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Interacting central spin systems, in which a central spin is coupled to a strongly correlated spin bath with
intrabath interaction, consist of an important class of spin systems beyond the usual Gaudin magnet. These
systems are relevant to several realistic setups and serve as an interesting platform to study interaction controlled
decoherence and frustration induced instability of magnetic order. Using an equations-of-motion method based
on analytical representations of spin-operator matrix elements in the XX chain, we obtain exact long-time
dynamics of a generalized Heisenberg star consisting of a spin-S central spin and an inhomogeneously coupled
XXZ chain of N � 16 bath spins. In contrast to previous studies where the central spin dynamics is mainly
concerned, we focus on the influence of the central spin on the dynamics of magnetic orders within the spin bath.
By preparing the XXZ bath in a Néel state, we find that in the gapless phase of the bath even weak system-bath
coupling could lead to nearly perfect relaxation of the antiferromagnetic order. In the gapped phase, the staggered
magnetization decays rapidly and approaches a steady value that increases with increasing anisotropy parameter.
These findings suggest the possibility of controlling internal dynamics of strongly correlated many-spin systems
by certain coupled auxiliary systems of even few degrees of freedom. We also study the dynamics of the Rényi
entanglement entropy of the central spin when the bath is prepared in the ground state. Both the overall profile
and initial growth rate of the Rényi entropy are found to exhibit minima at the critical point of the XXZ bath.
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I. INTRODUCTION

Quantum spin systems serve as a paradigm exhibiting
strong correlations and many-body effects and their ground-
state properties have long attracted considerable interest since
the early work by Bethe in the 1930s [1]. Theoretical investi-
gations of many-body spin systems are usually challenging
due to complex interactions and exponential growth of the
Hilbert space dimension with the system size. In this context
exactly soluble models provide a useful guide to understand
general properties of the ground state, excited states, and
nonequilibrium dynamics of more general quantum spin sys-
tems.

Two typical classes of widely studied soluble models are
quantum spin chains (e.g., the quantum XY chain, the XXZ
chain) and Gaudin-like models (e.g., the Gaudin magnet or
central spin model, the reduced BCS model), both of which
can be solved by certain types of Bethe ansatz or free-fermion
techniques [2–4]. Nearly thirty years ago, Richter and Voigt
proposed a simple frustrated spin model combining the above
two ingredients and named it as a Heisenberg star (referred to
as the R-V model below) [5]. The R-V model consists of a
spin-1/2 central spin and a homogeneously coupled spin bath
modeled by an XXX chain [5],

HR-V = J
N∑

j=1

�S j · �S j+1 + 2g
N∑

j=1

�S · �S j, J, g > 0, (1)

*wunwyz@gmail.com

where J and 2g are, respectively, the intrabath and system-bath
coupling strengths. The competition between the two terms is
found to result in interesting behaviors of ground-state spin
correlations [5].

In its original form, the central spin model consists of
a central spin and an inhomogeneously coupled spin bath
without intrabath coupling and is integrable under certain
conditions [3,6–11]. The central spin model and its vari-
ants have attracted great attention in the past decades due
to their relevance to quantum decoherence [12–23], quantum
information [24,25], quantum metrology [26], and quantum
batteries [27,28]. Since the spin bath is itself noninteracting
and featureless, theoretical studies of such kind of central
spin systems mainly focus on the bath induced central spin
dynamics, which has been extensively studied using various
methods, including quantum master equations [19], Bethe
ansatz based techniques [22,23,26], and the time-dependent
density matrix renormalization group (t-DMRG) [21], etc.

However, in more realistic cases the intrabath coupling
between bath spins cannot be neglected and will affect the
long-time dynamics of the system. These central spin sys-
tems with self-interacting spin baths will be referred to as
interacting central spin models (ICSMs) and their dynamics
has been widely investigated [29–47]. In the context of spin
baths modeled by one-dimensional spin chains, the central
spin dynamics affected by a variety of structured spin envi-
ronments, including the quantum Ising chain [30–32], the XY
chain [33–37], and spin chains with Dzyaloshinskii-Moriya
interactionss [38–40], have been extensively studied. There
are several common features shared by these studies: (i) The
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spin baths considered in these works can be mapped onto
free-fermion models. (ii) Only non-spin-flipping or dephasing
interactions between the central spin and the spin chain are
considered. (iii) The central spin dynamics (e.g., decoherence
or entanglement dynamics) influenced by the criticality of the
spin bath is mainly concerned.

Contrastingly, it is more difficult to evaluate the long-time
dynamics of ICSMs in which the spin-flipping system-bath
coupling or strongly correlated terms in the spin bath (e.g., the
zz interaction) are introduced. In the former case, the decoher-
ence dynamics of a qubit coupled to an XX chain via XX-type
[43] and XXZ-type [44] system-bath coupling is studied
by using an equations-of-motion method combined with the
Chebyshev expansion technique. The spin-flipping interaction
makes the free-fermion solution of the spin bath inapplicable
due to the nonlocal nature of the spin raising and lower-
ing operators in the fermion representation. There appeared
only a few works in which strongly correlated spin baths
were addressed. The decoherence and entanglement dynamics
of a single qubit or two qubits coupled to an XXZ chain
through Ising-type [34] or local XXX-type [41] interactions
are studied using the t-DMRG. The central spin coherence and
polarization dynamics in a homogeneous Heisenberg star with
a Zeeman term is studied based on the Bethe ansatz solutions
of the XXX bath [45]. The finite-temperature decoherence
dynamics of a two-level system interacting with an XXZ chain
is studied using the hierarchical equations of motion method
[46]. Most recently, the R-V model is generalized to the case
of a higher central spin and its ground state and dynamical
properties are rigorously investigated through analytical and
numerical approaches [47].

