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Measurement-induced phase transition in a chaotic classical many-body system
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Local measurements in quantum systems are projective operations which act to counteract the spread of quan-
tum entanglement. Recent work has shown that local, random measurements applied to a generic volume-law
entanglement generating many-body system are able to force a transition into an area-law phase. This work shows
that projective operations can also force a similar classical phase transition; we show that local projections in a
chaotic system can freeze information dynamics. In rough analogy with measurement-induced phase transitions,
this is characterized by an absence of information spreading instead of entanglement entropy. We leverage a
damage-spreading model of the classical transition to predict the butterfly velocity of the system both near to
and away from the transition point. We map out the full phase diagram and show that the critical point is shifted
by local projections, but remains in the directed percolation universality class. We discuss the implication for
other classical chaotic many-body systems and the relation to synchronization transitions.
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I. INTRODUCTION

Measurement-induced phase transitions (MIPTs) are a
novel class of dynamical phase transitions which arise when
projective measurements which are random in time and space
are able to prevent entanglement spreading in a many-body
system [1–4]. MIPTs are characterized by a transition between
an entangling and disentangling phase, driven only by the
addition of random local measurements of the quantum state.
This work examines to what extent such behavior is able to be
reproduced in a fully classical system where there is no notion
of a measurement or of entanglement entropy. However, we
ask if a classical analog does exist, what is the minimal set
of ingredients needed to produce behavior which looks like a
MIPT and what is the nature of the transition?

The entanglement entropy of a one-dimensional N-site
quantum system prepared in a product state is understood
to generally grow linearly in time, a phenomenon which has
recently attracted study in systems of random unitary circuits
[5–7]. Such a feature is understood to be due to local en-
tangling from the sequential application of unitary operators,
spreading information across the system until at late time the
entanglement entropy scales with N—a volume-law phase in
one dimension. The addition of random nonunitary measure-
ments at a high enough rate counteracts this local spreading
of entanglement and has been observed to cause a transition
into area-law behavior, where entropy saturates to a constant
independent of N and global entanglement growth is stopped.

How can one identify such a transition in a classical sys-
tem? In the absence of a classical definition of entanglement
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entropy, we must instead find another measure which probes
how information spreading is suppressed across the transition.
For this purpose we focus on a damage model of a classical
system, where we quantify how information is scrambled by
chaotic dynamics by measuring the local difference between
two copies which differ only by a single-site perturbation of
the initial state. This local difference is the “decorrelator”
due to the perturbation and can be readily applied to many
classical chaotic systems to quantify information scrambling
via the butterfly effect. This chaotic phenomenon still funda-
mentally represents the spatial propagation of information in
the system, which is what we are interested in analogizing
from quantum MIPT models. Here, we focus on a minimal
one-dimensional cellular automaton (CA) to uncover classi-
cal MIPT-like behavior and discuss its general features. In
the study of cellular automata, the initial perturbation is of-
ten called damage, and the spatially propagating growth of
the decorrelator is often referred to as damage spreading—
language which we will adopt here. Figure 1(a) shows the
damage spreading due to an initial perturbation in red when
this model is in the chaotic phase. The total damage summed
over all space, called the Hamming distance, grows linearly
in time as the information spreads across the whole system.
In previous work [8] we showed that the spatially resolved
decorrelator averaged over many realizations follows a pre-
dictable functional form with a velocity-dependent Lyapunov
exponent (VDLE) akin to the out-of-time-order correlators
(OTOCs) of quantum many-body systems, a newly studied
measure of information spreading [9–12] which, in contrast
to the entanglement entropy, has a direct classical analog
[13–20].

The damage-spreading description also provides us with a
natural way to incorporate a classical analog of measurements
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FIG. 1. (a) Schematic of the Kauffman cellular automaton: a con-
figuration of Boolean elements σ (x, t ) = ±1 evolves in time under
local rules. The effects of an initial perturbation are studied with
the spatiotemporal decorrelator which measures the difference be-
tween two copies differing only by such a perturbation. Both copies
evolve under the same local Kauffman CA rules (as demonstrated in
the inset by three such rules at a given position and time), which
are randomly generated anew at each time step. The decorrelator
is represented by coloring sites of copy B which differ from the
reference copy A; in the chaotic phase of the model, the effect of the
perturbation is able to lead to a widening footprint of the decorrelator
in space. The single site with initial damage is additionally marked
red in both copies. Measurements are represented by projecting the
reference copy onto the perturbed copy and are shown with blue
vertical lines. (b) Damage-spreading model: the decorrelator defined
between two copies of a single realization of the Kauffman CA,
evolving in time. The measurement rate q is tuned to induce a phase
transition into the frozen phase.

into the system as depicted in Fig. 1(b): by projecting both
copies to be equal at some rate q. In the damage model
description a projection sets the decorrelator to be locally zero
and decreases the distance between the initial and final states
in a similar way to the quantum case [2], acting against the
spread of information, which we expect to drive the system
out of a chaotic phase with information propagation and into
the frozen phase. We will henceforth use the term “mea-
surements” to refer to both the quantum and classical local
projections.

