half.

Inserting Eq. (2) in (1), we can apply the adiabatic approx-
imation ∂s/∂t = 0 (due to the relaxation timescale of s being
much smaller than of m) and yield [2]

χe MS
∂m
∂t

= −∇ · ĵs − J

h̄
s × m − 1

τsf
s. (4)

This is the standard form of spin pumping and is generally
used for analytical treatments. If the left-hand side of Eq. (4)
is not zero, i.e., magnetization is precessing, a spin current
will be generated, or pumped. For numerical applications, one
needs to understand that the left-hand side of Eq. (4) (i.e., the
driving term for spin pumping) is a function of s itself, since

∂m
∂t

= − μ0 γe

1 + α2

{
m ×

(
Heff + J

h̄ μ0 γe MS
s
)

+ α m ×
[

m ×
(

Heff + J

h̄ μ0 γe MS
s
)]}

= T(Heff ) − J

h̄ MS(1 + α2)
[m × s + α m × (m × s)]. (5)

This is the well-known explicit form of the Landau-Lifshitz-
Gilbert (LLG) equation [20], where the spin torque generated
by spin pumping has been split off from the remaining
fields (Heff = HZee + Hex + Hdemag + Hani + · · · ), that are
then combined in the torque operator T(Heff ). α is the Gilbert
damping parameter. The spin accumulation generated by spin
pumping exerts an influence on the causative precession. In
analytical treatises this will resolve itself in the end, but for
explicit numerical calculations, this influence will need to be
considered directly in Eq. (4). Therefore, we insert Eq. (5) and
combine the spin-accumulation terms, leading to

χe MS T(Heff ) = −∇ · ĵs − J

h̄

(
1 + χe

1 + α2

)
s × m

−
(

1

τsf
+ χe J α

h̄(1 + α2)

)
s

+ χe J α

h̄(1 + α2)
(m · s)m. (6)

This form now enables self-consistent numerical computation
of the spin accumulation as it incorporates the effects of spin
torque on the precessional motion of magnetization. To solve
Eq. (6), we need to calculate the T(Heff ) operator. In our setup,

this is achieved by a hybrid FE/boundary element method
(incorporating Ref. [21]). Equation (6) is then solved on the
same FE mesh, with the magnetization current of the form of

ĵs = −2 D0 ∇ ⊗ s, (7)

and the homogeneous Neumann boundary condition of

(n · ∇) s = 0, (8)

where n is the boundary normal. This condition also applies
to the analytical treatments in the next section.

The solution method for the resulting system of differential
equations is given in Ref. [22]. Using the computed s and
T(Heff ) operator, we can then integrate Eq. (5) by an implicit
backward differentiation scheme, as given in Ref. [23].

As the spin accumulation (or spin current) resulting from
spin pumping is not directly measured experimentally, but
usually via the inverse-spin-Hall effect, the inclusion of it will
be outlined. In such a case, Eq. (7) modifies to

ĵs = 2 β C0
μB

e
m ⊗ ∇u − 2 D0 ∇ ⊗ s + μB

e
	SH ε̂ je. (9)

This now includes a drift term resulting from potential dif-
ferences [3], as well as a term describing the spin-Hall effect
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according to Dyakonov [24]. β is the electronic (magnetiza-
tion) polarization, u the charge potential, 	SH the spin-Hall
angle, and ε̂ the Levi-Civita symbol.

In addition, a second Boltzmann-type equation is set up,
describing the charge current [3], also including a term for
the spin-Hall interaction. Instead of solving Eq. (6), now the
system of both Boltzmann-type equations has to be solved for
s and u to also yield the effects of the spin-orbit interaction.
This process is detailed in Ref. [25].

It is important to note that the spin-diffusion equation can
only be applied in a conductive material, or else no spin
current can exist. For spin pumping, this is exacerbated by the
fact that the driving term is always zero as there are no con-
duction electrons. Application of this model to spin pumping
from nonconductive material needs a special treatment in the
simulation; this will be shown in the following section.

III. COMPUTATION AND RESULTS

To validate our model with analytical solutions from the
literature (that are rewritten to use our constants), we ex-
tract values from the numerical computation from a defined
state. Spin accumulation is extracted directly as a computa-
tion result, while the modification of the dynamical behavior
is determined by projecting the total torque vector onto the
cross-product basis of the LLG and suitable renormalization.
We compare those values against those obtained from an-
alytical formulas in the same state. Note that the provided
analytical terms for the spin accumulation are achieved by
solving Eq. (6) and thus do not concur with those found by
the other authors [as they solve Eq. (4)]. This originates from
the fact that we explicitly compute the spin accumulation. The
core point here is that the analytical treatments that are refer-
enced and our numerical computations take a different path
to their goal, but should agree in the end result, namely the
enhanced Gilbert damping and decreased rate of precession.

