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Localized states in local isomorphism classes of pentagonal quasicrystals
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A family of pentagonal quasicrystals can be defined by projecting a section of the five-dimensional cubic
lattice to two dimensions. A single parameter, the sum of intercepts � = ∑

j γ j , describes this family by defining
the cut in the five-dimensional space. Each value of 0 � � � 1

2 defines a unique local isomorphism class for these
quasicrystals, with � = 0 giving the Penrose lattice. Except for a few special values of �, these lattices lack
simple inflation-deflation rules making it hard to count how frequently a given local configuration is repeated.
We consider the vertex-tight-binding model on these quasicrystals and investigate the strictly localized states
(LS) for all values of �. We count the frequency of localized states both by numerical exact diagonalization on
lattices of 105 sites and by identifying localized state types and calculating their perpendicular space images.
While the imbalance between the number of sites forming the two sublattices of the bipartite quasicrystal grows
monotonically with �, we find that the localized state fraction first decreases and then increases as the distance
from the Penrose lattice grows. The highest LS fraction of 10.17% is attained at � = 0.5 while the minimum is
4.5% at � � 0.12. The LS on the even sublattice are generally concentrated near sites with high symmetry, while
the LS on the odd sublattice are more uniformly distributed. The odd sublattice has a higher LS fraction, having
almost three times the LS frequency of the even sublattice at � = 0.5. We identify 20 LS types on the even
sublattice, and their total frequency agrees well with the numerical exact diagonalization result for all values of
�. For the odd sublattice, we identify 45 LS types. However, their total frequency remains significantly below
the numerical calculation, indicating the possibility of more independent LS types.

DOI: 10.1103/PhysRevB.106.024201

I. INTRODUCTION

It has been almost 40 years since the discovery of qua-
sicrystals [1–3], yet there is no complete theory for describing
elementary excitations in them. The high degree of symmetry
of quasicrystals does not lend itself to a simple description
like Bloch’s theorem to constrain electronic wave functions.
Recent experimental success in constructing synthetic qua-
sicrystals in electronic [4], atomic [5], or photonic systems [6]
promises precise measurements in highly controlled settings.
Consequently, there is a resurgence of interest in the qua-
sicrystalline state beyond structural description.

The electronic states in one-dimensional quasicrystal mod-
els, particularly in the Fibonacci chain [7], are relatively well
understood. The spectrum is singularly continuous, and eigen-
states can be localized, extended, or critically self-similar.
In higher dimensions, another possibility is strictly localized
states (LS) states that have exactly zero density beyond a finite
region of the lattice. These states were first identified in the
Penrose lattice (PL) [8] after numerical calculations [9,10]
have shown that almost 10% of the states are degenerate
at zero energy. These LS have since been found in other
quasicrystal lattices [11], such as the Ammann-Beenker lat-
tice [12,13], and closely related modes have been identified
in photonic quasicrystals [14,15]. For bipartite lattices, they
appear at zero energy, which forms a massively degenerate
manifold [16]. If the Fermi energy is close to the LS manifold,
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interaction effects may become prominent as in flat band
physics [17]. Furthermore, these zero modes are robust with
respect to perturbations; thus, their presence may be probed in
less than ideal experimental conditions.

A state is strictly localized because it interferes destruc-
tively with itself at every part of the boundary of its domain.
Such interference can be ensured in a bipartite tight-binding
model if the two sublattices have different numbers of sites.
However, both the PL and the Ammann-Beenker lattice have
an equal number of sites in their two sublattices but still
have LS. A recent paper [18] argued that a local sublattice
imbalance could be defined for the PL by separating the lattice
into domains that favor one sublattice over the other. This
sublattice imbalance was shown to account for the full LS
frequency [19,20] of fLS = 81 − 50τ where τ = (1 + √

5)/2
is the golden ratio. Furthermore, it was suggested that the ro-
bustness of the LS may be inherited from the five-dimensional
cubic lattice, of which PL can be constructed by the cut-
project method.

The nature of the LS in quasicrystals, particularly their
connection to the sublattice imbalance and the cut-project
parent lattice, needs to be understood better. To this end, we
consider a family of pentagonal quasicrystals closely related
to the PL [21]. These quasicrystals are all projected from
the five-dimensional cubic lattice, with the same acceptance
window shape, and differ only by a single parameter �, which
shifts the cut [22–24]. Each value of 0 � � � 1/2 defines
a unique local isomorphism (LI) class for the pentagonal
quasicrystal, with � = 0 giving the Penrose LI(PLI) class.
All LI classes have the same basic rhombus tiles and support
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FIG. 1. The acceptance window for projection in the space
spanned by �c0, �c3, �c4 is a rhombic dodecahedron. The perpendicular
space projections of the points forming the quasicrystal fill the five
polygons D0, ..., D4 densely and uniformly. The distance of D0 from
the lower tip, �, defines the LI class of the quasicrystal.

for their Fourier transform. However, one can find a local
configuration that appears uniquely for each value of �. Hence
there are regions in two quasicrystals with different values of

FIG. 3. The 16 possible vertex types for the LI classes considered
here. Each vertex can have between three and ten neighbors. We
follow the nomenclature of Ref. [23].

