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We investigate the elastic normal modes of two-dimensional media with broken time-reversal and parity
symmetries due to a Lorentz term. Our starting point is an elasticity theory that captures the low-energy physics
of a diverse range of systems such as gyroscopic metamaterials, skyrmion lattices in thin-film chiral magnets,
and certain Wigner crystals. By focusing on a circular disk geometry, we analyze finite-size effects and study
the low-frequency shape oscillations of the disk. We demonstrate the emergence of the Rayleigh surface waves
from the bottom of the excitation spectrum and investigate how the curvature of the disk-boundary modifies
their propagation at long wavelengths. Moreover, we discover a near-cyclotron-frequency wave that is almost
completely localized at the boundary of the disk but is distinct from the Rayleigh wave. It can be distinguished
from the latter by a characteristic excitation pattern in a small region near the center of the disk.
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I. INTRODUCTION

The field of mechanical metamaterials has seen a lot of
development lately, see Refs. [1,2]. Certainly, part of the
inspiration in this area stems from an interest in developing
classical mechanics analogs of celebrated quantum mechan-
ical systems [3]. A prominent example for this approach is
gyroscopic metamaterials [4–10], which were developed as
mechanical analogs of quantum Hall systems. The constant
rotation rate of the gyroscopes around their axes implies an in-
nately broken time-reversal-symmetry in these metamaterials.
This provides the prerequisite for the existence of topologi-
cally protected edge modes. One way to view all this activity
is through the lens of effective field theory with the underlying
symmetries serving as constraints. The very different settings,
classical in one case and quantum in the other, give rise to
similar physics because the systems are governed by the same
field theory at long wavelengths, with their forms severely
constrained by symmetry.

In a previous paper [11], some of us explored a low-energy
two-dimensional elasticity theory that is suitable for the de-
scription of systems with broken parity P and time reversal
T symmetries, but intact combined PT symmetry, originating
from Lorentz forces. We have used this theory to explore the
Rayleigh edge-wave phenomenology in elastic materials and
found results that are applicable to platforms as diverse as gy-
roscopic metamaterials [4,12], skyrmion lattices [13,14], and
certain classes of Wigner crystals in magnetic fields [15]. In
that paper, our focus was on edge waves that propagate along
a straight boundary of a semi-infinite plane. An immediate
question, of practical importance in real-world applications,
concerns the robustness of these predictions with regard to
finite-size effects. What are the effects of the boundary cur-
vature on propagating edge waves?

After Rayleigh’s seminal work [16] on surface modes
localized near the boundary of a straight semi-infinite
medium, the influence of a curved boundary was studied by
Sezawa [17] and by Viktorov [18]. These authors considered
propagation of Rayleigh waves along cylinders and spheres.
Given the shape of the Earth, the latter is a problem of
practical interest in seismology and has therefore received
thorough treatment in the literature, see, e.g., Ref. [19] for
a more detailed discussion of curvature effects. The prin-
cipal finding in these works is that the curvature of the
medium’s boundary entails a modification of the Rayleigh-
wave dispersion relation at low frequencies and small wave
numbers.

Naturally, the results of these papers cannot be applied to
the system of our interest since the Lorentz forces, which were
not considered in these classic works, dominate the dynamics
at low frequencies. One goal of the present paper is to address
the consequences of finite system size, see Fig. 1 for the
setup.

We introduce the linearized elasticity theory in the pres-
ence of the Lorentz term in Sec. II and find that the coupled
partial differential equations for transverse and longitudinal
displacements can be analytically solved in polar coordinates.
We analyze the oscillation spectrum of the normal modes in
the circular disk geometry in Sec. III. Section IV contains
several new results about surface modes. First, we explain
how Rayleigh waves fit into the oscillation spectrum. We
find that the oscillation frequencies of Rayleigh waves at
long wavelengths are exponentially diminished compared to
the straight-boundary case [11], see Fig. 5 and Eq. (25). We
also discuss the low-frequency shape oscillations of the disk
and study its dependence on the Poisson ratio, see Fig. 6.
Quite remarkably, we discover an additional branch of sur-
face modes that emerge at frequencies close to the cyclotron
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FIG. 1. Setup of our study. Our EFT describes a disk-shaped
piece of a gyroscopic metamaterial with an isotropic elasticity tensor
and a Lorentz term. Microscopically, such a system can be realized
in the limit of small nutation angles by arranging gyroscopes with
rotation frequencies � on a triangular lattice and coupling them with
springs.

frequency, see Fig. 8. These modes are almost fully local-
ized at the boundary of the disk, except for a small region
near the center. The visual appearance of this mode is rem-
iniscent of the famous Arago spot from wave optics, where
diffraction generates a bright central spot in the shadow of
a disk [20,21]. In the outlook, Sec. V, we discuss exper-
imental consequences for the observation of the cyclotron
surface mode.

