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Theory of magnetic spin and orbital Hall and Nernst effects in bulk ferromagnets
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The magnetic spin Hall effect (MSHE) is an anomalous charge-to-spin conversion phenomenon that occurs in
ferromagnetic materials. In contrast to the conventional spin Hall effect (SHE), being a time-reversal even effect,
the magnetic counterpart is time-reversal odd. In this work, we use ab initio calculations to investigate the MSHE
for the bulk ferromagnets Fe, Co, and Ni. The magnitudes of the MSHE of Fe and Co are comparable to those
of the SHE, but the MSHE is strongly dependent on the electron lifetime and the MSHE and SHE can moreover
have opposite signs. For Ni the MSHE is smaller than the SHE, but in general, the MSHE cannot be ignored for
spin-orbit torques. Considering a charge current we analyze how both the MSHE and SHE contribute to a total
Hall angle. We extend our analysis of the MSHE to its orbital counterpart, that is, the magnetic orbital Hall effect
(MOHE), for which we show that the MOHE is in general smaller than the orbital Hall effect (OHE). We compute
furthermore the thermal analogs, i.e., the spin and orbital Nernst effects, and their magnetic counterparts. Here
our calculations show that the magnetic spin and orbital Nernst effects of Ni are substantially larger than those
of Fe and Co.

DOI: 10.1103/PhysRevB.106.024410

I. INTRODUCTION

Understanding the generation of spin currents at the micro-
scopic scale is a fundamental issue in the field of spintronics.
The spin Hall effect (SHE) is one of the most promising
phenomena in this field that has captivated the scientific
community since the early 2000s [1,2]. In its conventional
definition, the SHE describes the electrical generation of a
spin current, where the electric field E, spin current JS, and
induced spin polarization S are mutually orthogonal.

The SHE was theoretically proposed half a century ago
by Dyakonov and Perel [3,4], but did not attract much atten-
tion until a 1999 letter by Hirsch, whose title would give its
name to this effect [5]. There, Hirsch predicted that spin-orbit
scattering centers would give rise to an electrically generated
transverse spin current which would lead to spin accumulation
at the edges of nonmagnetic metals. Soon after, it was shown
that spin diffusion using a semiclassical Boltzmann approach
would also lead to spin accumulation [6].

Experimentally, the SHE was first observed in semicon-
ducting materials [7–9]. Effects orders of magnitude larger
were later observed in heavy-metals like Pt, via the SHE as
well as its inverse effect, the inverse SHE (ISHE) [10–13].
The impressive interest in SHE-related phenomena is strongly
rooted in its practicality, as it has been experimentally
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proven over the last decade that SHE-generated spin cur-
rents could be used to reversibly and efficiently control
magnetization [14–20].

The microscopic origin of the SHE can be decomposed into
an intrinsic and extrinsic contribution. The intrinsic contribu-
tions originates from the spin Berry curvature associated to
the band structure of the material [21–24], while the extrinsic
mechanisms, such as skew-scattering and side jumps, emerge
from spin-dependent scattering on defects, as proposed for the
anomalous Hall effect [25,26].

The concept of the SHE can be extended to orbital angular
momentum, leading to the orbital Hall effect (OHE). While
the observation of orbital transport is a topic of on-going
efforts, theoretical investigations have shown that a huge in-
trinsic OHE arises in Pt, without requiring spin-orbit coupling
(SOC) [27]. Other theoretical investigations of the OHE were
later conducted and similar observations were made [24,28–
32]. Similarly to the SHE, it is often assumed that the elec-
tric field E, orbital current JL, and orbital polarization L are
mutually orthogonal.

Another variant of the SHE has emerged in recent years.
The third-rank spin conductivity tensor σ

Sk
i j , with Cartesian

indices i, j, and k, is uniquely defined for nonmagnetic metals
with cubic crystal symmetry, as

σ
Sk
i j = εi jk σSH , (1)

with εi jk the Levi-Civita tensor. The SHE is then described
by a single isotropic quantity, the spin Hall conductivity
(SHC) σSH which is time-reversal invariant. However, it has
become evident in the last years that the SHE is not only
determined by the crystal structure, but also by the appear-
ance of magnetic order. The latter not only can break spatial
symmetry (e.g., ferromagnetism) but also breaks time-reversal
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symmetry, which can give rise to the appearance of nonzero,
T -odd components in σS.

Signatures of such unusual T -odd components have been
recently observed [33–35]. They were recently discussed
in the case of noncollinear antiferromagnets [36–38]. Such
T -odd generation of spin currents has been referred to as
magnetic SHE (MSHE) [38–40]. Although it was proposed
that such components should exists for a broader class of
materials, such as simple ferromagnets [41,42], and a nonzero
value was computed recently for fcc Co [43], no material-
dependent ab initio study has been performed for these so far.

In this paper, we use relativistic electronic structure cal-
culations within the linear-response framework to investigate
the magnetic spin and orbital conductivities for bcc Fe, hcp
Co, and fcc Ni. We compute the full anisotropic σS tensor and
quantify the SHE and MSHE components. We also predict
the orbital analog to the MSHE, that is, the magnetic OHE
(MOHE), which has not yet been observed. We compute the
full σL tensor which allows us to fully quantify the MOHE,
as well as its anisotropy. We then extend our discussion to
consider thermally driven spin and orbital current generation
and compute the magnetic counter part of the recently ob-
served spin Nernst effect (SNE) [44–46], i.e., the magnetic
SNE (MSNE), as well as an orbital Nernst effect (ONE)
and magnetic orbital Nernst effect (MONE). Our calculations
show that the MSHE, in particular, is comparable in size to
the SHE, but can have opposite sign. It needs therefore to be
taken into account when electrically induced spin currents in
ferromagnetic materials or heterostructures are investigated.