0 � � � 1
2 that cannot be mapped to each other by transla-

tions or rotations. All these lattices are bipartite, but the two

FIG. 2. The five perpendicular space polygons D0, ..., D4 at � = 0.2. The points inside D0, D2, and D4 form the even sublattice, while
D1 and D3 form the odd sublattice. The polygons are partitioned into regions which belong to a particular vertex type. An animation of the
evolution of the five polygons and corresponding changes in the lattice can be found in the Supplemental Material [26].
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FIG. 4. The frequencies of the vertex types identified in Fig. 3 as a function of �. The figure is split into two to show vertex frequencies
that remain below 5% clearly. The results agree with Ref. [23]. Out of the 16 vertex types in Fig. 3, seven (L,U,W,X,Z,ST,Y) appear only on
the even sublattice and 2 (R,M) appear only on the odd sublattice. Seven vertex types (Q,K,D,J,V,T,S) appear on both.

sublattices have a different number of sites for � �= 0. The
sublattice imbalance increases with �.

Previous numerical work has shown that LI classes other
than the PLI support LS [11], yet the LS fraction has not
been counted for LI classes. Most calculations of LS fraction
rely on the inflation-deflation scaling symmetries, and there
is no simple scaling symmetry for most general LI [22]. As
first shown by de Bruijn [25] the standard deflation sub-
stitution rule creates a lattice with a new intercept vector
�γ . The new intercepts obey γ ′

n = γn−1 + γn + γn+1, thus the
LI class parameter is multiplied by three �′ = 3�. The PL

with � = 0 is mapped onto itself, while for an irrational
value of � infinitely many deflations are required to get
back to the original LI class. There is no known substitution
rule which provides a scaling symmetry for counting local
environments.

We have recently developed a method for calculating the
LS fractions from perpendicular space images without defla-
tion [12,27]. In this work, we first calculate the LS fraction
for LI classes by direct numerical calculation on finite lattices
containing ∼105 sites. We then identify LS types and count
their frequency from their perpendicular space images.

(a) (b)

FIG. 5. (a) Seven vertex types appear in both sublattices. While the fraction of D vertices is equal in both sublattices for any value of �,
the other six are unevenly distributed as shown in the figure. Odd sublattice frequency is shown with blue dashed lines and even sublattice
frequency is shown with red dashed-dotted line. (b) The fraction of vertices in the odd and even sublattices as a function of �. The imbalance
between the sublattices grows monotonically with �. Even at � = 0.5, the asymmetry remains small, with odd sublattice having less than 53%
of the total.
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FIG. 6. The numerically calculated LS fractions at � = 0.2, as a
function of neighborhood depth. Data for ten different initial points
are shown with individual markers, while their average is indicated
with a different color. While the LS fraction depends on the choice of
the initial point for small neighborhoods, results converge for large
lattices. The odd sublattice has more significant variation compared
to the even sublattice. The largest lattices at depth 200 have close to
100 000 sites.

Both approaches show that the total LS fraction is
nonmonotonic with �. Although the sublattice imbalance in-
creases with �, the LS fraction at first decreases from the PL
value. After reaching a minimum value around � ∼ 0.1, the
LS fraction begins to increase and attains its highest value at
� = 0.5, which is the farthest point away from the PL. We
calculate the local density of states (LDOS) at zero energy and
observe that the domain structure where only one sublattice
has LS in a given domain breaks down as soon as one moves
away from the PLI. The LDOS on the even lattice is concen-
trated around the high coordination number sites, while the
LDOS on the odd lattice is much more uniformly distributed
throughout the lattice. We identify 20 LS types for the even
sublattice, and their frequency calculated from perpendicular
space images matches closely with the numerical calculation.
We identify 45 LS types for the odd sublattice, which can
account for only ∼90% of the numerically observed frequency
near � = 0.5. Our results show that the domain structure and
the LS types cannot be inherited from the topological prop-
erties of the parent five-dimensional lattice, and the relation
between the local sublattice imbalance and LS presence is not
straightforward [18]. It is also striking that other structural
properties such as hyperuniformity, or restorability do not
seem to have an effect on the LS frequency [24].

In the next section, we summarize the basic properties of
LI classes of pentagonal quasicrystals generated by the cut-
project method. Numerical results on large lattices and LDOS
calculations are given in Sec. III. We discuss the most promi-
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FIG. 7. Numerically obtained LS fractions as a function of �.
The fraction on the odd and even sublattices and the total fraction are
displayed. The result at � = 0 agrees with the analytical expression
for the PL 81 − 50τ shown by the dashed line. The highest LS
fraction is at � = 0.5, where more than 10% of the states are LS.
The odd sublattice has more LS than the even sublattice for all �

except � = 0.

nent LS types in Sec. IV, while the remaining LS types are
given in the Appendix. Our conclusions are given in Sec. V.