Our study is related to recent works employing classical
CAs for tractable simulations of quantum unitary circuits
[21–25] in which the entanglement entropy can be calculated
from copies of classical CAs; we expect that the correspond-
ing OTOCs can serve as an alternative measure with similar
behavior because both information-spreading measures are
computationally defined as differences between copies evolv-
ing under identical rules. In particular, Iaconis et al. [26] have
studied MIPTs in such quantum systems, with the mapping to
CAs being key in their analysis. The effect of measurements
on the growth of entanglement entropy is indeed quantified
by setting different copies of the classical CA to be equal.
Given that MIPT are often simulated as classical models, we
here address the pertinent question whether one can reproduce
and quantify MIPT-like behavior in fully classical many-body
systems.

In order to study a typical transition in detail we focus
on the maximally stochastic, classical cellular automaton: the
annealed Kauffman CA (KCA) [27]. The KCA is defined
in terms of local rules mapping a set of binary values onto
another, controlled by the parameter p. With increasing p,
the +1 state becomes more favored and (at sufficient connec-
tivity) there is a transition to a chaotic phase, characterized
by the growth of the Hamming distance in time. It is well
known that the transition is in the directed percolation (DP)
universality class [28,29] and a direct mapping with a DP
model will be leveraged in this work to describe its critical
behavior. The classical KCA system has a long history of
study across physics, biology, and data science and provides
a particularly simple platform to study chaotic many-body
behavior [30–35]. We find that the addition of projective
operations with a rate q are able to qualitatively change the
behavior of the decorrelator and completely suppress infor-
mation spreading, thus realizing a classical MIPT.

In this work we focus on the KCA as a model of classical
information spreading but we propose that this damage-
spreading model can be widely extended to other classical
chaotic systems (e.g., Hamiltonian dynamics), and that local
projective measurements will generally lead to the suppres-
sion of information spreading. This paper is outlined as
follows: the KCA system and its simulation are defined in
detail, followed by a discussion of its phase diagram in the
presence of measurements. Two models are then presented
which describe both the behavior away from and at the phase
transition, permitting us to relate the system with measure-
ments to the measurement-free system. Finally, we highlight
how it is important to look beyond just entanglement entropy
as the measure of MIPTs, and hope to motivate the study of
information spreading in other classical and quantum many-
body systems using OTOCs.

II. KCA SYSTEM AND MEASURES OF
INFORMATION SPREADING

A local KCA is a system of N Boolean elements σ (x, t ) =
±1 which evolve in discrete time steps through local rules
that depend upon each site and its 2K nearest neighbors in
one dimension. This process is shown on one of the sheets of
Fig. 1(a), inset. Our KCA system evolves under a set of local
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FIG. 2. Phase transition of a Kauffman CA with projective measurements diagnosed by the OTOC, with connectivity K = 4. Left panel:
(a) Phase diagram showing the analytic boundary between frozen and chaotic phases. Its functional form is described in the text and confirmed
with the data collapse in the critical regime; numerically fixed by precise measurements of the measurement-free system and error bars not
shown. The region above the dashed black line qCS highlights where the observable vb in the chaotic phase is best described by the critical
scaling (CS) DP model [8]; the determination of the crossover point and its corresponding uncertainty is performed using data as plotted
in Fig. 5 (see Sec. V). Center panels plot the OTOCs demonstrating at different points of the phase diagram (control parameter p = 0.4,
system size N = 2048) showing (b) exponential decay of correlations q > qc, (c) critical power-law spreading of correlations q = qc, and
(d) light-cone spreading of the OTOC in the chaotic phase (q < qc) at the butterfly velocity vb, which is dependent on the parameters (p, q).
This is always less than the maximum velocity at which information could travel, vmax = K . The right panel (e) plots the Hamming distance
H (t ) for a range of q with p = 0.4, N = 2048. It shows linear growth in the chaotic phase, power-law critical growth (with DP exponent θ

[37,38]) at qc, and exponential decay of perturbations caused by measurements above the critical rate.

rules { ft }:
σ (x, t + 1) = ft [σ (x − K, t ), . . . , σ (x, t ), . . . , σ (x + K, t )].