In the following, we first introduce the theoretical frame-
work in Sec. II, followed by the presentation of calculated
results in Sec. III. Implications of the results are discussed
in Sec. IV.

II. THEORY

A. Symmetry considerations

The electrical generation of spin currents is quantified by
the third rank spin conductivity tensor σS, which relates the
second rank spin current density tensor JS to the external
electric field E,

JSk
i = σ

Sk
i j E j, (2)

for the Cartesian indices i, j, and k.
Note that we focus here on the spin angular momentum,

but without loss of generality a similar formulation can be
straightforwardly extended to the orbital angular momentum.
Conventionally, the SHE relates to the time-reversal even
(T -even) antisymmetric part of σS. Because there exists no
crystal symmetry for which all components of σS vanish, the
SHE can always be observed in any material. In nonmagnetic
cubic materials the high symmetry of the crystal structure
imposes that only one quantity, the spin Hall conductivity σSH

remains, see Eq. (1).
In the presence of magnetism, the situation is different,

due to the lowering of symmetry by the magnetization. The
symmetry of σS has been analyzed previously for different
crystal symmetries [41,47]. As our aim is here to study ferro-
magnetic bcc Fe, hcp Co, and fcc Ni we consider the specific
nonzero tensor elements of σS for these materials. In addition,

we choose the magnetic moment M along the (001) crystal-
lographic direction for Fe and Ni (4/mm′m′ magnetic Laue
group) and the (0001) direction for hcp Co (6/mm′m′). This
direction we define as the uz direction. The tensor σS can then
be written as

σSx =

⎛
⎜⎝

0 0 σ Sx
xz

0 0 σ Sx
yz

σ Sx
zx σ Sx

zy 0

⎞
⎟⎠, (3a)

σSy =

⎛
⎜⎜⎝

0 0 σ
Sy
xz

0 0 σ
Sy
yz

σ
Sy
zx σ

Sy
zy 0

⎞
⎟⎟⎠, (3b)

σSz =

⎛
⎜⎜⎝

σ
Sz
xx σ

Sz
xy 0

σ
Sz
yx σ

Sz
yy 0

0 0 σ
Sz
zz

⎞
⎟⎟⎠. (3c)

The components in the tensor can be divided in three
categories. First, the components σ

Sk
i j where εi jk �= 0 can be

referred to as SHE-like because (1) J, JS, and the spin po-
larization direction of JS are mutually orthogonal, and (2)
they are even upon time-reversal symmetry (T even). These
elements are indicated with blue color in Eqs. (3a)–(3c). Con-
trarily to the case of nonmagnetic cubic materials, we have
σ

Sz
xy �= σ

Sy
zx �= σ Sx

yz , due to the magnetism-induced lowering of
symmetry. As a consequence, there is not a single SHC as the
relative orientation of M and the spin polarization direction
of JS enters the picture. There are nevertheless further sym-
metry relations: σ

Sy
zx = −σ Sx

zy , σ Sx
yz = −σ

Sy
xz , and σ

Sz
xy = −σ

Sz
yx .

The differences between these T -even SHE-like components
have recently been investigated and were referred to as the
spin anomalous Hall effect (SAHE) [48,49].

Second, the components σ Sx
xz , σ Sx

zx , σ
Sy
yz and σ

Sy
zy , shown with

red color that can be referred to as MSHE-like. These emerge
from the ferromagnetism-induced lowering of symmetry,
are odd upon time-reversal symmetry (T -odd) and require
spin-orbit coupling (SOC) to exist. Signature of MSHE com-
ponents have been observed in recent experimental works
[33,34,38]. However, only few materials’ dependent ab initio
calculations (e.g., Ref. [39]) have investigated them so far.
One of the main result of this work is the estimation of those
anomalous components.

Finally, we have the diagonal components of σSz , that
is, σ

Sz
xx , σ

Sz
yy , and σ

Sz
zz [black diagonal elements in Eqs. (3a)–

(3c)]. Although they are T -odd like the MSHE components,
their physical origin is very different. They emerge from the
difference in the longitudinal conductivity of spin-up and
spin-down electrons, and would still exist if SOC is turned
off. They lead to a spin-polarized conductivity, similar to the
spin-dependent Seebeck effect [50] that quantifies the charge
transport driven by a thermal gradient in a ferromagnet.

The unusual MSHE components σ Sx
zx and σ

Sy
zy induce, for an

x-y-plane electric field E, a spin current JS parallel to M, but
the spin polarization is directed along E. The T -even elements
also lead to a spin current JS || M, but with spin polarization
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perpendicular to E. The two induced spin polarizations will
thus exert torques in orthonormal directions.

B. Computational methodology

To compute the spin and orbital conductivity tensors,
we use relativistic density-functional theory (DFT) as im-
plemented in the all-electron, full-potential code WIEN2k
[51]. The calculated Kohn-Sham eigenstates |nk〉 and band
eigenenergies εnk [52], with n the band index and k the wave
vector, are used as input for the linear-response theory calcu-
lations. The Kubo linear-response expression [40,53] for the
spin conductivity tensor reads

σ
Sk
i j = − ieh̄

me

∫
�

dk
�

∑
n �=m

fmk − fnk

εmk − εnk

JSk
i,mnk p j,nmk

εmk − εnk + ih̄τ−1
inter

− ie

me

∫
�

dk
�

∑
n

∂ fnk

∂ε

JSk
i,mnk p j,nnk

iτ−1
intra

, (4)

where fnk is the Fermi-Dirac function, me the electron mass,
� the Brillouin zone volume, and pj,nmk the jth component
of the momentum-operator ( p̂) matrix element. The quantity
in the sum over band indices with n �= m is called the spin
Berry curvature. Ĵ Ŝk

i,mnk is the matrix element of the spin current
operator, given by

JŜk
i = {Ŝk, p̂i}

2V me
, (5)

with Ŝk the spin operator, V the volume of the unit cell,
and {Â, B̂} = ÂB̂ + B̂Â is the anti-commutator. The parame-
ters τinter and τintra describe the finite electron lifetime. These
can in principle depend on the band indices and whether the
transition in the n, m sum is from an intraband n = m or an in-
terband (n �= m) transition, i.e., stems from the Fermi surface
or from the Fermi sea. We initially set τ−1

inter = τ−1
intra ≡ δ, with

h̄δ = 40 meV and show the lifetime broadening dependence
in Sec. III. The k sums in Eq. (4) are numerically evaluated on
k meshes containing at least 7.5 × 104 k points.