II. CUT AND PROJECT DEFINITION OF PENTAGONAL
QUASICRYSTALS

In this section, we give a projective definition of pentagonal
quasicrystals, including the PL. Our notation and calculations
follow Refs. [21] and [23], but are presented here for com-
pleteness. We begin by considering the five-dimensional real
space, spanned by the orthonormal set ûn, with n = 0, ..., 4

�x =
∑

n

xnûn. (1)

We partition this space into unit cubes

km − 1 < xm < km, (2)

where km are integers. Defining ζ = ei 2π
5 the following five

vectors also form a basis for the five-dimensional space

�c0 =
∑

m

ûi, �c1 =
∑

m

Re(ζ m)ûm, �c2 =
∑

m

Im(ζ m)ûm,

�c3 =
∑

m

Re(ζ 2m)ûm, �c4 =
∑

m

Im(ζ 2m)ûm. (3)

This set of vectors are orthogonal but not normalized, with
ĉ0 · ĉ0 = 5 and ĉm · ĉm = 5/2 for m = 1, 2, 3, 4.

The two-dimensional quasicrystal will be formed by first
taking a slice through the five-dimensional cubic lattice and
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FIG. 8. LDOS for the even sublattice for three � values, � = 0, 0.1, 0.2. For the PLI � = 0, one can notice the forbidden regions and
”strings” separating them. The LS density quickly falls as � increases, and the LDOS forms isolated regions centered around highly connected
vertices. An animation of the evolution of the LDOS is given in the Supplemental Material.

then projecting the points inside this slice. This projection
window, and consequently the two-dimensional quasicrystal,
is completely described by choosing a five-dimensional vector
�γ = ∑

m γmûm. This intercept vector allows us to define a
plane with the following three equations:

(�x − �γ ) · �c0 = 0,

(�x − �γ ) · �c3 = 0,

(�x − �γ ) · �c4 = 0. (4)

A five-dimensional cubic lattice �R5 = ∑
m kmûm vertex is

projected into two dimensions only if there is a point in its
open unit cube defined in Eq. (2) which satisfies Eq. (4).
Intercept vector �γ is chosen such that the projected lattice is
not singular [21].

Any five-dimensional point lying on the plane defined by
Eq. (4) can be expressed as

(�x − �γ ) = α1�c1 + α2�c2, (5)

where α1, α2 are arbitrary reals. One can check if all five
conditions in Eq. (2) are satisfied to see if a point in the five-
dimensional cubic lattice should be projected to form a vertex
of the quasicrystal. It is also instructive to ask what geometric
constraints Eq. (2) defines for the three dimensions which are
orthogonal to the projection plane. This acceptance window
in the perpendicular space forms a rhombic icosahedron, as

shown in Fig. 1. However, the perpendicular space coordinates
of all the five-dimensional cubic lattice points in the cut do not
fill up the three-dimensional volume of this shape. As

∑
km is

an integer, these points are localized on five planes perpen-
dicular to the �c0 direction. Thus, the perpendicular space can
be thought of five polygons, which we refer to as D0, ..D4 as
shown in Fig. 2. These polygons have either five or ten sides.
The shape of a perpendicular space polygon is determined by
the projection of �γ onto �c0, and the index

∑
km, and can be

obtained by projecting (�x − �γ ) on to �c3, �c4.
The parameter � = �c0 · �γ = ∑

n γn controls not only the
shape of the perpendicular space polygons, but it defines the
LI class of the quasicrystal. If two quasicrystals which have
unequal intercept vectors �γ and �γ ′ they are different in real
space. However, if � = ∑

n γn and �′ = ∑
n γ ′

n are equal, they
are locally isomorphic, i.e., any finite size section of the first
crystal can be found in the second crystal. As each component
of the intercept vector, γn, is defined up to an integer, unique
LI classes are confined to 0 � � � 1. Furthermore, inversion
maps � to 1 − �, thus unique LI classes are obtained only in
the interval 0 � � � 1

2 .
As � is varied between zero and 1/2, the polygons D0 to

D4 move up through the acceptance window, with D0 exactly
� away from the lower tip of the icosahedron. Because of the
mapping between � and 1 − � it is possible say the polygons
are moving down on the �c0 axis, but this choice is equivalent

FIG. 9. LDOS in the even sublattice for � = 0.3, 0.4, 0.5. LS fraction increases; however, LDOS mostly stays in isolated regions with high
symmetry.
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FIG. 10. LDOS of the even sublattice on D2 in the perpendicular space for � = 0.0, ..., 0.5.

to introducing a D5 polygon at the top and relabeling the
polygons. At � = 0, D0 is reduced to a point and D1 to D4

become pentagons. This is exactly the perpendicular space
structure of the PL. Thus � = 0 corresponds to the PLI, and
as � increases, we can say that the lattice becomes less similar
to the PL.

At any value of �, the lattice is formed by the same tiles,
the thin and the thick rhombuses. Consequently, all the lattices
we consider are bipartite. This bipartite structure is reflected
in the perpendicular space as well. A point with perpendicular
space image in the decagon Dm can only have neighbors in the
polygons Dm−1 or Dm+1. We refer to the points in D0, D2, D4

as the even sublattice, and D1, D3 as the odd sublattice. For
the PLI D0 is reduced to a point, furthermore inversion maps
D1 to D4 and D2 to D3. Thus, there is complete symmetry
between the odd and even sublattices, the fraction of vertices
in one sublattice is exactly 50%. However, this symmetry
is broken as soon as � �= 0, and there are more vertices
in the odd sublattice. The imbalance between the sublat-
tices increases monotonically with �, reaching the maximum

value at � = 0.5 where 52.6% of the vertices are in the odd
sublattice.