In spite of the above-mentioned works, the influence of
the system part, the central spin, on the dynamical behaviors
of the strongly correlated spin bath is largely unexplored. As
perhaps the first ICSM that combines the Gaudin magnet and
a nontrivial spin bath, the R-V model strongly suggest us
to investigate the effects of the central-spin induced frustra-
tion on the internal properties of the bath. For example, it
is demonstrated in Ref. [42] that the central spin decoher-
ence can be used as a tool to detect many-body correlations
in the coupled spin environment. The study of central-spin
driven dynamics of the spin bath will help us gain a better
understanding of the influence of small quantum systems of
few degrees of freedom on the nonequilibrium dynamics of
strongly correlated many-body systems.

In this work we study the real-time dynamics of an ICSM
that is a generalization of the R-V model (referred to as a
generalized Heisenberg star), where the spin bath is modeled
by a spin-1/2 antiferromagnetic XXZ chain inhomogeneously
coupled to a spin-S central spin via XXZ-type system-bath
coupling. The XXZ chain is a paradigmatic strongly cor-
related spin model and its dynamical properties continue
to attract the attention of theorists [48–52]. This is mainly
motivated by experimental advances in cold-atom systems,
where the spin-1/2 and spin-1 XXZ chains have been realized
and certain initial states are successfully prepared [53–55].
To be specific, we prepare the XXZ bath in a Néel state
and investigate the relaxation of the antiferromagnetic order
driven simultaneously by the intrabath nearest-neighbor anti-
ferromagnetic interaction and the system-bath coupling. We

employ an equations-of-motion method [43,44] to treat the
dynamics of the whole system with N � 16 bath spins. The
usefulness of the method lies in the fact that each bath spin
interacts locally to the central spin, while the matrix elements
of bath operators in the diagonal basis of the XX chain admit
analytical expressions [56]. By numerically solving the equa-
tions of motion in each magnetization sector, we are able to
obtain the exact dynamics of the generalized Heisenberg star
prepared in a generic uncorrelated initial state.

We find that even weak system-bath coupling can yield
nearly perfect relaxation of the antiferromagnetic order in the
gapless phase of the XXZ bath. In the gapped phase of the
XXZ bath, the staggered magnetization rapidly approaches a
finite steady value for strong system-bath couplings. However,
at the critical point of the XXZ bath the staggered magneti-
zation keeps an oscillatory behavior around zero value from
the weak to strong system-bath couplings. These observations
are in sharp contrast to the case of vanishing system-bath
coupling [48,49] and can be qualitatively understood from an
energetic point of view and by looking at the corresponding
decoherence of the central spin. We also find that for strong
system-bath couplings increasing the quantum number S of
the central spin further facilitates the initial decay and sup-
presses the steady value of the staggered magnetization. These
findings indicate that even a simple quantum system with few
degrees of freedom could have significant influence on the
dynamics of the coupled many-body system.

Our method also allows us to study the reduced dynamics
of the central spin in the usual way. In this case we prepare
the XXZ bath in its ground state and focus on the growth of
the Rényi entanglement entropy of the central spin as a mea-
sure of entanglement between the central spin and the bath.
Remarkably, we find that the Rényi entanglement entropy
acquires the lowest value at the critical point of the XXZ bath.
The short-time dynamics is found to be of a Gaussian form,
which basically reflects the overall behavior of the entropy
on longer timescales. Correspondingly, the short-time growth
rate also achieves a minimum at the critical point. The critical
properties of the XXZ bath can thus be detected through
the entanglement dynamics of the central spin, providing a
way to investigate the internal phases of strongly correlated
spin systems via probing the corresponding simple auxiliary
system with which it interacts.

The rest of the paper is organized as follows. In Sec. II we
introduce the generalized Heisenberg star and provide details
of the equations-of-motion approach based on spin-operator
matrix elements of the XX chain. In Sec. III we study the
relaxation of antiferromagnetic order measured by the stag-
gered magnetization when the XXZ bath is prepared in the
Néel state. In Sec. IV we study the dynamics of the Rényi
entanglement entropy of a higher central spin when the XXZ
bath is prepared in its ground state. Conclusions are drawn in
Sec. V.

II. MODEL AND METHODOLOGY

A. Hamiltonian

We consider a generalized inhomogeneous Heisenberg star
described by the Hamiltonian (see Fig. 1)

H = HS + HB + HSB. (2)
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FIG. 1. An inhomogeneous Heisenberg star consists of a spin-S
central spin and a spin bath modeled by an XXZ ring, with the two
part interacting via inhomogeneous XXZ-type hyperfine coupling.

The system part

HS = ωSz + λS2
z (3)

describes a central spin �S = (Sx, Sy, Sz ) of size S � 1/2,
where ω is the Larmor frequency due to the applied magnetic
field and λ is the single-ion anisotropy of the central spin when
S � 1. The spin bath takes the form of a spin-1/2 XXZ chain

HB = HXX + HZ,

HXX = J
N∑

j=1

(
Sx

j S
x
j+1 + Sy

j S
y
j+1

)
,

HZ = J ′
N∑

j=1

Sz
jS

z
j+1, (4)

where �S j = (Sx
j , Sy

j , Sz
j ) is the spin-1/2 operator for the jth

bath spin. We have separated the bath Hamiltonian into the
in-plane component HXX and the Ising component HZ. For
simplicity we assume that N is even and impose periodic
boundary conditions. We set J > 0 and the sign of J ′ es-
sentially determines the quantum phase of HB [57]. The
XXZ-type hyperfine coupling between the central spin and the
spin bath reads

HSB = 2
N∑

j=1

[
g j

(
SxSx

j + SySy
j

) + g′
jSzS

z
j

]

=
N∑

j=1

[
g j (S+S−

j + S−S+
j ) + 2g′

jSzS
z
j

]
, (5)

where {g j} and {g′
j} are, respectively, the in-plane and Ising

parts of the (inhomogeneous) exchange interaction constants.
It is usually the case that g′

j/g j = �, ∀ j, where � measures
the anisotropy of the hyperfine coupling. The Heisenberg
star H might be simulated in cold-atom systems by en-
gineering the interaction between an XXZ chain with an
auxiliary central atom. It can also describe the physics of
one-dimensional molecular aggregates strongly coupled to
a microcavity, where the molecular aggregate is modeled
by a Frenkel exciton model with exciton-exciton interaction
[58,59] and the few-photon states are mimicked by the spin-S
central spin [60].

