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Coexistence of extended and localized states in the one-dimensional non-Hermitian Anderson model
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In one-dimensional Hermitian tight-binding models, mobility edges separating extended and localized states
can appear in the presence of properly engineered quasiperiodical potentials and coupling constants. On the other
hand, mobility edges do not exist in a one-dimensional Anderson lattice since localization occurs whenever
a diagonal disorder through random numbers is introduced. Here we consider a nonreciprocal non-Hermitian
lattice and show that the coexistence of extended and localized states appears with or without diagonal disorder
in the topologically nontrivial region. We discuss that the mobility edges appear basically due to the boundary
condition sensitivity of the nonreciprocal non-Hermitian lattice.
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I. INTRODUCTION

Anderson localization (AL), a well-understood fundamen-
tal problem in condensed matter, is the absence of diffusion
of waves in a disordered medium due to interference of waves
[1]. Specifically in AL, all states are exponentially localized
in the presence of any disorder in a one- and two-dimensional
Anderson model at which a random disordered on-site po-
tential is introduced. On the other hand, for weak disorder,
if the localization length is bigger than the system size, then
the system behaves as it is delocalized. In three dimensions
we would have a mobility edge separating localized and ex-
tended states. Contrary to the one-dimensional (1D) Anderson
model, in the Aubry-André model in which its disorder is
modeled as a quasiperiodic on-site potential depending on the
strength of incommensurate potential, all states are localized
or delocalized [2]. This means that the system can undergo a
metal-insulator transition even in 1D. However, this transition
is sharp, i.e., all single-particle eigenstates in the spectrum
suddenly become exponentially localized above a threshold
level of disorder. In both cases, localized and extended states
generally do not coexist since none of these models possess
a mobility edge in 1D, i.e., critical energy separates local-
ized and delocalized energy eigenstates. Recent studies show
that the transition is not sharp beyond the one-dimensional
Aubry-André model with correlated disorder and hopping
amplitudes. It was shown that an intermediate regime charac-
terized by the coexistence of localized and extended states at
different energies may occur [3–8]. The theoretical findings
were confirmed in an experimental realization of a system
with a single-particle mobility edge [9]. There is a vast liter-
ature on mobility edges in Hermitian systems, but it has only
been recently that mobility edges have been explored for vari-
ous 1D tight-binding non-Hermitian models [10–29]. The first
such model was considered in the pioneering paper by Hatano
and Nelson [49]. In non-Hermitian systems, in comparison
to the Hermitian ones, the mobility edges not only separate

localized states from the extended states but also indicate the
coexistence of complex and real energies. The latter allows
us to come out with a topological characterization of mobility
edges [11]. Apart from these models, extended and localized
states can coexist in some other Hermitian lattices with an
inhomogeneous trap [30,31] and with a partially disordered
potential [32]. In general, such systems require complicated
engineering of the hopping parameters and on-site potentials
[33].

In this work we consider non-Hermitian extensions of the
one-dimensional Anderson and Aubry-André-Harper models
with asymmetric (nonreciprocal) hopping amplitudes at which
a non-Hermitian skin effect (NHSE) plays important roles on
the localization [34–48]. We introduce mixed boundary condi-
tions (MBC) as a mixture of periodic (PBC) and open (OBC)
boundary conditions and show that extended and localized
states can coexist even for the lattice without the disorder. We
show that extended states form a closed loop in the complex
energy plane while the localized states have real energies. We
further explore the effect of on-site potentials and show that
localized and extended states survive in the presence of the
on-site potentials until topological phase transition occurs at
strong disorder and all states are localized.

II. MODEL

The starting point of our analysis is provided by
the one-dimensional nonreciprocal lattice with asymmetric
nearest-neighbor couplings and on-site potentials. The field
amplitudes ψn at various sites of the lattice can be obtained
by solving

JR ψn−1 + JL ψn+1 + Vn ψn = E ψn, (1)

where n = 1, 2, . . . , N with N being the total number of sites,
JL and JR are positive-valued coupling constants in the left and
right directions, respectively, and Vn are real-valued on-site
potentials. We assume JL > JR, unless otherwise stated. Two
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different types of on-site potentials should be distinguished
here. The first one is for the non-Hermitian Anderson model
at which the on-site potentials are independent random po-
tentials uniformly distributed in the interval W [− 1

2 , 1
2 ] with

disorder strength W . This model exhibits an Anderson tran-
sition at a nonzero value of the disorder strength in contrast
to the Hermitian system, whose eigenstates are always lo-
calized in the presence of a random potential [49,50]. The
second one is for the non-Hermitian Aubry-André model at
which the on-site potential is the quasiperiodic potential to
describe an intermediate case between ordered and disordered
systems, i.e., Vn = V0 cos (2πβn), where V0 is the amplitude
of the on-site incommensurate potential and β is an irrational
number. This model exhibits a metal-insulator transition when
the potential strength is above a critical point [43].