The definitions of the set in Eq. (3) show that any point
in the quasicrystal can have neighbors only in one of the
ten directions. We can define the star vectors in real space
as êm = Re(ζ m)î + Im(ζ m) ĵ and in perpendicular space as
ˆ̃em = Re(ζ 2m)î⊥ + Im(ζ 2m) ĵ⊥. A point with a perpendicular
space position �r⊥ in the decagon Dn has a neighbor in the
êm direction in real space only if �r⊥ + ˆ̃em is in the decagon
Dn+1. Similarly, a neighbor in the −êm direction is possible
only if �r⊥ − ˆ̃em is in Dn−1. This simple construction allows
one to obtain the local structure in real space in terms of the
perpendicular space position.

We can classify all vertices based on their nearest-neighbor
configurations. Any vertex can have between 3 and 10 edges
connecting them to nearest neighbors. In total, there are 16
configurations (up to rotations) for the nearest neighbors, as
shown in Fig. 3. Only seven of these appear in the PL. The
polygons Dn in perpendicular space can be split into regions
by superimposing five shifted copies of Dn−1 and five shifted

FIG. 11. LDOS on the odd sublattice for � = 0, 0.1, 0.2. For the PLI � = 0, one can notice the separation of the lattice into two regions in
which only one sublattice has LDOS by comparing with Fig. 8. The LS density falls as � increases, but the LDOS gets less concentrated and
moves into ”forbidden” regions for the odd sublattice. A more detailed evolution can be found in the Supplemental Material.
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FIG. 12. LDOS on the odd sublattice for � = 0.3, 0.4, 0.5.Almost all sites in the odd sublattice have some LDOS, and the LS fraction
increases to its peak value at � = 0.5.

FIG. 13. LDOS of the odd sublattice in the perpendicular space for � = 0.0, ..., 0.5.

(a) (b) (c)

FIG. 14. (a) Type-2 state has a support of 10 D vertices arranged around a central S vertex. (b) The allowed perpendicular space positions
for type-E2 state at � = 0 form ten pentagons inside D2. The area of these pentagons can be used to calculate the frequency of the type-E2
state. (c) The frequency for the type-E2 on the even and type-O2 on the odd sublattice as a function of �. After � � 0.22, there is no type-E2
state in the quasicrystal.
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FIG. 15. The allowed regions for type-E2 state at � = 0.1, 0.2 show the frequency decrease through the shrinking allowed areas. The
Supplemental Material contains an animation of the allowed areas evolution.

copies of Dn+1. Each one of these regions would contain
the perpendicular space images of vertices with the same
nearest-neighbor configuration. The partition of the polygons
for � = 0.2 is given in Fig. 2. Furthermore, the mapping from
five dimensions to the perpendicular space is linear, and the
image is dense within the polygons. Thus the area of each
region is proportional to the frequency of that local configu-
ration appearing in the infinite lattice. Using the areas of the
perpendicular space regions, we calculated the frequency of
each vertex type, as shown in Fig. 4. We show the distribu-
tion of vertex types between the two sublattices and the total
sublattice imbalance in Fig. 5.

As the above construction provides all the structural infor-
mation necessary for the construction of the lattice we can
now define the vertex tight binding model. We consider a

single Wannier state at each vertex | �R〉 and uniform tunneling
amplitude over each bond,

H = −
∑
<i j>

| �Ri〉〈 �Rj |. (6)

The eigenstates of this Hamiltonian can be extended, critical,
or localized. In this paper, we are considering a particular
subset of the localized eigenstates, which have zero amplitude
beyond a finite region of the lattice. Such strictly localized
states appear at zero energy for bipartite lattices. Furthermore,
by using the bipartite property, we can split the LS manifold
into two parts, LS on the even and odd sublattices. Consider a
LS that has components on both sublattices

|�1〉 =
∑
Odd

ψ �Rj
| �Rj〉 +

∑
Even

ψ �Rj
| �Rj〉, (7)

FIG. 16. Allowed regions for type-O2 LS, for � = 0, 0.1, 0.2, 0.33 on the upper row and for � = 0.43, 0.5 in the lower row. There is an
allowed type-02 state with D vertices in D1 for � = 0.43, 0.5, thus both polygons are pictured. At � = 0.5 inversion maps D1 to D3, so this
doubling is expected. More detailed evolution is given in the Supplemental Material.
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(a) (b)

(c) (d)

FIG. 17. (a) Type-05 allowed regions, shown for both a single orientation and all five possible orientations, at � = 0.0. (b) The same for
� = 0.1, showing that the allowed regions and the overlaps of rotated allowed regions change with �. (c) Real space configuration for the
type-O5 LS. (d) LS Frequency and orthogonality correction for the type-O5 LS. Orthogonality correction is defined as the ratio of the LS
frequency to the total covered area by all orientations of a given LS.

which satisfies H|�1〉 = 0. For a bipartite lattice, regardless
of the coupling between the sublattices or the symmetry be-
tween the two sublattices the following wave function:

|�2〉 =
∑
Odd

ψ �Rj
| �Rj〉 −

∑
Even

ψ �Rj
| �Rj〉, (8)

also satisfies H|�2〉 = 0. The sum and difference of these two
states will form the LS which remain in only one sublattice.
For the PLI, the two sublattices can be mapped to each other
by inversion, so the LS properties are the same for both sublat-
tices. Even when the symmetry between the two sublattices is
broken the lattice remains bipartite so LS can be chosen to lie
in only one sublattice. However, the behavior of LS in the two
sublattices will be markedly different. In the next section, we
describe our numerical method for counting the LS fraction in
both sublattices for LI classes beyond the PL.