II. LOW-ENERGY ELASTICITY OF MEDIA WITH
LORENTZ FORCES

The starting point of our analysis is the elasticity theory
of two-dimensional media with broken P and T symmetries
but intact combined PT symmetry. The degree of freedom of
this model is a two-dimensional, coarse-grained field u(x) =
(ux(x), uy(x)) describing small displacements of the medium
from its equilibrium configuration. The theory is fully defined
by the Lagrangian density,

L = ρ

2
[∂t u(x)]2 − ρ�

2
εi ju

i(x)∂t u
j (x) − Eel(ui j (x)), (1)

where the first term is the kinetic energy of the displacement,
with ρ denoting the constant mass density of the medium. The
second term is a Lorentz term that violates P and T symmetry,
� is the cyclotron frequency, and εi j the Levi-Civita tensor
in two dimensions. The final term Eel is the elastic displace-
ment energy density of the system, which is quadratic in the
strain fields ui j = (∂iu j + ∂ jui )/2. The form of Eel is severely
constrained by symmetry. In fact, imposing a sixfold rotation
symmetry on a solid in two dimensions reduces its elastic

energy density to the form [22]

Eel ≡ 2C1u2
kk + 2C2[ui j − ukkδi j/2]2, (2)

= 2C1(∂kuk )2 + 1

2
C2[∂iu j + ∂ jui − ∂kukδi j]

2, (3)

with C1,C2, the compressional and shear moduli, being the
only elastic parameters for this case. A crystal with less sym-
metry would introduce further elasticity constants [22]. For
the sake of simplicity, we focus our attention on a sixfold
symmetric crystal in this paper.

The Lagrangian Eq. (1) captures the low-energy physics
of gyroscopic metamaterials [4–10]. These are networks of
elastically coupled gyroscopes that break time-reversal sym-
metry by spinning at a fixed rotation rate around their axis of
symmetry. The Lorentz term dynamics is generated by the fact
that a swiftly rotating gyroscope responds to an external force
by moving transversely to it. In fact, our Lagrangian Eq. (1)
can be viewed as the continuum field theory governing the
triangular-lattice models considered in Ref. [9] at large length
scales and small nutation angles of the gyroscopes.

Another notable system which is described by Lagrangian
Eq. (1) is the skyrmion triangular crystal emerging in the
thin-film chiral magnets of Fe0.5Co0.5Si [23] and FeGe [24]. A
continuum field theory for these skyrmion lattices was worked
out in the literature [13,14] and has precisely the form of
Eq. (1). The Lorentz term appears very naturally in this the-
ory, since skyrmions in a ferromagnet experience an effective
magnetic field B, yielding a cyclotron frequency � = B/m,
where m is the mass of a skyrmion.

A. Wave motion in the circular disk geometry

Having introduced the elasticity theory that we wish to
study, we will now analyze the oscillation modes of a circular
disk of elastic material that is governed by the Lagrangian
Eq. (1), see Fig. 1. We begin by working out the bulk
eigenmodes in polar coordinates and then apply stress-free
boundary conditions at the rim of the disk.

From the Lagrangian Eq. (1), the equation of motion

−ω2ui + iω�εi ju
j = 2v1∂

i∂kuk + v2∂
j∂ ju

i (4)

follows, where vi = Ci/ρ and we made the time-periodic
ansatz ui(r, t ) = ui(r)eiωt . It is understood that the physi-
cal displacement field is obtained by taking the real part of
ui(r, t ). As is customary [25], we solve this vector differential
equation by decomposing the displacement field into a curl-
free and a divergence-free part,

ui = ∂ iψ + εi j∂ j	, (5)

where ψ and 	 are scalar potentials. Inserting this decom-
position into the equation of motion Eq. (4), we can derive
two independent equations by applying either ∂i or εi j∂

j to
it. Although at first sight, these are fourth-order equations, an
overall trivial ∇2 operator can be removed from all the terms,
yielding

(2v1 + v2)∇2ψ + ω2ψ + iω�	 = 0, (6)

v2∇2	 + ω2	 − iω�ψ = 0. (7)
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In the absence of the Lorentz term, i.e., for � = 0, the two
equations decouple into the usual longitudinal and transverse
eigenmodes. However, the Lorentz term couples these modes
such that the actual eigenmodes are superpositions of longitu-
dinal and transverse waves.

To solve the coupled system of Helmholtz Eqs. (6) and (7)
for the case of a circular disk, we switch to polar coordinates
(r, θ ) with the origin at the center of the disk. It is well-known
that in polar coordinates, the eigenmodes of the Laplacian op-
erator are Jn(qr)einθ , where Jn(x) denotes the nth order Bessel
function of the first kind and q is the radial wave number, thus
we have the identity

∇2[Jn(qr)einθ ] = −q2Jn(qr)einθ . (8)

Now any function f (r, θ ) can be first expanded in a Fourier
series

∑
n fn(r) exp(inθ ) and thereafter the functions fn(r)

can be expressed as an integral over Bessel functions∫ ∞
0 dqq f̂n(q)Jn(qr), where f̂n(q) is the Hankel transform of

fn(r). Thus in the following it suffices to restrict our attention
to ψ and 	 of the form

ψ = AnJn(qr)einθ , 	 = iBnJn(qr)einθ . (9)

where the factor of i in the second equation was introduced
for future convenience. The other family of eigenmodes of the
Laplacian are the Bessel functions of the second kind, which
all have a singularity at r = 0 and are therefore unphysical
in this problem. We note that one can define the azimuthal
wave number kϕ ≡ n/R that is especially relevant for wave
propagation along the disk boundary. We will use the term
wave number both for n/R and n, since R will be a constant
throughout this paper.