Let �L ≡ ∑N
j=1

�S j be the collective angular momentum op-
erator of the spin bath, it can be easily checked that the total
magnetization M̂ = Sz + Lz is conserved. The angular mo-
mentum of the central spin �S2 is also conserved. However, the
total angular momentum of the spin bath, �L2, is not conserved
unless J = J ′ and {g j} and {g′

j} are both homogeneous [44].
Below the eigenvalues of M̂, Sz, and Lz will be denoted as M,
sz, and lz, respectively.

In the case of J = J ′ = 0, the bath becomes noninteracting
and we recover the usual Gaudin magnet that admits Bethe
ansatz solutions under certain conditions [3,6–11]. In the case
of J ′ = 0 and S = 1/2, the generalized Heisenberg star is
reduced to the XX star studied in Ref. [44]. In the special case
of ω = λ = 0, J = J ′, and g j = g′

j = g, ∀ j, the Hamiltonian
is reduced to the R-V model given by Eq. (1), which can be
rewritten as

HR-V = J
N∑

j=1

�S j · �S j+1 + g( �J 2 − �S2 − �L2), (6)

where �J = �L + �S is the total angular momentum of the sys-
tem. The R-V model possesses a number of symmetries, and
hence conserves the following quantities, i.e., the total energy
HR-V, the total angular momentum �J 2, the total magnetization
M̂, the bath angular momentum �L2, and the bath energy HB =
J

∑N
j=1

�S j · �S j+1. As a result, a general eigenstate of HR-V

can be labeled by, respectively, the corresponding quantum
numbers as |ψE ,J ,M,l〉.

The total magnetization M takes the following 2S + N + 1
possible values: M = −S − N

2 ,−S − N
2 + 1, . . . , S + N

2 . The
structure of the states in an individual M subspace depends on
whether S < N

2 or S � N
2 . In this paper we focus on the case

of S < N
2 (see the Appendix). To get a universal short-time

dynamics for different numbers of bath spins, we introduce
the energy scale

ωfluc = 2

√√√√ N∑
j=1

g2
j, (7)

which is associated with the fluctuation of the Overhauser
field [61].

B. Method: Spin-operator matrix elements

To numerically simulate the real-time dynamics of the
composite system, we use the representation in which the
Hamiltonian H0 = HS + HXX is diagonal. This is motivated
by the fact that the matrix elements of each term in the remain-
ing part of the Hamiltonian, H1 = H − H0, can be expressed
in this representation in terms of the so-called spin-operator
matrix elements for the XX chain [56]. The eigenbasis of H0

is spanned by the following (2S + 1)2N states:

{|sz〉|�ηn〉}, sz = S, S − 1, . . . ,−S; n = 0, 1, . . . , N,

where

Sz|sz〉 = sz|sz〉,
HXX|�ηn〉 = E�ηn |�ηn〉, (8)
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with E�ηn = ∑n
l=1 J cos K (σn )

ηl
. Here |�ηn〉 is an eigenstate of

HXX having n fermionic excitations labeled by the tuple �ηn =
(η1, . . . , ηn) (with the convention 1 � η1 < · · · < ηn � N)
with respect to the vacuum state |0〉 = |↓ · · · ↓〉 [56]. The cor-
responding eigenenergy E�ηn depends on the parity of n through
wave numbers K (σn )

ηl
= −π + [2ηl + 1

2 (σn − 3)] π
N , with σn =

1 (even n) or σn = −1 (odd n). For later convenience we also
introduce α = sz + n = M + N

2 , which is also conserved and
takes values from α = −S to α = S + N .

As we will see, the equations of motion of the system in
the basis {|sz〉|�ηn〉} involve the following matrix elements:

F�ηn+1, �χn ({g j}) = 〈�χn|
N∑

j=1

g jS
−
j |�ηn+1〉,

G �χn, �χ ′
n
({g′

j}) = 〈�χn|
N∑

j=1

g′
jS

z
j | �χ ′

n〉,

Ḡ �χn, �χ ′
n
= 〈�χn|

N∑
j=1

Sz
jS

z
j+1| �χ ′

n〉. (9)

For the homogeneous XX ring described by HXX, it is shown
in Ref. [56] that Fj;�ηn+1, �χn ≡ 〈�χn|S−

j |�ηn+1〉 admits a simple
factorized form,

Fj;�ηn+1, �χn = 1√
N

(
2

N

)n

ei( j−n)��ηn+1 , �χn h�ηn+1, �χn , (10)

where ��ηn+1, �χn = ∑n+1
j=1 K (σn+1 )

η j − ∑n
i=1 K (σn )

χi
is the momen-

tum transfer between |�ηn+1〉 and | �χn〉 and

h�ηn+1, �χn

=
∏

i>i′
(
e−iK (σn )

χi − e−iK (σn )
χi′

) ∏
j> j′

(
eiK

(σn+1 )
η j − e

iK
(σn+1 )
η j′

)
∏n

i=1

∏n+1
j=1

(
1 − e−i(K

(σn+1 )
η j −K (σn )

χi ))
(11)

is a function of the momenta [62]. From Eq. (10) we immedi-
ately get

F�ηn+1, �χn ({g j}) =
(

2

N

)n g̃��ηn+1 , �χn
e−in��ηn+1 , �χn

√
N

h�ηn+1, �χn , (12)

where g̃q = ∑N
j=1 eiq jg j is the Fourier transform of {g j}. Us-

ing Sz
j = 1

2 − S−
j S+

j , we similarly obtain

G �χn, �χ ′
n
({g′

j}) = 1

2
δ �χn, �χ ′

n

∑
j

g′
j −

(
2

N

)2n g̃′∗
� �χn , �χ ′

n
ein� �χn , �χ ′

n

N
h̄ �χn, �χ ′

n
,

(13)

where

h̄ �χn, �χ ′
n
=

∑
�ηn+1

h�ηn+1, �χn h∗
�ηn+1, �χ ′

n
. (14)