The same formalism can be directly used to compute the
orbital conductivity tensor σL for which one has to replace
Ŝk by the orbital angular momentum, L̂k . The σS and σL can
in addition be evaluated as a function of the band filling, by
varying the electrochemical potential E which is contained in
the occupation function fnk.

Once σSk (E ) and σLk (E ) have been computed, magne-
tothermal transport coefficients 	

Sk (Lk )
i j can then be derived

from these using the Mott formula [54],

	
Sk (Lk )
i j = π2k2

BT

−3e

(
d

dE
σ

Sk (Lk )
i j (E )

)
E=EF

, (6)

where kB is the Boltzmann constant, T the temperature in
Kelvin, and e > 0 the elementary charge. The derivative is
taken with respect to the electrochemical potential E in fnk.
By definition, E = 0 corresponds to the Fermi level.
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FIG. 1. Ab initio calculated T -even components of σS as function
of the electrochemical potential for (a) Fe, (c) Co, and (e) Ni, and of
σL for (b) Fe, (d) Co, and (f) Ni. The considered components have
indices i, j, and k such that εi jk �= 0. The lifetime broadening used is
h̄τ−1 = 40 meV.

III. RESULTS

A. Spin and orbital Hall effect (T even)

Let us first focus on the SHE and OHE, which we re-
spectively define as the electrical generation of a spin and
orbital current arising from the T -even components of σS and
σL. For the considered materials, those are the σ

Sk (Lk )
i j tensor

components such that εi jk �= 0.
We set the magnetization M along the (001) crystallo-

graphic direction for Fe and Ni, and along (0001) for hcp
Co, and choose this to be the uz direction. This leads to three
components that are not invariant under cyclic permutation.
Specifically, these are the following.

(1) σ
Sy (Ly )
zx = −σ Sx (Lx )

zy : components where the flow of spin
(orbital) current JS (JL) is parallel to M.

(2) σ Sx (Lx )
yz = −σ

Sy (Ly )
xz : components where the externally

applied electric field E is parallel to M.
(3) σ

Sz (Lz )
xy = −σ

Sz (Lz )
yx : components where the spin (orbital)

polarization S (L) is parallel to M.
In Fig. 1, we show the calculated results for those com-

ponents for ferromagnetic Fe, Co, and Ni, as a function of
the electrochemical potential E . Focusing first on the spin
conductivity (left-hand column in Fig. 1), we clearly notice
that the components for which S is orthogonal to M, that is
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TABLE I. Ab initio calculated values for the SHE- and OHE-like components of the spin and orbital conductivity tensors, as well as their
magnetic components MSHE and MOHE, for ferromagnetic bcc Fe, hcp Co, and fcc Ni, in units of h̄

e (� cm)−1. The magnetization is chosen
along the z axis and the lifetime broadening h̄τ−1 = 40 meV.

SHE OHE MSHE MOHE

σ Sx
yz σ

Sy
zx σ Sz

xy σ Lx
yz σ

Ly
zx σ Lz

xy σ Sx
xz σ Sx

zx σ Lx
xz σ Lx

zx

Fe 441 456 92 4697 4698 4707 −593 739 1343 848
Co 839 8 −44 5103 4718 4737 614 1074 −358 1356
Ni 1606 1543 824 3306 3297 3149 394 −290 −66 1033

σ
Sy

zx(xz) and σ
Sx
yz(zy), show higher absolute-value maxima than

σ
Sz

xy(yx). For the rightmost peak, σ
Sy
zx is two to eight times larger

than σ
Sz
xy . This emphasizes that the M-induced lowering of

symmetry cannot be neglected for the SHE, even for simple
ferromagnets.

For Fe and Ni, the components σ
Sy
zx and σ Sx

yz are nearly
identical, though not equal. In this case, the SHE-like spin
conductivity can be, in a good approximation, split into two
components, depending whether the spin polarization of the
spin current is parallel (σ Sz

xy(yx)) or perpendicular (σ Sx
yz(zy) and

σ
Sy

zx(xz)) to M. For hcp Co, all components significantly differ
from each other, suggesting that structural asymmetry has a
greater impact than the magnetic asymmetry.

The OHE-like components (right-hand column in Fig. 1)
are, in a peak-to-peak comparison, several times to one order
of magnitude larger than their SHE-like analogs. Contrarily to
the spin components, for Fe and Ni no substantial difference
can be observed between σ Lx

yz , σ
Ly
zx , and σ

Lz
xy . Those compo-

nents are however noticeably different for Co, stressing that
the structural asymmetry influences the OHE significantly,
whereas the M-induced asymmetry has virtually no effect on
the OHE. It deserves to be mentioned once more that the OHE
components are present even when the SOC is set to zero
[24,31], whereas SHE-like components vanish.

The calculated values for the SHE and OHE components
at the Fermi level are given in Table I, in units of h̄

e (� cm)−1.