The spectrum for the non-Hermitian lattice described by
Eq. (1) shows strong sensitivity to the boundary conditions in
the topologically nontrivial region [50]. Consider for example,
the case without on-site potentials, which is topologically
nontrivial as long as JL �=JR. In this case, the spectrum de-
scribes a loop in the complex energy plane when the lattice has
no edges (under PBC), whereas the spectrum is real when the
lattice has two edges (under OBC). The change in the spec-
trum is also dramatic if the lattice has only one edge. In fact,
there can be two such cases. The first one is the semi-infinite
lattice (N → ∞) whose spectrum fills the interior of the PBC
loop in the complex plane. However, this case is not physical
since any experiment naturally contains a finite number of
lattice sites. The second one is the finite lattice with only one
edge, i.e., the lattice has an open edge on the left and the other
edge is bent to form a circular ring on the right. Suppose that
the right end of the lattice is coupled to the lattice at the lattice
site p. As an illustration, such a lattice with N =14 and p = 7
is depicted in Fig. 1(a). As a result, the system satisfies mixed
boundary conditions (MBC). In this case, Eq. (1) is modified
at n = p (due to the extra coupling at n = p),

JRψn−1 + JLψn+1 + Vnψn = Eψn (n �=p),
JR(ψp−1 + ψN ) + JLψp+1 + Vpψp = Eψp,

(2)

where p is a site number in the bulk 2� p �N − 1. Note that
in order to obtain the solution of the former equation, we use
the MBC

ψ0 = 0, ψN+1 = ψp. (3)

In the Hermitian lattice, JL = JR, MBC is of no special
importance since the extra coupling between the right edge
and a bulk point of the lattice has only perturbative effects
for a long lattice (the MBC, PBC, and OBC energy spectra
almost coincide). On the other hand, in the non-Hermitian
lattice, MBC leads to the coexistence of extended (delocal-
ized) and localized eigenstates even in the absence of any
on-site potentials. We emphasize that the delocalized states
are not extended only in the circular ring, but throughout
the whole lattice. Note that such a coexistence was shown to
appear in the presence of tailored quasiperiodical potentials
and coupling constant [11–24]. However, we see it in our
system as a result of the boundary condition sensitivity of the
nonreciprocal non-Hermitian systems.

FIG. 1. (a) A representation for a lattice with asymmetrical cou-
plings under MBC with N = 14 and p = 7. The lattice has one
edge and one circular ring. In the ring, the couplings are JR in the
clockwise direction and JL in the counterclockwise direction. (b) and
(d) The energy spectra in the complex plane, where extended states
are placed on the loop and localized states are placed on the real
axis inside the loop. (c) and (e) The sudden jump from almost zero
to a large IPR value indicates the coexistence of extended and lo-
calized eigenstates. The numerical parameters are JL = 1, JR = 0.2,
N = 200, and p = 100 [(b) and (c)] and p = 18 [(d) and (e)]. The
PBC (OBC) spectrum is denser for a (smaller) larger p. The total
number of the states with almost zero IPR values are equal to N − p.

Let us start with the case without on-site potentials, Vn = 0
in a long but finite lattice. The MBC spectrum in the complex
plane describes both a line segment on the real axis and a loop
that is slightly deformed from the corresponding PBC loop.
The states distributed on the MBC loop are extended states,
whereas the ones on the line segment are skin states that are
exponentially localized at the left edge. The parameter p has
the key role on the total number of extended states. In fact,
there are N − p + 1 extended eigenstates and the rest are all
skin states. As a special case, we have only one skin state
that is also topologically robust against the coupling disorder
at p = 2. Oppositely, at p = N − 1, there exists one pair of
extended states {ψn, eiπn ψn} with real energies and all other
states are localized skin states. To quantify localization and
extension of an eigenstate with eigenvalue E , we can use the
inverse participation ratio (IPR)