As a byproduct, the matrix elements of the staggered magne-
tization,

ms ≡ 1

N

N∑
j=1

(−1) jSz
j, (15)

which measures the antiferromagnetic order in the XXZ chain
with J ′/J > 0, can be obtained by setting g′

j = 1
N eiπ j in

Eq. (13):

ms; �χn, �χ ′
n
= (−1)n−1

(
2

N

)2n δ(� �χn, �χ ′
n
, π )

N
h̄ �χn, �χ ′

n
, (16)

where

δ(x, y) =
{

1, x − y = 2πm, m ∈ Z,

0, otherwise. (17)

Finally, the matrix elements Ḡ �χn, �χ ′
n

can also be calculated from
Eq. (10) and has the form

Ḡ �χn, �χ ′
n
=

(
n − 3N

4

)
δ �χn, �χ ′

n
+

(
2

N

)4n δ(� �χn, �χ ′
n
, 0)

N

×
∑
�ηn

ei� �χn ,�ηn h̄ �χn,�ηn h̄�ηn, �χ ′
n
. (18)

The advantage of using the eigenbasis of the XX chain now
becomes clear: the system-bath coupling constants simply en-
ter the matrix elements F�ηn+1, �χn ({g j}) and G �χn, �χ ′

n
({g′

j}) through
the Fourier transforms g̃��ηn+1 , �χn

and g̃′∗
� �χn , �χ ′

n
. The main task is

to calculate the function h�ηn+1, �χn given by Eq. (11). Moreover,
the matrix elements Ḡ �χn, �χ ′

n
given by Eq. (18) also provide an

alternative way to diagonalize the XXZ chain in a basis where
HXX is diagonal (in contrast, the Ising term HZ is diagonal in
the real basis formed by the Ising configurations). In passing
we mention that, in principle, the dynamics of the generalized
Heisenberg star can also be accurately simulated by using the
Chebyshev expansion technique [44,63,64].

C. Initial states, time-evolved states, and equations of motion

We assume a separable initial state for the star

|ψ (0)〉 = |φ(S)〉 ⊗ |φ(B)〉, (19)

where |φ(S)〉 is a general pure state of the central spin,

|φ(S)〉 =
S∑

sz=−S

asz |sz〉, (20)

with
∑S

sz=−S |asz |2 = 1. Similarly, |φ(B)〉 is a pure state of the
XXZ bath and can generally be written as a linear combination
of the component states having a fixed number of fermionic
excitations:

|φ(B)〉 =
N∑

n=0

∑
�ηn

b�ηn |�ηn〉, (21)

where
∑N

n=0

∑
�ηn

|b�ηn |2 = 1. Since the time evolution occurs
in each sector with fixed α, the most general form of the time-
evolved state is

|ψ (t )〉 = |ψ (I)(t )〉 + |ψ (II)(t )〉 + |ψ (III)(t )〉. (22)

According to the classification of different structures of the
magnetization sectors listed in the Appendix, the three parts
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FIG. 2. Structure of the block Hamiltonian HI,α for a fixed α

with −S � α � S. The main diagonal blocks are associated with
the spin-operator matrix elements G �χn, �χ ′

n
({g′

j}) and Ḡ �χn, �χ ′
n

(with red
sides), while the off-diagonal blocks are associated with the matrix
elements F�ηn+1, �χn ({gj}) (with dotted green sides). The blue line indi-
cates the diagonal terms.

of the time-evolved state read

|ψ (I)(t )〉 =
S∑

α=−S

α+S∑
n=0

∑
�ηn

AI,α
α−n,�ηn

|α − n〉|�ηn〉,

|ψ (II)(t )〉 =
N−S−1∑
α=S+1

α+S∑
n=α−S

∑
�ηn

AII,α
α−n,�ηn

|α − n〉|�ηn〉,

|ψ (III)(t )〉 =
N+S∑

α=N−S

N∑
n=α−S

∑
�ηn

AIII,α
α−n,�ηn

|α − n〉|�ηn〉, (23)

with initial conditions

Ai,α
α−n,�ηn

= aα−nb�ηn , i = I, II, III. (24)

For a fixed α satisfying −S � α � S, let

�AI,α = (
AI,α

α,�η0
,
{
AI,α

α−1,�η1

}
, . . . ,

{
AI,α

−S,�ηα+S

})T

be the amplitude vector in the ordered basis

|α〉|0〉, |α − 1〉{|�η1〉}, . . . , | − S〉{|�ηα+S〉},
the equations of motion of �AI,α then read

i
d

dt
�AI,α = HI,α �AI,α, (25)

where HI,α is a DI,α × DI,α matrix with DI,α = ∑α+S
n=0

(N
n

)
.

The structure of HI,α is shown in Fig. 2. Similar analysis can
be made for categories II and III. To obtain the time-evolved
state |ψ (t )〉, we need only to simulate the time evolution of
each amplitude vector �Ai,α governed by Hi,α in each subspace
with fixed α. In our numerical simulations this is achieved
through an exact diagonalization of the matrix Hi,α .

In the following we will apply our method to study the
dynamics of the system starting with two different bath initial
states, namely the Néel state |AF〉 = |↓↑ · · · ↓↑〉 and the

0 2 4 6 8 10 12
Jt

-0.4

-0.3

-0.2

-0.1

0

0.1

0.2

0.3

0.4

0.5

m
s
(t

)

N = 16, J /J = 0
N = 16, J /J = 0.5
N = 16, J /J = 1
N = 16, J /J = 2
N = 16, J /J = 4
N = 14, J /J = 0
N = 14, J /J = 0.5
N = 14, J /J = 1
N = 14, J /J = 2
N = 14, J /J = 4

increasing J /J

FIG. 3. Dynamics of the staggered magnetization 〈ms(t )〉 in the
pure XXZ chain (gj = g′

j = 0, ∀ j) with N = 14 (thin curves) and
16 (thick curves) sites. The initial state is chosen as the Néel state
|AF〉 = |↓↑ · · · ↓↑〉. The time evolution up to Jt = 4 is independent
of N and expected to match the thermodynamic limit result.

ground state |GXXZ〉 of the XXZ bath. In the former case we
mainly focus on the influence of system-bath coupling on the
relaxation of antiferromagnetic order within the XXZ bath;
while in the latter case we are interested in the effects of
internal phases of the bath on the reduced dynamics of the
central spin.

