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Thermodynamics of polarization dynamics in ferroelectrics implemented by the phase field model
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Polarization dynamical response is a fundamental issue for both physics and functional device applications
for ferroelectrics. The phase field model has been proved as an efficient and indispensable method to capture
the polarization evolution behaviors. With the size of polar element reducing to be atomic scale, the underlying
physics in the phase field model should be well clarified. Starting from the generalized many-body stochastic
dynamics, we discuss the thermodynamics of the polarization dynamics simulated based on the phase field
scheme. It is found that the presence of random force guarantees the thermodynamics of polarization system.
The numerical simulations indicate that the thermal fluctuations induced by random force give rise to a different
heat dissipation mechanism during the process of polarization dynamical responses, which is not taken into
account in the conventional phase field simulations. In addition, the thermal fluctuations of random force are
found to lead to the unexpected phase instability when considering the atomic-scale polarization dynamical
behaviors, which is considered to be originated from the incompatibility between the free-energy functional
and random force used in the current phase field model. If simply revising the free-energy functional to get rid
of such contradiction, the possible phase instability can be eliminated, but it results in the underestimation of
thermal fluctuations and the associated polarization dynamical behaviors. In our opinion, the viable solution is
to reconstruct the potential field, making it be compatible with the thermal fluctuation induced by random force.
Our discussion could help to provide hints for the development of multiscale modeling scheme in polarization
dynamics based on a phase field model.
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I. INTRODUCTION

Polarization dynamical response in ferroelectrics under
the external thermodynamic environment is an important is-
sue for both fundamental physics and device applications
[1–6]. Previous studies indicate that the macroscopic po-
larization responses observed in experiments are affected
by multi-ingredients [7–9], like electric dipoles, ferroelec-
tric domains, and space charges, etc. Dynamical responses
of these ingredients lie on different spatial and temporal
scales, so that polarization dynamics is a typical multiscale
process, which the corresponding modeling methods are de-
veloped to study. For example, molecular dynamics [10–15]
and effective Hamiltonian method [16–18] simulate the po-
larization dynamics in atomic scale, respectively, taking the
ions and local modes as their collective representations of
polarization. Using these atomistic methods, studies have
been reported [10–18] to get the underlying physics of the
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dynamics and thermodynamics in polarization dynamical re-
sponses in ferroelectric materials. On the other hand, based on
Landau-Ginzburg-Devonshire (LGD) theory of ferroelectrics
and the time-dependent Ginzburg-Landau (TDGL) equation,
the phase field model (PFM) of ferroelectrics has been proven
to be an efficient and indispensable method to yield the spa-
tiotemporal profiles of ferroelectric domain evolution [19,20].
As a phenomenological simulation method, the physical pic-
ture of the conventional PFM scheme is more intuitive and
the connection with the macroscopic thermodynamic theory
is clear and well established [21], so that one can obtain
the mechanical and thermodynamic characteristics consistent
with the experimental observation. Recently, in order to study
the high-frequency fluctuations of the microstructure in fer-
roelectrics, substantial progress has been made by extending
PFM to capture the ultrafast polarization dynamics [22,23].
In this updated PFM simulation scheme, the inertial term of
polarization dynamics is incorporated into the original TDGL
equation to mimic the fluctuation behaviors under the ap-
plied external field. Besides, the ultrafast resonant coupling
between ferroelectric and ferroelastic domain walls is consid-
ered instantaneously by introducing the dynamic equation of
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mechanical deformation. In this scenario, the polarization dy-
namical responses might probably reduce to be atomic spatial
and temporal scales. Applying PFM simulation scheme to
the atomic scale, it requires to clarify the physical picture
of polarization dynamics revealed in PFM simulations start-
ing from the points of view of microdynamics and statistical
thermodynamics. In particular, thermal fluctuations of polar-
ization should be carefully taken into account [24], as well
as the coupling between polarization and crystal dynamics in
atomic spatiotemporal scale. In this paper, we aim to discuss
the underlying physics of the current PFM simulation scheme
in the cases of studying the polarization dynamics in the
atomistic spatiotemporal response behaviors, so to give hints
on the development of multiscale modeling.

This paper is organized as follows: The theoretical analysis
about the stochastic nature of polarization dynamics in PFM
scheme is proposed in Sec. II, where the random force (which
is usually not taken into account) is proved to be the nec-
essary condition to guarantee both the thermodynamics and
dynamics of polarization system. In addition, the numerical
PFM simulations in a defect-free BaTiO3 (BTO) ferroelectric
monodomain system are performed to verify the important
role played by random force on polarization dynamics. In
Sec. III, the incompatibility between the free-energy func-
tional (or potential field) and the random force will give rise to
the unexpected phase instability in current PFM scheme, and
we will discuss the possible solution. The conclusion is drawn
in Sec. IV.

II. STOCHASTIC NATURE OF POLARIZATION
DYNAMICS IN PFM SCHEME

PFM is a phenomenological thermodynamic simulation
method to study the spatial and temporal evolution of mi-
crostructure and the responses with respect to the external
thermodynamic environment. It was developed on the basis of
the continuum mass density functional theory, and the diffuse
interface was adopted to describe the fluid interfaces [25].
Established on the LGD theory for ferroelectrics [26,27], PFM
has now been an effective method to describe the polarization
dynamics, where the temporal evolution of the polarization
field P(r) is governed by the TDGL equation [27–29]

Ṗα = −LδαF + ξα (r, t ) as α = x, y, z. (1)

Here, L is the kinetic coefficient; F = F [P] is the free-energy
functional, whose detail can be referred to Appendix A by
taking the typical ferroelectric BTO as an example; δαF ≡
δF/δPα; and ξα (r, t ) is the Gaussian random force, satisfying
[27–29] {〈ξα (r, t )〉 = 0,

〈ξα (r, t )ξβ (r′, t ′)〉 = κδαβδ(r − r′)δ(t − t ′)
(2)

with κ as the strength. Recently, in order to study the ultrafast
polarization dynamical responses, an inertial term is intro-
duced in the original TDGL equation of Eq. (1) [22,23], and
the equation is written as

μ′P̈α + γ ′Ṗα + δαF = ξ ′
α (r, t ), (3)

where μ′ and γ ′ are the mass and damping coefficient of
polarization evolution, respectively. ξ ′

α is Gaussian random

force. In this paper, Eqs. (1) and (3) are named as first and
second TDGL equations, respectively, governed by which
the polarization dynamical systems are named �1 and �2. In
the following, we will present the important role played by
random force on thermodynamics.

A. Discretized many-body polarization dynamics

Both variational TDGL equations of Eqs. (1) and (3) are
usually nonlinear, which are solved numerically by adopting
the finite-difference method, after meshing the continuous
polarization field of P(r) into N cubic grids in the real space.
The grid parameter is denoted by h in this paper, so that
the cubic grid volume 	 is given by 	 = h3. Although this
discretization operation is just a numerical approach, it signifi-
cantly transfers the three-dimensional continuous polarization
dynamics system to be a 3N-dimensional many-body stochas-
tic one [30–32]: (1) the continuous space of r ∈ V maps to
the discretized space of {rn} ∈ V with n = 1, 2, . . . , N ; (2)
the continuous polarization field P(r) maps to a set of many-
body discretized polarization field {Pn,α} as P(r) �→ {Pn,α},
with Pn,α = Pα (rn) denoting the α (= x, y, z) component of
the nth grid polarization vector located at rn; (3) the free-
energy functional F [P] with the continuous polarization field
as argument maps to the many-body thermodynamic poten-
tial function U ({Pn,α}) with the discretized polarization field
as variables, which is a function containing 3N degrees of
freedom (DOF) defined in the phase space constructed by a
complete basis set of {|Pn,α〉}. In this regard, the continuous
first TDGL equation of Eq. (1) maps to a set of 3N discretized
TDGL equations as

Ṗi = −γ ∂iU + ξi(t ). (4)

Here, Pi is equivalent to Pn,α denoting the DOF of the dis-
cretized polarization dynamics system with i = 1, 2, . . . , 3N ;
γ = L/	; U = U ({Pn,α}) is the potential force field, which
makes ∂iU = ∂U/∂Pi correspond to δαF [30–33], and
ξi(t ) is the Gaussian random force with 〈ξi(t )〉 = 0 and
〈ξi(t )ξ j (t ′)〉 = κδi jδ(t − t ′). Similarly, the second TDGL
equation of Eq. (3) maps to

μP̈i = −∂iU − γ Ṗi + ξi(t ) (5)

with μ = 	μ′, γ = 	γ ′, and ξi = 	ξ ′
i . The detail of the

above discretization can be seen in Appendix B.

B. Dynamic equilibrium of polarization system and the
stochastic environment

In a general microdynamic point of view, the total 3(N +
M ) DOF of a ferroelectric system can be divided into two cat-
egories: the 3N DOF representing the polarization dynamics
directly, denoted by {Pi}, and the remaining 3M DOF, denoted
by {x j} [30,31]. In this case, the Hamiltonian H of the whole
system can be written as

H({Pi}; {x j}) = HP({Pi}) + Hx({x j}) + H′. (6)

Here, HP({Pi}) and Hx({x j}) denote the dynamics of {Pi} and
{x j}, respectively, and H′ represents the interactions between
{Pi} and {x j}. In general, the DOF of {x j} could be the atomic
spins, electrons, mechanical strains, or even the so-called hard
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modes, all of which do not represent the polarization dynam-
ics directly. In particular, for a pure ferroelectrics system,
Hx describes the mechanical deformation dynamics, and H′
represents the electroelastic coupling. Note that, if H′ = 0, the
dynamics of {x j} has no influence to that of {Pi}. Otherwise,
the dynamics of {x j} will provide a thermodynamic envi-
ronment for {Pi}, including the conservative and stochastic
actions. On the one hand, the mean or instantaneous spatial
configuration of {x j} would give rise to the conservative action
on the dynamics of {Pi} via H′. This action can be absorbed
into HP as (HP + H′) �→ HP. On the other hand, Hx in
Eq. (6) describes the thermal motions of {x j}. It provides the
stochastic action (denoted by Henv) to the dynamics of {Pi}
[30,31], i.e., Hx �→ Henv. In principle, Henv includes the fluc-
tuation ξi(t ), and dissipation actions [i.e., −γ ∂iU in Eq. (4)
and −γ Ṗi in Eq. (5)]. In this regard, the Hamiltonian H of the
polarization dynamical system in Eq. (6) can be thus rewritten
as

H({Pi}; {x j}) �→ H({Pi}; η) = HP({Pi}) + Henv(η). (7)

Here, η is the fluctuation-dissipation ratio denoting the
strength of the stochastic environment exerted by {Pi}, which
is arising from the thermal motions of {x j}. It should be
reminded that it is a common way to separate the dynamics of
different types of DOFs widely adopted in condensed matter
theory.