While Ni shows the smallest σ Sx
yz /σ

Sz
xy ratio, the absolute value

of σ Sx
yz is remarkably high. For instance, one could compare

to σ
Sz
xy ≈ 2000 h̄

e (� cm)−1 calculated for Pt [13,55], which
is often considered as a material of choice when it comes
to SHE-based generation of spin currents. The anisotropy
of the three SHE components of hcp Co is predicted to be
huge. It should be possible to observe such anisotropy in
SHE measurements on single-crystalline Co. The OHE-like
components at the Fermi energy are in contrast quite isotropic
and substantially larger than the SHE-like components.

Next, we investigate the lifetime dependency of both the
SHE and OHE components. Calculated results for their depen-
dence on the broadening δ is shown in Fig. 2. It is important
to note that both T -even effects originate from the interband
term, the intraband (Fermi surface) term vanishes. For the
SHE, a significant dependence on the lifetime broadening is
observed. Decreasing h̄τ−1 from 200 to 10 meV increases
σ Sx

yz (σ Sy
zx ) by +380% and σ

Sz
xy by +220% for Fe, while those

numbers are +170% and +100% for Ni. The case of Co is a

bit different, yet σ Sx
yz shows an increase of +330%, similarly

to what is observed for Fe and Ni. The two other components,
σ

Sy
zx and σ

Sz
xy , stay really close to 0, with a sign inversion. At this

point, we can furthermore compare with the calculated intrin-
sic anomalous Hall conductivities of the ferromagnets, shown
in detail in Appendix A. This comparison exemplifies that the
spin Hall and anomalous Hall conductivities can have oppo-
site signs. In contrast to the SHE, for the OHE (right-hand
column in Fig. 2) the variation of the OHE with δ is practically
negligible, typically within 1%–2%. This difference can al-
ready be understood from the sharply structured spectra of the
SHE components, shown in Fig. 1. These display moreover
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FIG. 2. Dependence of the T -even components on the lifetime
parameter δ at E = 0 for the nonzero elements of σS for (a) Fe,
(c) Co, and (e) Ni, and of σL for (b) Fe, (d) Co, and (f) Ni. The
σL values vary at most a few percent with h̄δ, while the σS compo-
nents vary in much greater proportion and can even double when h̄δ

changes from 200 to 10 meV.
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FIG. 3. Calculated T -odd components of σS for (a) Fe, (c) Co,
and (e) Ni, and of σL for (b) Fe, (d) Co, and (f) Ni. The lifetime
broadening used is h̄τ−1 = 40 meV. For sake of clarity σ Sx (Lx )

xz and
−σ Sx (Lx )

zx are shown.

both positive and negative spectral peaks that will become
reduced for a larger lifetime broadening, in contrast to the
OHE spectra that are more smooth and always positive.

B. Magnetic spin and orbital Hall effect (T odd)

We now focus on the MSHE and MOHE, which we re-
spectively define as the electrical generation of a spin and
an orbital current arising from the T -odd components of σS

and σL, with the exception of the diagonal elements of σSz

in Eq. (3c). These are the components σ Sx (Lx )
xz , σ Sx (Lx )

zx , σ
Sy (Ly )
yz ,

σ
Sy (Ly )
zy . By symmetry, the x and y indices can be interchanged,

that is σ Sx
xz = σ

Sy
yz and σ Sx

zx = σ
Sy
zy , leaving us with two indepen-

dent components.
Computed results for these components are shown in

Fig. 3. For the MSHE (left-hand column of Fig. 3), we notice
that the order of magnitude is similar to that of the T -even
SHE components. For Fe and Ni, we observe that σ Sx

xz and
−σ Sx

zx are quite similar, while this doesn’t hold for Co. Here
again, the structural asymmetry due to the hcp lattice out-
weighs the magnetic asymmetry. The MOHE components
(right-hand column of Fig. 3) are of the same order of mag-
nitude as the MSHE and SHE components. Also, in contrast
to the MSHE, σ Lx

xz is quite different from −σ Lx
zx for all three

materials. The MSHE and MOHE conductivities furthermore
display rather sharp spectral features, with both positive and
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FIG. 4. Lifetime-broadening dependence of the T -odd compo-
nents of σS for (a) Fe, (c) Co, and (e) Ni, and of σL for (b) Fe,
(d) Co, and (f) Ni, computed at E = 0. The T -odd components are
mainly due to the intraband part of the response, therefore they all
scale as ∝ δ−1.

negative peaks, in contrast to the larger OHE components
shown in Fig. 1. The origin of this difference stems from the
fact that nonzero OHE components are present even without
SOC, but the SHE, MSHE, and MOHE components are in-
duced by SOC.

The computed values for the MSHE and MOHE compo-
nents at the Fermi level are given in Table I. Although the
MSHE components are rarely considered, they are compara-
bly large as the SHE components for Fe and Co. For Ni, the
MSHE components are about four times smaller than the SHE
values. The position of the Fermi energy for Ni plays a role in
this difference. σ Sx

xz changes steeply, from −1371 h̄
e (� cm)−1

at E = −0.4 eV to 2382.1 h̄
e (� cm)−1 at E = 0.2 eV. Similar

sharp variations in the spectrum happens over ∼500 meV can
be observed for Fe and Co, too, but the steep change is not at
the Fermi energy.

When it comes to the broadening dependence of the
MSHE and MOHE, a completely different behavior than
the SHE/OHE is observed, as both the MSHE and MOHE are
intraband dominated effects. In Fig. 4, we show the lifetime
dependence of the T -odd components. As can be recognized,
they do indeed scale as ∝ δ−1. This has two fundamental
implications for the MSHE and MOHE. First, contrarily to the
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SHE/OHE, the magnetic effects are theoretically unbounded.
In ultraclean samples, where the electron lifetime tends to
increase, the MSHE and MOHE will become gigantic. The
MSHE components will then be larger than the SHE. Second,
for dirty samples, or in the limit of large lifetime broadening,
both the MSHE and MOHE become small. As there however
remains an interband contribution to the MSHE and MOHE,
the tensor components do not vanish and an explicit compari-
son with the values of the SHE and OHE is required.