IPR(E ) =
∑

n |ψn(E )|4
[
∑

n |ψn(E )|2]2
. (4)
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Specifically, IPR is of the order of 1/N for an extended
eigenstate while it is close to 1 for a localized eigenstate. To
illustrate our discussion, we first plot the spectra in the com-
plex plane for two different values of p at JL = 1, JR = 0.2,
and N = 200 in Figs. 1(b) and 1(d). The points on the loop
are very dense for small values of p and become sparse with
increasing p at fixed N . The points on the real axis are inside
the MBC energy loop. We then plot the IPR values corre-
sponding to the cases Figs. 1(b) and 1(d) in Figs. 1(c) and 1(e).
One can notice the gap in these plots where the IPR values
jump from almost zero values to nearly 0.4 at n = p − 1. This
sharp increase of IPR implies the coexistence of localized and
extended states in the absence of the disorder. To this end, let
us write the analytical solution available for the unidirectional
lattice with JR = 0 under MBC. In this case, the extended
states are given by ψn = eikn with eigenvalues E = JL eik ,
where k = 2π j(N − p + 1)−1 and j = 0, 1, . . . , N − p, re-
spectively. On the other hand, the system has an exceptional
point and the coalesced skin state is given by ψn = δn,1

with zero energy. Therefore, the corresponding IPR val-
ues are 1/N for the extended states and 1 for the skin
state.

Introducing disorder through random on-site potentials
deforms the energy loop in the complex plane at fixed p (con-
traction in the imaginary axis and elongation in the real axis
as the disorder strength increases). Furthermore, it reduces
the total number of extended states described by the points
on the energy loop and hence increases the total number of
localized states described by the points located on the real
axis. At weak disorder strength, localized states are mostly
skin states localized at the left edge. Beyond the Anderson
transition point at which all eigenstates are localized, local-
ization occurs all over the lattice. We plot the IPR values
and complex energy spectra in Figs. 2(a) and 2(b) for the
system described in Fig. 1 but with various disorder strengths.
As can be seen, increasing the disorder strength reduces the
total number of extended states until the disorder strength
is equal to a critical strength (Wc ≈ 5) at which Anderson
transition occurs. Therefore, there are still some extended
eigenstates at W = 1 (in black) and W = 3 (in blue), but all
eigenstates are localized at W = 8 (in red). The correspond-
ing spectrum becomes real valued and the OBC and MBC
spectra are almost the same when all eigenstates are localized
[Fig. 2(b)]. The Anderson transition point also corresponds
to a topological phase transition point as we will see below.
As a result, we say that extended and localized states coexist
only in the topologically nontrivial region. The critical dis-
order strength at which Anderson transition occurs depends
on p at fixed N . Roughly speaking, Wc at fixed N increases
slightly with p unless p is close to N at which Wc decreases
sharply.

We perform other computations for the quasiperiodical po-
tential Vn = V0 cos (2πβn) and plot the IPR values and energy
spectra in Figs. 2(c) and 2(d) and for three different values
of V0 at β =

√
5−1
2 and p = N

2 . At V0 = 1, we see a sharp
increase in the IPR values from 0 to nearly 0.3, indicating
that almost half of the states are extended while the rest are
localized (in black). It is well known that the critical point at
which localization-delocalization transition occurs is at 2 in
the Hermitian Aubry-Andre model. This value is almost equal

FIG. 2. IPR values and their corresponding energy eigenvalues
in the complex plane at various potential strengths for Anderson
(a) and (b) and Aubry-André models (c) and (d), respectively, when
JL = 1, JR = 0.2, and N = 2p = 200. At strong on-site potentials (in
red), all eigenvalues lie on the real axis, indicating that all eigenstates
are localized. Contrarily, at weak on-site potentials (in black), almost
half of the eigenstates are extended while the other half are local-
ized. In the intermediate case (blue), there are still a few extended
eigenstates. Note that V0 = 2 is the phase transition point for the
quasiperiodical potential. One can see a few extended states with
small complex eigenvalues due to the finite number of the lattice sites
(localization length is large and it practically becomes extended).
(If the lattice is much longer, then one would see its localization
character.)

to the critical point for the MBC (a slight perturbation comes
from the left edge and coupling between the right edge and
the lattice point p). The critical point also coincides with the
topological phase transition point as we will see below. One
can see a few complex eigenvalues (in blue) at V0 = 2 with
complex eigenvalues in Fig. 2(d) (in blue). Beyond the critical
point the spectrum is real and all eigenstates are localized
(V0 = 3 in red). As a result, we say that extended and localized
states coexist in the quasiperiodical lattice under the MBC
as long as V0 is below than the critical number at which a
topological phase transition occurs. To this end, in Fig. 3 we
plot the curve described by {ER(β ), EI (β ), β} for our system
under the MBC. Interestingly enough we observe that a three-
dimensional butterfly spectra is emerging.