In microdynamics, polarization dynamics between �1 and
�2 are quite different, whose Hamiltonians are, respectively,
written as⎧⎪⎨

⎪⎩
H1 = U ({Pi}) + Henv, for �1

H2 =
3N∑
i=1

μ

2 Ṗ2
i + U ({Pi}) + Henv, for �2.

(8)

Accordingly, the first and second TDGL equations of Eqs. (4)
and (5) are, respectively, the derived equations of motion for
the microdynamic DOF of {Pi} corresponding to the Hamilto-
nians of H1 and H2 defined in Eq. (8). Here, the potential
force field U in H1 and H2 describes all the conservative
actions exerted by {Pi}. It has the different form for the dif-
ferent ferroelectric system interested, for instance, it can be
referred to Appendix A for the specific form used in BTO.
As can be seen in the discussion presented in the subsequent
sections, the specific form of U affects the evolution behaviors
of polarization, which, however, does not bring the significant
influence to the general thermodynamics. Therefore, it is not
necessary to discuss the specific form of U in this section.
Similarly, the stochastic actions Henv provided by {x j} to {Pi}
can, in principle, be also expressed explicitly by introducing
the instantaneous dynamical responses of {x j}. However, ex-
cept for bringing with the complexity of the mathematical
form of Henv in Eq. (6) or Eq. (7), it will not change the
nature of physics. In this regard, when we focus on the po-
larization dynamics itself, the simplified form of Hamiltonian
in Eq. (7) is appropriate and sufficient for us to discuss the
microdynamics.

Note that the first and second TDGL equations of Eqs. (4)
and (5) are the specific forms of the generalized Langevin
equation, as

Ẋi = {Xi,H} − γ ∂iH + ξi(t ), (9)

which describes the stochastic microdynamics of a system
including 3N DOF {Xi}. Here, {Xi,H} is the “Poisson bracket
relation” and ∂iH ≡ ∂H/∂Xi. Choosing Xi = Pi and Xi = μṖi

in Eq. (9), the first and second TDGL equations can be respec-
tively achieved with

{Pi,H1} = 0 and {μṖi,H2} = −∂iU . (10)

Due to the presence of random force ξi, the resulting phase-
space trajectories of {Pi} governed by either first or second
TDGL equations are not deterministic but stochastic. Con-
sequently, the phase-space probability distribution function
�(t ) is used to describe the stochastic nature of polarization
dynamics, whose time-evolution behavior obeys the corre-
sponding Fokker-Planck equation [30,31], i.e., for first TDGL
equation of �1,

∂�1

∂t
= −

∑
i

∂

∂Pi

[(
−γ

∂H1

∂Pi

)
�1

]
+ κ

2

∑
i

∂2�1

∂P2
i

, (11)

and for second TDGL equation of �2,

∂�2

∂t
= −

∑
i

∂

∂Pi
(Ṗi�2)

−
∑

i

1

μ

∂

∂Ṗi

[(
−∂H2

∂Pi
− γ

μ

∂H2

∂Ṗi

)
�2

]

+
∑

i

κ

2μ2

∂2�2

∂Ṗ2
i

. (12)

Polarization dynamical systems of �1 and �2 reach their own
mechanical steady states at t → ∞, so that ∂�1(2)/∂t = 0.
The equilibrium probability distribution �1(2) then has the
Boltzmann-type form as

�1(2) = C exp (−H1(2)/η), (13)

where C is a constant. Substituting Eq. (13) into (11) and (12)
with ∂�1(2)/∂t = 0, we have a unified expression as(

κ

2γ
− η

) 3N∑
i=1

(
η∂2

i H − |∂iH|2) = 0. (14)

The so-called fluctuation-dissipation relation (FDR) [34] can
thus be achieved

η = κ/2γ and η = 〈|∂iH|2〉/〈∂2
i H

〉
, (15)

where ∂iH = ∂H/∂Xi, ∂2
i H = ∂2H/∂X 2

i , 〈. . .〉 is the ensem-
ble average over the phase space constructed by {|Xi〉}, and
Xi = Pi for �1 and Xi = μṖi for �2. In former expression
of FDR in Eq. (15), η denotes the actions of the stochastic
mechanical environment as κ/2γ , which is the strength of
thermal motions of {x j}. Although η is independent of the
dynamics of system interested, it determines the stochastic
nature of the microdynamic system as presented in the latter
expression of FDR in Eq. (15). This intrinsic stochastic con-
nection can also be seen in the expression of � in Eq. (13)
indexed by η, which indicates the dynamical equilibrium
between the microdynamic system and its stochastic envi-
ronment. As addressed in Ref. [34], if one cannot define the
relation between η and the thermodynamic temperature T ,
the thermodynamics of the above-mentioned microdynamic
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system cannot be well defined. Therefore, we have to es-
tablish the thermodynamic relation in terms of η = η(T ) =
〈|∂iH|2〉/〈∂2

i H〉 in accordance with Eq. (15).

C. Zeroth law of thermodynamics

For the specific ferroelectric system, as addressed in
Eq. (15), the thermal motions of {x j} and {Pi} at fi-
nite temperatures, respectively, characterized by κ/2γ and
〈|∂iH|2〉/〈∂2

i H〉, carry out the mechanical momentum and
energy exchange continuously to guarantee the dynamical
equilibration of the whole system. On the one hand, for the
dynamics of {Pi}, the stochastic mechanical actions of Henv in
Eq. (8) characterized by η = κ/2γ are in fact arising from the
thermal motions of {x j} with strength denoted by η = kBTx (Tx

is the thermodynamic temperature of {x j}) [34], so that

κ/2γ = η = kBTx. (16)

On the other hand, according to statistical thermodynamics,
the thermodynamic temperature TP of polarization dynamical
system �1 and �2 are, respectively, given by⎧⎪⎨

⎪⎩
kBTP = 〈|∂iH|2〉

〈∂2
i H〉 = 〈|∂iU |2〉

〈∂2
i U 〉 , for �1

= 〈
μṖ2

i

〉
, for �2

(17)

which are consistent with the equipartition and conjugate vari-
ables theorem (or named hypervirial) [35–40] (see detail in
Appendix C). Combining Eqs. (15)–(17), we can arrive at the
thermodynamic zeroth law of polarization dynamics, i.e.,

Tx = η/kB = TP (18)

which is written in terms of⎧⎪⎨
⎪⎩

κ

2γ
= kBT = 〈|∂iU |2〉

〈∂2
i U 〉 , for �1

= 〈
μṖ2

i

〉
, for �2

(19)

with T = Tx = TP. Here, the thermodynamic temperature T
is a parameter characterizing the stochastic actions of the
Langevin heat bath as kBT = kBTx = κ/2γ , and a thermo-
dynamic observable function of the dynamical phase-space
trajectory {Pi} as kBT = kBTP = 〈|∂iU |2〉/〈∂2

i U 〉 for �1 and
kBTP = 〈μṖ2

i 〉 for �2.
As known, temperature is a thermodynamic concept, which

is well defined under the equilibrium states, so that one
should be careful to apply it to a nonequilibrium polarization
configuration. However, under the local equilibrium assump-
tion [41,42], e.g., in the cases where the local equilibration
processes are much faster than the global energy exchange
rate, the polarization temperature can still be well defined
in terms of a local set of dynamical variables following
Eq. (19), and the thermodynamic zeroth law can be well
satisfied at arbitrary instant during the polarization relaxation
process.

D. Discussion

It can be seen from the above analysis, the presence of the
random force, either ξα (r, t ) in Eqs. (1) and (3) or ξi(t ) in

Eqs. (4) and (5), gives rise to the stochastic nature of the polar-
ization dynamics, which, together with the dissipation actions,
guarantees the correctness of thermodynamics of polarization
dynamical system.

Note that the random force was involved in the original
TDGL equation to account for the temperature effects, either
for the issues about structural phase transition in crystalline
solids and other phase transformation phenomena [30,31]
or ferroelectric polarization dynamics [27–29]. However, the
random force is usually eliminated in the PFM scheme used
currently for polarization dynamics, where the temperature
effects are alternatively taken into account by treating T as a
thermodynamic parameter involved in the expression of free-
energy functional F (T ) or potential force field U (T ) [20,21].
It should be reminded that the temperature effects arising from
random force are quite different from those induced by U (T )
[24]: (1) when ξi(t ) 
= 0, the random force can give rise to the
corresponding thermal fluctuations of polarization dynamics
around its equilibrium state; (2) taking temperature T as a
parameter involved in F (T ) or U (T ) with ξi(t ) = 0, it just
results in temperature-dependent conservative force ∂iU (T ),
thus giving rise to the change of equilibrium state as tempera-
ture changes.

