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We investigate quantum-inspired algorithms to compute physical observables of quantum many-body systems
at finite energies. They are based on the quantum algorithms proposed by S. Lu, M. C. Bafiuls, and J. I. Cirac
[PRX Quantum 2, 020321 (2021)], who use the quantum simulation of the dynamics of such systems, as well
as classical filtering and sampling techniques. Here, we replace the quantum simulation by standard classical
methods based on matrix product states and operators. As a result, we can address significantly larger systems
than those reachable by exact diagonalization or by other algorithms. We demonstrate the performance with spin

chains up to 80 sites.
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I. INTRODUCTION

Computing the properties of quantum systems in equi-
librium is of central interest in many-body physics. For a
system at finite temperature, there exists a wide spectrum of
techniques that are used in practice. For large systems, where
exact solutions are unreachable, they typically approximate
the corresponding Gibbs state using variational, sampling, or
series expansion methods [1-7]. For systems at a finite energy,
e.g., in the microcanonical ensemble, methods are more scarce
[8-10].

A possible approach consists of simulating the dynam-
ics and extracting the equilibrium properties from there. For
instance, one can use spectral filters in order to retrieve ex-
pectation values of an observable O, by averaging them at
different times. In this way, one obtains results connected to
the diagonal ensemble corresponding to the initial state [11],
namely,

0= lcal (E|OIEy), (1

where |E,) are the energy eigenstates and ¢, the coefficients
of the initial state in that basis. For local Hamiltonians and
initial states with finite correlation length (like product states),
the values of ¢, are significant if |E, — E| < d = O/N),
where E is the mean energy of the initial state. Under the
eigenstate thermalization hypothesis (ETH) [12-14], O con-
verges to the equilibrium value in the thermodynamic limit,
and it is not necessary to average the results at different
time but just to wait for a sufficiently long time. Quan-
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tum computers and analog quantum simulators are very well
suited for that task, since they can deal with the dynamics of
many-body quantum systems in a very natural way [15,16].
Classical methods to simulate the dynamics typically suffer
from the linear growth of entanglement [17], which gives an
exponential cost with time. Even if the (weak) ETH applies,
the thermalization time can be very long [18,19], and this
severely restricts the applicability of such classical algorithms,
regardless of the typical slow growth of entanglement in
this case.

In this work we propose and analyze a classical algorithm
to compute expectation values of the form (1). In particular,
for ¢, that are Gaussian functions of |E,, — E| with a variance
8, this can be achieved by simulating the dynamics for a time
O(1/8). This allows us, for instance, to reach § = O(+/N) by
just using standard time evolution techniques for tensor net-
works for very short times, when the entanglement is still very
small and thus the techniques work well. One can also reach
values of § = O(1) with modest computational resources. The
algorithm is inspired by a quantum algorithm presented in [10]
that allows one to compute expectation values of the form (1).
This algorithm combines classical sampling (Monte Carlo)
techniques with time series and Loschmidt echo-like measure-
ments [20,21] that can be obtained by quantum simulation of
the dynamics. Our main modification is to replace the latter
by a classical simulation using tensor network states [22-27].
This allows us to compute (1) for times O(1/§) instead of
the thermalization time, thus circumventing the problem of
entanglement growth. This is done at the expense of having
to sample, which just involves the repetition of the whole
procedure until convergence. We apply the algorithm to one-
dimensional systems, sample over a basis of product states,
and use matrix product states (MPSs) and operators (MPOs)
to simulate the evolution [28]. We illustrate the performance
of the method for a nonintegrable Ising chain, for which we
obtain convergence to the microcanonical values for systems
up to 80 sites, far larger than what is possible with exact
diagonalization.

Published by the American Physical Society
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Apart from that, in [10] another quantum algorithm was
proposed to compute physical observables in a state where
an energy filter of width § is applied. For local Hamiltonians,
the computational time also scales as O(1/8). Here we also
analyze a classical algorithm inspired in that method. We
notice that this method typically requires much narrower &
(thus longer times) to approach thermodynamic quantities.
However, the filtering achieved with a limited evolution time
can be optimized if the initial state is chosen with already a
reduced energy width. Here we demonstrate this possibility by
applying the classical version of the first algorithm on matrix
product states found by minimizing the energy variance.

The rest of the paper is organized as follows. In Sec. II we
briefly review the concept of energy filters, introduce the filter
ensemble, and discuss its applications to determine micro-
canonical and diagonal properties. We also review briefly the
quantum algorithms [10] that motivate this work. In Sec. III
we discuss the details of a tensor network (TN) simulation of
the quantum algorithms, the different possibilities, and the as-
sociated parameter choices. Section IV presents our numerical
results for Ising chains, for each of the algorithms imple-
mented. The paper is closed with the discussion in Sec. V.

II. FILTERS AND QUANTUM ALGORITHMS

We start by recalling the definition and properties of the
energy filters that are at the basis of the algorithms in [10] and
this work.