III. LOCALIZED STATE FRACTION AND ZERO ENERGY
LOCAL DENSITY OF STATES

To be able to simulate the tight-binding model on the qua-
sicrystal, we need to translate the structural information of the
quasicrystal into a tight binding matrix. The most commonly
used methods for lattice generation rely on either approxi-
mants [15] or scaling symmetry [19]. Both approaches are not
well suited to the current problem. Approximants necessarily
introduce defects into the quasicrystal, which may result in
spurious LS even when the unit cell size is large. While gen-
erating the lattice through deflation can quickly create lattices

of large sizes, such scaling symmetry is not present for the
quasicrystal LI classes considered here.

Instead, we rely on the perpendicular space to generate a
finite-size lattice [12,27]. We start by choosing the perpendic-
ular space coordinates of a single point, i.e., specify a point
on one of the five polygons. This point has at most ten nearest
neighbors; their possible perpendicular space coordinates are
obtained by adding the vectors ± ˆ̃em. The number of first
neighbors and their perpendicular space positions are thus
easily obtained from this list by checking if they reside inside
the five polygons. The same process can be repeated on the
first neighbors to generate the second neighbors and iterated
to create a neighborhood of the initial point up to nth nearest
neighbors.

This generation method adds a layer of vertices, all of
which are in the same sublattice. It is thus easy to keep track
of the tight-binding Hamiltonian

H =
[

0 C
CT 0

]
, (9)

in the bipartite form. The C matrix connects even sublattice
sites to odd sublattice sites and is composed of overlapping
blocks connecting nth to (n + 1)th neighbors.

As we are interested in LS, which can be chosen to be
localized to a single sublattice, their number can be chosen by
finding the dimension of the null space of C or CT . Although
we carry out this calculation on a finite lattice, all of the
vertices in the boundary belong to the same sublattice. Thus,
we are assured that we find all the LS strictly inside the finite
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FIG. 18. The six LS types defined on the PL. All six appear both on the even and the odd sublattice.

region we consider for the other sublattice. For example, if we
start with an initial point on the even sublattice and generate
the neighborhood up to 10th nearest neighbors, the last added
layer will be all in the even sublattice. Any LS we find on
the odd sublattice will be present in the odd sublattice of the
infinite quasicrystal as well.

We count the number of LS in both sublattices as we
increase the size of the neighborhood. The largest lattices
we use are 200-deep neighborhoods of the initial point and
contain approximately 100 000 lattice sites. The LS fraction is
calculated by dividing the number of LS states by the number
of lattice sites. For small lattices, there is a large deviation
for the LS fraction depending on the initial perpendicular
space position. However, as the lattice size grows, the LS
fraction converges to a narrow band. In Fig. 6 we show how
LS fraction changes with neighborhood depth for 10 randomly
selected initial lattice points for � = 0.2. It is worthwhile to
note that the range of calculated LS fractions on the even
lattice is more narrow than the odd sublattice. As we use a
finite-size lattice, we expect the main source of error to be the
number of LS crossing the boundary of our region. The larger
variation in the odd sublattice is a reflection of the larger size
of LS types in the odd sublattice.

We use the average of the results at the largest lattice size
as the numerically calculated value of the LS fraction at a

given �. Repeating this procedure at � values separated by
0.01 we obtain Fig. 7. At � = 0, we have the PL, and our
numerical result is 0.001 below the analytical result 81 − 50τ .
As the two sublattices are symmetric under inversion, their LS
fractions must be equal. Once again, our numerical calculation
finds LS fraction values within 0.001 of each other for both
lattices. Based on these two observations and fluctuation of
the value between neighboring � values, we expect 0.001
to be a good estimate for the typical error in our numerical
value. As � starts increasing from 0, the total LS fraction
steeply drops. This is somewhat unexpected, as increasing �

makes the number of sites on the two sublattices different,
as shown in Fig. 5. Thus, unlike certain bipartite flat-band
models where the zero energy states are directly linked to
the overall imbalance between the number of sites between
sublattices, the local distribution of this imbalance seems to be
a larger factor for quasicrystal LS. As � increases the total LS
fraction takes a minimum value of ∼0.048 near � ∼ 0.12 and
then monotonically increases until � = 0.5. The maximum
LS fraction is achieved at � = 0.5 where ∼10.17% of the
states are LS.

As soon as � is different from zero, the symmetry between
the two sublattices is broken. We find that the odd sublattice
has a higher LS fraction for all values of � except at the PL.
Both sublattices’ LS fraction first decreases and then increases
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FIG. 19. The frequencies of the six LS types of the PL as a function � in both sublattices. Notice that their frequencies decrease faster on
the even sublattice compared to the odd sublattice.

with �, but their minima occur at different values. After � ∼
0.1, the odd sublattice has almost three times more LS than
the even sublattice. At � = 0.5, the odd sublattice provides
∼0.076, and the even sublattice gives ∼0.026 LS fraction. The
maximum imbalance between the number of sites is at � =
0.5, where the odd sublattice has ∼52.6% of the sites. Thus,
the threefold difference between the LS fraction of even and
odd sublattices cannot be explained by the difference in their
vertex numbers. The two sublattices must have a significant
difference in their local connectivity.