To simplify the notation, we now introduce the frequency
scale

ω0 ≡
√

2v1 + v2

R
(10)

and measure the frequency ω and cyclotron frequency � in
units of ω0:

f ≡ ω

ω0
, b ≡ �

ω0
. (11)

According to Eq. (6), the physical meaning of ω0 is that it sets
the frequency scale for the longitudinal modes of the disk in
the absence of the magnetic field (� = 0). In the following,
we will sometimes refer to b as the (dimensionless) magnetic
field. We also measure the wave number q in units of the
inverse radius R by introducing the dimensionless variable:

x ≡ qR. (12)

With these simplifications, insertion of the ansatz Eq. (9) into
the wave Eqs. (6) and (7) yields(−x2 + f 2 − f b

− 2 f b
1−σ

−x2 + 2 f 2

1−σ

)(
An

Bn

)
= 0, (13)

where we expressed the ratio of the elastic constants v1, v2

through the Poisson ratio σ ≡ (2v1 − v2)/(2v1 + v2). For this
system of equations to have a solution, the coefficient matrix
must have a vanishing determinant. This condition yields the

dispersion relation in the form

x2
± = f 2

2(1 − σ )

[
3 − σ ± (1 + σ )

√
1 + 8

b2

f 2
· 1 − σ

(1 + σ )2

]
.

(14)
Thus, the general solution for a given order n and frequency
ω is given by

ψ = [A+
n Jn(q+r) + A−

n Jn(q−r)]einθ , (15)

	 = i[B+
n Jn(q+r) + B−

n Jn(q−r)]einθ . (16)

The ratio of amplitudes A+
n /B+

n and A−
n /B−

n is fixed by
Eq. (13), see Eq. (A3) for the explicit formula. Although the
ratios A+/A− and B+/B− are arbitrary at this point, we will
see below that boundary conditions fix them.

One of the immediate consequences of having a finite
Lorentz term is that there exists a regime with f < b, where
the frequency of oscillations is smaller than the cyclotron
frequency. According to Eq. (14), x− is purely imaginary here
and as a consequence the Bessel function carries an imaginary
argument, implying a non-oscillatory radial decay of the q−
solution.

To fully define the wave propagation problem, we need to
specify the boundary conditions at the edge of the disk r = R.
These boundary conditions quantize the allowed values of q±
and thus render the frequency spectrum discrete. We make the
assumption that the elastic medium is free at the boundary,
in other words that no external forces act at the crystal on
its outer surface. To implement this, we introduce the stress
tensor T that is defined as a derivative of the elastic energy
with respect to the strain field, Ti j ≡ ∂Eel/∂ui j , thus

Ti j/ρ = 2v1ukkδi j + 2v2[ui j − ukkδi j/2]. (17)

The absence of external forces at the boundary implies T · n =
0, where n is a normal vector to the boundary of the disk. In
polar coordinates, this implies Trr = 0 and Trθ = 0 and hence

(2v1 + v2)∂rur + (2v1 − v2)

[
ur

r
+ 1

r
∂θuθ

]
= 0, (18)

∂ruθ + 1

r
∂θur − uθ

r
= 0 (19)

at r = R.
These boundary conditions constrain the general solution

Eqs. (15) and (16) by allowing only a certain mixture of +
and − modes, satisfying(

Pn(x+, α+) Pn(x−, α−)
Qn(x+, α+) Qn(x−, α−)

)(
A+
A−

)
= 0, (20)

where Pn and Qn are functions involving Bessel functions
and their derivatives, while α± = B±

n /A±
n are the ratios of

amplitudes of the + and − modes. The explicit forms of all
these functions are lengthy and we therefore present them in
Appendix A. The system of Eqs. (20) can be satisfied if the
determinant �n( f , b, σ ) of the coefficient matrix vanishes.
Since the full form of the determinant is rather unwieldy,
we do not present it here, but give the full expression in
Appendix A. We note that for a given coefficient b and
fixed elasticity properties, the determinant is a function of
the dimensionless frequency f only, since x± are themselves
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(a) (b)

FIG. 2. (a) Frequency dependence on the dimensionless parameter b with n = 0, σ = 0.25 for the three lowest modes s = 0, 1, 2. The
inset shows the avoided crossings near the line f = b. (b) Frequency dependence on the dimensionless parameter b with n = 2, σ = 0.25 for
the lowest two modes s = 0, 1. Both the negative and positive frequency solutions are shown.

functions of f . On general grounds, the frequencies f which
yield a vanishing determinant will be at most a discrete set of
values. The reason for this is that as the frequency f is varied,
the determinant, being a combination of Bessel functions and
derivatives, will oscillate and change its sign. Each zero of
the determinant is a normal frequency of elastic vibrations.
Below we carry out numerical calculations to determine some
of these frequencies.