A. Energy filters

The main tool used by the finite-energy algorithms dis-
cussed here is a filtering operator that suppresses energy
eigenstates outside a target energy interval. In particular, given
the Hamiltonian H, we define a Gaussian filter centered in
energy E and of width § as the following operator:

Py(E) = exp[—(H — E)*/28]. )

Notice that, up to normalization, 155 (E) is a diagonal en-
semble in the energy basis. We refer to it as the filter ensemble:

By(E)

—_—. 3
tr[F5(E)] @

PE.8) =

The corresponding expectation values are precisely of the
form (1), with coefficients |c,|> distributed according to a
Gaussian of width §. For local Hamiltonians and large sys-
tems, product states have that kind of spectral decomposition,
with § ~ (’)(\/]V ) [29,30], but since they contain coherences
in the energy basis, the corresponding expectation values are
very different. An ensemble as (3) could nevertheless be
obtained from a product state, but only after evolving and
averaging over a long time.

As the width § is reduced, the filter approaches the micro-
canonical ensemble. Thus we can make use of the filter to
access the microcanonical properties of the quantum system
in the following two different ways.

(a) Filtering a state. Given a state |Y), its local density
of states (LDOS) is defined as Dy (E) = (Y |6(E — A)y). A

(e%y

Fs5o(Ep)

FIG. 1. Approximating P;(Ey) with Fj o (Ep).

broadened version can be computed with the filter as

1 N
Ds y(E) = —— (VIB(E)Y) . “
8 «/ES W [ W
We can also use the filtered state to explore the mi-
crocanonical ensemble expectation value Opicro(E) of an
observable O. In generic cases in which ETH is satisfied, and
for a value E at which the LDOS does not vanish,

(Y |Ps(E)OPS(E)|r)
(W1Bs(E)2|¥)

will converge to Onicro(E) in the limit § — 0.

(b) Filtering the whole spectrum. The filter ensemble it-
self converges to the microcanonical ensemble as the width
is reduced. Hence, we can also use it without specifying a
state, but directly taking its trace. In particular, the density
of states (DOS) of the Hamiltonian H, defined as D(E) =
tr[8(E — H)], can be approximated through the broadening of
the § functions as

Os(E, |¥)) = &)

Ds(E) = ulP5(E)]. ©)
Moreover, the expectation values in the filter ensemble
05(E) = t[Opz 5] = ulOP(E))/ ulBy(E)]  (7)

will converge to the microcanonical values as § — O.

Whereas in generic cases one can in principle approach
the microcanonical expectation values with either (5) or
(7), the convergence of the second with § is much faster,
since the filter ensemble is diagonal in the energy basis, while
(5) contains contributions from off-diagonal matrix elements
[31-33], which can converge much slower than the diagonal
part [14,34].

Implementing the filter

For the purpose of numerical, but also quantum, sim-
ulations of the filter, it is convenient to substitute an
approximation for the Gaussian filter (see Fig. 1). In this
paper, following the quantum algorithms in [10], we focus on
the cosine filter [35,36] defined as

Fs4(E) = cos[(H — E)/al" ~ P5(E), ®)

where « is a parameter (with dimensions of energy) that
controls the validity of the approximation, and M = |a?/6?],
with |--- ], giving the closest smaller even integer. The ap-
proximation is valid if | — E|| < o /2, when the spectrum
of H lies in one period of the cosine function [37]. Equa-
tion (8) can be further approximated by a truncated series of
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evolution operators

R
BB~ BB = 3 e @ERe, (9)

m=—R

where R = |xa /8], t, = 2m/a, x is a constant that bounds the
truncation error in the operator norm as || Ps(E) — F5 o (E)| <

2¢7%'/2 and

1 M
Cm:z_M(M/Z—m)' (10)

With the cosine filter the problem is turned into evolving
states or computing the traces of time evolution operators,
which leads itself to a natural implementation in quantum
simulators.

B. The quantum algorithms

In Lu ef al.’s paper [10], two hybrid classical-quantum
algorithms corresponding to the two different ways of ap-
plying the filter were introduced. We sketch them here for
completeness.

The first one computes (5) for a state |i) that can be easily
prepared. Suppose the quantum device can efficiently obtain
the following quantities:

ay (1) = (yle My)

ao.y (11, 1) = (Wl O M |y) ;

then (5) can be determined by classical postprocessing as

Y

R
Zm,nsz C:(ncﬂao,ll/ (tm , tn)

R bl
Zm,n=7R ChCnQy (tn — tw)

Os(E, |¥)) = (12)

without explicitly preparing the filtered state. The required
timescale is proved to be a polynomial of system size N, the
inverse of the width of filter 1/8, and the inverse of the error,
provided the state |¢) can be prepared efficiently, for a value
of E in a small interval around the mean energy of |i/).

In the second algorithm (quantum-assisted Monte Carlo),
importance sampling is applied to compute (7). Let us rewrite
that expression as

[ dugDs s(E)Os.4(E)
[ duyDs s(E)

where {|¢)} is an (over)complete basis, with d i, the appropri-
ate measure to ensure the closure relation [ dug |¢) (¢| =1
(a simple choice is for instance the computational basis). D; ¢
is the LDOS defined in (4) and

05, = (P|OPS(E)|$)/($|P5(E)|p). (14)

Both Ds4(E) and Os4(E) can be obtained by measuring
the quantities defined in (11), as long as we can run the
first algorithm with the quantum device for the states in
the basis {|¢)}. Then a Metropolis-Hastings step can be ap-
plied classically with regard to the probability distribution
Ds4(E)/ [dpgDs4(E), and the value of Os(E) can be es-
timated. Because D;s (E) is positive, this method does not
encounter a sign problem.