III. THE NÉEL STATE |AF〉: RELAXATION OF
ANTIFERROMAGNETIC ORDER WITHIN THE XXZ BATH

The Néel state |AF〉 = | ↓↑ · · · ↓↑〉 is one of the two de-
generate ground states of the XXZ chain in the Ising limit
J ′/J → ∞. It has been employed to detect the relaxation of
antiferromagnetic order in the XXZ chain after a quantum
quench [48,49], to study the decoherence dynamics of a qubit
coupled to both noninteracting [22] and interacting [44] spin
baths, to make the connection between dynamical quantum
phase transitions and order parameter dynamics [51], and
more recently, to probe information scrambling in integrable
and nonintegrable spin chain models [65,66]. Moreover, the
Néel state lives in the largest magnetization sector (of dimen-
sion

( N
N/2

)
) of the pure XXZ chain and could lead to nontrivial

real-time dynamics.

A. Without system-bath coupling: gj = g′
j = 0

To show the validity of our method, we first calculate the
dynamics of the staggered magnetization 〈ms(t )〉 in a pure
antiferromagnetic XXZ chain (without system-bath coupling),
which has been thoroughly studied in Refs. [48,49] by using
the infinite-size time-evolving block decimation algorithm. In
Fig. 3 we plot 〈ms(t )〉 for both N = 14 (thin lines) and N = 16
(thick lines). It can be seen that the short- to intermediate-time
dynamics of 〈ms(t )〉 (Jt < 4) is insensitive to the variation
of N and is expected to faithfully capture the result in the
thermodynamic limit N → ∞. Actually, these features were
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FIG. 4. Time evolution of the staggered magnetization 〈ms(t )〉 in a generalized Heisenberg star composed of a S = 1/2 central spin and
an XXZ chain with N = 16 sites. The XXZ bath is prepared in the Néel state |AF〉 = |↓↑ · · · ↓↑〉 and the initial state of the central spin
is |φ (S)〉 = 1

2 (|↑〉 + |↓〉). The corresponding dynamics of the central spin decoherence factor |r(t )| = |〈S+(t )/〈S+(0)〉| is shown in the right
upper corners of (b), (c), and (d). Other parameters: � = 1 and ω = λ = 0.

numerically confirmed in larger chains up to N = 24 by us-
ing exact diagonalization based on a Lanczos algorithm [51].
Similar size-independent short-time dynamical behaviors of
other order parameters in other spin models, e.g., the trans-
verse/longitudinal magnetization dynamics in the quantum
Ising chain [67–69], were also observed.

For large enough chains and at long times, it is found in
Refs. [48,49] that 〈ms(t )〉 exhibits an oscillatory (a nonoscil-
latory) decay for 0 < J ′/J < 1 (J ′/J > 1), while the fastest
relaxation occurs close to the critical point J ′/J = 1. For
N = 16, although we observe a rough relaxation of 〈ms(t )〉
(red solid curve, J ′/J = 1) around Jt = 7.5, a deviation from
〈ms(t )〉 ≈ 0 occurs at later times, and 〈ms(t )〉 starts to oscillate
at long times [see Fig. 4(a) below]. This is mainly due to the
finiteness of the relevant Hilbert space (of dimension

(16
8

) =
12 870 for N = 16). We now ask the question: How does the
interaction between the central spin and the XXZ bath alter the
dynamical behaviors of the antiferromagnetic order within the
chain? As we will see, both the system-bath coupling strength
and the size of the central spin have significant effects on the
initial decay and long-time dynamics of 〈ms(t )〉.

B. Including the system-bath coupling

We use the following inhomogeneous system-bath cou-
pling [22]:

g j = g′
j/� = g

N
e− j−1

N , (26)

which corresponds to a Gaussian wave function in a two-
dimensional quantum dot [70]. The initial state of the central
spin is chosen as an equally weighted state

|φ(S)〉 = 1√
2S + 1

(|S〉 + |S − 1〉 + · · · + | − S〉), (27)

and the initial state of the XXZ bath is assumed to be the Néel
state |φ(B)〉 = |AF〉. The parameter g appearing in Eq. (26)
defines the overall energy scale through the relation [44]

ωfluc = 2g

N
e

1
N −1

√
e2 − 1

e
2
N − 1

. (28)
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Note that the Fourier transform of g j has a simple form,

g̃q = g

N

1 − e(iqN−1)

e−iq − e− 1
N

. (29)

In this section we focus on the case of S = 1/2. Since
|AF〉 lives in the manifold with excitation number n = N/2,
the index α takes two possible values, α = (N ± 1)/2, and
the time-evolved state is of type II for N > 2, as can be seen
from Eq. (23). The dimension of the relevant Hilbert space
is 2

[(16
8

) + (16
7

)] = 48 620 for N = 16, which is large enough
to observe nontrivial dynamics and the simulations can be
performed on a personal workstation.

To see the effects of the system-bath coupling on the inter-
nal dynamics of the bath, we first use the intrabath coupling
J rather than ωfluc as an overall energy scale. For comparison,
in Fig. 4(a) we plot the time evolution of 〈ms(t )〉 on a longer
timescale up to Jt = 120 in the pure XXZ chain with N = 16
sites. As expected, for all values of J ′/J considered, 〈ms(t )〉
does not relax in the long-time limit but exhibit irregular
oscillations due to the finite size effect. Since there is no
direct interaction between the central spin and the XXZ bath,
the former does not show any decoherence. Once the system-
bath coupling is introduced, the uncorrelated initial state will
become entangled and the decoherence of the central spin
and the related relaxation of the aniferromagnetic order in the
chain occur simultaneously.