Solving the equation �n( f , b, σ ) = 0 for f gives a
frequency spectrum f (n, s, σ, b), with the integer s � 0 num-
bering the roots for given n, σ, b. One property of these
solutions is that they are invariant under the simultaneous
change of signs f → − f , b → −b. This is a consequence of
the fact that our elastic system is invariant under the combined
operation of time reversal and sign flip of the magnetic field.
However, unlike in the zero field case, the solutions are no
longer invariant under n → −n only, because the Lorentz term
breaks the time-reversal symmetry of the problem.

III. SPECTRUM OF OSCILLATIONS

We now explore the solutions of the characteristic Eq. (A4)
and how they depend on the magnetic field b and the angular
wave number n. We find that the normal modes with s � 1
do not change qualitatively for different values of the Poisson
ratio σ . For this reason, we fix the latter to a representative
value of σ = 0.25 throughout this section. On the other hand,
we explain in Sec. IV that the lowest normal modes with
s = 0 correspond precisely to the Rayleigh waves. Their spec-
tra have a strong dependence on the Poisson ratio.

A. Frequency dependence on magnetic field

The complicated form of the characteristic Eq. (A4) re-
quires us to treat the full problem numerically. The exact
numerical solution of the characteristic equation yields the
eigenfrequencies as a function of the magnetic field. The plots
in Figs. 2(a) and 2(b) show this dependence for n = 0 and
n = 2, respectively.

Numerically, one finds that for small fields b the frequency
grows linearly with b. It turns out that in the high field

regime |b| � 1 the characteristic equation becomes analyt-
ically tractable, providing us with an understanding of this
limit. In particular, for the high-field regime the dispersion
Eq. (14) reduces to

| f | = ±1

b

√
1 − σ

2
x2
±. (21)

Inserting this into the characteristic Eq. (A4), we find that
x± becomes independent of b in the large b limit and from
Eq. (21) we deduce a 1/b behavior of the frequency. To
summarize, we have the two asymptotic relations,

f ∼
{

c0 + c1b as b → 0
1/b, as b → ∞,

(22)

with c0 and c1 parameters that depend on (σ, n, s). We
checked that the function c0(σ, n, s) is in agreement with
results previously obtained by Refs. [26,27] when the field b
is zero.

Interestingly, we observe that for intermediate values of
b the frequency curves with different values of s repel each
other, see the inset of Fig. 2(a). A discussion of this phe-
nomenon is given at the end of the next subsection.

As noted above, the Lorentz term breaks the time-reversal
symmetry. As a consequence, the spectrum is not invariant un-
der f → − f . The breaking of this symmetry with increasing
value of b is demonstrated in Fig. 2(b), where the negative and
positive eigenfrequencies are shown for the n = 2 case. An
implication of this time-reversal breaking is that we cannot
form superpositions of time-reversed eigenmodes that pro-
duce standing waves, see the discussion in Sec. IV B.

B. Frequency dependence on angular wave number

We now turn our attention to the study of the dispersion of
the frequency spectrum with the angular wave number n. For
fixed integers n, the characteristic equation has as solutions a
discrete sequence of eigenfrequencies. The quadratic depen-
dence on the angular wave number can clearly be observed
in Fig. 3(a), where we show the dispersion for a high field
value of b = 100. For comparison, Fig. 3(b) shows the b = 0
result. Note that to aid the eye, we are displaying dashed
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(a) (b)

FIG. 3. Frequency dependence on the angular wave number n with (a) b = 100 and (b) b = 0, σ = 0.25 for the lowest four modes. Dashed
lines join the points to aid the eye.

lines that connect the discrete sequence of eigenfrequencies.
These lines are generated by solving the characteristic equa-
tion at non-integral values of n. These values are unphysical,
but continuing n to the real line is a mathematically well-
defined procedure and can therefore be used to aid in the
visualization.

The high field shape of the spectrum is quite different from
the zero field case. When field b is zero, the eigenfrequencies
grow linearly with n, for large |n| [17]. When the magnetic
field is finite and the considered frequencies are less than b,
the dispersion relation changes from linear to quadratic. We
call this range of frequencies the Lorentz-dominated regime.
Furthermore, the field also breaks the n → −n symmetry of
the spectrum.

Interestingly, the dispersion shows new features when one
zooms in on the frequency region near f = b, see Figs. 4(a)
and 4(b). Quite strikingly one observes that the frequency
values lie on a network formed out of parallel-translated
parabolas and lines. In the following, we give an analytic
explanation of this phenomenon. We focus on the f ≈ b
regime with b � 1. For f � b, in Eq. (14) x− is imaginary
and thus in Eqs. (15) and (16) only the q+ part oscillates.
Upon crossing f = b, both parts oscillate, here x− is very

small while x+ is very large. We can analytically investigate
the regime of interest by writing f = b + � f with a small
� f and expanding the dispersion relation Eq. (14) to linear
order in � f . Inverting Eq. (14) yields the two families of
frequencies:

� f = − b

1 − 2(1−σ )
(3−σ )2

+
√

1−σ
3−σ

1 − 2(1−σ )
(3−σ )2

x+, (23)

� f = 3 − σ

4b
x2
−. (24)