A. Bulk system

We first consider the bulk system calculated by Zhang and
Li [2]. The authors suppose that the system is diffusionless,
i.e., ∇ ⊗ m ∝ ĵs = ∅ (where ⊗ denotes the outer product;
the result is then a matrix), which is true for single-material
bulk systems with homogeneous magnetization. Under that
constraint, we can solve Eq. (6) to yield

s = − �BS χe MS

1 + �2
BS

h̄(1 + α2)

J (1 + α2 + χe )

× [T(Heff ) + �BS m × T(Heff )]. (10)

Here, we define

�BS = τsf J (1 + α2 + χe )

h̄(1 + α2) + τsf α χe J
. (11)

Solving Eq. (4) under the same constraint, and inserting the
solution into Eq. (5), one can recreate the form of the original
LLG by introducing modified γe and α parameters,

γSP = γe
1 + �2

B

1 + �2
B(1 + χe )

(12)

FIG. 1. Bulk system, 10 × 10 × 10 nm.

and

αSP = α
(
1 + �2

B

) + �B χe

1 + �2
B(1 + χe )

, (13)

where �B = τsf J/h̄. This is a rewritten form of the result of
Ref. [2]. These modifications to the Gilbert damping and to
the rate of precession lead, as had been mentioned in the
Introduction, to an increase of the former and to a decrease
of the latter. The damping from spin pumping is an important
mechanism of damping in magnetic materials, especially for
multilayer systems (as will be seen in the next section).

To test our implementation against this result, we set up
a cube as shown in Fig. 1 with homogeneous magnetiza-
tion. Such a setup, and having no internal interactions (i.e.,
Heff = HZee), makes the system diffusionless—it behaves as
if it only consists of a single spin. The system parameters were
chosen to simulate permalloy and are listed in Table I. The
only exception is the exchange coupling strength J , or, via the
relation λc = √

2 D0 h̄/J , the coupling length λc. Variations in
the coupling length, although not achievable in experiments,
provide a representative way to test the implementation. For
the analytical calculation of Eq. (10) we set, as per Fig. 1,

T(Heff ) = −μ0 γe‖HZee‖
1 + α2

[(0, 0, 1)ᵀ − α(0, 1, 0)ᵀ]. (14)

Figure 2 shows the y and z components of the average
computed spin accumulation compared to the values from
Eq. (10). It can be seen that the results are in good agreement
with each other. The x component (not depicted) should equal
zero, but numerical computation yields a finite value in the
aAm−1 range due to numerical errors.

Figure 3 shows the modified gyromagnetic ratio γSP

and damping parameter αSP, compared to the values from
Eqs. (12) and (13). Once again, the results are in good
agreement with each other. The damping generated by spin
pumping is about half the intrinsic damping at maximum.
For realistic values of the coupling length for such a system,

TABLE I. Bulk system.

Quantity Value

MS 900 kAm−1

C0 1 MSm−1

D0 10 cm2 s−1

λsf 4 nm
‖HZee‖ 7.96 kAm−1
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FIG. 2. y and z components of s, as functions of λc for the bulk
system. Data points are computed values, and the solid line the
analytical prediction; α = 0.

λc ≈ 3 nm, it is still ≈40 %. The damping from spin pumping
therefore constitutes an important part of the total damping in
bulk systems.

B. Layer system

The second system we consider is the interface system
calculated by Takahashi (see pp. 1462–1465 in Ref. [19]).
His analytical formulation has been specifically introduced to
extend the spin diffusion’s applicability to nonconductive ma-
terial. Such a system, consisting of a nonconductive magnetic
material and a nonmagnetic conductor, is a good represen-
tation of the yttrium iron garnet (YIG, Y3Fe5O12)/platinum
systems often employed in magnonics. This section is called
a layer because we model the interaction as an actual layer
in the numerical computation. The localized interaction effec-
tively decouples the s-m term in Eq. (6) and enables solution
of the diffusion equation in the case of homogeneous magne-
tization, using Eq. (7), as a homogeneous equation with the
boundary term as

s(x) = − �IS χe MS

1 + �2
IS

h̄(1 + α2)

J (1 + α2 + χe )
cosh

(L − x

λsf

)

× sech
( L

λsf

)
[T(Heff ) + �IS m × T(Heff )]. (15)

FIG. 3. γSP (left axis) and αSP (right axis), as logarithmic func-
tions of λc for the bulk system. To facilitate logarithmic plotting for
γSP, values have been recalculated. Data points are computed values,
and solid lines the analytical prediction.