Os(E) = , 13)

Given §, this second algorithm provides access to observ-
ables in the filter ensemble at the cost of simulating time
evolutions for times O(1/§), at the expense of repeating the
procedure until the sampling converges. This is especially
remarkable because one could obtain a similar result from the
time evolution of an initial state with the same distribution
of coefficients, but this would require evolving for as long
as the thermalization time. As a particular application, if one
chooses 8 = o(v/N), the expectation values of intensive quan-
tities will (under the ETH) already be equivalent to those in
the Gibbs ensemble at the same mean energy (see Sec. I[II B 1),
and therefore this algorithm is an inexpensive way of access-
ing thermal properties.

If we are interested in microcanonical expectation values,
we can use either algorithm, but we need to reduce the width
of the filter. Since the trace quantities converge faster in é to
the microcanonical values, a shorter evolution time is required
with this second algorithm. In exchange, the procedure needs
to be repeated over many states, to perform the classical
Monte Carlo sampling.

Extreme values of energy

Both algorithms above rely on the evolution of easily
preparable states (a requirement for the single initial state in
the first algorithm or the whole sampling basis in the second).
A most practical choice is that of product states. The mean
energies of such states are contained in an extensive but gen-
erally restricted interval within the spectrum [38], such that
values close to the edges of the spectrum may be out of reach.
As indicated in [10], the accessible range of energies can be
extended by considering larger sets of states. In particular,
MPSs can be used to circumvent the limitation.

For the first algorithm, the initial state |y) can be found
as an MPS with a small bond dimension such that its energy
expectation value is close enough to E, as the MPS serves as a
good representation of the ground state and low-lying excited
states. This can be done, for instance, by first finding the MPS
with that bond dimension and minimal energy (E i, ), and then
changing its parameters until the desired energy E > Ep, is
reached. Another possibility is to find the MPS minimizing
(H — E)* [39,40].

For the second algorithm, a different basis for Monte Carlo
sampling can be chosen, where we start from any state |¢g)
whose mean energy is close to E, obtained in the same way,
and apply a random Pauli matrix ¢*, ¢, or 6% on a random
site in each proposed move. This strategy gives a complete
basis set, as

3
1
o 2 ok ot Igo) (ol ot ot =1 (15)
0

Hi=
1<i<N

for any state |¢o). The change in mean energy is O(1) in each
move, and thus this choice of basis ensures enough states for
sampling.

III. CLASSICAL SIMULATION

The methods that we study in this paper replace the quan-
tum simulation of the dynamics in the quantum algorithms
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of [10] by classical simulations using tensor networks. The
longest evolution time required in (9), which is the deciding
factor for the efficiency, is determined by the width of the filter
8 as tmax = g & 2x/6. A quantum simulator should be able
to deal efficiently with times ¢+ = O(poly(N)), which gives
access to § = Q(poly(1/N)) [41]. This should be sufficient
for both (5) (in the case in which ETH is satisfied [34]) and
(7) to converge to the microcanonical values. On a classical
computer, TN techniques provide the possibility to simulate
the time evolution of a local Hamiltonian [22,23,28], but the
bond dimension required to do so can increase exponentially
with time. Thus, starting from a product state, we can sim-
ulate times f,x o log N with a bond dimension polynomial
in system size, which would allow us to efficiently perform
classical simulations of the algorithm for § = Q2(1/logN).
For the actual implementation of the classical simulation of
the dynamics, there exist several options, some of which we
discuss in this section.

A. Tensor network implementation

There are multiple different approaches to simulate time
evolution with TN techniques (see [28] for a recent review).
Some of the most commonly used methods are based on a
Suzuki-Trotter approximation of the time evolution operator.
One possibility is then to repeatedly apply the approximated
short time evolution steps onto a matrix product state (MPS),
to obtain a representation of the time-evolved state. Alter-
natively, the time evolution operator itself, e~#’, can be
approximated by a matrix product operator (MPO), con-
structed also from the iteration of Trotterized steps. Therefore,
we can use various techniques for the classical simulation of
the quantum methods above. )

Finding the MPO representation of each term e~" as an
MPO allows us to estimate tr[P;(E)] as a linear combination
of the corresponding traces, which for MPOs can be com-
puted very efficiently. This strategy will however fail as we
approach the edge of the spectrum for large system sizes while
considering small values of §. The reason is the extremely
imbalanced distribution of the DOS D(E), which becomes
exponentially small when E is far from the center of the spec-
trum. For a traceless, local, and bounded Hamiltonian, in the
thermodynamic limit D(E) converges weakly to a Gaussian
distribution with mean energy £ = 0 and width proportional
to +/N [29,30]:

Eo _ Ey gN p—E*/2Nog
D(E)E Y223 d
—00 —00 v 271’N00

where d is the local Hilbert space dimension and oy is some
constant independent of the system size. Thus, for energies
~ /N, we expect D(E) to become exponentially smaller than
its value at the center. Therefore given all tr(e ") that are
reasonably precise, the ratio in (7) could still not be properly
achieved all through the whole spectrum: the applicable en-
ergy range will be proportional to the square root of the system
size, and hence O(1/+/N) in energy density, a restriction we
also observed in a previous work [9].