We show in Appendix B that for large n, both x+ and x−
grow linearly with n. As a consequence, the linearly spaced x+
solutions yield, according to Eq. (23), the family of linearly
spaced frequencies, while the linearly spaced values of x−
yield according to Eq. (24) the family of quadratically spaced
frequencies. This explains the network of parabolas and lines
found in Figs. 4(a) and 4(b). The lowest parabolic series of
points, highlighted by the turquoise-colored curve in Fig. 4(a),
turns out to be a special kind of surface wave that is distinct
from Rayleigh waves. We refer to it below as the cyclotron
surface wave, since it has a frequency close to the cyclotron

(a) (b)

FIG. 4. (a) Frequency dependence on the angular wave number n with b = 100, σ = 0.25, plotted for modes with (a) f � b and (b) f � b,
respectively. Dashed lines join the points to aid the eye. We have marked the branch with cyclotron surface modes in turquoise color.
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frequency. We will discuss this surface wave in some detail in
Sec. IV.

Another interesting feature of these plots is the fact that
the dashed curves never cross each other. This aspect can be
understood intuitively by examining the form of the matrix
Eq. (20). Let us consider two dashed curves with consecutive
values of s. By definition, they are solutions to the characteris-
tic equation �n( f (s), b, σ ) = 0 and �n( f (s + 1), b, σ ) = 0,
respectively, with n viewed as a continuous variable. A cross-
ing point is unlikely, since it would imply that �n( f , b, σ ),
which is a complicated function of Bessel functions, must
have a double root at a particular value of n. We note that
the avoided crossings in Fig. 2(a) have the same mathematical
origin, except that here the double root of �n( f , b, σ ) would
occur as a function of the parameter b.

IV. SURFACE MODES—RAYLEIGH AND BEYOND

A. Rayleigh modes

In semi-infinite elastic systems, a particular type of mode
can be excited that is exponentially localized near the edge
of the material, the so-called Rayleigh wave [16,22,25]. In
the case of a finite disk, however, there is no sharp distinc-
tion between propagation on the edge and propagation in the
bulk [17]. As clarified by Viktorov [18], for large enough n it
is the lowest s = 0 branch which becomes the Rayleigh mode
as the disk radius R tends to infinity. In Appendix C, we sketch
his argument and show that it also applies in the presence of
the Lorentz term.

In the previous paper [11], it was found that crystals with
the Lorentz term support Rayleigh waves in the half-plane
geometry for all values of the Poisson ratio σ . It was also
demonstrated that the wave propagation is asymmetric with
a dispersion relation that is dependent on the sign of the
wave number k. The notable exception is the special point
σ = 1/3, where the Rayleigh wave spectrum becomes sym-
metric. Naturally, in the disk geometry for large enough |n|,
we must recover all previous results, since waves with a large
azimuthal wave number |n| have short wavelengths and are
therefore insensitive to the curvature of the edge. However,
for small |n|, departures from the semi-infinite results are to
be expected.

To capture the effect of edge curvature, we have studied the
Rayleigh wave spectrum for σ = 1/3 and finite values of b.

Shown as blue circles in Fig. 5 are the frequencies f of the
s = 0 normal modes as a function of the angular wave number
n for b = 100 in a log-log plot. When n is large, such that we
are in the Lorentz-dominated regime, the dispersion follows a
quadratic behavior (orange line), with a prefactor that exactly
matches the analytical result obtained in Ref. [11]. At smaller
n, however, the frequencies are substantially suppressed. A fit
(green) to the data with exponentials of inverse powers of n
shows that a dispersion of the form

f (kϕ ) =
(

2

3

)3/2 k2
ϕR2

b
× e−2.3/k4

ϕR4
(25)

captures the crossover well. The first factor is our analytical
result [11]. The second factor is obtained by dividing the data
by the first factor and fitting the logarithm of this result to

2 5 10 20

0.010

0.100

1

10

FIG. 5. Frequency f of the Rayleigh modes (s = 0) as a function
of the angular wave number n for b = 100 and σ = 1/3. At large
n, the frequency scales quadratically in n according to our result in
Ref. [11]. The frequency is suppressed at small values of n.

powers of kϕ . Interestingly, we find that the exponential factor
is identical for different values of b. Here we have explicitly
used the azimuthal wave number kϕ = n/R to emphasize the
dependence on the disk radius. The lower value of the fre-
quency for the disk compared to the semi-infinite medium
stems from the low-frequency shape oscillations discussed in
the next section. For R → ∞, the exponential factor tends to
1 and we recover the scaling of the infinite system.

B. Shape oscillations

A property that is of particular interest to experimental
observations are the low-frequency shape oscillations of the
elastic disk. To study these, we turn to the form of the
eigenmodes given in Eqs. (D1) and (D2) of Appendix D.
The numerical solutions for the n = 2, s = 0 eigenmode in
the presence and absence of the magnetic field, respectively,
are visualized in the Supplemental Material [28] and Fig. 7.
The oscillation pattern of this figure shows two maxima. In
general, the oscillation with angular wave number n has n

FIG. 6. The trajectory of a point on the boundary during a full
period of oscillation is elliptical. The aspect ratio b/a is shown as
a function of the Poisson ratio σ . Plotted are the radial versus the
azimuthal displacements for b = 100, n = 2, s = 0.
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FIG. 7. Time series of shape oscillations; for videos see Ref. [28]. (a) Oscillation pattern for n = 2, b = 1000, σ = 0.25, and s = 0. The
blue points show the disk boundary displaced from the equilibrium position (gray). The velocity vector field is shown in red. During one period
of oscillation, the pattern rotates as a whole by an angle 2π . (b) When the field is turned off for the same set of parameters, the oscillation
pattern becomes a standing wave.

maxima, since the potentials have an angular dependence
given by exp(inθ ).