To perform such comparison we define the ratio

γ
S(L)
i j =

∣∣σ Sy (Ly )
i j

∣∣∣∣σ Sx (Lx )
i j

∣∣ + ∣∣σ Sy (Ly )
i j

∣∣ , (7)

where i j is either xz or zx. When γ
S(L)
i j approaches 1, the

SHE (OHE) is dominant over the MSHE (MOHE) while the
opposite is true for γ

S(L)
i j → 0. The calculated ratios γ S(L)

xz

and γ S(L)
zx are displayed in Fig. 5. It is evident that all ratios

increase with larger lifetime broadening δ, implying that the
SHE and OHE become dominant over the MSHE and MOHE,
respectively. The ratio for the orbital effects is dominated by
the OHE, which hardly changes with the lifetime broadening.
However, for small broadenings the MSHE becomes larger
than the SHE and will dominate over the SHE. This happens
strongly for the γ S

zx ratio of Co. As a general trend, it can be
seen that the larger the ferromagnetic moment is, the more
dominant the MSHE is.

C. Thermally driven spin and orbital transport

The generation of spin and orbital currents due to both
an external electric field and a thermal gradient can be

expressed as

JSk
i = σ

Sk
i j E j − 	

Sk
i j

dT

dr j
, (8)

JLk
i = σ

Lk
i j E j − 	

Lk
i j

dT

dr j
, (9)

where 	
Sk (Lk )
i j is the spin (orbital) magnetothermal conductiv-

ity tensor. These thermal transport tensors � can be extracted
from σS(E ) and σL(E ) using the Mott equation (6). Again, our
focus is here on the transverse coefficients, �S(L) specifically,
the spin Nernst effect (SNE) and magnetic spin Nernst effect
(MSNE) and the orbital Nernst effect and magnetic orbital
Nernst effect (ONE and MONE).

Results for the calculated SNE, MSNE and their orbital
counterparts as function of the electrochemical potential E are
given in Appendix B (Fig. 9). It can be noted that these spin
and orbital thermal conductivities depend significantly on the
chemical potential. Features comparable to those of the SHE
and MSHE and their orbital counterparts can be observed:
The magnetic spin and orbital thermal conductivities (T -odd)
are similarly large as the nonmagnetic (T -even) conductivities
and the orbital thermal conductivity is very isotropic.

It is instructive to consider the dependence of the transverse
thermal conductivities at the Fermi energy on the lifetime
broadening h̄δ, shown in Fig. 6. The magnetic spin and orbital
thermal conductivities MSNE and MONE increase steeply as
∼δ−1 for small lifetime broadenings whereas the SNE and
ONE approach stable values for small δ. The MSNE and
MONE are clearly not negligible, they can be equally large
or larger than the SNE and ONE in ultraclean samples.

The Seebeck coefficient S is commonly defined as the
longitudinal thermal coefficient divided by the longitudinal
charge conductance, S = 	ii/σii. Similarly to the definition
of the Seebeck coefficient, we can define transverse spin and
orbital transport coefficients α as

α
Sk (Lk )
i j = 	

Sk (Lk )
i j

σ
Sk (Lk )
i j

, (10)

where α
Sk (Lk )
i j is given in units of V K−1. For the materials

considered in this paper, the coefficients αSx
yz (αLx

yz ), α
Sy
zx (αLy

zx )

and α
Sz
xy (αLz

xy) quantify the SNE (ONE) and αSx
xz (αLx

xz ) and αSx
zx

(αLx
zx ) the MSNE (MONE) with respect to the corresponding

electrical spin and orbital conductivities. We shall refer to
those coefficients as spin Nernst coefficient (SNC), magnetic
spin Nernst coefficient (MSNC), orbital Nernst coefficient
(ONC), and magnetic orbital Nernst coefficient (MONC).

The results of our calculations are summarized in
Table II for the SNC and MSNC and Table III for the ONC
and MONC. These transport coefficients are computed at
the Fermi energy (E = 0 eV), for T = 300 K and h̄τ−1 =
40 meV.

Looking at the spin α’s, we see that in the case of Fe
they are of similar magnitude, that is, α ∼ 3 μVK−1 for the
SNC, and α ∼ −4 μVK−1 for the MSNC. For Co, a strong
anisotropy is observed, for the SNC with αSx

yz , α
Sz
xy > α

Sy
zx , and

for the MSNC with |αSx
zx | > |αSx

xz | where the absolute value is
taken because the signs are opposite. While both Fe and Co
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FIG. 6. Calculated spin and orbital transverse thermal conductivities in Fe, Co, and Ni as a function of the lifetime broadening h̄δ (at
E = 0 eV). Shown from left to right is the SNE, MSNE, ONE, and MONE.

have SNCs of the same magnitude as the MSNCs, we observe
that this is not the case for Ni. Remarkably, the MSNCs in
Ni are 2 orders of magnitude higher than the SNCs, with all
coefficients being of the same sign.