We further explore the difference between the sublattices
by defining the LDOS at zero energy:

ρ( �Ri ) =
∑

m

δ(Em)|〈 �Ri|�m〉|2, (10)

where |�m〉 are the normalized eigenstates of the tight-binding
Hamiltonian Eq. (6) with energy Em. Furthermore, as all LS in
the zero-energy manifold can be chosen to lie on only one of
the sublattices, we can investigate LDOS on the odd and even
sublattices separately. In Figs. 8–13 we show LDOS for both
sublattices both in real and perpendicular space, at different
values of �. The figures show a region that is 20 lattice con-
stants away from the edges so that the effects of the boundary
are minimized. The LDOS for both sublattices are calculated
in the neighborhood of the same initial lattice point for all

values of �. Hence, these figures show a snapshot of how
LDOS evolves with � without changing other parameters.

At � = 0, the PL splits into regions where the LDOS is
nonzero only on one of the sublattices. These regions are
separated by strings formed by rhombi with two three-edge
vertices, as first identified in Ref. [19]. However, when � �=
0, it is impossible to define such regions as LDOS can be
nonzero for both sublattices in the same region of space. The
behavior of the LDOS is markedly different on the odd and
even sublattices. On the even sublattice, the LDOS is mostly
nonzero in disjoint regions centered around vertices with a
high number of edges. This is consistent with the observation
in the numerical calculation that the LS fraction in a finite
region does not fluctuate significantly as the boundaries move.
It also allows us to identify LS in terms of a small number of
LS types in the next section, as the perpendicular space LDOS
is also confined to well defined regions. On the other hand,
the LDOS on the odd sublattice gets more evenly distributed
throughout the lattice as � increases. At � = 0.5, almost all
the sites in the odd sublattice seem to have some overlap with
zero energy LS. The effects of boundaries are observed for
larger sizes compared to the even sublattice. Both the LDOS
calculation and the considerable variation in the LS fraction,
point to the presence of LS that cannot be reduced to smaller
size LS types. It is not clear why the behavior of the LS is so
different in the two sublattices.
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FIG. 20. Real space structure for type-E7 to type-E12 on the even sublattice.

Before we analyze the LS manifold in terms of LS types in
the next section, we want to point out that LDOS is a prop-
erty that can be experimentally probed in scanning tunneling
microscopy experiments on synthetic surface quasicrystals as
in Ref. [4]. Similarly, a cold atom experiment [5] can ex-
plore LDOS by investigating the nondispersing part of a wave
packet’s evolution in an optical quasicrystal.

FIG. 21. Frequencies of the LS types given in Fig. 20.

IV. LOCALIZED STATE TYPES

The zero-energy manifold formed by LS is massively de-
generate. While the numerical calculation in the previous
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FIG. 22. The total LS frequency calculated from the perpendic-
ular space areas on the even sublattice (green line) compared with
numerical results (black plus signs). The total frequencies for the first
six (red dashed line), the following six (black line), and the remaining
eight (blue line) LS types are also shown. The agreement between the
two results shows that most of the zero-energy manifold for the even
sublattice can be expanded in terms of the 20 identified LS types.
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FIG. 23. Real space structure for type-O7 to type-O12 on the odd sublattice.

section gives us the overall degeneracy and some information
about the spatial structure through LDOS, a more in-depth
understanding of LS can be obtained by defining LS types.
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FIG. 24. Frequencies of the LS types given in Fig. 23.
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FIG. 25. The total LS frequency calculated from the perpendic-
ular space areas on the odd sublattice (green line) compared with
numerical results (black plus signs). The total LS frequencies for
the first six (red dashed line), the following six (black line), and the
remaining 33 LS types (blue line) are also shown. The 45 identified
LS types are not enough to account for the numerically obtained
degeneracy.
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FIG. 26. LS types type-E13 to type-E20 on the even sublattice. Type-E17 can be made more symmetrical by adding other LS types.

An LS type is a localized state wave function defined in a
finite section of the lattice. The same wave function, up to
fivefold rotations and inversion, will appear infinitely many
times throughout the lattice, thus will account for a portion of
the degeneracy of the zero-energy manifold. While any linear
combination of two LS types can be defined as a new LS type,
the aim is to find a set of linearly independent LS types that
can span most of the LS manifold. For the PL, six LS types

were identified in Ref. [19] and there is good evidence that
any LS can be expressed as a linear combination of just these
six LS types [20,27]. However, the Amman-Beenker lattice
seems to require an infinite number of LS types [12,13]. These
LS types are arranged in generations, with the first four gen-
erations accounting for more than 99% of the degeneracy. It
is unclear what determines the minimum number of LS types
necessary to span the LS manifold for any quasicrystal.
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FIG. 27. Frequencies of the LS types in Fig. 26. Types E18 and
E19 are related by reflection hence share the same frequency.