In general cases, the equilibrium state of polarization in
a ferroelectric system is determined by the free-energy func-
tional F or potential force field U , so that the equilibrium
behavior of polarization dynamics can be also well repro-
duced, if setting ξi(t ) = 0 in both first and second TDGL
equations. In particular, for the issues of polarization re-
sponses can be regarded as quasistatic approximately, the
thermal fluctuations induced by ξi(t ) do not play the predomi-
nant roles on the microstructural evolution of the polarization
dynamics [20,28,29]. In this case, the temperature effects
can be well described by the temperature dependence of
free-energy functional or potential force field, without effects
of random force. However, when we consider the ultrafast
polarization dynamics related to the atomic spatiotemporal
evolution behaviors, e.g., the dynamics of nanosize domain-
wall structure, the high-frequency fluctuation information has
to be involved. In fact, the second TDGL equation with
ξi(t ) = 0 as the extension of first TDGL equation by adding
an inertial term, equivalent to the nonlinear Klein-Gordon
equation, aims to obtain the polarization fluctuations [22,43].
Nevertheless, lacking the random force, the thermal fluctua-
tions will vanish after the system reaches its equilibrium state,
and the thermodynamics zeroth law cannot be guaranteed. In
other words, effects of the inertial term and random force are
quite different. Before equilibrium, the inertial term can give
rise to the thermal vibrations of observed total polarization,
indicating the energetic exchange between the kinetic 〈 1

2μṖ2〉
and potential energies 〈U (P)〉. However, the vibration am-
plitude decays with time elapsed and finally vanishes under
equilibrium because of the dissipation action provided by the
term of −γ Ṗ. In this case, the thermodynamic temperature
of the system cannot be balanced with the external thermo-
dynamic environment [e.g., see the results of case I plotted
in Fig. 3(d) or 3(f)]. Otherwise, similar fluctuation behaviors
will always be present induced by the effects of random force.
Therefore, effects of inertial term and random force are not
the simple accumulation. From this point of view, the random
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force should not be eliminated in both first and second TDGL
equations when we study the ultrafast polarization dynamics
at atomic spatiotemporal scale (see detail in Appendix D).

Let us analyze this issue in another point of view. As a phe-
nomenological simulation method, the viable and direct way
to examine the rationality and reliability is to compare sim-
ulation results and the experimental observations. For PFM
simulations of polarization dynamics, the time evolution of
the global Pα (t ) or local polarization Pα (r, t ) is the key quan-
tity characterizing the evolution of the interested polarization
system. After discretization operation, Pα (t ) is estimated as
the ensemble average of all grid polarizations as

Pα (t ) = 〈Pn,α (t )〉 =
∫

Pn,α�dN Pn,α, (20)

where � = �({Pn,α (t )}) is the state probability distribution
function of the system for a given polarization configuration
{Pn,α}. A large number of practices have proved that PFM
simulations based on the TDGL equation without random
force can obtain the accurate mathematical expectation Pα (t )
of polarization dynamics (e.g., see the review paper [20]).
Note that just ensuring the accuracy of polarization observed
Pα (t ) cannot guarantee the self-consistency of thermodynam-
ics. According to the fluctuation theorem, even staying at
equilibrium states, there is thermal fluctuation for each ther-
modynamic observable quantity, e.g., 〈P2

n,α〉 
= 0. Therefore,
the high-order statistical moments of � should be obtained
to achieve the thermodynamic quantities concerned, as well
as the dynamical behaviors of polarization. Readers can see
the detailed analysis in Appendix D. In the following, we
will perform the PFM simulations on polarization dynamics
by taking BTO as an example, to show the indispensable role
played by the random force on both the thermodynamics and
dynamics of polarization.

E. Numerical verification

For clarity and without loss of generality, we consider the
system having a single ferroelectric domain, e.g., a stress-free
perfect BTO crystal with periodic boundary condition applied.
Figure 1 illustrates the typical biased double-well potential
force field U (P) as function of macroscopic polarization P.
Here, PA and PB are, respectively, two local equilibrium states,
separated by an energy barrier Um with PC as the saddle-
point state. Note that P in fact is the phase-space coordinate
representing the polarization configuration as P ≡ {Pi} evolv-
ing upon the given potential force field U (P). Applying the
external field will modify the feature of U (P), so to affect
the polarization dynamics. As addressed in Ref. [15], there
are two typical processes for polarization dynamics: (1) the
relaxation process from an excited state Pe to the nearest
equilibrium state PA spontaneously; (2) the reversal switching
process from one equilibrium state PA to another one PB under
an applied external field and thermal assistance. In the follow-
ing, we will perform PFM simulations for these two typical
polarization dynamical processes to show the role played by
random force on polarization thermodynamics and dynamics,
which are respectively plotted in Figs. 2 and 3.

In our PFM simulations for both processes of polar-
ization dynamics, the simulation system is discretized into

FIG. 1. The schematics of a typical biased double-well poten-
tial force field U (P) as function of total polarization P. Here, P
is the phase-space coordinate denoting the states of a many-body
stochastic polarization dynamical system {Pi}. PA and PB are two
local equilibrium states separated by a barrier Um with PC as the
saddle-point state. In principle, there are two typical polarization
dynamical responses: (1) the relaxation process from an excited state
Pe to the nearest equilibrium state PA; (2) the switching process from
PA to PB under the external stimulation.

64h × 64h × 64h grids with h = 4.0 nm, which is embedded
in the Langevin heat bath of Tx = 300 K. The phase-space
trajectories {Pn,α (t )} are obtained by solving the TDGL equa-
tion, where all the parameters can be referred to Refs. [44,45]
(see detail in Appendix A). The first [i.e., Eq. (4)] and second
TDGL [i.e., Eq. (5)] equations are solved via an explicit Euler
method with a time step of 1 fs, and the FFT approach is
adopted to calculate the conservative force in TDGL equa-
tion [28,29,45]. The total polarization Pα (t ) of the systems
considered is thus thermodynamic observable as Pα = 〈Pn,α〉.
Doubling the numbers of meshing grids and decreasing the
time step are examined to result in the statistical error less
than ∼0.1%. The FFT simulations are performed by a self-
developed C language code, with the use of the C subroutine
library FFTW for computing the discrete Fourier transform and
the standard software library CLAPACK for numerical linear
algebra.

BTO is a typical ferroelectric material, presenting a tetrag-
onal (T) phase at T = 300 K with spontaneous polarization
along the z direction, i.e., |Pz| = P0 (≈0.26 C/m2). In PFM
simulations, a double-well potential field U is designed for
each Pn,z, including two equivalent minima at Pn,z = ±P0

separated by an energy barrier Um, as plotted as in Fig. 2(a).
The time-evolution behaviors of Pα are plotted in Figs. 2(c)
and 2(d), which well indicates the feature of a T phase in
BTO as Px = Py ≈ 0 and Pz ≈ P0 at t > 5 ps. The probability
distribution of Pα given in Fig. 2(e) also demonstrates the
thermal fluctuations under equilibrium induced by the random
force. In addition, the distribution of Pz is not symmetrical
around P0. Because the potential field U around the potential
well at P0 is asymmetrically shown in Fig. 2(a) and the pres-
ence of random force makes the system feel the neighborhood
of the potential well, the probability for Pn,z � P0(1 − s) is
larger than that for Pn,z � P0(1 + s), where s is an arbitrary
small value. Therefore, there is slight offset of Pz from P0, as
Pz � 0.99P0 shown in Fig. 2(d). This is a typical anharmonic
effect, as well as a thermodynamic phenomenon, showing
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FIG. 2. The PFM simulation results of polarization relaxation process from Pe to PA illustrated in Fig. 1, in the case of BTO at 300 K
with h = 4.0 nm. (a) The potential landscape U along Pz. (b) The estimated polarization temperature TP following Eq. (19) (see detail in
Appendix C). (c), (d) The time-evolution behaviors of Pα with α = x, y, z. (e) The probability density of Pα under equilibrium. Here, �1 and
�2 are the polarization dynamical systems governed by first and second TDGL equations, respectively.

FIG. 3. The results of polarization reversal switching process from PA to PB illustrated in Fig. 1, in the case of BTO at 300 K with
h = 4.0 nm. Here, the polarization switching under the applied reversal Eext = −1.41 × 107 V/m is simulated based on second TDGL
equations without and with the presence of random force in Eq. (21), which is named case I and II, respectively. (a) The time evolution
of Pz, and (b) the enlarged detail; (c) the time-dependent normalized reversed area; (d) the time evolution of polarization temperature estimated
by kBTP = 〈μṖ2

i 〉, and (e) the enlarged detail; (f) the statistics of switching time τ of case II with the random force involved, which well follows
the Lorentzian distribution shown in Eq. (22).
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the significance of random force to the thermodynamics.
Correspondingly, the polarization temperature TP, estimated
following the conjugated coordinates theorem [35–40] as
kBTP = 〈Pn,α∂n,αU 〉 (see detail in Appendix C), gradually in-
creases to be the temperature Tx of the thermal heat bath, so to
confirm the equivalent relation of the thermodynamics zeroth
law expressed in Eqs. (18) and (19). In this regard, the thermo-
dynamics of polarization can be achieved, and both first and
second TDGL equations can govern the same behaviors for
polarization dynamics. It is obvious that if setting ξn,α (t ) = 0
in both first or second TDGL equations, the fluctuation shown
in Fig. 2 cannot be observed when the system is under equi-
librium, although it can lead to the correct equilibrium state of
polarization dynamics.

Applying a sufficient large reversal external electric field
Eext on a ferroelectric domain with nonzero spontaneous po-
larization leads to the polarization switching [15]. Performing
the PFM simulation without the thermal assistance by setting
ξi(t ) = 0 in second TDGL equation of Eq. (5), the polar-
ization switching occurs for a monodomain structure in the
case of |Eext| > Ecrit (Ecrit is the thermodynamic coercive field
[15,46]). However, if setting ξi(t ) 
= 0 in second TDGL equa-
tion of Eq. (5), the polarization switching can occur for a
monodomain structure even in the case of |Eext| is smaller than
Ecrit due to the thermal fluctuations.