For the ONC and MONC, the comparison to their spin
counterpart depends strongly on the material considered. For
Fe, the SNC and ONC are remarkably close. For Co, the
ONCs and MONCs are respectively smaller and bigger than
their spin counter part. For Ni, the ONCs are 3 to 6 times
larger than their spin counter part. The anisotropy for the ONC
is virtually nonexistant, even in the case of Co which had a
strong structure-induced anisotropy in its OHE components.
While so far the spin Nernst effect has been observed only in
Pt and W [44–46] our calculations suggest that in particular it

TABLE II. Calculated transverse spin thermal transport coeffi-
cients αS, for ferromagnetic bcc Fe, hcp Co, and fcc Ni. The SNE
is quantified by αSx

yz , α
Sy
zx , and αSz

xy while the MSNE by αSx
xz and

αSx
zx . The thermal transport coefficients are given in μVK−1 and for

T = 300 K.

SNC MSNC

αSx
yz α

Sy
zx αSz

xy αSx
xz αSx

zx

Fe 2.63 3.32 3.57 −3.94 −4.18
Co 19.72 1.10 28.74 −14.12 2.91
Ni −3.35 −6.50 −2.80 −192.55 −248.60

should be possible to measure a large unusual MSNE in Ni,
being much larger than the same of Fe and Co.

IV. DISCUSSION

A. Charge-to-spin conversion

Theoretical investigations usually discuss spin transport
on the basis of the spin conductivity tensor σS, because the
influence of the external perturbation is described directly in
terms of the electric field E. On the other hand, experimental
works focus on the conversion of a charge-current density J to
an output spin-current density JS. Here, we will discuss these
two pictures, and relate them.

We start by considering a charge current density J. In the
linear regime

J = σE, (11)

TABLE III. As Table II, but for the transverse orbital thermal
transport coefficients αL, specifically, the ONC (αLx

yz , α
Ly
zx , and αLz

xy )
and the MONC (αLx

xz and αLx
zx ).

ONC MONC

αLx
yz α

Ly
zx αLz

xy αLx
xz αLx

zx

Fe 2.87 3.02 2.93 1.07 −6.10
Co −0.77 −0.83 −1.75 33.48 9.67
Ni 18.22 18.85 19.26 −253.57 −5.61
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where σ is the electrical conductivity tensor. Combining
Eqs. (2) and (11), we can write

JSk = σSk σ−1 J = σSk ρ J = h̄

2e
θSk J, (12)

where ρ = σ−1 is the resistivity tensor and θS is a third rank
tensor which is the generalization of the concept of the spin
Hall angle (SHA). Note that the element θ

Sz
yx would be the

commonly defined SHA for nonmagnetic metals. We will
refer to θS as the spin-charge angle (SCA) tensor.

The resistivity tensor ρ can explicitly be written as

ρ =
⎛
⎝ ρ1 ρA 0

−ρA ρ1 0
0 0 ρ2

⎞
⎠, (13)

where ρ1 and ρ2 are the T -even diagonal part of ρ and ρA

is the anomalous Hall resistivity, which is T odd. The ele-
ments σi j of the conductivity tensor can be computed with the
same linear-response formulation. Results for the ferromag-
netic elements are given in Appendix A. Inserting Eqs. (3a),
(3b), (3c), and (13) in Eq. (12), we can find an explicit
expression of θS

θSx = 2e

h̄

⎛
⎜⎜⎝

0 0 σ Sx
xz ρ2

0 0 σ Sx
yz ρ2

σ Sx
zx ρ1 − σ Sx

zy ρA σ Sx
zx ρA + σ Sx

zy ρ1 0

⎞
⎟⎟⎠,

(14a)

θSy = 2e

h̄

⎛
⎜⎜⎝

0 0 σ
Sy
xz ρ2

0 0 σ
Sy
yz ρ2

σ
Sy
zx ρ1 − σ

Sy
zy ρA σ

Sy
zx ρA + σ

Sy
zy ρ1 0

⎞
⎟⎟⎠,

(14b)

θSz = 2e

h̄

⎛
⎜⎜⎝

σ
Sz
xx ρ1 − σ

Sz
xy ρA σ

Sz
xx ρA + σ

Sz
xy ρ1 0

σ
Sz
yx ρ1 − σ

Sz
yy ρA σ

Sz
yx ρA + σ

Sz
yy ρ1 0

0 0 σ
Sz
zz ρ2

⎞
⎟⎟⎠.

(14c)

These expressions form a bridge between the theoreti-
cal “E-in JS-out” and experimental “J-in JS-out” picture.
The conventional, nonmagnetic SHE elements are indicated
with blue color. Compared to σS, θS shows additionally a
more complex structure because of the mixing of tensor
components.

First, let us look at the SHE-like components, that is, θ
Sk
i j

where εi jk �= 0. Depending on the orientation of the spin po-
larization S, of the spin current JS, and of the charge current
J relative to M, we can classify those components as

- θSx
yz and θ

Sy
xz : S⊥M and M ‖ J,

- θSx
zy and θ

Sy
zx : S⊥M and M⊥J,

- θ
Sz
xy and θ

Sz
yx : S ‖ M and M⊥J.

Although those components are all SHE-like, their physi-
cal interpretation differs greatly. The component θSx

yz = σ Sx
yz ρ2

(θSy
xz = σ

Sy
xz ρ2) emerges from the interplay of the spin con-

ductivity tensor element σ Sx
yz (σ Sy

xz ) and the longitudinal-to-J

potential gradient ∂zV ∼ ρ2Jz. This component can be un-
derstood as the simple extension of σ Sx

yz (σ Sy
xz ) in a SCA

perspective.
The component θSx

zy = σ Sx
zx ρA + σ Sx

zy ρ1, which is not sym-
metrical to θSx

yz , shows a more complex structure. It is
expressed as the sum of two terms: (1) σ Sx

zx ρA and (2) σ Sx
zy ρ1.