The shape of the disk outline always rotates as a whole.
The direction can be flipped by switching the sign of magnetic
field b. However, in the zero-field case, a standing field oscilla-
tion pattern is always an eigenmode, since one can superpose
an oscillation with frequency ω with its time-reversed partner,
which has frequency −ω. Such a superposition is not an
eigenmode for finite b, since broken time-reversal implies that
the time-reversed partner is not a solution of the equations of
motion.

The shape oscillations shown in Fig. 7 are not qualitatively
affected by the value of the Poisson ratio σ . However, as
σ is tuned, the polarization of the oscillation changes. We
follow this change by tracing out the trajectory of a point
on the boundary during a single period of oscillation for the
n = 2, s = 0 mode. We find that the shape is always an ellipse.
As the value of the Poisson ratio is tuned from −1 to +1, we
find that the trajectory starts out as a circle and is continuously
deformed into ellipses of increasing eccentricity, see Fig. 6.
This is in agreement with the finding in Ref. [11] that at
σ = −1 the boundary hosts a special mode with frequency
f = b that is circularly polarized.

C. Cyclotron surface mode

Now we turn to the study of the cyclotron surface mode
that we mentioned in Sec. III B and that we highlighted in
turquoise in Fig. 4(a). In Figs. 8(a)–8(d), these modes are
visualized by density plots of the time-averaged kinetic energy
of the disk. Clearly, most of the kinetic energy is localized
near the boundary of the disk, indicating that these are well-
localized surface modes. As a reference, we are also plotting

the Rayleigh modes (s = 0) in the same way in the lower
row, Figs. 8(e)–8(h). The degree of localization is similar in
both cases. However, notice that some of the cyclotron surface
modes, as, for example, the one in 8(b), have a noticeable
kinetic energy density very close to the center of the disk.

As discussed in Sec. III B in the region f ≈ b, where the
cyclotron surface mode appears, the value of x− is small
compared to unity, while the value of x+ is very large. The
full displacement field is a superposition of the + and −
branches as given in Appendix D, see Eqs. (D1) and (D2). As a
consequence of the smallness of x−, the − branch contribution
to the displacement field is nearly vanishing close to the center
and monotonically increases toward the edge. If n � 10, the
− branch is well-localized near the edge. A similar statement
also holds for Rayleigh waves in a disk geometry [17]. If
we can now identify an interval of n values for which the +
branch contribution in Eqs. (D1) and (D2) remains small, then
the resulting modes must be essentially edge modes, since
they will be well-localized near the disk boundary.

In Appendix D, we show that for x+ � n the contributions
from the + branch are negligible, see Eqs. (D6) and (D7).
Numerically, we identify that this inequality holds whenever
n < b/10. To summarize, inside the window 10 < n < b/10
we find well-localized surface modes that we named cyclotron
surface waves and which are distinct from Rayleigh waves.

We derive the explicit expression for the cyclotron surface
eigenmode in the Appendixes, see Eqs. (D8) and (D9).

The question now arises as to how these modes can be
distinguished in experiments from the quadratically dispers-
ing Rayleigh waves with s = 0. First, in contrast to the latter,
the frequency scale of the cyclotron surface waves is set by
the frequency �, while the Rayleigh mode frequencies are
much smaller. Moreover, in the case of the cyclotron surface
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FIG. 8. Plot of normalized time-averaged kinetic energy density throughout the disk of radius R for b = 1000, σ = 0.25. (a)–(d) Cyclotron
surface waves for different values of n. (e)–(h) Rayleigh-type s = 0 modes for the same values of n. Both types of waves show a strong
concentration of kinetic energy near the boundary. For the cyclotron surface waves there is, in addition, a small excited region near the center
of the disk. The displacement amplitude is modulated with wave number qpattern, see Eq. (26).

modes there is a small region at the center of the disk that
is noticeably displaced and thereby serves as a spatial sig-
nature. Its origin stems from a small contribution of the +
mode as discussed above. In fact, for n = 20 this effect is
quite strong, and can be seen as a series of concentric rings
in the displacement field, see Fig. 8(b). We recall that the
presence of this small + branch contribution is in the end a
consequence of the fact that a true eigenmode has to satisfy
the stress-free boundary conditions Eqs. (18) and (19).

We can work out the shape of this signature pattern by
expanding Eqs. (D1) and (D2) for large x+ � 1 and dropping
the terms involving x−. In this regime, we can employ the
large-argument asymptotics for Jn(x) [29] to derive the wave
number of the oscillation, and we find

qpattern ≈ q+ ≈
[

1

2v1 + v2
+ 1

v2

]1/2

�. (26)

Clearly, this wave number is entirely determined by the elastic
properties of the material and the cyclotron frequency. A
small-amplitude pattern at the center of the disk with the char-
acteristic wave number qpattern is the hallmark of this excitation
that is almost fully localized on the edge.