The polarization dynamics under the applied reversal Eext

on the monodomain structure of BTO is simulated based on
second TDGL equations with ξi(t ) = 0 and ξi(t ) 
= 0, respec-
tively, which are named case I and II, as{

μP̈i + γ Ṗi + ∂iU = 0, for case I

μP̈i + γ Ṗi + ∂iU = ξi(t ), for case II.
(21)

The simulation system is discretized into grids with size of
h = 4.0 nm. Here, the system is first relaxed at its equilibrium
states with Pz = P0 at T = 300 K. Figure 3 plots the simula-
tion results. In Fig. 3(a), Eext = −1.41 × 107 V/m is applied
at the moment of t = 0, under which the value of Pz starts
to decrease to be Pz = 0.7P0 at 2.5 < t < 10.0 ps, and then
rapidly reduces and reaches the value of −P0 at t ∼ 20 ps.
Similar time-evolution behaviors of Pz(t ) are revealed in both
cases I and II. The difference is the fluctuation of Pz(t ) when
the switching finishes at 15 < t < 20 ps, as demonstrated in
the enlarged figure of Fig. 3(b). For case I, Pz evolves like
a typical damped oscillator without effects of random force.
Otherwise, such behavior is not so significant for case II. In
addition, the time-dependent normalized reversed area plotted
in Fig. 3(c) further indicates the effects of ξi(t ). For case I
without thermal assistance induced by ξi(t ), the polarization
at each grid Pn,α uniformly decreases, so that they finish the
switching process suddenly at the moment of t ∼ 14.5 ps.
However, for case II, the grid polarization Pn,α reversal occurs
randomly with the thermal fluctuation, resulting in the so-
called local nucleation and the gradual rise of the normalized
reversed area with time elapsed shown in Fig. 3(c). In this
case, the switching time τ is not deterministic, whose stochas-
tic feature can be described by a Lorentzian distribution as
[47]

g(τ ) = C[(τ − τ̄ )2 + w2]−1, (22)

where τ̄ is the mean value of τ , w is the half-width, and C
is a constant. Here, τ is defined as the time duration for Pz

reducing from P0 to 0, and the distribution of τ shown in
Fig. 3(f) is obtained by frequency counting from 100 indepen-
dent simulations of polarization switching, which is found to
well satisfy the expected Lorentzian distribution in Eq. (22).
Note that the similar behavior of τ cannot be found in case I
without effects of random force. Furthermore, as illustrated in
Figs. 3(d) and 3(e), the polarization temperature TP (estimated
following kBTP = 〈μṖ2

i 〉) can be well described for case II
far away from the switching process. For both cases I and
II, there are small peaks of TP at the moment of t = 0 when
applying Eext to the system because Pz = P0 is not a stable
state under the actions of Eext, so that it will relax to the
new state accompanied with heat dissipation. For the same
reason, TP shows the larger rises subsequently during the fast
reversal processes at 12 < t < 16 ps. The decay of TP with
oscillation at t > 16 ps is induced by the inertial term of μP̈i

in Eq. (21), during which, however, the heat dissipates faster
in case II with the help of random force. That is because the
heat dissipation mechanisms are different between case I and
II. Take the polarization switching under the applied Eext for
example. For the ferroelectric system considered, the action of
Eext is the work done, which leads to the increase of internal
energy stored in polarization system, and the heat dissipation.
For case I, without effects of random force, the heat dissipates
to its environment via the dissipation actions provided by
the −γ Ṗi, which is the heat transfer from the system to its
environment. However, the participation of random force ξi(t )
provides a feedback of the heat exchange from its environment
to the system interested. From this thermodynamic point of
view, the presence of random force is a necessary condition to
model the full thermodynamic actions.

To sum up, the thermal fluctuations induced by the random
force have the non-negligible effects on polarization dynam-
ics, which, on the one hand, guarantee the thermodynamics,
i.e., the thermodynamic zeroth law, as demonstrated as the
polarization relaxation process in Fig. 2, on the other hand,
give rise to a different polarization dynamical behavior as
indicated as the polarization switching process in Fig. 3.

III. INCOMPATIBILITY OF CURRENT PFM SCHEME

A. Phase instability

From the PFM simulation results plotted in Figs. 2
and 3, both the thermodynamics and dynamics can be
achieved instantaneously based on the stochastic TDGL equa-
tion with ξi(t ) 
= 0. However, the discretized grid size of
h = 4.0 nm is too large, and not suitable for modeling the
dynamics of ferroelectric domain structure and domain-wall
motion. For the typical ferroelectric materials, the width of
domain wall is around 2 nm. In order to ensure the spa-
tial resolution of diffuse interface used in PFM scheme, the
meshing-grid size h should be less than 1 nm. In practice, the
grid discretization of h = 0.4 nm is widely adopted in PFM
simulations of polarization dynamics [48–50]. In principle,
PFM simulations results of polarization dynamics will not rely
on the discretized grid size. However, as a phenomenological
approach developed on the basis of the continuum mechanics
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FIG. 4. (a) The potential landscape U along Pz for the cases of h = 2.0, 3.0, 4.0 nm. (b) The competition of Um/kBT is linearly proportional
to the grid volume as h3. (c) The phase instability revealed in the PFM simulations with system discretized into small grids as h < 2.0 nm.
(d)–(f) The time-evolution behaviors of Pα with α = x, y, z. (g) The observed polarization temperature TP in terms of kBTP = 〈Pn,α∂n,αU 〉
(see Appendix C). (h)–(i) The fluctuations of polarization σP/P0 and effective electric field σE/E0, where σP and σE are estimated following
Eq. (23), and E0 = 9.6501 × 106 Jm−1C−1 is a normalized constant. In (h) and (i), the red open circles represent the quantities along nonpolar
directions (i.e., x and y directions) and blue solid dots stand for data along the polar direction (i.e., z direction).

and thermodynamics, we have to pay more attentions on the
rationality and reliability when promoting PFM scheme to
study the atomic-scale polarization dynamical behavior. In
atomic scale, the thermal fluctuations of polarization become
more significant and play the important role on the evolution
behaviors. In the following, we will perform the duplicate
PFM simulations as those shown in Fig. 2 based on second
TDGL equation of Eq. (5). For each simulation case, the box
is set as 64h × 64h × 64h, and the grid-meshing size h is set
in the range from 0.4 to 6.8 nm.

Figure 4 shows the simulation results. Let us check the
thermodynamic equivalent relation for first. Referring to
Eq. (19), the strength of thermal fluctuation denoted by kBTP

can be characterized by the statistics of polarization dynam-
ics, which is further equal to the stochastic actions of its
Langevin heat bath denoted by κ/2γ = kBTx. For all the
PFM simulation systems discretized into various grid sizes
of h considered, the equivalent relation of the thermody-
namic zeroth law is well confirmed in Fig. 4(g) in terms
of TP = 〈Pn,α∂n,αU 〉/kB, in accordance with conjugate vari-
ables theorem [39] (see details in Appendix C). However, the

time-evolution behaviors of Pz(t ) plotted in Fig. 4(f) reveal the
unexpected phase instability when h < 2 nm.

For Pn,α staying at one of the minima of the potential fields
demonstrated in Fig. 4(a), it would hop between two stable
states with thermal assistance. According to Kramers’ theory
[51], the probability of Pn,z escaping the potential well is
determined by the competition Um/kBT between the energy
barrier Um and the thermal energy kBT . Note that the value of
Um/kBT is linearly proportional to 	 = h3 as (Um/kBT )1/3 ∝
h [see in Fig. 4(b)]. Therefore, for the systems discretized into
large grids, Um/kBT is sufficiently large to significantly avoid
the possible transition of Pn,z between its two stables states.
For example, plotted in Fig. 4(b), Um/kBT > 10 when h > 2
nm, giving rise to the polar state of Pz ≈ P0 as expected [see
in Fig. 4(c)]. In contrast, for the systems discretized into small
grids, e.g., h < 2.0 nm, the value of Um/kBT reduces rapidly
[see in Fig. 4(b)], so that the system could not stay at Pz = P0,
and it will hop between ±P0. Therefore, for the long-term
behavior, the probability for the system staying at P0 is almost
equal to that at −P0, giving rise to the phase instability as
Pz = 0 [see the shaded region in Fig. 4(c)]. On the other
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hand, the conjecture can be made that the phase transition
temperature decreases as the reduction of the discretized grid
size in PFM simulations. For instance, BTO should stay at T
phase at 300 K, but it reveals a C-phase structure in the case of
h < 2.0 nm. This conjecture is well confirmed by the results
of the fluctuations of polarization σP and electric field σE

shown in Figs. 4(h) and 4(i), respectively, which are defined
according to the fluctuation theorem [52] as{

σ 2
P,α = 〈

P2
n,α

〉 − 〈Pn,α〉2 = kBT χαα/	,

σ 2
E ,α = 〈

E2
n,α

〉 − 〈En,α〉2 = kBT/(χαα	),
(23)

where χαα is the component of the susceptibility tensor χ.
Figures 4(h) and 4(i) indicate the relations of σ 2

P ∝ 	−1 and
σ 2

E ∝ 	−1 are well satisfied when h > 2.0 nm, which are apart
from the prediction when h < 2.0 nm.

In addition, for the polarization dynamics system of �1

governed by the first TDGL equation of Eq. (4), although
there is no inertial term involved because it shares the same
free-energy functional F [P] or potential field U ({Pi}) with
that of �2 governed by the second TDGL equation, similar
phase instability is also found by performing the PFM sim-
ulations based on the first TDGL equation. Therefore, the
inertial term introduced is not the key factor responsible for
the phase instability when adopting the small discretized grids
in the PFM simulations. Furthermore, we fix the numbers of
meshing grids N in the simulations shown in Fig. 4, so that
the total volume V of the interested system decreases with
smaller grid size discretized, as V = Nh3. Otherwise, when
we fix V , N will then increases as decreasing the grid size
h, as N = V/h3. Because the periodic boundary condition is
applied to the system of perfect BTO structure, the selection
of a sufficient large V has little influence to the simulation
results. It has been checked that the phase instability still
occurs when h < 2 nm, if fixing V in PFM simulations.

In this regard, due to the small values of the competition
Um/kBT between the conservative potential and thermal en-
ergy, PFM simulations of polarization dynamics reveal the
unexpected phase instability in the cases of small grid dis-
cretization. Note that the value of Um/kBT depends on the grid
size h set in the numerical approach of PFM simulations, that
is because the potential force field U is size dependent since
the free-energy density is the key quantity fitted in conven-
tional PFM scheme, but the thermal fluctuation strength kBT
is independent of grid size h after the discretization operation.