Figure 4(b) shows 〈ms(t )〉 in the weak system-bath cou-
pling limit with ωfluc/J = 1, for which the largest hyperfine
interaction is 2g/N ≈ 0.37ωfluc < J for N = 16. At short
times 〈ms(t )〉 behaves similarly to the result without system-
bath coupling [comparing to Fig. 4(a)]. In the long-time
limit, 〈ms(t )〉 still exhibits oscillatory behaviors for J ′/J > 1,
but with positive amplitudes. At the critical point J ′/J = 1,
〈ms(t )〉 oscillates around the zero value. Interestingly, for
J ′/J < 1 we observe that 〈ms(t )〉 relaxes to nearly zero after
an initial oscillatory decay (black dotted and blue dashes
curves for J ′/J = 0 and 0.5, respectively). This is in sharp
contrast to the case without system-bath coupling where
〈ms(t )〉 oscillates intensively for J ′/J = 0 [Fig. 4(a)]. There-
fore, even weak system-bath coupling can assist the long-time
relaxation of the antiferromagnetic order for an intermediate-
size (17 spins in total) generalized Heisenberg star with
easy-plane anisotropy 0 � J ′/J < 1.

These behaviors persist for a stronger system-bath cou-
pling with ωfluc/J = 2 [Fig. 4(c)], where we further observe
that for J ′/J < 1 the initial oscillatory stage before the re-
laxation taking place becomes shorter. The situation is more
interesting when we enter the strong system-bath coupling
regime [Fig. 4(d)]. Except for the critical point J ′/J = 1 for
which 〈ms(t )〉 still experiences oscillations around its zero
mean value, in all the other cases 〈ms(t )〉 quickly approaches
an almost steady value. The steady value of 〈ms(t )〉 is nearly
zero (large than zero) for J ′/J < 1 (J ′/J > 1).

Overall, the system-bath coupling has significant influence
on the long-time dynamics of 〈ms(t )〉, although it seems that
the initial decay of 〈ms(t )〉 is insensitive with respect to vary-
ing ωfluc/J . Qualitatively, since the central spin and the XXZ
bath are initially uncorrelated, at short times the magnetic
order encoded in the antiferromagnetic bath state |AF〉 only
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FIG. 5. Time evolution of the staggered magnetization 〈ms(t )〉
in a Heisenberg star composed of a single S = 1/2 central spin and
an isotropic XXZ chain with N = 16 sites and J ′/J = 1. The inset
shows the dynamics up to an intermediate time ωfluct = 100. Note
that we use ωfluc as an overall energy scale so that the initial decay
of 〈ms(t )〉 is accelerated by increasing the intrabath coupling J/ωfluc.
Other parameters: � = 1 and ω = λ = 0.

spreads within the chain through the nearest-neighbor intra-
bath coupling J . The system-bath coupling, which can be
viewed as a kind of long-range interaction within the star,
connects each bath spin with the common central spin and
generates effective spin-spin couplings among the bath spins.
It thus takes a longer period of time to establish the correlation
between the two part and induce both the decoherence of the
central spin and the relaxation of the antiferromagnetic order.

To further understand the above dynamical behaviors
of 〈ms(t )〉, we also plot in the right upper corners of
Figs. 4(b)–4(d) the corresponding decoherence factor |r(t )| =
|〈S+(t )/〈S+(0)〉| [15] of the spin-1/2 central spin. We find
that the relaxation of 〈ms(t )〉 at long times for J ′/J < 1 is
accompanied by the decay of |r(t )|. The sharp decay of |r(t )|
in the case of J ′/J = 0 has been demonstrated in Ref. [44]
using the Chebyshev expansion technique in an N = 16 XX
chain. For J ′/J � 1, |r(t )| shows irregular oscillations around
a finite value in a similar way as 〈ms(t )〉. The central spin
decoherence and the dynamics of the staggered magnetization
within the bath are therefore in some sense correlated.

We can also look at the dynamics of the antiferromagnetic
order from the opposite limit with vanishing intrabath cou-
pling and fixed system-bath coupling. In this integrable limit
there is no direct interaction among the bath spins and the de-
cay of 〈ms(t )〉 is solely governed by the system-bath coupling.
The central spin decoherence starting from |AF〉 for such a
noninteracting bath has been thoroughly studied in Ref. [22]
for large baths using a combination of algebraic Bethe ansatz
and Monte Carlo simulation. The black dotted curve in Fig. 5
shows the evolution of 〈ms(t )〉 for J = J ′ = 0, where 〈ms(t )〉
experiences a slower initial decay (see also the inset) and
oscillates smoothly around zero at long times. Increasing the
intrabath coupling to J/ωfluc = J ′/ωfluc = 0.1 induces a faster
initial decay and an increase in the long-time oscillation fre-
quency. For all the intrabath couplings considered, the initial
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FIG. 6. Time evolution of the staggered magnetization 〈ms(t )〉
in a Heisenberg star composed of an isotropic XXZ chain with
N = 14 and a central spin with S = 1/2, 1, 3/2, and 2. The intrabath
coupling is chosen to be J/ωfluc = 0.1 (strong system-bath coupling)
and the results for several values of the anisotropy parameter J ′/J are
presented. Other parameters: � = 1 and ω = λ = 0.

decay rate (the time at which the first minimum of 〈ms(t )〉
reaches) increases (decreases) with increasing J/ωfluc. These
behaviors can also be qualitatively understood from the fact
that the intrabath coupling generates spin flips between two
nearest-neighbor bath spins which tend to destroy the initial
antiferromagnetic order on a short timescale.