To activate the cyclotron mode, we envisage that a gyro-
scope at the boundary of the lattice is periodically displaced
with frequency �. When the driving ceases, one should be
able to observe excited surface modes.

V. CONCLUSION AND OUTLOOK

In this paper, we explored the normal modes of an elastic
disk described using the effective field theory Eq. (1) with a
Lorentz term that breaks time-reversal and parity symmetries.
By contrasting the spectrum with the results that some of

us previously obtained for the semi-infinite plane [11], we
uncover the long-wavelength modifications for the disk ge-
ometry. The most striking of our results is the presence of
strongly localized cyclotron surface modes, which are differ-
ent from the classical Rayleigh waves. We expect that these
modes are experimentally observable in networks of coupled
gyroscopes. We predict using the elasticity theory Eq. (1)
that the cyclotron surface modes can be recognized by the
presence of a series of very weak rings near the center of the
disk with a modulation wave number given in Eq. (26).

The fact that the cyclotron surface mode appears at fre-
quencies close to the cyclotron frequency � implies that
higher order terms in the effective Lagrangian Eq. (1), which
were not considered in the present paper, may play an impor-
tant role. It will therefore be of considerable interest to probe
the robustness of our predictions by performing surface wave
experiments on gyroscopic metamaterials at frequencies close
to the cyclotron frequency �.

In our calculations above, we have assumed a gyroscopic
network with sixfold symmetry. One interesting direction to
pursue is to consider crystals of lesser symmetry. Naturally,
this increases the parameter space of elastic constants in the
model and may lead to modifications of the cyclotron modes
found in the present paper.
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APPENDIX A: THE CHARACTERISTIC EQUATION

The characteristic equation for the eigenfrequencies of the vibrational modes of the disk is obtained by setting the determinant
of the matrix in Eq. (20) equal to zero. The polynomials appearing in that equation are given by

Pn(x, α) = Jn(x)[n2 − x2 + nα − n2σ − nασ ] + xJ ′
n(x)[−1 − nα + nασ + σ ], (A1)

Qn(x, α) = Jn(x)[−2n2α − 2n + αx2] + 2xJ ′
n(x)[n + α], (A2)

where α± is the ratio of the amplitudes B±
n /A±

n obtained from Eq. (13):

α± = − f

2b
· 1 + σ

1 − σ

[
1 ±

√
1 + 8

b2

f 2
· 1 − σ

(1 + σ )2

]
. (A3)

With these results, we can write the characteristic equation in the final form

Jn(x+)Jn(x−) · 2 f 2√χ (1 + σ ) ·
[
− f 3

b
· 1

(1 − σ )2
+ f

(
2n(n − 1)

(1 − σ )b
+ b

(1 − σ )2

)
− 2n(n − 1)

(1 − σ )

]

+ Jn(x−)Jn+1(x+)x+

[
− f 3

b
(1 + σ )· 3 − σ − (1 + σ )

√
χ

4(1 − σ )
·
(

1 − √
χ − 2

1 − σ
(1 + √

χ )

)

− 2n f 2 · 3 − σ − (1 + σ )
√

χ

1 − σ
− f

b

√
χ (1 + σ )2n(n − 1)(n + 1) + 2n(n − 1)(n + 1)(3 − σ )

]

− Jn(x+)Jn+1(x−)x−

[
− f 3

b
(1 + σ ) · 3 − σ + (1 + σ )

√
χ

4(1 − σ )

(
1 + √

χ − 2

1 − σ
(1 − √

χ )

)

−2n f 2 · 3 − σ + (1 + σ )
√

χ

1 − σ
+ f

b

√
χ (1 + σ )2n(n − 1)(n + 1) + 2n(n − 1)(n + 1)(3 − σ )

]

+ Jn+1(x−)Jn+1(x+) · 2(n2 − 1)(1 + σ )
√

2 f · | f |
√

f 2 − b2

b
·

√
χ√

1 − σ
= 0, (A4)

where we introduced the shorthand

χ ≡ 1 + 8
b2

f 2
· 1 − σ

(1 + σ )2
. (A5)

In the zero field case, this equation reduces to the form derived by Sezawa [17].

APPENDIX B: PROOF THAT x± ∼ n FOR LARGE n AT
CONSTANT s

Here we prove by contradiction that for n → ∞ and s
fixed, both x+ and x− scale proportionately to n. We begin
with the proof for x+. Assume first that x+ = O(nγ ) with
γ > 1. In the large n limit, Eqs. (A1) and (A2) transform into

Pn(x+, α) ≈ −Jn(x+)x2
+, (B1)

Qn(x+, α) ≈ Jn(x+)α+x2
+. (B2)

Inserting this into Eq. (20), we find

Jn(x+) ≈ 0. (B3)

Thus, for large n, the x+ are close to the roots of the Bessel
functions. However, it is known [29] that the sth root of the
Bessel function Jn(x) scales proportionately to n, thus γ = 1,
yielding a contradiction.