Let us discuss topological features in our system. The
spectral winding number ω at the zero base energy for the
Hatano-Nelson model in the absence of on-site potentials is
equal to 1 when JL > JR [50]. The system remains to be in the
topological phase in the presence of on-site disorder until the
disorder strength is strong enough to make all eigenstates to
have real eigenvalues at which the Anderson transition occurs.
To compute the topological number in the presence of the
on-site potentials under MBC, we follow a similar method
introduced in Ref. [50]. Suppose that the coupling constant
at the lattice closing point (between N th and pth sites) are
multiplied by e∓i�, where � is a fictitious magnetic flux.
Then the winding number at zero base energy for a disordered

024202-3



CEM YUCE AND HAMIDREZA RAMEZANI PHYSICAL REVIEW B 106, 024202 (2022)

FIG. 3. The butterfly spectra under MBC in three dimensions at
V0 = 1 (a) and V0 = 2 (b), where ER and EI are real and imaginary
parts of the energy eigenvalues. In the two-dimensional complex
energy plane with fixed β, the spectrum determines a loop and a line
inside the loop as in Fig. 1(b). In three dimensions, where β is the
vertical axis, the butterfly shape appears. The parameters are given
by JL = 1 and JR = 0.2 and N = 2p = 100.

lattice is given by

ω =
∫ 2π

0

d�

2π i
∂� ln det[H (�)], (5)

where H is the corresponding Hamiltonian for the model (1)
under MBC. The spectral winding number counts the number
of times the complex spectral trajectory encircles EB = 0 base
energy when � varies from zero to 2π . Apparently, the wind-
ing number becomes zero when the spectrum is real and all
eigenstates are localized. Note that the above formula works
well when the number p is not close to N since the spectral
loop in the complex plane is less dense when p increases. The
MBC lattice is required to be a finite lattice, so we approx-
imate the derivative with a finite difference in the numerical

FIG. 4. The critical strengths for the Anderson (a) and Aubry-
Andre (b) models under MBC as a function of JR at JL = 1 and N =
2p = 200. The shaded area has winding number ω = 1 and complex
spectra. The top unshaded area has zero winding number and real
spectra. In the topologically nontrivial region (shaded area), localized
and extended states coexist. On the other hand, in the topologically
trivial region, only localized states exist.

differentiation. We present our numerical results and plot the
winding number as a function of JR in Fig. 4, where the
shaded and unshaded area has w = 1 and w = 0, respectively.
In Fig. 4(a), the critical strength is around W ≈ 5 at JR = 0
and reduced to zero at JR = 1 (the spectrum becomes real in
the Hermitian limit). On the other hand, it is almost constant
for the quasiperiodical lattice in Fig. 4(b). Small fluctuations
around V0 = 2 is the result of the perturbative effect due to the
imposition of the MBC on the finite lattice.

We finally make a brief discussion for JR > JL. Without
loss of generality, we suppose that JR = 1. Consider first that
Vn = 0. Due to NHSE, bulk states are localized at the right
edge under OBC. If we consider the MBC, the right edge
is coupled to a bulk point. In this case, there are N − p + 1
extended states and the rest are exponentially localized states
centered at the bulk point p where the right edge is closed.
As opposed to the cases considered above, the extended states
are extended only in the circular lattice at any value of JR and
localized states have complex eigenvalues. Therefore, there
are multiple energy loops in the complex plane, one for the
extended states and another one(s) for the localized states. The
localization length of the localized state increases and diffuses
more into the straight lattice (n � p) as JL is increased. In the
presence of the disorder, the number of extended states de-
creases and localized states appear centered at various points
of the lattice. If the disorder is sufficiently strong, then An-
derson transition takes place and all eigenstates have real
eigenvalues and get localized.

III. CONCLUSION

It is generally believed that mobility edges separating ex-
tended and localized states in one-dimensional tight-binding
models appear if correlated disorder and coupling constants
are specially tailored. Here we introduce the mixed boundary
conditions to study a finite lattice with one open edge as an
alternative to the semi-infinite boundary conditions, which
also requires one open edge. The finite lattice we consider is
the one whose one edge is bent to form a circular ring and
coupled to the lattice at the lattice point p. We have shown
that extended and localized states can coexist even without
on-site potentials in such a lattice as a result of the boundary

024202-4



COEXISTENCE OF EXTENDED AND LOCALIZED STATES … PHYSICAL REVIEW B 106, 024202 (2022)

condition sensitivity of the nonreciprocal non-Hermitian sys-
tems as long as the system is topologically nontrivial. We have
also shown that the total number of extended states is exactly
equal to N − p + 1, where N is the total number of the lattice
sites. In the presence of the disordered on-site potentials, the
total number of the extended states reduces with increasing
disorder strength and the extended states disappear when the
disorder strength is at the critical point at which topological
phase transition occurs since the corresponding spectrum be-
come real valued. Experimental observation of mobility edges
in non-Hermitian systems often requires complicated designs
of couplings or on-site potentials. The mixed boundary con-
ditions can be utilized in non-Hermitian systems to obtain
mobility edges more easily.
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