Fortunately, this difficulty can be overcome with the
importance-sampling method described in Sec. II B. To begin

E, (16

with, in this method we only need to evaluate the ratio (14) for
states for which the probability factor (¢| Bs(E) |¢) is above
some threshold. In particular, when E is away from the center
of the spectrum, contributions from the exponentially large
maximum of the DOS will be suppressed. Of course, one
needs that the chosen basis {|¢)} has enough states around the
target energy E. Since for our numerical simulations we are
free to choose any basis from which we can sample efficiently
and whose states can be written as MPS, we can exploit this
freedom to try to ensure this condition. A product basis mini-
mizes the cost of the contractions and is often a good choice,
since, as mentioned above, it covers an extensive window of
the energy spectrum. If this is not the case, we can use any
of the methods mentioned at the end of Sec. II to find an
MPS with small bond dimension close to the desired energy,
and use it to construct a complete basis of the form (15). For
the cases we consider in this paper, the computational basis
is already an adequate choice, sufficient to produce accurate
numerical results over the full spectrum, as we illustrate in the
next section.

In the Monte Carlo simulation, the time evolution can be
done either at the level of the states, i.e., directly evolving
the sampled state as an MPS, or at the level of the operators,
i.e., approximating the evolution unitaries for each state as
MPOs, storing them in memory, and using them later to do
contractions with states randomly sampled from the basis. The
second option has the advantage of simulating the dynamics a
single time, as the same operators can be reused when doing
the sampling over different states. Hence it is faster, but it also
consumes much more memory to store the required MPOs
[42]. Also, the bond dimension needed to approximate an
evolution operator as an MPO is significantly larger than the
one used to approximate a time-evolved MPS for the same
time. As a concrete example, for system size N = 80, we find
bond dimension Dyps = 40 to be enough for evolving MPSs,
and Dypo ~ 100 for storing the MPOs, for (§, o) o (1, JN)
and 5 x 10* samples. The typical timescales taken are 1
week and 1 day, respectively, with an Intel Xeon Gold 6138
processor.

B. Filter parameters and the microcanonical limit

The cosine filter depends on two parameters: the width &
and the period of the filter . As mentioned, § determines the
maximum time we need to evolve, fn,x = 2x/§, while for a
fixed &, o determines the number of terms in the expansion
R = xa /8. Additionally, in the Monte Carlo algorithm we
introduce a cutoff parameter € and discard states for which
the probability is found to be below this threshold.

In this section we discuss the significance of these pa-
rameters, as well as which choices ensure approaching the
microcanonical limit. Note that the conclusions are valid for
both the classical and the quantum version of the algorithms.

1. Filter width §

A width é and mean energy Ej determine the properties of
the filter ensemble P;(Ey). But to estimate the corresponding
energy distribution we need to take into account the density
of states. Assuming a Gaussian DOS as in (16), the energy
distribution of the filter ensemble will also be a Gaussian
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given by

(E — Eo)z]

Dy, 5 (E) = D(E) exp |:_ 252

2
~exp|— Lo exp [—L(E - EO/V)Z],
2yNo? 282

a7

where y = 1 + 82/NoZ. We omitted an energy-independent
factor in (17). It can be concluded that in the thermodynamic
limit, the mean energy and width of the filtered ensemble are
given by

EP(EOA(S) - EO/V’ Ap(ﬁoﬁ) = 8/\/7 (18)

If we choose 8 « +/N, the mean energy of the ensemble is
shifted with respect to the parameters of the filter, as explicitly
shown in Fig. 4. A filter width that scales as § = o(+/N) is
enough to ensure that E,, , — E and A, , — § as N —
oo. This observation is especially relevant if we are interested
in approaching the microcanonical limit: in general, assuming
ETH, in the thermodynamic limit a microcanonical energy
shell centered at E will yield the thermal values for intensive
quantities at energy density E/N if the width A satisfies
A/N — 0. This condition is already satisfied for the filter
ensemble with § o¢ /N, which means that the expectation val-
ues will converge to the thermal ones, only at shifted energies,
according to the previous argument (see Fig. 4).

We can similarly estimate the energy distribution of the
pure state resulting from the application of the filter onto
an individual state |y). There is actually a similar argument
for Py(E)|v) if |¥) is a product state, as such states also
have essentially Gaussian LDOSs whose widths are propor-
tional to +/N [43]. With a spectral decomposition |v/) =
> ¢k |Ex), where |Ey) are energy eigenstates, the filtered state
results as

Bsy) == VTB Ip) = VT Y e 3 |E),  (19)
k

where T' = 1/ (y|P5(E)?|y) is the normalization factor. By
choosing the center of the filter at the mean energy of the
state E = (y|H|y) =: E,, the average energy of the filtered
state does not change. Assuming the LDOS of |¢) has a
Gaussian form with width oy, /N, where oy is independent
of system size, the energy variance of |/) can be estimated
through substituting the sum over eigenstates by an integral
over energy values with Gaussian weights. We obtain

A2 = (B | H? |Bsyr) — (B | H Py (20)