A similar type of argument shows that γ < 1 also leads to
a contradiction. Proving that x+ = O(n).

The same line of reasoning can also be applied for x− to
prove x− = O(n). Thus we have shown that x± ∼ n for large
n while holding s fixed.

APPENDIX C: EMERGENCE OF RAYLEIGH-WAVES IN
THE R → ∞ LIMIT

Here we summarize the explanation by Viktorov [18] how
the s = 0 mode becomes the Rayleigh edge-mode when R →
∞. The argument relies on an asymptotic expansion of the
Bessel functions Jn(x) for large n discovered by Debye [30],
see also Ref. [29]. The lowest term of this expansion states
that

Jn(x) ≈ 1√
2πn tanh α

· en(tanh α−α) (C1)

when n is large, here cosh α = n/x. This asymptotic expres-
sion is valid as long as x < n. We can use this result to expand
Jn(qr) near the boundary. We first write r = R − h, with h
a positive number much smaller than R. We use the Debye
formula Eq. (C1) and expand for small h. This yields the
approximation

Jn(qr) ∼ e−
√

n2/R2−q2(R−r) (C2)

valid if qR < n and r < R. Thus, whenever the latter condi-
tion holds we have a mode exponentially localized near the
boundary. This is precisely the Rayleigh mode.
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It can be checked numerically that for large enough n,
the s = 0 modes satisfy q+r = x+(s = 0) < n, thus Jn(q+r)
decays exponentially. The same is true for Jn(q−r), since q−
is always imaginary. Therefore, at large enough n the s = 0
modes correspond to the Rayleigh waves.

The modes of order s � 1 do not satisfy the condition
x+(s) < n, thus the argument cannot be applied to deduce
exponential decay.

APPENDIX D: EXPRESSION FOR THE DISPLACEMENT
FIELDS

Using the definition of the displacement in terms of the
potentials Eq. (5) and the general solution form Eqs. (15)
and (16), we find for the displacement fields

ur =1

r
[ − A+

n q+rJn+1(q+r) + A+
n nJn(q+r) − A−

n q−rJn+1(q−r)

+ A−
n nJn(q−r) − n(α+A+

n Jn(q+r) + α−A−
n Jn(q−r))],

(D1)

uθ = i

r
[n(A+

n Jn(q+r/R) + A−
n Jn(q−r))

+ α+A+
n q+rJn+1(q+r) − α+A+

n nJn(q+r)

+ α−q−rA−
n Jn+1(q−r) − α−A−

n nJn(q−r)], (D2)

where the ratio of amplitudes is determined by Eq. (20) and is
given by

A+
n [Jn(x+)(−x2

+ + (1 − σ )(n − 1)n(1 − α+))

+ x+Jn+1(x+)(1 − σ )(1 + α+n)]

+ A−
n [Jn(x−)(−x2

− + (1 − σ )(n − 1)n(1 − α−))

+ x−Jn+1(x−)(1 − σ )(1 + α−n)] = 0. (D3)

Looking at Eq. (D1), we see that ur is purely real, while uθ

is purely imaginary. Therefore, the trajectories of individual
points of the medium describe ellipses, with radial and tan-
gential directions corresponding to the major and minor axes.

1. Relative contributions of the + and − branch in the cyclotron
surface mode

In Sec. IV, we explained how the condition for the local-
ization of a mode near the disk boundary is the smallness
of the contribution of the + part in the equations for the
displacements Eqs. (D1) and (D2). Using the explicit expres-
sions for the amplitudes of the displacements, we analyze
here how much the + and − branches contribute to the full
displacement. We find numerically that the − branch of the
new-surface modes have no extrema within the disk. Thus,
these modes become maximal at the disk boundary.

We will denote the two contributions from the + and −
branch in Eqs. (D1) and (D2) by ui(+) and ui(−), respectively.
We find

ur (+)

ur (−)
= P(x−, α−)

P(x+, α+)
· n(1 − α+)Jn(x+) − x+Jn+1(x+)

n(1 − α−)Jn(x−) − x−Jn+1(x−)
,

(D4)

uθ (+)

uθ (−)
= P(x−, α−)

P(x+, α+)
· n(1 − α+)Jn(x+) + x+α+Jn+1(x+)

n(1 − α−)Jn(x−) + x−α−Jn+1(x−)
,

(D5)

where we used Eq. (20) to express the ratios of A+ and A− in
terms of P(x, α). In the limit of x+/n � 1, using Eq. (A1) we
derive the asymptotics

ur (+)

ur (−)
∝ n

x+
, (D6)

uθ (+)

uθ (−)
∝ n

x+
(D7)

by retaining the largest terms in the numerator and denomina-
tor. These asymptotics are valid when Jn(x+) �= 0.

Thus we arrive at the explicit expressions for the displace-
ment fields of the cyclotron surface modes:

ur = 1

r
A−

n (n(1 − α−)Jn(q−r) − q−rJn+1(q−r)), (D8)

uθ = i

r
A−

n (n(1 − α−)Jn(q−r) + q−rα−Jn+1(q−r)). (D9)
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