Before ending this section, we finally discuss the effect of
the central spin size S on the dynamics of the antiferromag-
netic order. To this end we focus on the strong system-bath
limit with J/ωfluc = 0.1. Due to the limitation of the compu-
tation resources, we present in Fig. 6 the time evolution of
〈ms(t )〉 for N = 14 and S = 1/2, 3/2, 1, and 2. For J ′/J < 1,
increasing S for fixed J ′/J generally accelerates the initial
decay of 〈ms(t )〉, rendering the first minimum of 〈ms(t )〉 to
be reached earlier. Moreover, the oscillation amplitude at
long times is suppressed when S increases. Interestingly, for
J ′/J > 1 (right bottom panel) we find that a larger S results in
a lower steady value of 〈ms(t )〉 and for S = 2 the staggered
magnetization nearly vanishes at long times. Actually, for
fixed S < 2N the index α can take 2S + 1 possible values, i.e.,
N/2 − S, N/2 − S + 1, . . . , N/2 + S for the equally weighted
state |φ(S)〉. As a result, there are effectively 2S + 1 channels
for the XXZ bath to interact with the central spin, inducing a
faster relaxation of the antiferromagnetic order.

IV. THE GROUND STATE |GXXZ〉: GROWTH
OF THE RÉNYI ENTANGLEMENT ENTROPY

OF THE CENTRAL SPIN

In this section we study the dynamics of the central spin
when the XXZ bath is prepared in its ground state |φ(B)〉 =
|GXXZ〉 for some fixed J ′/J . The initial state of the central
spin is still assumed to be an equally weighted superposition
state |φ(S)〉 given by Eq. (27). The dynamical protocol can
be considered as a sudden quench in the hyperfine coupling
strength: at t = 0− the whole system lies in a separable state

associated with g j = g′
j = 0, ∀ j, and then one suddenly turns

on the system-bath coupling with strengths given by Eq. (26).
It is known that for even N and J ′/J > −1 the ground

state of HB is nondegenerate and possesses magnetization
lz = 0; while for J ′/J < −1 the bath is ferromagnetic and
has two degenerate fully polarized ground states |↑ · · · ↑〉
and |↓ · · · ↓〉 [71]. Below we focus on the case of J ′/J > 0,
so that the initial bath state |φ(B)〉 = ∑

�η N
2

b�η N
2
|�η N

2
〉 lives in

the subspace with n = N/2. The coefficients {b�η N
2
} can be

determined numerically by solving an eigenvalue problem of
HB in the lz = 0 sector and finding the lowest energy state.

We first note that in the R-V model a spin-1/2 central spin
does not experience any decoherence from the initial state
|φ(S)〉 ⊗ |φ(B)〉. Actually, the absolute ground state of an XXX
chain is a singlet state |GXXX〉 having angular momentum
l = 0 [72], so that the total angular momentum of the system
must be J = 1/2. It is easy to see from Eq. (6) that the initial
state is an eigenstate of HR-V with eigenenergy E (g)

B and hence
only acquires a phase factor during the time evolution, where
E (g)

B is the ground state energy of the XXX chain. However,
the time evolution becomes nontrivial when one goes beyond
the Richter-Voigt point.

In this subsection we mainly focus on the case of S = 1,
for which the reduced density matrix of the central spin has a
closed form [73]:

ρ11 = 1 + 1

2
(az − qxx − qyy),

ρ22 = −1 + qxx + qyy,

ρ33 = 1 − ρ11 − ρ22,

ρ12 = ρ∗
21 = 1

2
√

2
[ax + qzx − i(ay + qyz )],

ρ13 = ρ∗
31 = 1

2
(qxx − qyy − iqxy),

ρ23 = ρ∗
32 = 1

2
√

2
[ax − qzx − i(ay − qyz )], (30)

where

ai = 〈Si〉, i = x, y, z,

qii = 〈(Si )
2〉, i = x, y,

qi j = 〈SiS j + S jSi〉, i j = xy, yz, zx. (31)

We are interested in the time evolution of the Rényi entan-
glement entropy of the central spin (α � 0 and α �= 1)

Rα (ρCS) = 1

1 − α
ln Tr(ρα

CS). (32)

The Rényi entanglement entropy naturally generalizes the von
Neumann entropy and reduces to the latter when α → 1. The
Rényi entanglement entropy for α = 2 has been measured in
cold-atom experiments [74].

Figure 7 shows R2(t ) after a sudden quench to the strong
system-bath coupling regime with J/ωfluc = 0.1 for an XXZ
chain with N = 14 sites. The results for various values of J ′/J
are shown to see the influence of different quantum phases of
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FIG. 7. Dynamics of the Rényi entanglement entropy R2(t ) of a
spin-1 central spin coupled to an XXZ chain with N = 14 sites. The
bath is prepared in the ground state |φ (B)〉 = |GXXZ〉 for fixed J ′/J
and the intrabath coupling is chosen as J/ωfluc = 0.1 (strong system-
bath coupling). The central spin is prepared in an equally weighted
superposition state |φ (S)〉 = 1√

3
(|1〉 + |0〉 + | − 1〉). The left inset

shows the short-time dynamics of R2(t ) up to ωfluct = 1.5 and the
right inset shows the growth rate γ [see Eq. (33)] as a function of
J ′/J . Other parameters: � = 1 and ω = λ = 0.

the XXZ chain on the dynamics of the Rényi entanglement
entropy. In the limit of J ′ = 0, the XXZ chain is reduced to
the XX chain whose ground state is a fermionic Fock state
|�η7〉 = |1, 2, 3, 4, 12, 13, 14〉 for J > 0. In this case, R2(t )
increases rapidly at short times and gradually approaches its
maximal value ∼ ln 3 at long times after experiencing oscil-
lations in the intermediate-time regime. The overall profile
of R2(t ) is found to be lifted down as J ′/J increases from 0
to 1 within the gapless phase. Remarkably, we observe that
R2(t ) acquires the lowest values at the critical point J ′/J = 1
(thick red curve), beyond which its magnitude increases again
as J ′/J increases further in the gapped phase. Specially, in the
large J ′/J limit R2(t ) increases more abruptly at the beginning
and approaches a steady value close to the maximal value
ln 3. Such a fast growth of the Rényi entanglement entropy
might be an indicator of fast information scrambling since the
system-bath couplings are essentially long-range interactions
[65].