(1)

At any one time step, the cellular automaton evolves under
rules { ft } which maps (2K + 1) inputs to a single output
whose value is +1 or −1, chosen randomly for each input
configuration {σin} randomly:

ft [{σin}] =
{+1 with probability p
−1 with probability 1 − p.

(2)

At any particular time t the same local set of rules is applied
to each site across the system—the same rules always lead to
the same output and the evolution is therefore deterministic.
In the annealed KCA system studied here, a new set of rules
are randomly chosen at each time step; in numerical simula-
tions observables must be computed by Monte Carlo sampling
many different simulation runs with randomly selected rules
for the same p.

The probability of any site being +1 is constant and equal
to p at all time steps, but the transition present in the system is
regarding the spreading of information. At low p, if a pertur-
bation is introduced at some single site, it is likely that almost
all rules do not distinguish between the inputs, and most states
are likely to be mapped to −1; this is the frozen phase of the
Kauffman CA. At higher p, a single-site perturbation may be
expected to lead to an increasing number of perturbed sites
after each application of the annealed rules. When K is suf-
ficiently large, there exists a critical pc where under repeated
time evolution, the perturbation grows over time and a ballistic

propagation of “damage” through the system can occur; this
is the chaotic phase of the KCA.

The tendency of local perturbations to either decay or
spread is typically diagnosed with the global Hamming dis-
tance [36],

H (t ) = 1

2N

〈∑
x

|σ A(x, t ) − σ B(x, t )|
〉
, (3)

between as the fraction of differing sites between two copies
of the system σ A,B(x, t ) which differ by a single inverted site
in the initial state at t = 0. Numerical studies of the KCA
system are based on a Monte Carlo (MC) sampling over the
random rules. As illustrated by the two sheets of Fig. 1, in
each simulation instance two copies are instantiated with an
identical configuration except one perturbed central site and
then propagated under the same rules. The Hamming distance
is evaluated via Eq. (3), where the average is performed over
many MC instances of this given probability p. The distance
grows linearly in time in the chaotic phase up to the physical
boundary of the system, and decays to zero in the frozen
phase, hence mirroring the behavior of the entanglement en-
tropy of quantum many-body phases (see Fig. 2). In our
previous work, we argued that the classical OTOC analog is
a spatially resolved local Hamming distance, or decorrelator,
[8]

D(x, t ) = 1
2 [1 − 〈σ A(x, t )σ B(x, t )〉], (4)

related to the global distance by H (t ) = N−1 ∑
x D(x, t ). The

OTOC measures the spatial growth of perturbations in the
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system, which have been shown to be well described by a
velocity-dependent Lyapunov exponent [10]

D(x = vt, t ) ∼ exp[−μ(v − vb)2t]. (5)

This result holds in the long-time limit, in the chaotic phase
sufficiently far from the phase transition (i.e., for p sufficiently
larger than pc such that the critical behavior is negligible).
This OTOC is disorder averaged, but a single-shot instance is
used in the mapping to a percolation system and will become
important in our study of the critical regime.

The additional ingredient needed to emulate MIPT-like
behavior is an implementation of measurements. We choose
here the simplest possible measurement scheme that preserves
the occupation of +1 states, that is randomly locally fixing
sites in σ B(x, t ) to be equal to σ A(x, t ). As shown in Fig. 1,
this is implemented numerically by randomly setting the con-
figuration σB(x, t ) with a probability q, which serves as our
measurement rate, performed prior to considering any of the
aforementioned update rules. This is analogous to making
a projective measurement on a quantum many-body system,
punctuating its unitary evolution. In the Kauffman CA, the
parameter p can be viewed as the strength of the information
scrambling dynamics that maintain the growth of distance
between copies, whereas the parameter q characterizes the
collapsing of information that reduces the Hamming distance.

III. NUMERICAL RESULTS

Figure 2(e) shows the results of adding local projective
measurements which are random in space and time to the
Kauffman CA system at a rate q: For a fixed p, the Hamming
distance diagnoses a phase transition at some qc. Above this
critical rate the Hamming distance tends to zero in the long-
time limit and below it grows linearly in time, governed by
the butterfly velocity, up to an extensive value. At the criti-
cal point, the Hamming distance grows with the DP critical
exponent θ ≈ 0.3137 [37,38].