FIG. 4. Layer system with a 10 × 10 nm cross section in the
xy-plane. The red part with thickness a = 0.5 nm is magnetic and
conducting, and the pink one only conducting.

Here, L is the length of the conductor and λsf = √
2 D0 τsf is

the spin-flip length. We define

�IS = a

λsf
coth

(L + a

λsf

)
�BS, (16)

where a is the effective pumping length. This is to account
for the fact that the s-m coupling is not an interface effect
and has to be given some coupling length. The saturation
magnetization is, after all, a volume average, and needs to
be transformed into an effective surface magnetization to be
used as a boundary term. In the same way, the spin-torque
term in the LLG also gains a modulation length. Since it can
be naively expected (and is confirmed by the computations, at
least within numerical reason) that this effective torque length
d is equal to a, the contributions cancel out and Eqs. (12) and
(13) remain unchanged, except for

�B → a

λsf
coth

(L + a

λsf

)
�B, (17)

the same modulation as above. The additional hyperbolic
cotangent, modulating � (or a), results from the finite-sized
system and the fact that the dropoff of spin accumulation is
slower than for an open system. Hence more spin accumula-
tion exists in the interaction layer, and it behaves similar to an
increased interaction length.

To test against this result, we set up a bar as shown in Fig. 4,
with homogeneous magnetization in the magnetic region with
thickness 0.5 nm. As the tetrahedral resolution is also 0.5 nm,
this results in a single layer of tetrahedra carrying magneti-
zation; hence we expect a = d = 0.5 nm. The utilization of a
distinctive interaction layer originates from the necessities of
FE. As a differential equation is solved not on points in space
(as with finite differences), but by volume integration over
tetrahedra (see Ref. [26] for details of the method), interac-
tions on surfaces (other than full boundary conditions) are not
possible. Even more, since material parameters are defined as
discontinuous functions (to model material interfaces), Eq. (3)

TABLE II. Layer system.

Quantity Magnetic Conducting

MS 140 kAm−1 None
C0 4.5 MSm−1

D0 50 cm2 s−1

λsf 14 nm
‖HZee‖ 7.96 kAm−1 None
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FIG. 5. y and z components of s, as functions of λc for the layer
system, both long and short spin sinks. Data points are computed
values, and the solid lines the analytical prediction; α = 0.

is not even defined at the interface. And since the physical
interaction is not really a surface interaction anyway, we pre-
fer the layer method to implement any approximate surface
terms.

Again all internal interactions are ignored. The system
parameters are chosen to simulate a YIG/Pt system and are
listed in Table II. It is important to understand here that the red
part is simulated to be both magnetic and fully conducting—it
is an interaction layer that is both YIG and Pt, at least simula-
tionwise. T(Heff ) is identical to the preceding section.

Figure 5 shows the y and z components of the average com-
puted spin accumulation in the magnetic region, compared
to the values from Eq. (15). Results again agree, but not as
good as for the bulk system. This is to be expected: Whereas
the bulk system eliminates all nonlocalities by eliminating
diffusion, here the computation has to be done on a mesh,
introducing discretization errors.

Figure 6 shows the average modified gyromagnetic ratio
γSP and damping parameter αSP in the magnetic region, com-
pared to the values from Eqs. (12) and (13). Once again, the
results are in good agreement with each other. The additional
damping generated by the spin torque is very noticeable: We
use α = 2 × 10−4, which is now increased by two orders of
magnitude in the interaction layer. The difference in L now
also leads to different damping curves.

FIG. 6. γSP (left axis) and αSP (right axis), as logarithmic func-
tions of λc for the layer system, both long and short spin sinks.
To facilitate logarithmic plotting for γSP, values have been recalcu-
lated. Data points are computed values, and solid lines the analytical
prediction.

FIG. 7. The magnonic damping system. The magnetic waveg-
uide with 10 × 1251 × 10 nm is in purple, the magnetic and
conducting interaction layer with thickness 0.5 nm is in red, and the
conducting spin sink with thickness 5 nm is in pink.

The dependence of the achieved damping upon the spin
sink length is also evident from Fig. 6. This has also been
shown in prior experiments [13].

C. Magnonic damping

To test our implementation against a dynamic (and some-
what real-world) case, we look into the propagation of a
magnon, the disturbance of the local magnetization by a lo-
calized linearly polarized external field. The increased Gilbert
damping due to the spin torque from spin pumping should
quickly suppress the magnon.