In the PL, the even and odd sublattices are related by
inversion; thus, they have exactly the same LS fraction and
LS types. When we consider the LI classes other than the
PLI, we need to distinguish between LS types in the odd and
even sublattice. Beyond specifying the sublattice, we define
an LS type by specifying the properties of sites whose density
is nonzero, i.e., its support. We keep the list of vertex types,
as described in Fig. 3 for each vertex in the support. We also
retain the value of the wave function at each of these points.
Finally, we keep a list of vectors that specify the relative
positions of each vertex in the support. LS that have the same
vertex type list and the same wave function but differ in the
relative vector list are classified as the same type if fivefold
rotations and inversion relate their relative vector lists.

For example, type-2 LS, as identified in Ref. [19], is now
split into type-O2 on the odd sublattice and type-E2 on the
even sublattice. The first panel in Fig. 14 shows the type-E2
state on the even sublattice. The support consists of 10 type-D
vertices, all lying in D2, and the wave function alternates
as ±1 over the support. We count the frequency of this LS
type by considering the perpendicular space images of all
the points in its support. For the type-E2 LS these form ten
pentagons on D2 as shown in Fig. 14. The area of one of
the pentagons divided by the total area of the perpendicu-
lar space gives the frequency of type-E2 on the lattice. We
have previously used this method for the Penrose and the
Ammann-Beenker lattices and showed that the frequencies
agree with previous work. The power of the perpendicular
space counting method is that it can be applied to quasicrystals
without simple scaling rules, such as the LI classes considered
here. As � changes, the perpendicular space polygons evolve,
changing the areas for the allowed regions for the vertices in
the support of the LS type. The evolution of D2 and allowed
areas for type-E2 are shown in Fig. 15, where the shrinking
regions indicate the decreasing type-E2 frequency. Beyond
� � 0.22, the even sublattice has no regions supporting a
type-E2 state. The situation is quite different on the odd sub-
lattice. For � = 0, the PLI class, type-O2 LS has support only
on the perpendicular space decagon D3, and as � increases,

the allowed regions get smaller. However, the allowed regions
shrink slowly compared to the even sublattice, and never dis-
appear. Furthermore, beyond � � 0.42, the type-02 state can
exist on D type vertices in D1. This is expected as inversion
symmetry maps D1 to D3 at � = 0.5. The evolution of the
allowed regions for type-02 is shown in Fig. 16, and the LS
frequency on both sublattices as a function of � is given in the
last panel of Fig. 14.

Once the real space structure of an LS type is identified, it
is easy to calculate its frequency through the perpendicular
space images. However, defining LS types aims to find an
independent basis that can span the zero energy manifold.
Even for the PL, the independence of the LS types is not
easy to determine. For example, the type-1 and type-2 states
of the PL are not orthogonal [27]. However, one can still prove
that they are independent as the support of every type-2 state
contains at least one point which is not covered by the allowed
areas of the type-1. This is the simplest method of ensuring
that a newly defined LS type is independent. However, a new
LS can have density only on sites that are in the support of
other LS but be independent of them. For example, for the PL,
type-4 states have support on sites that can be covered by the
combination of a type-1, type-2, type-3, and another (rotated)
type-4 LS. Still, one can show that each type-4 state is inde-
pendent. For type-5 LS, this independence is not guaranteed.
Adding a type-2 and type-3 LS to a type-5 state can result in a
rotated type-5 state [20,27]. Only 1/τ of the type-5 states are
independent for the PL when other LS types are considered.
For LI classes other than PLI, the independence relations are
also modified. In Fig. 17 we show how the perpendicular
space areas for one orientation and all five orientations of
type-05 state change and the evolution of LS frequency for
this LS type.

We find that the total frequency of the initial six LS types
displayed in Fig. 18 quickly goes down as � increases, see
Fig. 19. However, new LS types are possible as the local
topology of the lattice changes with �. We used null space
calculations on small-sized lattices to identify LS as compact
as possible and calculated their perpendicular space images.
We decided to include a new LS type only if its support covers
a previously uncovered area in perpendicular space. While this
approach is likely to miss some LS types, it ensures that the
LS types we count form an independent set. Thus, we expect
the sum of the frequencies of the identified LS types to be a
lower bound for the total LS fraction.

For the even sublattice, we identify 14 LS types in addition
to the six present for PLI, giving a total of 20 LS types.
The most prominent (highest frequency for any �) six of the
new types, type-E7 to type-E12 are displayed in Fig. 20, and
their frequencies as a function of � is given in Fig. 21.The
remaining eight even sublattice LS types and their frequencies
are given in the Appendix. Most of the even sublattice LS
types are concentrated around a vertex with a high number
of edges, in line with the LDOS results.

In Fig. 22 we compare the LS fraction on the even sublat-
tice from the numerical calculation with the total obtained for
the 20 LS types. The result obtained from perpendicular space
areas is within the expected error bounds of the numerical
result. It is reasonable to expect that the 20 LS types given
here span the zero energy manifold for the even sublattice.
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FIG. 28. Types O13 to O21 on the odd sublattice.