The concomitant transition from ballistic propagation to
temporal decay of the OTOC is demonstrated in Figs. 2(b)–
2(d). In this work, we show that the suppression of vb due to
projective measurements can be captured by a simple bound-
ary random-walk model, which is also able to predict the
functional form of the OTOC deep in the chaotic phase [that
is below the dashed lines in Fig. 2(a)].

However, as criticality is approached the information
spreading is no longer well described by the local random
walk of a single boundary site, but an analysis based on the
diverging correlation lengths of the model is needed. This
occurs because measurements make the perturbed sites crit-
ically sparse, and make it possible that this boundary site
(defined as the furthest from the initial perturbation) jumps
back inwards by a larger distance than the boundary model
predicts. In this case the mapping of the system to a critical
directed percolation model is leveraged to accurately predict
the vanishing of vb as q → qc for a range of p. Indeed, given
that a mapping to DP is possible for all p, we argue that the
transition for all p, q is in the same DP universality class.

Taking the critical pc from the measurement-free system,
a mean-field treatment can approximate the phase transition
line. The expected number of perturbed sites after one applica-

FIG. 3. Main figure: Scaled boundary distribution for different
realizations of the p = 0.4, q = 0.4 model. Top-left inset: unscaled
distribution. Bottom: each gray point is the boundary position of one
realization, plotted in x-t space. The red line is the averaged boundary
position.

tion of the rules is 〈n〉 = pd (2K + 1) with pd the probability
of a move, defined below, which should grow in the chaotic
phase and reduce in the frozen. This constraint can be used to
predict the critical line as shown in Fig. 2(a), and is confirmed
by the mapping to a critical DP model and numerical data.
This theory is bolstered by its ability to correctly predict the
spatial growth of the OTOC and correspondingly the growth
of the Hamming distance at criticality with a DP power law
[see Figs. 2(c) and 2(e)]. A comparison of the critical DP
model and the boundary random-walk model is included and
we are able to quantify which regions are best described by
both models.

IV. BOUNDARY MODEL OF DAMAGE SPREADING

The adapted KCA system’s boundary random-walk model
can be used to predict vb away from criticality [8]. We define
the boundary as the furthest site from the initial damage which
differs in the two copies and describe the motion of this site
as a random walk. From understanding the simple rules that
govern the boundary movement, the expectation value of the
boundary is shown to propagate at a speed vb and broaden
with

√
t behavior.

The furthest the boundary could move outwards in one
time step is K , and this has probability 2p(1 − p). We intro-
duce the additional feature that the system is then randomly
“measured” with probability q, renormalizing the K-move
probability to be p(K ) = pd = 2p(1 − p)(1 − q). The proba-
bility that the boundary moves fewer steps x < K is therefore
p(x) = pK−x

s pd , when ps = 1 − pd . Therefore the effect of
measurements is to reduce the probability of information trav-
eling pd by an amount proportional to the measurement rate.

In Fig. 3, we show that even in the presence of the mea-
surements the Gaussian profile of the boundary distribution
persists with only a suppressed vb and an increased variance
σ . This analysis is performed by averaging over many starting
configurations deep in the chaotic phase, and excluding the
few instances where initial measurements remove all damage
before it is able to spread (and thus focusing on the long-time
behavior).
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FIG. 4. Scaling collapse of the numerically calculated decorre-
lator D(v, t ) in the long-time limit (colored lines) performed for a
range of different measurement rates q at fixed p = 0.4. For each
specific q, data are obtained from the value of D in the long-time
limit. The horizontal axis is rescaled by

√
μ and centered on vb,

as calculated from the boundary model accounting for the effect of
measurements. The fit line is the analytic scaling form (see main text)
[8] which has VDLE exponent β = 2 for v > vb.

The boundary spread can be characterized from moments
of the boundary-movement distribution and is well approxi-
mated by the central limit theorem in the long-time limit [8].
Furthermore, this model can be applied to predict the leading
form of the spatiotemporal decorrelator; Fig. 4 displays a data
collapse of D(v − vb, t ) in the large-t limit which demon-
strates a good agreement for low q. The collapse is performed
by scaling the velocity parameter

√
μ(v − vb), where the pa-

rameters are evaluated using the boundary model

vb = K − ps

pd
,

1

2μ2
= ps

pd
− p2

s

p2
d

, (6)

and where ps,d are evaluated using the boundary model
including measurements. Explicitly, the scaling form
ln D(v, t ) ∼ −μ(v − vb)βt is reproduced for v > vb in this
system with local projective measurements. The figure shows
good agreement with both the predicted quadratic β = 2
behavior for v > vb, as well as the plateau value inside the
light cone. The full functional form as plotted in Fig. 4 takes
the form of a Gaussian integral and is numerically evaluated
from Ref. [8].