It is also interesting to analyze the short-time dynamics of
R2(t ). Previous studies revealed that the short-time evolution
of typical observables of the central spin is often of a Gaussian
form [34,43,44]. The left inset of Fig. 7 displays R2(t ) up to
ωfluct = 1.5. It can be seen that R2(t ) indeed increases as

R2(t ) ∼ 1 − e−γ (ωfluct )2
, (33)

where γ is a growth rate depending on the value of J ′/J .
The short-time behavior of R2(t ) faithfully reflects its overall
profile over long times. In the right inset of Fig. 7 we plot γ as
a function of J ′/J . We find that γ depends nonmonotonically
on J ′/J and reaches a minimum at the critical point J ′/J = 1.
In principle, the short-time dynamics for ωfluct � 1 can be
captured through time-dependent perturbation analysis [43].
The details of the overall dynamics, however, depends on the
total Hamiltonian and might be qualitatively explained based

on a spectral analysis [49] of the effective Hamiltonians HII,α .
Although it is not straightforward to perform these analyses
due to the complexity of the full quantum dynamics, our nu-
merical results do reveal that interesting dynamics of both the
staggered magnetization and the central spin can take place
close to the critical point J ′/J = 1.

V. CONCLUSIONS AND DISCUSSIONS

In this work we obtain exact dynamics of a generalized
Heisenberg star made up of a spin-S central spin and an in-
homogeneously coupled antiferromagnetic XXZ chain. Such
an interacting central spin model can be viewed either as
a generalization of the homogeneous Heisenberg star stud-
ied by Richter and Voigt [5] to the case of inhomogeneous
system-bath coupling, or as an extension of the XX star [44]
by including the Ising part of the nearest-neighbor intrabath
coupling. The generalized Heisenberg star may be simulated
in cold-atom systems and are relevant to molecular aggregates
located in a cavity.

In contrast to previous studies in which the reduced dy-
namics of the central spin is mainly concerned, we focus on
the influence of the central spin on the internal dynamics
of the many-body spin bath. Based on the conservation of
the total magnetization and using analytical expressions of
spin-operator matrix elements in the uniform XX chain [56],
we calculate the time evolution of the antiferromagnetic order
in the XXZ bath that is initially prepared in a Néel state.
We find that even weak system-bath coupling can lead to
nearly perfect relaxation of the staggered magnetization in the
gapless phase with 0 � J ′/J < 1. This is in contrast to the
case of vanishing system-bath coupling [48] where intensive
oscillations of the staggered magnetization are observed due
to the finite-size effect. In the gapped phase of the XXZ
bath with J ′/J > 1, we find that the staggered magnetiza-
tion decays rapidly at short times and approaches a positive
steady value which increases with increasing J ′/J . However,
at the critical point J ′/J = 1, the oscillatory behavior of the
staggered magnetization remains even at long times and for
strong system-bath couplings. We also investigate the effect
of the size of the central spin S on the antiferromagnetic
order relaxation. It is found that increasing S not only accel-
erates the initial decay but also suppresses the steady value
of the staggered magnetization in the gapped phase. These
observations may stimulate further studies of the influence
of simple systems on the nonequilibrium dynamics of the
coupled many-body system.

We then turn to study the reduced dynamics of the central
spin in the usual way for an XXZ bath prepared in its ground
state. We focus on the dynamics of the Rényi entanglement
entropy of a higher central spin with S = 1. We find that the
second order Rényi entanglement entropy R2(t ) of the central
spin acquires its lowest value at the critical point J ′/J = 1.
By analyzing the short-time behavior of R2(t ), we find that
the Rényi entanglement entropy grows according to a Gaus-
sian form with a growth rate depending nonmonotonically on
increasing J ′/J . Remarkably, the growth rate is also found
to reach a minimum at the critical point J ′/J = 1. These
results point out a possibility of detecting the critical behavior
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of quantum critical spin baths by probing the entanglement
dynamics of the coupled central spin.
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APPENDIX: STRUCTURE OF THE M SECTORS FOR S < N
2

Starting with the state with the lowest magnetization M =
−S − N

2 and denote (sz, lz ) as the configuration with fixed
magnetizations for the central spin and the spin bath, then each
M corresponds to the following configurations:

M = −S − N

2
:

(
−S,−N

2

)
;

M = −S − N

2
+ 1 :

(
−S, 1 − N

2

)
,

(
−S + 1,−N

2

)
;

...

M = S − N

2
:

(
−S, 2S − N

2

)
, . . . ,

(
S,−N

2

)
;

M = S − N

2
+ 1 :

(
−S, 2S − N

2
+ 1

)
, . . . ,

(
S,−N

2
+1

)
;

...

M = −S + N

2
− 1 :

(
−S,

N

2
− 1

)
, . . . ,

(
S,

N

2
− 2S−1

)
;

M = −S + N

2
:

(
−S,

N

2

)
, . . . ,

(
S,

N

2
− 2S

)
;

...

M = S + N

2
:

(
S,

N

2

)
.

In summary, the M sectors can be classified into three
categories:

(I) For −S − N
2 � M � S − N

2 , there are S + N
2 + 1 + M

configurations of (sz, lz ) in each M sector, among which sz

can take values from M + N
2 to −S, with the corresponding lz

running from −N
2 to M + S. The dimension of this M sector

is dM = ∑M+S+ N
2

j=0

(N
j

)
.

(II) For S − N
2 + 1 � M � −S + N

2 − 1, there are 2S + 1
configurations of (sz, lz ) in each M sector, among which sz

can take all the values from S to −S, with the corresponding
lz running from M − S to M + S. The dimension of this M

sector is dM = ∑M+S+ N
2

j=M−S+ N
2

(N
j

)
.

(III) For −S + N
2 � M � S + N

2 , there are 1 + S + N
2 − M

configurations of (sz, lz ) in each M sector, among which sz

can take values from S to M − N
2 , with the corresponding

lz running from M − S + N
2 to N . The dimension of this M

sector is dM = ∑N
j=M−S+ N

2

(N
j

) = ∑ N
2 −M+S
j=0

(N
j

)
.
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