Using a similar method, we identify 45 LS types for the odd
sublattice. The six most prominent odd LS types which are not
present in the PL are given in Fig. 23, and their frequencies
are plotted in Fig. 24. The remaining 33 LS types and their
frequencies are reported in the Appendix. In contrast to the
even sublattice, our numerical approach found larger LS types
in the odd sublattice. Larger LS types are much less frequent,
consistent with LDOS pictures obtained on the odd sublattice.
Overlap of many large LS types gives an almost uniform
distribution for the LDOS.

In Fig. 25, we compare the numerically obtained LS frac-
tion with the sum of the LS fractions of the 45 LS types we
identified. While the two calculations are in good agreement
for � < 0.1, we see a significant deficit for the frequency
obtained from LS types for larger �. There must be other LS
types on the odd sublattice. Our algorithm identifies an LS

type only if there is a unique site in its support that is not in
the support of a previously identified LS types. It is thus quite
likely that we are missing LS types that share all points in their
support with other LS types but are independent of them due
to their wave function. It is less likely, but the odd sublattice
may have many large LS types that are not reducible to LS
types with small support. In this case, our approach would be
missing them as we use small neighborhoods to identify LS
types.

V. CONCLUSION

We consider the vertex tight-binding model on LI classes of
pentagonal quasicrystals, obtained from the five-dimensional
cubic lattice by the cut and project method. These crystals
share the same five-dimensional lattice and the same projec-
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FIG. 29. Types O22 to O30 on the odd sublattice.

tion window size. However, the projection window shifts by a
parameter �, which uniquely defines LI classes for 0 � � �
1
2 with � = 0 giving the PLI class [22,23].

One common feature of tight-binding models on quasicrys-
tals is the presence of strictly localized states. These states
form almost 10% of all eigenstates for the PL and can be
expanded in terms of just six LS types [19,20,27]. The fre-
quency of LS types has been counted by relying on the scaling
symmetries of the PL, and this method is not suitable for
application to other LI classes which lack simple scaling
symmetries. Instead, we used a recently developed method

based on the perpendicular space projections to calculate the
frequency of LS and compared it with direct numerical calcu-
lation on finite lattices.

We find that the total LS fraction first drops as � increases
from the PLI value, makes a minimum around � � 0.12,
and then monotonically increases until � = 0.5. The highest
LS fraction, above 10%, is obtained at this limit. This non-
monotonic behavior contrasts with the sublattice imbalance,
which monotonically increases with �. We also observe that
the odd sublattice has more LS than the even sublattice ev-
erywhere except at � = 0. The higher frequency of LS on
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FIG. 30. Types O31 to O39 on the odd sublattice.

the odd sublattice is significantly more pronounced than the
number imbalance between the sublattices. At � = 0.5, the
odd sublattice has 53% of the sites but more than 75% of
the LS.

We further investigate the difference between the sublat-
tices by calculating the LDOS as a function of �. For the PLI
at � = 0, the LDOS displays regions where only one of the
two sublattices has LS, and the lattice is equally split between
the two possibilities. As � increases, the LDOS on the even

sublattice forms mostly isolated regions concentrated around
high symmetry vertices. LDOS expands throughout the lattice
on the odd sublattice, becoming relatively uniform over the
whole plane.

We analyze the zero-energy manifold in terms of LS types.
For the even sublattice, we identify 20 LS types and calculate
their frequencies for all �. Most LS types are confined to
regions that encircle a high edge number vertex in agreement
with the LDOS result. The total LS fraction obtained from
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FIG. 31. Types O40 to O45 on the odd sublattice.

these 20 LS types closely matches the numerical calculation
for all values of �. For the odd sublattice, we identified 45
LS types which generally have larger support than even sub-
lattice LS types. Their total frequency matches the numerical
calculation only within � < 0.11, while for larger values a
significant part of the LS fraction is not captured by these LS
types.

Extending the study of LS to other LI classes makes it
clear that many properties of the LS found for the PL, such
as the domain structure in their LS, are not inherited from
the five-dimensional cubic lattice. If there is any connection

between the topological properties of the parent lattice this
connection must sensitively depend on the projection win-
dow. Similarly, the presence of LS does not simply follow
from a local imbalance between the sublattices for any LI
class different from the PL [18]. The numerically calculated
LS fraction is continuous and smooth as a function of �,
which is natural when viewed as a consequence of continu-
ously shrinking or increasing allowed areas of LS types. The
behavior of the local environments seem uncorrelated with
other structural measures such as hyperuniformity [24]. It is
unclear why the odd sublattice and the even sublattice have

FIG. 32. LS frequencies of the all the odd sublattice LS types given in the Appendix. Type-O20 has the same frequency as type-O19, hence
is not shown separately. Similarly types O21-O22,O23-O24,O25-O26,O31-O32,O35-O36,O37-O38, and O44-O45 form pairs with the same
frequencies at all �. Finally all four types O39-O40-O41-O42 have the same frequency.
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markedly different behavior in the LS structure and LDOS.
It would also be interesting to address the robustness of the
zero-energy manifold and the properties of states that are not
strictly localized through perpendicular space methods.

APPENDIX: LS TYPES WITH LOW FREQUENCY

We give the real space structure and frequencies of the LS
types not presented in the main text in Figs. 26–32. The fre-
quencies for these LS types are plotted in Figs. 27 and 32.
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