V. DIRECTED PERCOLATION AND CRITICAL
DAMAGE SPREADING

Far away from the phase transition, we previously devel-
oped a boundary random-walk model of the KCA to predict
the characteristic butterfly velocity of the light cone. This
model assumes that in any system realization, there is only
a narrow physical strip at the boundary of a perturbation in
which the decorrelator saturates. By considering the system
as a DP model, where differences between the two original
copies are mapped to occupied sites, we may explain this
intuitively. Away from the transition point, the inside of the
percolating system is dense, and therefore the boundary model

may assume boundary propagation is dominated by infor-
mation directly spreading from the sites locally around the
boundary.

However, the assumptions of the boundary model break
down closer to the phase transition. Here the bulk of the sys-
tem becomes sparse, and it becomes significantly more likely
that the previous boundary will not propagate, thus resulting in
a new boundary site deep inside the light cone. As the spatial
correlation length ξx diverges to be comparable to the system
size, this nonlocal jumping of the boundary dominates and we
enter the critical regime. The previous model takes the per-
spective that the boundary velocity can be well described by
the local behavior of boundary spreading. This is well founded
at late times far from the critical point since all sites in the
light cone are causally connected to the perturbation. However
in the critical regime p → pc we expect that finite-size holes
form which will causally disconnect a divergent number of
sites inside the light cone from the initial perturbation. In
this regime we will use the critical properties of directed
percolation to predict the butterfly velocity.

The directed percolation model has two correlation lengths
ξx,t which characterize cluster sizes in temporal and spatial
directions [39]. At the critical point, these have the following
divergent behavior:

ξμ ∼ |ρ − ρc|−νμ, (7)

where ρ is the percolation probability. The characteristic ve-
locity of this system is hence given by the dynamical critical
exponent z−1 = νx/νt .

To extend this to the KCA system with measurements, we
can draw the connection to percolation through ρ → pd =
(1 − q)2p(1 − p), which represents the probability of a site
affecting one of its neighbors. At constant p and under vari-
ation of the measurement rate q, the critical behavior of the
boundary velocity is therefore

vb ∼ |qc − q|z−1
. (8)

This predicts that the velocity has critical behavior with the
exponent belonging to the directed percolation universality
class z−1 ≈ 0.6326 [37,38]. The critical measurement rate for
any p is hence derived, in terms of the measurement-free
critical pc, to be qc(p) = 1 − pc(1 − pc)/[p(1 − p)]; thus
successfully predicting the form of the phase boundary plotted
in the phase diagram Fig. 2(a).

More specifically, taking vb = A|ρ − ρc|z−1
below the tran-

sition, then the constants ρc and A can be fixed by fitting to
numerical simulations of the standard q = 0 system. Figure 5
shows the predictions of vb in both the boundary and DP
models applied to the case of p = 0.4 for varying measure-
ment rate q. This DP model is able to predict accurately
the velocity approaching the critical measurement rate, and
even extend the previous work by fitting in the regime of
approximately p < 0.3 where the measurement-free model
also becomes critical. Together these two models describe
the boundary spreading well for the whole chaotic phase; the
crossover rate qCS above which the DP critical scaling model
predicts vb better than the boundary model is measured for
each individual value of p [see Fig. 2(a)] and is plotted as the
black dashed line in Fig. 2.
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FIG. 5. Numerical butterfly velocity vb with varied measurement
rate q and fixed p = 0.4 (gray dots). The data are well described by
the boundary model (dashed line) at low q < qCS, and by the critical
scaling DP model (solid line) in the range qCS � q � qc, with qCS

shown to be approximately 0.3 in this instance. Data are collected on
a K = 4 system with system size N = 2048.

To confirm numerically our hypothesis that along the phase
boundary the model maps onto the same DP system with the
same ρc and exponents, we perform a data collapse over p
using the predicted critical form, Eq. (8). The collapse shown
in Fig. 6 is done by mapping all parameters onto the variables
ρ, and we find that the data points to a universal transition
with common critical behavior; only finite-size effects and the
behavior far from ρc differ.