B. Viable solution

From the information revealed in the above PFM simula-
tion results, it can be found that the random force provided by
Langevin heat bath ensures the statistical nature of polariza-
tion dynamics, and the resulting thermal fluctuations indeed
give rise to the non-negligible effects [24]. In principle, the
simulation results in PFM should not rely on the meshing grid
size h adopted in numerical approach. However, because the
free-energy functional F [P] or potential field U ({Pi}) used in
current PFM scheme was developed without accounting for
the thermal fluctuations [20,44], the contradiction between the
fluctuation induced by random force and the atomic-scale grid
discretization exists naturally, both of which, unfortunately,

are the necessary conditions for the issues about studies of
the atomic spatiotemporal polarization dynamical responses.
Researchers [24] have been aware to find appropriate ways
out of the dilemma owed to the presence of random force.

As mentioned above, the small values of Um/kBT lead
to the phase instability in the discretized system with h <

2 nm. Therefore, a simple but effective way to get rid of
the contradiction between thermal fluctuation and small grid
discretization is to enlarge the values of Um/kBT by recon-
structing the potential field U ({Pi}). For BTO, the potential
field U developed in Refs. [44,45] has been proved to cor-
rectly reproduce the sequence of the phase transition. Based
on this potential field, we just enlarge the values of Um/kBT
in a simple but appropriate way by multiplying the original
U with a constant factor for all the temperatures considered,
which ensures Um/kBT to be large enough to avoid the phase
instability for the system discretized with h = 0.4 nm.

Figure 5(a) plots the landscape of revised potential field
in the case of h = 0.4 nm along the spontaneous polarization
direction Pα corresponding to different phase at T = 150 K of
rhombohedral (R) phase with P along 〈111〉 direction, 250 K
of orthorhombic (O) phase with P along 〈011〉 direction,
300 K of T phase with P along 〈001〉 direction, and 400 K of
cubic (C) phase of paraelectrics, respectively. After revision,
the values of Um/kBT > 10 at various temperatures from 10
to 385 K (covering all the polar phases existing in BTO) are
believed to be sufficiently large to avoid the phase instability,
as demonstrated in Fig. 5(b). In this consideration, we perform
the PFM simulations for the polarization dynamical system
described by the Hamiltonian H2 for �2 in Eq. (8), which is
discretized into 64 cubic grids along each Cartesian dimension
with grid size of h = 0.4 nm. The system is embedded in
Langevin heat bath denoted by T ranging from 10 to 450 K,
where the phase-space trajectories of polarization are obtained
by solving the second TDGL equation of Eq. (5). Plotted
in Fig. 5(c), for all temperatures considered here, both the
observed kinetic temperature and configuration temperature,
estimating the polarization temperature TP following Eq. (19)
(see in Appendix C), are well consistent with that of the
Langevin heat bath Tx, which confirms the thermodynamic
zeroth law for the polarization dynamics. This thermodynamic
feature can be further confirmed by the probability distribu-
tion ρ of the conjugated momentum p in Fig. 5(e), which
follows the Maxwell-Boltzmann distribution, as

ρ(p)d p = 1√
2πkBT

exp

(
− p2

2kBT

)
d p (24)

with pn,α = √
μṖn,α , so that

kBT =
∫ ∞

−∞
p2ρ(p)d p = 〈

μṖ2
n,α

〉
. (25)

Besides, the observed total polarization calculated by Pα =
〈Pn,α〉 is plotted in Fig. 5(d), where the sequence of phase
transition in BTO is well reproduced as that in Ref. [44],
with the transition temperatures are ∼202 K between R-O
phases, ∼281 K between O-T phases, and ∼395 K between
T-C phases, respectively. In this regard, we can conclude
that the value of Um/kBT is indeed the key factor leading to
the phase instability of the Langevin polarization dynamics

024111-9



WEN, LIU, CHEN, XIONG, AND ZHENG PHYSICAL REVIEW B 106, 024111 (2022)

FIG. 5. (a) The revised potential landscape along the spontaneous polarization at various temperatures, i.e., 150 K of R phase, 250 K of O
phase, 300 K of T phase, and 450 K of C phase. (b) The revised competition strength of Um/kBT at various temperatures ranging from 10 to
∼385 K. (c) The polarization temperatures estimated following Eq. (19) (see in Appendix C). (d) The observed polarization as Pα = 〈Pn,α〉,
where the sequence of ferroelectric phase transition is correctly reproduced, with TC ∼ 202 K for R-O, ∼281 K for O-T, and ∼395 K for T-C
phase transitions, respectively. (e) The probability distribution ρ of the conjugated momentum p at T = 150, 250, 300, and 400 K, which
follows the Maxwell-Boltzmann distribution. (f) The temperature dependence of the calculated susceptibility χαα .

of PFM simulations in ferroelectrics. However, the simple
revision by enlarging the values of Um/kBT is to compress
the effects of thermal fluctuations equivalently. Therefore, the
resulting susceptibility χαα calculated following fluctuation
theorem of Eq. (23) is rather underestimated, although whose
temperature dependence is consistent with the predictions of
classical molecular dynamics reported [15].

Further, this underestimation of thermal fluctuations under
the revised potential force field has significant influence to
the dynamical behaviors of polarization, in particular, when
the ferroelectric system experiences a nonequilibrium process
under the applied external field. Plotted in Fig. 6, we repeat
the polarization reversal switching process from PA to PB

illustrated in Fig. 1, which is similar to that shown in Fig. 3.
Here, we only present the simulation results based on the
stochastic second TDGL equation, i.e., Eq. (5) or case II
in Eq. (21). Due to the compression of thermal fluctua-
tions, the time- evolution behavior of total polarization Pz

in Fig. 6(a) acts like an overdamped oscillation, compared
to that in Fig. 3(a). In addition, the reversal external field
applied Eext = −2.5 × 109 V/m is required to make a sub-
stantial polarization switching, which is far larger than Eext =
−1.41 × 107 V/m before the revision. Although the ther-
mal effects of polarization dynamics are underestimated, the
stochastic feature of polarization switching can be still well
reproduced because of the presence of random force, for

FIG. 6. The simulation results of polarization reversal switching process under an applied reversal electric field Eext = −2.5 × 109 V/m,
similar to that shown in Fig. 3, but only the simulation based on stochastic TDGL equation [i.e., case II in Eq. (21) or Eq. (5)], with the revised
potential field U shown in Fig. 5(a) adopted. (a) The time evolution of total polarization; (b) the time-dependent normalized reversed area;
(c) the statistics of switching time τ induced by thermal fluctuations arising from the random force, which also well satisfy the Lorentzian
distribution shown in Eq. (22).
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example, the gradual increase of normalized reversal area
and the Lorentzian distribution of the estimated switching
time τ from 200 repeated simulations, respectively, plotted in
Figs. 3(b) and 3(c).

C. Further discussion

The contradiction of thermal fluctuation induced by ran-
dom force and the phase instability in case of small grid
discretization adopted in PFM simulations is naturally a result
of thermodynamics and microdynamics. This contradiction is
originated from the incompatibility between the free-energy
functional or potential force field and random force used in
TDGL equations. From the analysis presented in this paper,
a viable solution to get out of this dilemma is to reconstruct
the potential force field and enlarge the values of Um/kBT ,
which requires further investigation starting from the first-
principles studies on the fundamental interactions inside the
ferroelectric system. Otherwise, we can retain the random
force maintaining the thermodynamics, but not to discretize
the system into atomic-scale grids, so to avoid the possible
phase instability. Referring to the atomistic modeling scheme
(e.g., effective Hamiltonian method for polarization dynam-
ics), the potential force field exerted by the dynamical DOF
in a many-body system has a different physical essence from
the free energy. In principle, a potential force field describes
the many-body inter-DOF interaction, but the free energy is
a specific-process-related thermodynamic quantity. Therefore,
to reconstruct the potential force field for polarization dynam-
ics that is compatible with the thermal fluctuations at finite
temperature, aside from the onsite potential field, there should
be interactive terms between different grid polarizations in
PFM simulation scheme, like dipole-dipole interaction. In this
regard, appropriately carrying out the thermal fluctuations
in current PFM scheme is a key step toward the multiscale
modeling on polarization dynamics, i.e., bridging the micro-
dynamics and thermodynamics. With correctly reproducing
the thermal fluctuations of polarization system, the second-
order response coefficients, like the susceptibility, pyroelectric
coefficient, piezoelectric coefficient, or other constitutive re-
sponse coefficients, can be directly estimated based on the
dynamical responses polarization under the corresponding ex-
ternal stimulations, following the similar approach adopted in
atomistic simulations [53].

In addition, to well predict the polarization dynamical
responses, we have to pay attention to other dynamical pa-
rameters in the TDGL equation, like μ and γ in Eq. (5).
As the conservative potential profile U (P) links to how
easily the phase transition of polarization dynamics occurs
under the external environment, μ and γ characterize how
fast the phase transition occurs. In thermodynamics, any
arbitrary phase transition process is to minimize the to-
tal free energy of the system interested, during which the
conservative potential relaxes accompanied with the heat dis-
sipation. Accordingly, μ relates to the potential and kinetic
energetic exchange, and γ denotes the heat dissipation. There-
fore, the transition rate is determined by the characteristic
thermal vibration frequencies in a conservative-potential-
controlled quasiequilibrium process, and the heat-dissipation
rate in a heat-dissipation-controlled nonequilibrium process.