To this end we extend the layer system to the fully fledged
waveguide seen in Fig. 7. The length of the waveguide is
1251 nm, of which the first 1 nm is subject to a linearly
polarized external field Hosci, oscillating in the z direction
and driving the magnon (with both the initial magnetization
and the wave vector k of the magnon in the y direction).
After 251 nm, a spin sink layer is placed atop the waveguide,
with a corresponding interaction layer beneath it. The material
parameters are shown in Table III, with A being the exchange
strength and K the anisotropy strength. Note that α = 0, hence
all damping observed originates from spin pumping.

The setup of a nonconducting magnetic material was cho-
sen to limit the computation of spin pumping to a smaller
part of the system. Furthermore, the material parameters were
modified to achieve a small wavelength exchange magnon
and high damping. In addition, demagnetization-field con-
tributions were not computed, both for performance and
implementation reasons. Instead, we simulate the restoring
force on the magnetization by applying an uniaxial anisotropy
field along the y axis. The system parameters are specifically

TABLE III. Magnonic damping system.

Quantity Waveguide Interaction Sink

MS 140 kAm−1 None
A 200 fJm−1 None
C0 None 10 MSm−1

D0 None 50 cm2 s−1

λsf None 2 nm
λc None 2 nm None
K 10 kJ/ m3 None
‖Hosci‖ First 1 nm: 79.6 kAm−1 None
f First 1 nm: 30 GHz None
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FIG. 8. Transversal component of m (=wave amplitude) at x = z = 5 nm (the waveguide center), as a logarithmic function of the
coordinate for the magnonic damping system after 2.4 ns. Red are computed values, and green is a fitted exponential decay with the magnon
free path l = 190 nm. The black vertical line marks the beginning of the spin sink layer. The inset shows a three-dimensional (3D) snapshot of
the simulation configuration, with color coded values of mz.

chosen to demonstrate the implementation’s capabilities and
not to mimic an actual experimental setup.

Figure 8 shows the transversal component of the mag-
netization along the waveguide centerline after 2.4 ns.
The magnon has penetrated the whole waveguide, with the
spin-torque-enhanced damping successfully suppressing the
magnon along its path. Fitting a simple exponential function
to the magnetization for y > 250 nm (where the waveguide
is covered by the spin sink), a free path of l = 190 nm can be
obtained. It is clearly visible that considerable damping exists,
even with α = 0.

Figure 9 shows the modified gyromagnetic ratio γSP and
damping parameter αSP along a line at z = 9.5 nm, compared
to the values from Eqs. (12) and (13). Although the propagat-
ing magnon exhibits nonhomogeneous, wavelike precession
(in space), the modified parameters do not reflect that behavior
and behave as if the precession is indeed homogeneous. Also,
the deviation from “normal” values (γSP = γ and αSP = 0) is
less pronounced than expected. Both effects can be attributed
to the cross diffusion of spin accumulation in the interaction
layer: The analytical solution for homogeneous magnetization
assumes the effect of only the locally produced spin accu-
mulation on the precessional motion. For a magnon, spin
accumulation produced at some point can diffuse to other
points in the vicinity, effecting the precession there as well.
In return, the effect on the precession at the point where it
was produced is reduced. This cross diffusion would then
equilibrate the spin accumulation, generally reducing it, and
therefore its effects. This behavior would generally depend
upon the relation between the magnon wavelength and λsf .

The rapid oscillations at the end of the waveguide (y >

1100 nm) most likely originate from numerical errors. The

magnetization is almost coaligned with the longitudinal axis,
which is a regime where the integration errors from numer-
ically solving Eq. (5) are easily of the same magnitude as
the precession angle. There is some additional structure for
γSP, including noticeable steps (around 700 and 900 nm). The
nature of those is currently not known.

IV. CONCLUSION

We have presented a nanoscopic numerical spin-pumping
solver, based upon an earlier spin-diffusion solver, fully inte-
grated into a micromagnetics scheme. It was shown that our
implementation can replicate the solutions obtained by ana-
lytical means for some standard systems, without introducing
additional material parameters. Furthermore, we have shown
that we can now properly model the propagation characteris-
tics of a magnon under the influence of spin-pumping effects,
i.e., decreased precession and increased damping.

We expect that the implementation can be employed in
magnonic simulations. As such, we are currently using it
in our own research, where we compute spin-Hall voltages
out from magnon-generated spin pumping. A corresponding
publication is forthcoming.
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FIG. 9. γSP (left axis) and αSP (right axis) at x = 5 nm, z = 9.5 nm (the interface of the waveguide and the interaction layer), as functions
of the coordinate for the magnonic damping system after 2.4 ns. The black vertical line marks the beginning of the spin sink layer; the dashed
lines mark the corresponding expected analytical values from Eqs. (12) and (13).
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