82

N — 1)
2 2
2+6?/No;

Again, we may want to consider how this affects ap-
proaching the microcanonical limit as the width of the filter
is decreased. A major difference in this respect between the
filter ensemble and the filtered state is that the second contains
coherent contributions from different energy eigenstates. Thus
(5) includes contributions from off-diagonal matrix elements
in the energy basis, which only become negligible when the
width of the energy distribution decreases sufficiently fast

with N. More concretely, from canonical typicality arguments
we can expect that, for nonintegrable systems, the expectation
value of a local observable converges to the thermal value
when the energy deviation of the state decreases as a polyno-
mial of 1/N [34]. In [35] we observed a trend to convergence
already with a slower decrease ~1/log(/N). For these scalings
of the filter width, according to (21), the width of the filtered
state will scale in the same way.

2. Period of cosine filter o

Different from the Gaussian one, the cosine filter (8) is
periodic, but it remains a good approximation of the for-
mer when the argument is bounded within one period. More
concretely, operators By (E) and E;,W(E ) are close to each
other when ||H — E|| < am /2. At the same time, because the
number of terms that need to be evaluated in the sum (9)
is proportional to «, it is convenient to choose the smallest
possible value that ensures the previous property. For a local
Hamiltonian, a value o o N is enough for the condition to
hold for all values of E within the energy spectrum. If the
operator acts only on a limited energy window, a smaller
value of o can be chosen, as long as all relevant states
are almost supported in [E — o /2, E + o /2]. This can be
used, for instance, when the filter acts on a product state,
whose energy distribution is approximately Gaussian, with
support on an energy interval « +/N. If additionally the filter
is centered near the mean energy of the state and § = o(+/N),
it is enough to choose o N [10]. In practice, we find
a=3 max(%\/ﬁ , 8) to work well for all system sizes.

3. Monte Carlo cutoff threshold €

For the discussions in Sec. III B 2, it should be ensured
that the samples in Monte Carlo simulations not step into
other energy periods of the cosine filter when a o< /N. In
other words, the weights of the states whose mean energy
are close to the edges of [E — an /2, E + am /2] should be
small enough. A cutoff threshold € can be applied to the
weights of samples to improve numerical stability in Monte
Carlo simulations. To be more concrete, a proposed state |¢)
will be directly discarded (its probability assimilated to 0)
if D5y < €. Besides making the numerics more stable, the
presence of the cutoff prevents the peak of the DOS from
shifting the ensemble when we target energies near the edges,
because it restricts the visited energy range in more general
cases, as we show next.

If we consider a product state basis, an individual state |¢)
will have mean energy E,4 and width o V/N. Again, assuming
a Gaussian distribution, we can estimate its weight in the
sum as

— E,)? —E)?
Dy (E) = (- Ey)y )]

20'£N 2682
(22)

B oI (E — Es2/2(6 4 No?
=\ T ez P E B2 oyl (2

1
djp———ex
M\/ZT(N% P |:
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TABLE I. Possible choices of the filter parameters (3, o) that ensure approaching the microcanonical values in the thermodynamic limit
for the various methods, and corresponding maximum evolution time and number of steps.

Method 1) o max R Applicable energy range
@D Spectrum filtering, direct trace o(~/'N) N w(l/ VN) o(v/N) OK/N)
(ITa) Spectrum filtering, Monte Carlo O/N) N Q1/ VN) QW/N) Full spectrum
(ITb) Spectrum filtering, Monte Carlo o) Q(V/N) Q1) Q(/N) Full spectrum
(III) State filtering poly(1/N) Q/N) poly(N) poly(N) Full spectrum
so that Ds 4 < € holds if IV. RESULTS
To demonstrate and benchmark the various methods de-
172 scribed above, we apply them to a quantum Ising chain with
|E — Ey| > vy = | (87 + Ng;)ln _ 8 open boundary conditions,
€,/ 82 + No ; N—1 N
(24) Hiing =7 ) 0707 + ) (80 +hof).  (25)

When § = Q(\/N ), it follows that vy ~ § for all states in
the basis, while if § = O(V/N), vy = O(+/N) holds as well.
Hence for any § = o(N), the cutoff € itself can restrict the
sampling space within an energy interval of width o(N) that
screens the peak of the DOS.

4. Choosing the parameters for microcanonical values

According to the discussions above, we can summarize in
Table I some possible choices of parameters for the various
algorithms, such that we obtain convergence to thermal values
in the thermodynamic limit. The table shows the scaling with
system size of « and §, as well as the resulting cost (in terms
of maximum evolution time and number of evolutions to run)
and the energy range where the methods are applicable. The
fastest method [(I) in the table] is directly computing (7) by
taking the traces of the evolution operators approximated as
MPOs, but, as discussed in Sec. IIT A, it is only applicable
in an energy interval of width proportional to /N around
the center of the spectrum. With Monte Carlo sampling (II),
in contrast, it is possible to reach the whole spectrum. The
filter width required to obtain convergence to thermal values
in the thermodynamic limit should scale at most as (’)(\/ﬁ ).
A larger width corresponds to a shorter evolution time #,,x,
and hence a smaller bond dimension required for the MPS
or MPO, but it also shows slower convergence to the thermal
values as the system size is increased. We thus show two
possible choices (IIa) and (IIb), both of which we explore
numerically, using different approaches for time evolution, in
Sec. IV A. In (IIa), a cutoff threshold is applied in the Monte
Carlo simulations to avoid the energy shift due to DOS when
8§ «x +/N. Finally, when filtering a state (III), the time f#y,x
required to approach microcanonical values is polynomial in
the system size, which means that with TN techniques we
will be able to extract microcanonical values with this method
only for small system sizes. For this last method, however, the
achievable width can be optimized by applying the algorithm
on a state with reduced energy width. We present a way to
implement this improvement by using MPSs obtained after a
variational minimization of the variance.