This is a universal thermodynamic phenomenon occurring in
various cases, like solute diffusion in crystal [54] and
magnetic skyrmion transport [55]. For example, for the po-
larization transition process governed by the second TDGL
equation, the effective mass μ is in principle a second-rank
tensor, whose component μαα is associated with the charac-
teristic vibrational frequency ωα of the polarization Pα , as

μαα = 1

ω2
α

∂2U

∂P2
α

. (26)

Referring to Eqs. (C5) and (C6), we can get

μαα

	
= 1

χααω2
α

. (27)

Therefore, μ mainly reflects the fluctuation characteristics
when the system under equilibrium states, and it also de-
termines the transition rate when the ferroelectric system
experiences a conservative-potential-controlled quasiequilib-
rium phase transition process with Um � kBT [15]. For
example, μ/	 = 5 × 10−11 Jm4 C−2 s2 is used in this paper,
which is fitted on the basis of the experimental measurement
of domain-wall motion reported in Refs. [22,23] with the
characteristic frequency as ωα ∼ 109 Hz. The value of μ/	 is
∼6 orders of magnitude larger than that reported in Ref. [56].
It makes sense in accordance with the definition in Eq. (27)
because the value of μ/	 in the latter case is fitted from
the characteristic vibrational frequencies of phonon modes
(ωα ∼ 1012 Hz) related to the collective vibrations of the
unit-cell electric dipoles. On the other hand, γ characterizes
the dissipation nature of polarization phase transition, and
determines the transition rate of a heat-dissipation-controlled
nonequilibrium process with Um � kBT [15]. It is also associ-
ated with the so-called lifetime of phonon modes related to the
polarization dynamics [15], which is equivalent to the phonon
widths [56].

To sum up, because polarization dynamics is a multi-
scale dynamical process, the ultimate solution is to build
up a practical multiscale modeling scheme following the
coarse-grained approach, where the dynamical responses of
the multi-ingredients responsible for the observed polariza-
tion can be described in a unique simulation framework. As
addressed in Ref. [15], the generalized Langevin equation,
e.g., the second TDGL equation, could be one of the possible
candidates, which can naturally and intrinsically satisfy the
principles of many-body dynamics and statistical thermody-
namics in a unique theoretical framework. In fact, to build
up such a scheme, it has to make a clear mechanistic un-
derstanding on the physical picture of the related quantities
determining the polarization dynamics, i.e., (1) the conserva-
tive potential to obtain the information of what stable states
does the macroscopic polarization observed evolve, and (2)
the effective mass and dissipative parameter to character-
ize the temporal behaviors of polarization evolution. In this
case, several challenges should be taken over with further
investigation, for example: (1) How to characterize and de-
scribe physical processes of polarization dynamics at various
spatiotemporal scales? (2) How to apply the coarse-grained
operation to polarization dynamics from atomic scale to
the larger scales, and ensure consistency in microdynamics
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and thermodynamics, as well as the parameter transfer among
different scales [57]? (3) How to describe the coupling
mechanisms of polarization dynamics {Pi} and other DOF
{x j} mentioned in Eq. (6), and to coarse grain the dynam-
ical actions of {x j} as the thermodynamic environment to
the dynamics of {Pi}? Aside from the dynamical equation, the
PFM scheme of polarization dynamics is developed on the
phenomenological thermodynamic theory, where the big chal-
lenge is how to clarify the interaction between spontaneous
(or critical) polarization and nonspontaneous (noncritical) po-
larization. Current thermodynamic formula of the free-energy
functional supposes that effects of nonspontaneous polariza-
tion can be described by the background dielectric constant
[58,59]. However, recent studies suggest that it is not a
material-independent constant, which has been shown to spoil
the self-consistency of the Landau theory [60]. In our opinion,
discussion about the fundamental physics for polarization dy-
namics is in its infancy, and further investigation is required
for deep insight.

IV. CONCLUSION

In this paper, we discussed the underlying physical picture
of phase field model (PFM) scheme of polarization dynamics
on the basis of the stochastic time-dependent Ginzburg-
Landau (TDGL) equation (equivalent to the Langevin equa-
tion). Applying the operation of numerical discretization to
solve the nonlinear variational TDGL equation maps the orig-
inal three-dimensional continuous polarization dynamics to
be a many-body stochastic one. The random force naturally
appears in the Langevin equation of polarization dynam-
ics as the fluctuation actions arising from its Langevin heat
bath. Together with the dissipation actions, the random force
guarantees the correctness of thermodynamics. In addition,
the participation of random force can result in a different
mechanism of heat dissipation in the process of polarization
dynamical responses under external field. However, the ther-
mal fluctuations induced by the random force would result in
the phase instability with small discretized grids applied in
simulations based on currently used PFM scheme. Performing
PFM simulations of BaTiO3 (BTO) at 300 K as examples,
it is found that the energy barrier is not large enough to
counteract the thermal fluctuation, leading to the unexpected
phase instability. This contradiction between random force
and free-energy functional used in TDGL equations of current
PFM simulation scheme is a natural result of thermodynamics
and microdynamics. In our opinion, the viable solution is
to reconstruct the potential force field. Adopting a simple
way to enlarge the corresponding energy barrier, the phase
instability is examined to be eliminated and the ferroelectric
phase transition in BTO can be then correctly reproduced.
Meanwhile, the thermodynamic zeroth law in polarization
dynamics is also well satisfied. However, this simple way
results in the underestimation of the thermal fluctuation. In
this regard, promoting the PFM scheme to the atomic-scale
polarization dynamics, one should carefully check the ratio-
nality and reliability in the statistical thermodynamic point
of view. In particular, the atomic-scale thermal fluctuations
for the polarization element discretized in PFM simulations at
finite temperatures will play an important role on the evolution

behaviors of polarization. Furthermore, we also address our
opinion on the future development of the multiscale modeling
scheme for polarization dynamics. We hope our discussion of
the underlying physics could provide useful ideas for the de-
velopment of the multiscale modeling scheme for polarization
dynamics in ferroelectrics based on phase field models.
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APPENDIX A: PFM SIMULATION DETAILS

In the conventional PFM scheme for polarization dy-
namics, the free-energy functional F [P] for a continuous
three-dimensional polarization field P(r) is defined as

F [P] =
∫

V
f (P,∇P, r)dV , (A1)

where f is the free-energy density. For a bulk ferroelectric
system without the surface effects, f is usually written as

f = fLand(P) + fgrad(∇P) + felec(P) + felas(P). (A2)

Here, fLand(P) is the Landau bulk free-energy density ex-
pressed in terms of the Taylor expansion of Pα (Pα is the α

component of P along the Cartesian dimension, where α, β =
x, y, z) [44,45],

fLand = a1

∑
α

P2
α + a11

∑
α

P4
α + a12

∑
α>β

P2
α P2

β

+ a111

∑
α

P6
α + a112

∑
α 
=β

P4
α P2

β

+ a123

∏
α

P2
α + a1111

∑
α

P8
α

+ a1112

∑
α 
=β

P6
α P2

β + a1122

∑
α>β

P4
α P4

β

+ a1123

∑
α

P2
α

∏
β

P2
β . (A3)

All the a are the expansion parameters, whose values are listed
in Table I, and also can be referred to Refs. [44,45]. fgrad(∇P)
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TABLE I. Parameters used in PFM simulations of current work
for BaTiO3, which can be referred to Refs. [44,45].

Parameter Value

a1 (T − 388)× 4.124 × 105 JmC−2

a11 −2.097 × 108 Jm5C−4

a12 7.974 × 108 Jm5C−4

a111 1.294 × 109 Jm9C−6

a112 −1.950 × 109 Jm9C−6

a123 −2.500 × 109 Jm9C−6

a1111 3.863 × 1010 Jm13C−8

a1112 2.529 × 1010 Jm13C−8

a1122 1.637 × 1010 Jm13C−8

a1123 1.367 × 1010 Jm13C−8

G1 4.4539 × 10−11 Jm3C−2

G2 2.2270 × 10−11 Jm3C−2

εb 4.4271 × 10−11 J−1m−1C2

C11 19.8 × 1010 Jm−3

C12 9.60 × 1010 Jm−3

C44 12.2 × 1010 Jm−3

Q11 1.104 × 10−1 m4C−2

Q12 −4.520 × 10−2 m4C−2

Q44 2.950 × 10−2 m4C−2

γ for �1 2 × 101 J−1m−4C2s−1

γ for �2 h3 × 5 × 10−2 Jm4C−2s
μ h3 × 5 × 10−11 Jm4C−2s2

in Eq. (A2) is the gradient term as

fgrad =
∑
α,β

Gl

2

(
∂Pn,α

∂rβ

)2

, (A4)

where Gl = G1 if α = β and Gl = G2 if α 
= β, with G1 and
G2 being the gradient coefficients, whose values are listed in
Table I. felec(P) in Eq. (A2) is the electrostatic term as

felec(P) = −P · E − 1
2εbE2, (A5)

where E is the total electrostatic field, including the external
electric field Eext and depolarization field Ed , as E = Eext +
Ed ; εb is the background dielectric permittivity. felas(P) in
Eq. (A2) is the electrostrictive term as

felas(P) =
∑
αβλν

1
2Cαβλν

(
eαβ − e0

αβ

)(
eλν − e0

λν

)
, (A6)

where Cαβλν are elastic stiffness coefficients, eαβ are eigen-
strain components of the strain tensor e, and e0

αβ is the eigen-
strain induced by the electromechanical coupling, depending
on the spontaneous polarization as e0

αβ = ∑
λν QαβλνPλPν

with Qαβλν being the electrostrictive coefficients. The values
of Cαβλν and Qαβλν are listed in Table I.

APPENDIX B: FROM VARIATIONAL EQUATION TO
DIFFERENTIAL ONE FOR POLARIZATION DYNAMICS

For the simplest case of a ferroelectric system considered
in this work, which contains the monodomain, and no external
stress and electric field applied, the free-energy functional can

be simplified as the form of

F [P] =
∫

V

(
fself(P) + fgrad(∇P)

)
dV, (B1)

where fself(P) = fLand(P) + felec(P) + felas(P) is the function
of the polarization vector P at a specific location, and the
gradient term depends on polarization vectors of different
locations as written by Eq. (A4). In this consideration, these
two terms are, respectively, named as the local and nonlocal
potentials in literature.