FIG. 6. Scaling collapse of the butterfly velocity as a function of
measurement rate performed for the range p = 0.2X -0.5; the dashed
line highlights the power-law behavior with critical exponent z−1.
The logarithm of butterfly velocity is plotted and shifted by the
appropriate normalization log(A), defined in terms of q in the main
text. The horizontal axis is the distance of the measurement rate from
the critical rate q − qc. The figure inset shows the same data on a
semilogarithmic plot and without the data collapse.

VI. DISCUSSION AND CONCLUSION

We have demonstrated that a chaotic classical many-body
system can exhibit an information-spreading transition driven
only by local projective measurements. Although entangle-
ment entropy is not accessible in classical systems, this poses
no hindrance to identifying an information-spreading tran-
sition. We have identified a basic damage-spreading model
quantified by a decorrelator which is able to measure the
evolving spatial impact of a perturbation over time. This in-
formation measure is the local Hamming distance between
two copies of our CA system which initially differ at a single
site. When disorder averaged it can be thought of as the
classical analog of an OTOC. As one may expect, we find that
the velocity-dependent Lyapunov exponent behavior of the
OTOC is unaffected by local measurements, but the velocity
of information spreading is parametrically suppressed.

Our work raises the question of what behavior would an
OTOC demonstrate when applied to a quantum MIPT? It is
unclear how the presence of random, local, nonunitary mea-
surements across the system would affect the ability of two
operators at different points in space-time to commute. Indeed
this question seems to have no consistent understanding in the
MIPT literature. Nevertheless, the ability to describe quantum
information-spreading transitions with OTOCs would provide
another important tool to understand to what extent quantum
behavior can be analogized classically.

From our results on MIPTs in a minimal CA we expect
that such transitions can appear generically in other paradig-
matic classical models. For example, it is understood that a
chaotic classical Heisenberg chain shows information spread-
ing which is also described by an OTOC with VDLE behavior
[13]. The OTOC is similarly defined as a disorder-averaged
damage model, thus projecting two copies of the spin model
onto a common basis state at a sufficient rate qc is also ex-
pected to prevent any information spreading in the system. A
perhaps even simpler realization could be coupled classical
oscillators, with the benefit that there is a one-dimensional
state space versus the two-dimensional one of the Heisenberg
system [40]. Alternatively, it would be worthwhile to study the
effect of kinetic constraints, which lead to distinct classical
OTOC behavior [41], on classical MIPTs.

It turns out that the tendency of many-body systems to
converge due to local projections has been observed before in
the context of synchronization transitions [42], whereby two
random chaotic systems coupled sufficiently strongly “syn-
chronize” and become equal over time [43,44]. For example,
two CA systems x, y evolving under the same local rules will
synchronize if one of the systems y is randomly updated from
the configuration x at a sufficient rate q [45]. Above this
rate, and for any initial conditions of the two systems, the
two copies will converge at long times. Indeed this has also
been studied for KCA systems, using a symmetric coupling
scheme in Refs. [46,47] which also predicts a p-dependent
critical coupling qc. Our work complements this literature by
investigating the synchronization of copies which differ only
by a single initially damaged site, allowing us to study the
spatiotemporal profile of the competition between synchro-
nization and chaotic dynamics. These results are naturally
provided by the OTOC analog in our system and, as motivated
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above, we believe this will also allow the local study of syn-
chronization transitions in other many-body systems.

The classical OTOC analog is not the only measure which
could be used to identify a classical MIPT but it allowed
for a particular simple local projective measurement protocol
and analytical understanding. For quantum many-body sys-
tems the OTOC misses information contained in the quantum
entanglement measure. Similarly, a classical measure akin
to the quantum entanglement entropy would be helpful for
generalizing the idea of MIPT to classical systems [48]. Nev-
ertheless, the basic idea that local projective operations can
counteract the scrambling of information from the intrinsic
chaotic dynamics should carry over.

It is an important question to understand whether the crit-
ical behavior of different MIPTs also lie in the usual class
of DP chaos-spreading transitions. In our example the MIPT
transition is of the same class as the active-frozen transition of
the measurement-free system. However it does not exclude

the interesting possibility that the nature of the transition
changes, or that an intermediate phase (e.g., with sub-ballistic
information spreading) could also exist in classical systems.
In addition, different measurement protocols in models with
higher dimensional state space could lead to distinct MIPTs.
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