i=1 i=1
The model is integrable if either g=0 or h = 0. Here
we choose a particular set of parameters (J, g, h) =
(1, —1.05,0.5) far from integrability [44]. In the thermo-
dynamic limit, the corresponding energy density lies in the
interval E/N € [—1.33, 1.72]. For the observable, we focus
on the average magnetization

N
i, =Y o}/N. (26)
i=1

A. Filter ensemble

We start by illustrating the performance of the Monte Carlo
algorithm to estimate expectation values in the filter ensemble
(3) at all values of energy. Since the largest time we need to
simulate is t,ax o 1/8, the classical simulation can efficiently
treat widths § = O(1/log N) and larger.

For the numerical benchmarking, we choose widths § o
\/ZV and 6 = constant, which, according to the discussions
above, are enough to approach the microcanonical values in
the thermodynamical limit [see (II) in Table I]. In the non-
integrable model we consider, the values are thus expected
to converge to the thermal ones. Thus, we can compare the
results of the algorithm with the exact values in thermal equi-
librium at the corresponding energies, which we can compute
independently using standard TN techniques [6].

The calculations can be done using different options for
the TN evolution (Sec. IIl A). As long as the results are con-
verged in bond dimension, both approximating the evolution
operators as MPOs or the individual evolved states as MPSs
are valid strategies, and we show results obtained with both of
them.

1. MPO version of Monte Carlo simulation

Figure 2 demonstrates the success of the method to find
expectation values in the filter ensemble, for system sizes up
to N = 80. In particular, for this plot, we chose to simulate
and store the MPOs for all evolution operators before realizing
the sampling over the computational basis. For the filter, we
used filter parameters (8, o) (v/N, N), which, as argued in
Sec. III B, in a generic case is enough for the observable to
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FIG. 2. Magnetization (26) in the nonintegrable Ising chain
(25) with (J, g, h) = (1, —1.05,0.5), computed by the MPO ver-
sion of the Monte Carlo method with parameters (6 N s
a = /J* 4+ g% + h?N) and a cutoff (see main text). The sample size
is 5 x 10* for each energy and §. Upper panel: Convergence over
the whole spectral range. The black dashed line is the thermal value
for N = 80. Data points are (m.);, where different colors stand
for different system sizes and different shapes for different §. The
inset plots the difference with respect to the thermal value as a
function of 8/+/N at the point E/N = 1.44 (indicated by a box in
the main plot), with error bars indicating the standard deviation of
the Monte Carlo sampling, while the shadowed region represents
errors from finite MPO bond dimensions (the differences between
results of D = 100 and D = 150). Lower panels: Convergence with
the sample size at E/N = 1.44 for § = N (left) and § = 0.5+/N
(right). Am, = (m,); — mhemal,

converge, in the thermodynamic limit, to the thermal expec-
tation value if introducing a cutoff threshold (Sec. III B 3).
We choose to sample over the computational basis and the
cutoff threshold € = 10’4D5,¢,0(E ), where |¢o) is the initial
state in the Monte Carlo simulation, obtained by minimizing
(p|(H — E)?|¢) for |¢) in the basis set.

As shown in the upper panel of Fig. 2, the results clearly
converge to the thermal value as the system size N is increased
or § is reduced. The inset shows explicitly this convergence
for energy density E /N = 1.44, relatively close to the edge of
the spectrum. Errors have two main sources, which are shown
in this plot: the statistical error from the Monte Carlo sam-
pling (error bars) and the truncation error from the finite bond
dimension of the MPO (shown as shadowed region). Only for
the largest system size N = 80 and smallest width § = 0.5v/N
do we observe a small discrepancy, but it is compatible with
our estimated errors from both sources.

E/N =0.72 E/N = 1.44
D =40
0.02
—F— D=60
0.04 4
g £0.01 A T
5 5 .
—0.02 A - }
1 0.00 | 1
0.00 1
20 40 60 80 20 40 60 80
N N
0.05
0.03 - B
0.01
3 £-0.01
< 7 — <
Yo |
—0.10 A — N =
N —60 —0.05
—0.15 —— N =80 —0.07 4
0 25000 50000 75000 0 25000 50000 75000

Monte Carlo steps Monte Carlo steps

FIG. 3. Magnetization (26) obtained by the MPS version of
the Monte Carlo method for (§ =1, @ = 6N ) and no cutoff, for
two values of the energy density, E/N = 0.42 (left) and E/N =
1.44 (right). Upper panels: Difference between (m,)s(E) and ther-
mal value as a function of the system size for bond dimensions
D = 40, 60. The error bars correspond to a standard deviation of
Monte Carlo samplings. Lower panels: Convergence of Monte Carlo
sampling with the number of steps. The results have converged for
bond dimension D = 40 in the left plots, and hence the solid and
dashed lines are on top of each other.