After meshing the continuous system into grids, the con-
tinuous variational TDGL equations of Eqs. (1) and (3) can be
thus transferred as the discretized ones as⎧⎪⎨

⎪⎩
Ṗn,α = −L

δF

δPn,α

+ ξn,α (t ),

μ′P̈n,α + γ ′Ṗn,α + δn,αF = ξ ′
n,α (t ),

(B2)

where F = F ({Pn,α}) is the many-body free-energy function
corresponding to the free-energy functional F [P], with n =
1, 2, . . . , N and α = x, y, z, i.e.,

F [P] �→ F ({Pn,α}) = 	
∑
n,α

f ({Pn,α}), (B3)

where f = fself + fgrad. Note that δF/δPn,α is a functional
derivative of the simplest functional with fixed boundary.
According to Euler-Lagrange variation theorem, the effective
electric field En,α governing the dynamics of grid polarization
of Pn,α in Eqs. (4) and (5) can be derived as

En,α = − δF

δPn,α

= − ∂ fself

∂Pn,α

+
∑

β

∂

∂rβ

(
∂ fgrad

∂wn
α,β

)

≡ E self
n,α + Egrad

n,α , (B4)

where we define E self
n,α and Egrad

n,α as the effective electric field
governing the polarization of Pn,α , respectively, arising from
the terms related to fself and fgrad. Considering the form of
fgrad written in Eq. (A4), we have

Egrad
n,α =

∑
β

Gl

∂wn
α,β

∂rβ

, as wn
α,β = ∂Pn,α

∂rβ

. (B5)

Because (
∂wn

α,β

∂Pn,α

)(
∂Pn,α

∂rβ

)(
∂rβ

∂wn
α,β

)
= −1, (B6)

then

∂wn
α,β

∂rβ

= −∂Pn,α

∂rβ

∂wn
α,β

∂Pn,α

= −1

2

∂

∂Pn,α

(
∂Pn,α

∂rβ

)2

(B7)

so we can get

Egrad
n,α = − ∂

∂Pn,α

∑
β

Gl

2

(
∂Pn,α

∂β

)2

. (B8)

Combining Eqs. (B3), (B4), (B5), and (B8), we can get

En,α = − δF

δPn,α

= − ∂ f

∂Pn,α

= − 1

	

∂F

∂Pn,α

. (B9)
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Therefore, the discretized variational TDGL of Eq. (B2) can
be rewritten as⎧⎪⎪⎪⎨

⎪⎪⎪⎩
Ṗn,α = − L

	

∂F

∂Pn,α

+ ξn,α (t ),

μ′P̈n,α + γ ′Ṗn,α + 1

	

∂F

∂Pn,α

= ξ ′
n,α (t ).

(B10)

In this regard, the free energy F ({Pn,α}) in Eq. (B3) acts
like a conserved potential force field for {Pn,α}. If defining
U ({Pn,α}) = F ({Pn,α}), γ = L/	 in the first TDGL equa-
tion, and μ = μ′	, γ = γ ′	, and ξn,α = ξ ′

n,α	 in the second
TDGL equation, we can achieve the classical Langevin equa-
tions illustrated as Eqs. (4) and (5) in the main context for
polarization dynamics, that{

Ṗi = −γ ∂iU + ξi(t ),

μP̈i + γ Ṗi + ∂iU = ξi(t ),
(B11)

where i represents the degree of freedom (n, α), and i =
1, 2, . . . , 3N , so that Pi stands for Pn,α .

In a word, starting from the free-energy functional and cor-
responding continuous variational TDGL equation, we derive
the discretized differential TDGL equation and the corre-
sponding potential force field, and the similar form can be
obtained for a more general and complicated fgrad used in
PFM simulations, like Eq. (2) in Ref. [32]. Further, fgrad might
not be a conservative potential field, however, our numerical
simulation results indicate that it does not affect the under-
lying physics in PFM simulations of polarization dynamics
concerned in this work.

It should be noted that the above deduction is to in-
corporate the TDGL equation to the generalized Langevin
equation of Eq. (9). In fact, in our PFM simulations, the
TDGL equations are solved following the conventional nu-
merical approaches described in the main context or reported
in Refs. [45,50], as well as other associated literature cited in
Ref. [20].

APPENDIX C: POLARIZATION TEMPERATURE

For a microdynamic system, the thermodynamic tem-
perature can be generally given according to the so-called
hypervirial [35], which is familiar to the researchers engaged
in molecular simulation:

〈
A

∂H
∂Xi

〉
= kBT

〈
∂A

∂Xi

〉
. (C1)

Here, Xi is the ith microdynamic degrees of freedom (DOF),
H is the Hamiltonian, and A could be any functions of Xi or
other DOF involved in H.

(1) For the ferroelectric system of �2 with H2 of Eq. (8),
with choice of Xi = μṖi and A = μṖi, we can get the so-called
kinetic temperature as

kBT = 〈
μṖ2

i

〉
. (C2)

(2) For both systems of �1 and �2, with the choice of Xi =
Pi and A = Pi, we can have the configurational temperature of

polarization dynamics,

kBT =
〈
Pi

∂H
∂Pi

〉
= 〈Pi∂iU 〉, (C3)

where ∂H/∂Pi = ∂U/∂Pi = ∂iU .
(3) For both systems of �1 and �2, choosing Xi = Pi and

A = ∂H/∂Pi, so that

kBT = 〈|∂iH|2〉
〈∂2

i H〉 = 〈|∂iU |2〉
〈∂2

i U 〉 (C4)

which is consistent with the conclusion derived from the
Fokker-Planck equation.

Further, Eq. (C4) has another practical form based on fluc-
tuation theorem. At thermal equilibrium states, the potential
U can be expanded harmonically as

U = U0 + 	
∑
n,α

(Pn,α − Pα )2

2χαα

, (C5)

where U0 is the static energy at Pn,α = Pα , and χαα is the
component of the susceptibility tensor χ, so that

〈∂n,αU 〉 = 0 and
〈
∂2

n,αU
〉 = 	χ−1

αα . (C6)

Defining the effective electric field En,α acting on Pn,α as
En,α = −	−1∂n,αU , we can get{

Eα ≡ 〈En,α〉 = 0,

σ 2
E ,α ≡ 〈

E2
n,α

〉 − E2
α = 	−2〈|∂n,αU |2〉.

(C7)

Referring to the definition of polarization temperature in
Eq. (17), we can have

kBT = 〈|∂n,αU |2〉〈
∂2

n,αU
〉 = 	2σ 2

E ,α

	χ−1
αα

= 	χαασ 2
E ,α, (C8)

which is consistent with the fluctuation theorem [52]. The
polarization fluctuations under equilibrium could be also
rewritten as [52]

σ 2
P,α = 〈

P2
n,α

〉 − P2
α = 	−1kBT χαα (C9)

so that

kBT = 	χ−1
αα σ 2

P,α. (C10)

Combining Eqs. (C8) and (C10), we can get the following
relation as

kBT = 	σP,ασE ,α. (C11)

APPENDIX D: MATHEMATICAL EXPECTATION
AND VARIANCE OF POLARIZATION

DYNAMICS IN PFM SCHEME

According to statistical thermodynamics, it requires at
least the mathematical expectation 〈A〉 and variance 〈A2〉
of any arbitrary thermodynamic quantity A, if we want to
achieve the knowledge of a phase-space probability distri-
bution function �, based on which we have the chance to
get the complete information of the dynamics and thermody-
namics at equilibrium state. Take the polarization relaxation
process from Pe to PA illustrated in Fig. 1 as an example.
The mathematical expectation P(t ) = 〈Pi(t )〉 corresponds to
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the dynamical behavior, and the variance σ 2
P (t ) = 〈P2

i (t )〉 −
〈Pi(t )〉2 is associated with the thermodynamics because σ 2

P ∝
kBTP according to the fluctuation theorem. In other words,
the variance σ 2

P implies the thermodynamic zeroth law of
the polarization dynamical system. For PFM simulations us-
ing TDGL equation to govern the polarization dynamics, as
long as we get an appropriate free energy or conservative
potential profile, the equilibrium state mathematical expecta-
tion of polarization dynamics P(t ) can be well reproduced,
whether there is random force involved or not. This has been
demonstrated by bunches of related studies in literature (see
examples in the review paper of Ref. [20]). However, without
the random force, there is no so-called thermal fluctuation
as σ 2

P (t ) = 0, when the system reaches the equilibrium states
with t → ∞. In the following, we will give the detailed anal-
ysis.

Given the conservative potential U based on the LGD the-
ory of ferroelectrics, there are four TDGL equations we have
discussed in the main context:⎧⎪⎪⎪⎪⎪⎨

⎪⎪⎪⎪⎪⎩

Ṗi + γ ∂iU = 0, i.e., TDGL-A

Ṗi + γ ∂iU = ξi(t ), i.e., TDGL-B

μP̈i + γ Ṗi + ∂iU = 0, i.e., TDGL-C

μP̈i + γ Ṗi + ∂iU = ξi(t ), i.e., TDGL-D.

(D1)

It has to be noted that each TDGL equation corresponds to
a specific microdynamic system of polarization dynamics be-
cause each phase-space trajectory {Pi(t )} and the probability
distribution function �({Pi(t )}) are the synergistic results of
actions of all the terms involved in the corresponding dy-
namical equation. In principle, these actions cannot simply
accumulate.