While the physical picture of the second term is analogous
to what has been discussed in the previous paragraph, the
first term is different. It can be interpreted as the following.
Because of the AHE, an external charge current Jy produces
a transverse potential gradient ∂xV ∼ ρAJy, which gives rise
to a spin current due to the MSHE-like spin conductivity
σ Sx

zx . Interestingly enough, both σ Sx
zx and ρA are T odd, but

because it is their product that comes into play, this term is
experimentally indistinguishable from a conventional SHE-
generated spin current, i.e., it possesses the same spacial and
time-reversal symmetries. A similar discussion can be held
for θ

Sy
zx .

The remaining two SHE-like components are θ
Sz
xy and θ

Sz
yz .

Those components tend to be referred to as SHA, although
it should be clear by now that defining a unique value for the
SHA can be misleading in lower symmetry systems. We focus
on θ

Sz
xy , since the discussion of θ

Sz
yx is similar. The component

θ
Sz
xy is written as θ

Sz
xy = σ

Sz
xx ρA + σ

Sz
xy ρ1. Similarly to the other

SHE-like components, the second term can be understood as
the extension of the SHE-like spin conductivity σ

Sz
xy in a SCA

perspective. The first term is however peculiar, and can be
interpreted as the following. An external charge current Jy pro-
duces an AHE-induced transverse potential gradient ∂xV ∼
ρAJy. Because the material is ferromagnetic, the longitudinal
conductivity of spin up and spin down electrons is different
(spin filtering), i.e., σ Sz

xx �= 0, and therefore the current induced
by ∂xV is inherently spin polarized. This contribution has
drawn attention recently and has been discussed in terms of
an anomalous spin Hall effect [56–61]. It is an T -even ef-
fect and experimentally indistinguishable from a conventional
SHE-generated spin current.

Next, we discuss the MSHE-like components, that are the
remaining components from θSx and θSy , i.e., θSx

xz , θSx
zx , θ

Sy
yz ,

and θ
Sy
zy . All those components are T odd, with their spin-

polarization direction orthogonal to M. We can distinguish
two cases. First, if J is parallel to M, we have θSx

xz and θ
Sy
yz .

In this case, the SCA components can be understood as the
generation of spin current due to the MSHC, expressed in
a “J-in JS-out” picture. Remarkably, the spin-polarization
direction is parallel to the direction of the flow of the spin
current, which cannot be obtained with the SHE.

The second case is when J is orthogonal to M and JS

parallel to M, that is, θSx
zx and θ

Sy
zy . If we look at θSx

zx (θSy
zy is

analogous), we see that it is expressed as the sum of two com-
ponents: (1) σ Sx

zx ρ1 and (2) −σ Sx
zy ρA. The first term is, as for θSx

xz ,
the generation of spin current due to the MSHC, expressed
in a “J-in JS-out” picture. For the second term, the physical
picture is the following. A current Jx produced a transverse
potential gradient ∂yV ∼ JxρA because of the AHE, which
creates a spin current due to the SHE-like spin conductivity
σ Sx

zy . Although σ Sx
zy is T even, because it is driven by the AHE

which is T odd, the effect is T odd. Here, the spin polarization
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direction is parallel to the direction of the input charge current,
which cannot be obtained with the SHE.

The last group of components we discuss are the diago-
nal components of θSz . For θ

Sz
zz , the picture is simple, with

θ
Sz
zz = σ

Sz
zz ρ2 showing the extension of conductivity in the SCA

picture. For θ
Sz
xx and θ

Sz
yy , one of the terms that defines them

is similar to θ
Sz
zz . The other one comes from the interplay of

the AHE and SHE. This is quite interesting as it shows that a
longitudinal charge current creates a longitudinal spin current,
not only because of the difference of spin up and spin down
conductivity, but also due to transverse SHE.

B. Relation to other work

The existence of anomalous SHE terms has in principle
been known since the group-theoretical symmetry analysis of
Seemann et al. [41]. Also the existence of the orbital Hall
effect has been predicted years ago [24,27]. Still, not much
is known about the actual sizes of the unconventional (T -odd)
spin and orbital effects. Several recent works initiated recently
a discussion of these unusual effects. Humphries et al. [33]
observed an unusual magnetization-direction dependent spin
torque for ferromagnetic/nonmagnetic metal stack, which
they explained with a magnetization-linear spin current.
Kimata et al. [38] reported the observation of the MSHE for
a noncollinear antiferromagnet, Mn3Sn. Mook et al. [39] ana-
lyzed the origin of the MSHE and attributed it to spin-current
vorticity in the Fermi sea for the noncollinear antiferromagnet.
For the ferromagnetic 3d elements we find that the T -odd
MSHE components mainly originates from the intraband re-
sponse contribution, i.e., from the Fermi surface and not from
the spin Berry curvature. Salemi et al. [40] investigated the
MSHE and MOHE for ferromagnetic metal/Pt bilayer films
and computed non-negligible MSHE conductivities in the fer-
romagnetic layer.

In recent work, Amin et al. [48] and Qu et al. [62] reported
calculations of the magnetization dependent SHC in cubic
3d ferromagnets. As compared to our study, these investi-
gations computed the different T -even tensor elements of
σS (specifically, its magnetocrystalline anisotropy, also called
SAHE [48]). Those tensor elements should be equivalent in a
cubic system, but only when the magnetism is turned off. The
magnetocrystalline anisotropy in these SHE tensor elements
calculated in our work, see Table I, is comparable to that ob-
tained recently [48,62]. Miura and Masuda [49] investigated
the SAHE for XPt (X= Fe, Co, Ni), defined as the anisotropy
of the T -even elements when the magnetization is along the
tetragonal c axis or in the basal plane.