The lower panels of Fig. 2 show explicitly the conver-
gence of the Monte Carlo sampling at the same energy
density E/N = 1.44, for various system sizes and bond di-
mensions, and for two different values of the width. In all
these cases we observe that, after 50 000 steps, the results are
practically converged, even though some fluctuations can be
appreciated.

2. MPS version of Monte Carlo simulation

To illustrate the performance of the algorithm when indi-
vidual states, rather than operators, are evolved, we choose
a narrower filter width, which should lead to values closer
to the thermal ones, while still being reachable by classical
simulations. Notice, however, that similar values could have
been obtained with the MPO option, at a different cost in
memory and time.

In particular, considering a constant value § = O(1), in-
dependent of system size, requires evolution until a constant
time, which (for not too small values of §) can be efficiently
simulated using TN. Thus we choose parameters (3, o)
(1, +/N) [(IIb) in Table I], and explore two values of the en-
ergy density, one near the center of the spectrum (E /N =0.72)
and one close to the edge (E/N = 1.44), and both within the
reach of product states from the computational basis, which
we take again as our sampling basis.

Results are shown in Fig. 3. In the upper panels, we plot the
difference between (m,)s and the corresponding thermal value
as a function of the system size, for two values of the bond
dimension, with error bars indicating the statistical error. We
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find that, within error bars, the distance to the thermal value
decreases as the system size grows, with a relative difference
smaller than 0.5% for N = 80 and E/N = 1.44.

In the lower panels of Fig. 3, we again show explicitly
the convergence of the Monte Carlo sampling. Note that here
the same seed for randomization was used for different bond
dimensions, so the fact that the solid and dashed lines (repre-
senting D = 40 and D = 60, respectively) are on top of each
other indicates the convergence with regard to bond dimension
already at D = 40.

As illustrated above, the combination of short-time dy-
namics simulation and sampling provides a powerful method
to compute the expectation values in the filter ensemble, as
long as the basis contains vectors with substantial weight
in the energy region of interest. For the computational basis
that we have used in the examples, mean energies lie in the
interval E/N € [—1, 1.5]. According to (23), the weights of
basis states Ds 4 will decay exponentially with the system size
for a fixed energy density £ /N outside this interval. Figure 2
shows that, for system size N = 80, the Monte Carlo sam-
pling with computational basis remains valid at £ /N = 1.68
(rightmost point) and E/N = —1.2 (leftmost point), much
closer to the edges of the spectrum, so that we do not need
to resort to the Pauli basis mentioned in Sec. II B. Using this
basis may however become necessary as we keep increasing
the system size, or if we consider other models or higher
dimensions.

3. Exploring the center of the spectrum without sampling

The fastest alternative to evaluate (7) with TN simulations
is to directly evaluate numerator and denominator from traces
of the evolution MPOs, without the sampling iteration [(I) in
Table I]. As discussed above, this is only feasible in the central
region of the spectrum, over a width o \/]V , before the density
of states becomes exponentially small. If the filter width is not
much smaller than this scale, the mean energy of the filter
ensemble will be effectively shifted toward the maximum of
the DOS, as explicitly computed in Sec. III B 1.

Figure 4 illustrates the behavior of this alternative for
(8, ) x (\/IV , N). The upper plot shows the results obtained
for the magnetization m, for various system sizes and filter
widths, as a function of the energy density corresponding to
the center of the filter. Because of the shift discussed above,
the results do not converge to the thermal ones (indicated
by the solid line) at that energy, but at a shifted value accord-
ing to (18) (indicated by a dashed line for each §).

We observe that, while in the central part of the spectrum
better convergence is observed as é decreases or N increases,
near the edge of the spectrum the method fails to give the
correct microcanonical values, especially for larger systems
and smaller widths, as then it becomes sensitive to the expo-
nentially smaller density of states. This is also visible in the
lower panel of the figure, where we plot the difference be-
tween the computed values O;(E) and the thermal ones at the
corresponding shifted energies. According to (17), the denom-
inator of (7), tr[P5(E)], should scale as exp(—E?/2yNo?),
indicating the range of energy densities for which the method
actually converges shrinks as 1/+/N.

§ = 0.5¢/N —— Thermal

0.8 1 5= \/N ******** Shifted thermal

0.6
£ 0.4
0.2

0.0 1

102 E

thermal
z

[

3
w
1

‘(mZ)é -m

—_

3
'
1

E/N

FIG. 4. Magnetization (26) obtained by MPO simulation of the
evolution operators and direct evaluation of the ratio (7). Upper
panel: Computed magnetization as a function of the energy density
E/N at the center of the filter for system sizes up to N = 80 and
several widths. Over most of the spectral range the results con-
verge to thermal values at the shifted energy depending on 6 (18)
(dashed lines) instead of the thermal value at E/N. At the edges of
the spectrum this fails, due to the exponentially decaying DOS in
these regions, as discussed in Sec. III B 1. Lower panel: Difference
between the computed magnetization and the shifted thermal values.
All results were obtained using bond dimension D = 200 for the
MPOs.

B. Filtered pure state

As discussed in Sec. III B, we can apply the filter on a
state to decrease its energy variance and, in the generic case,
obtain convergence to the microcanonical properties. Also
in this case, the largest time that needs to be simulated is
fmax = 2x/8, which can be done efficiently by TN simulations
if the width is at least O(1/logN). But, in contrast to the
calculations for the filter ensemble, diagonal in the energy
basis, a much smaller § is required in this case to approach
microcanonical values in the thermodynamic limit. More con-
cretely, 5 = O(poly(1/N)) should be enough, but this requires
tmax = S2(poly(NV)), and thus a bond dimension that increases
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FIG. 5. Results computed by filtering states. £/N = 0.72. The
filtered states are MPSs of bond dimensions 1, 2, 5, and 10. We
compare the results of different system sizes with § o< 1 in the left
figure and § o< 1/N? in the right.

exponentially with N. Additionally, when filtering a product
state, the total number of terms to probe will be (2R + 1)?%,
where R = xa/§, which grows at least as N 3,

One way to mitigate the second problem is to apply the
filter on a state with already reduced energy variance. This
allows us to choose a smaller period « and correspondingly
keep a more moderate value of R and to test the strategy for
moderate sizes. We implement this strategy using as initial
states MPSs with a given bond dimension, found by variation-
ally minimizing (H — E)? at the value of E we are interested
in. To test this strategy, we have targeted a value E/N = 0.72
for system sizes 20 < N < 80, and obtained initial MPSs with
reduced widths from the minimization of (H — E)? with bond
dimensions Dy € {1, 2, 5, 10}. For each one of this states, we
compute the width op, and then apply a filter with parameters
8 = op/2+/N and « = 30p,. We show the results in Fig. 5. To
analyze the convergence toward the thermal value as the width
decreases, we plot the relative error of the magnetization with
respect to the thermal one as a function of 1/§ (left panel)
and 1/(N?8) (right panel) for each system size. The first case
shows no clear scaling laws, which indicates that § = O(1)
is not enough for convergence in the thermodynamic limit.
The right panel, instead, exhibits a trend to convergence for
8 = O(1/N?), even though numerically it becomes difficult
to reach the lower right corner for large systems.

V. SUMMARY AND DISCUSSION

We have presented a quantum-inspired classical method,
based on a TN simulation of the quantum-assisted Monte
Carlo algorithm proposed in [10], that allows us to compute
microcanonical and diagonal values for quantum many-body
systems. Our method estimates broadened spectral functions,
which takes the form of the trace of an energy filter operator,
or a product of the latter with an observable, via sampling
over time-evolved product states. Because the longest required
time is proportional to the inverse filter width, which is very
short and easy to simulate with tensor networks, it allows us to
find expectation values in a diagonal ensemble which would
only be reached after a much longer time evolution from an
initial product state. While filter widths O(+/N) are enough to
find the diagonal ensemble values of generic product states,
we can also reach energy filters of constant widths, as these

only require O(1) evolution times. These scalings are enough
to obtain convergence to thermal equilibrium in the thermo-
dynamic limit, in the generic case.

We have benchmarked the algorithm on the nonintegrable
Ising chain, for sizes up to N = 80 sites (far beyond the
reach of exact diagonalization), and we have checked differ-
ent choices of the parameters that affect the efficiency and
applicability of the method. In particular, we explicitly show
diagonal expectation values for Gaussian ensembles of width
O(\/N ), obtained with low computational cost over the whole
range of energies, and observe their convergence toward the
thermal equilibrium values. Reducing further the width, we
obtain microcanonical expectation values with high precision.

We can also classically simulate the provably efficient
quantum algorithm in [10], in which the filter is applied on
a fixed initial state. If we want to use this method to explore
the microcanonical properties, nevertheless, the filter width
needs to decrease with the system size in order to guarantee
convergence in the thermodynamic limit, which results in in-
creasing times and an exponentially growing bond dimension.
We have however optimized the procedure by choosing as
initial states MPSs with minimal variance. In this way, we
can run the algorithm and observe convergence for reasonably
sized systems.

The results shown in this paper demonstrate the potential
of the algorithm. Accessing the microcanonical values would
be helpful to investigate all sorts of out-of-equilibrium quan-
tum many-body behavior, for instance many-body localization
[45] and quantum scars [46], for large systems. Although we
have only implemented it for a translationally invariant spin
chain with short-range interactions, the method can be easily
extended to systems with disorder, or long-range interactions,
and also to bosonic or fermionic systems. We have recently
learned that Schuckert et al. are using a related method to
study long-range interacting models [47].

In principle, the same method can be also extended to
higher-dimensional systems, by using projected entangled
pair states (PEPSs) [48] or mapping the system to adopt more
restricted Ansdtze such as MPSs and other subfamilies of
PEPSs, which is a promising possibility, given the absence of
numerical methods for extracting microcanonical expectation
values in that case, beyond exact diagonalization. The numer-
ical challenge is then higher, due to the larger computational
cost of the corresponding algorithms, and determining the
preferable implementation option should be analyzed. Also
further extensions are possible that consider other filter func-
tions or combinations of filters.
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