A thorough analysis of the spin currents that could ap-
pear in a ferromagnetic material was recently provided by
Wang [42]. The symmetry-allowed anomalous σS elements
predicted by Wang are indeed fully confirmed by our cal-
culations. A distinction is that in our formulation one can
recognize the origin of an anomalous SCA tensor element,
e.g., θSx

zx = (2e/h̄)(σ Sx
zx ρ1 − σ Sx

zy ρA), whereas in Wang’s anal-
ysis it is an allowed nonzero element and because of the
Onsager reciprocity, there will be a related inverse effect [42].

V. CONCLUSIONS

We have used first-principles calculations to investigate the
electric and thermal generation of spin and orbital currents
in the bulk ferromagnets Fe, Co, and Ni. For each material,
we have computed all the nonzero components of the relevant
tensors, that is, σ, σS, σL, �S, and �L.

Our extensive study has shown that defining the SHC in
lower symmetry systems is more involved than for nonmag-
netic cubic materials like Pt, as the relative orientation of
the M with respect to the electric field, the spin current, and
spin polarization of the spin current plays a crucial role. This
nonuniqueness in SHC might have led to some confusion.

We have shown that for the SHE, the spin conductivity
from the tensor elements of σS whose spin-polarization is
perpendicular to the M direction tend to be several times
larger than the ones where S is parallel to M. This has quite
important implications, since it is common in the field to focus
on S and M along uz. Thorough investigation of different
configurations for complex systems could lead to increased
efficiency in charge-to-spin conversion.

We have also investigated the recently proposed MSHE,
that is odd under time-reversal symmetry. We have computed
the ab initio material dependent MSHE-like conductivities for
the simple ferromagnets Fe, Co, and Ni. It turns out that those
components are not only far from negligible, but actually on
par with the SHE related component. Also, contrarily to the
SHE, the MSHE has an intraband component, meaning that
ultraclean systems should see a gigantic effect. We have com-
puted a similar effect for the orbital part, that is the MOHE,
that has not been proposed in the literature before.

As suggested by Mook et al. [39], because the MSHE
exists, a thermal counter part must exist, too. This is the
MSNE, which we have thoroughly investigated in this work.
We have extended the concept of the magnetic spin Nernst
effect to the orbital angular momentum, the MONE. We have
evaluated those two effects, and investigated their dependency
with respect to the electrochemical potential as well as the
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FIG. 7. Calculated longitudinal conductivity σ for (a) Fe, (b) Co,
and (c) Ni as well as the anomalous Hall conductivity σA for (d) Fe,
(e) Co, and (f) Ni. For Co, because of the hexagonal structure, the
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The anomalous conductivity is given as σA = σxy = −σyx . The life-
time broadening used is h̄δ = 40 meV.
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lifetime broadening. Observations of the spin Nernst effect
are still scarce, but we hope that our first-principles calcula-
tions will stimulate investigations of the ONE and the MSNE
and MONE.

Lastly, the prediction of sizable MSHE and MOHE in
magnetic materials could have some deep implications for
device design. While the conventional SHE allows for an
input charge current, output spin current and spin polarization
that are all mutually orthogonal, the MSHE enables a more
complex generation of a spin current, where two of those
components can become parallel. This could be utilized in
the design of special switching geometries for spintronics
devices.
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APPENDIX A: ELECTRICAL CONDUCTIVITY

The relevant components of the electrical conductivity
tensor σ can be computed as well using the linear-response
formalism, Eq. (4), but using the momentum p̂ instead of the
spin current operator.

In Figs. 7(a), 7(b) and 7(c), we give for completeness’ sake
the computed longitudinal conductivities σ1 and σ2, respec-
tively, for Fe, Co, and Ni as a function of the electrochemical
potential E . As discussed earlier, those are given by the di-
agonal elements of σ. For the cubic materials Fe and Ni, the
lowering of symmetry caused by M has negligible impact on
the asymmetry between σ1 and σ2 (less than 1% difference).
For Co, the distinction between σ1 and σ2 must be taken
into account because of the structural asymmetry of the hcp
structure [see Fig. 7(b)].

The anomalous conductivity elements are odd under
time-reversal symmetry (T odd) and require SOC in the
calculations. At the Fermi energy, we have σA = −0.64 for
Fe, σA = −0.40 for Co and σA = 1.29 for Ni, in units of
103(� cm)−1. Although there is a noticeable quantitative
difference, with a sign change for Ni (which is consistent
with previous investigations [63,64]), the spectra σA(E ) show
strong qualitative similarities. In the case of Fe and Co, the
negative dip in the spectrum is located around the Fermi
energy, giving a negative σA(E = 0), while for Ni there is
a positive peak around the Fermi energy, hence the positive
value for σA(E = 0).

The lifetime broadening dependency of σ is shown in
Fig. 8. The longitudinal conductivities [Fig. 8(a)] display a ∝
δ−1 scaling, as expected, since this component arises mainly
from the intraband response of the electronic states around the
Fermi energy.

For σA [Fig. 8(b)], the broadening dependency is different,
as here the interband contribution of Eq. (4) is responsible,
as has been reported in previous works [65]. We note that
extrinsic contributions to σA such as the side jump or skew
scattering are not explicitly included in our calculations.

APPENDIX B: SPIN AND ORBITAL TRANSVERSE
THERMAL CONDUCTIVITIES

We provide calculated results for the nonzero elements of
the �S and �L tensors, giving the SNE, MSNE, as well as
the ONE and MONE, as a function of the electrochemical
potential E in Fig. 9. The computed spin and orbital thermal
conductivities all display a strong variation with the electro-
chemical potential. The peak values of the T -odd magnetic
and the T -even components are comparably large.
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FIG. 9. Calculated spin Nernst, magnetic spin Nernst, orbital Nernst, and magnetic orbital Nernst effects in Fe, Co, and Ni as a function of
the electrochemical potential E at T = 300 K and for h̄δ = 40 meV.
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