For TDGL-A and TDGL-C, because there is no random
force ξ involved, the phase-space trajectories of {Pi(t )} are
deterministic. During the process the system relaxes to PA =
P0 from Pe near P0 as illustrated in Fig. 1 (we denote � = Pe −
P0, and assume �/P0 � 1), The phase trajectories governed
by TDGL-A and TDGL-C can be, respectively, written as{

Pi(t ) = P0 + �e−t/2τ ,

Pi(t ) = P0 + �e−t/2τ cos (ωt ),
(D2)

where τ is the relaxation time, that τ = χ/(2γ	) for TDGL-
A (see detail in Sec. IV A of Ref. [15]), and τ = μ/γ for

TDGL-C; ω =
√

ω2
A − γ 2/4 is the effective vibrational fre-

quency, with ωA as the characteristic frequency of polarization

near PA, i.e., ωA =
√

∂2
i U/μ. Without the inertial term of

μP̈, the polarization Pi decays exponentially in TDGL-A, and
〈Pi〉 = P0 when the system is under equilibrium with t → ∞.
Otherwise, vibration is revealed because of the presence of
cos(ωt ) induced by μP̈ in TDGL-C. With time elapsed, such
vibration amplitude, i.e., �e−t/2τ , decays and finally vanishes
when the system reaches the equilibrium state with t → ∞,
so that 〈Pi〉 = P0 at the equilibrium state. In this regard, one
can get the mathematical expectation 〈Pi〉 under the given
potential field without the random force, and the inertial term
gives rise to the thermal vibrations when the system relaxes to
be equilibrium. On the other hand, the variance σ 2

P (t ) cannot

be maintained as σ 2
P (t ) → 0 under equilibrium with t → ∞

because{
σ 2

P (t ) = 〈(Pi(t ) − P0)2〉 = �2e−t/τ ,

σ 2
P (t ) = 〈(Pi(t ) − P0)2〉 = �2e−t/τ cos2 (ωt ),

(D3)

which can be obtained according to Eq. (D2).
Let us check the above conclusion from another point of

view.
(1) We multiply Pi to both sides of TDGL-A, and take the

ensemble average, then we have

〈PiṖi〉 + 〈Piγ ∂iU 〉 = 0 ⇒ dσ 2
P

dt
= −2γ kBTP(t ), (D4)

where we define the time derivative of σ 2
P as

dσ 2
P

dt
= d

dt

〈
P2

i

〉 − P2
0 = d

dt

〈
P2

i

〉 = 2〈PiṖi〉 (D5)

and use the definition of 〈Pi∂iU 〉 = kBTP(t ). In principle,
the thermodynamic temperature TP could only be well de-
fined when the system is under equilibrium. As discussed in
Sec. II C, under the local equilibrium assumption [41,42], one
can define the instantaneous temperature TP(t ) as a thermody-
namic observable, through the similar way as the one under
equilibrium. According to statistic thermodynamics, when the
system stays at the equilibrium states as t → ∞, the prob-
ability distribution function � is time independent, so are the
macroscopic thermodynamic quantities. In particular, because
the variance σ 2

P is the second central moment of �, we have
σ 2

P = const when t → ∞, and

lim
t→∞

dσ 2
P

dt
= −2γ kB lim

t→∞ TP(t ) = 0. (D6)

That is why the thermodynamic temperature TP is revealed to
be zero in TDGL-A under equilibrium. Note that, under the lo-
cal equilibrium assumption and � � P0, the relation σ 2

P (t ) =
	−1χkBTP(t ) can be established by referring to Eq. (C9) [52],
then we have σ 2

P (t ) → 0 as t → ∞, which is consistent with
Eq. (D3). More precisely, using τ = χ/(2γ	), Eq. (D4) can
be derived as

dTP

dt
= − 1

τ
TP(t ) or

dσ 2
P

dt
= − 1

τ
σ 2

P (t ). (D7)

Therefore,

TP(t ) = T 0
P e−t/τ or σ 2

P (t ) = �2e−t/τ . (D8)

Here, T 0
P is the initial value of TP associated with the value

of � or 〈Pi∂iU 〉 at t = 0. Equation (D8) is consistent with
Eq. (D3), and the variance σ 2

P characterized the thermody-
namic temperature of polarization dynamics.

Otherwise, applying the similar mathematical process to
TDGL-B, we can have

〈PiṖi〉 + 〈Piγ ∂iU 〉 = 〈Piξi〉 ⇒ dσ 2
P

dt
= −2γ kB[TP(t ) − Tx].

(D9)
Here, Tx is the temperature of the heat bath for the polarization
dynamics provided by the DOF of {x j}. The calculation of
〈Piξi〉 = γ kBTx follows the Furutsu-Novikov theorem (FNT)
[61,62]. In FNT, if there is a thermodynamic quantity A
that is the functional of the Gaussian random force ξ (t ) as
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A(t ) = A[ξ (t )], the ensemble average of the product of A(t )
and ξ (t ) equals

〈A(t )ξ (t )〉 =
∫

dt ′
(

〈ξ (t )ξ (t ′)〉
〈
δA(t )

δξ (t ′)

〉)
(D10)

with δA(t )/δξ (t ′) the functional derivative. Because

〈ξ (t )ξ (t ′)〉 = 2γ kBTxδ(t − t ′) (D11)

we have

〈A(t )ξ (t )〉 = 2γ kBTx

〈
δA(t )

δξ (t )

〉
. (D12)

Replacing A(t ) by Pi(t ) in Eq. (D12), we can get

〈Piξi〉 = 2γ kBTx

〈
δPi(t )

δξi(t )

〉
. (D13)

According to the TDGL-B,

Pi(t ) = Pi(0) +
∫ t

0
dτ [−γ ∂iU + ξi(τ )]. (D14)

Following Eq. (36) in Ref. [61], we have

δPi(t )

δξi(t )
= 1

2
⇒ 〈Piξi〉 = γ kBTx. (D15)

Tracing back to Eq. (D6), when t → ∞, the thermody-
namic requirement of σ 2

P = const results in

lim
t→∞

dσ 2
P

dt
= −2γ kB lim

t→∞ [TP(t ) − Tx] = 0 ⇒ lim
t→∞ TP(t ) = Tx,

(D16)
where the thermodynamic zeroth law, once again, is satisfied.

Similar to the deduction of Eq. (D7), Eq. (D16) can be also
derived as

dTP

dt
= − 1

τ
[TP(t ) − Tx] (D17)

whose solution is then given by

σ 2
P (t ) ∝ TP(t ) = Tx + (

T 0
P − Tx

)
e−t/τ . (D18)

In this regard, as long as Tx 
= 0, the variance of σ 2
P will

always be existing because of σ 2
P (t ) ∝ TP(t ). In addition, we

can see in Eq. (D6) the actions of random force ξi(t ) and the
dissipation −γ ∂iU , respectively, correspond to the thermody-
namic temperature of heat bath Tx and polarization TP, both
of which are balanced when the system is under equilibrium
as t → ∞. Again, comparing with Eqs. (D4) and (D6), that
is why the presence of random force, together with the dis-
sipation, guarantees the thermodynamics and microdynamics
of polarization dynamics in PFM simulations. Therefore, the
random force and dissipation term are the entirety of the
thermodynamic environment.

(2) We multiply Ṗi to TDGL-C, and take the ensemble
average, then we have

〈ṖiμP̈i〉 + 〈Ṗiγ Ṗi〉 + 〈Ṗi∂iU 〉 = 0

⇒ d

dt

〈
1

2
μṖ2

i

〉
+ γ

μ

〈
μṖ2

i

〉 + d

dt
〈U 〉 = 0. (D19)

If we define the total “mechanical” energy Etot of polarization
dynamics as Etot = EK + EP, with EK and EP as the kinetic

and potential energies, respectively, as

EK =
〈

1

2
μṖ2

i

〉
and EP = 〈U 〉 (D20)

and using the definition of kBTP(t ) = 〈μṖ2
i 〉, we have

dEtot

dt
= −γ

μ
kBTP(t ). (D21)

With the thermodynamic requirement of Etot = const under
equilibrium when t → ∞, we have

lim
t→∞

dEtot

dt
= −γ

μ
kB lim

t→∞ TP(t ) = 0. (D22)

Therefore, the introduction of the inertial term of μP̈i into the
TDGL-A, i.e., TDGL-C, cannot prevent the thermodynamic
temperature TP from approaching zero, and the thermody-
namic zeroth law cannot be held. It could only give rise to the
energetic exchange between the kinetic and potential energies
[see Eq. (D19) or (D21)] during the system approaching its
equilibrium state, accompanying with the decayed oscillations
of observed [see Eqs. (D2) and (D3)].

Applying similar mathematical process to TDGL-D, we
can have

〈ṖiμP̈i〉 + 〈Ṗiγ Ṗi〉 + 〈Ṗi∂iU 〉 = 〈Ṗiξi〉. (D23)

Similar to the deduction of Eq. (D19), we have

dEtot

dt
= −γ

μ
kB[TP(t ) − Tx]. (D24)

Here, the relation of

〈Ṗiξi〉 = γ

μ
kBTx (D25)

can be obtained similar to that in Eq. (D12). Replacing A(t )
by Ṗi(t ) in Eq. (D12), we can get

〈Ṗiξi〉 = 2γ kBTx

〈
δṖi(t )

δξi(t )

〉
. (D26)

According to TDGL-D,

Ṗi(t ) = Ṗi(0) + 1

μ

∫ t

0
dτ (−γ Ṗi − ∂iU + ξi(τ )) (D27)

and we have

δṖi(t )

δξi(t )
= 1

2μ
(D28)

referring to Eq. (36) in Ref. [61]. Finally, substituting
Eq. (D28) into (D26), we can get the relation of Eq. (D25).
Following Eq. (D24), the same thermodynamic requirement
of Etot = const as t → ∞ leads to

lim
t→∞

dEtot

dt
= −γ

μ
kB lim

t→∞[TP(t ) − Tx] = 0 (D29)

so that

lim
t→∞ TP(t ) = Tx, (D30)

indicating that the thermodynamic zeroth law is satisfied.
As we can see in Eq. (D30), the actions of random force
ξi(t ) and the dissipation −γ Ṗi in TDGL-D, respectively,
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correspond to the thermodynamic temperature of heat bath
Tx and polarization TP, both of which together constitute
the thermodynamic environment. In particular, these two ac-
tions are balanced when the system reaches its equilibrium
state with t → ∞, guaranteeing the thermodynamic zeroth
law.

To sum up, we can conclude that (1) given the appropriate
potential field U , the mathematical expectation 〈Pi〉 can be
well reproduced by the TDGL equation, whether the effects
of random force are taken into account or not. (2) The random

force ξi(t ) and the dissipation terms, either −γ ∂iU or −γ Ṗi,
are the entirety of the thermodynamic environment, both of
which guarantee the thermodynamic zeroth law. In particular,
the variance 〈P2

i 〉 
= 0 could be only existing by accounting
for the effects of random force. (3) The inertial term can
result in the thermal vibrations when the system relaxes to be
equilibrium, but such vibrations will vanish as it reaches the
equilibrium states without the actions of random force. In this
regard, the actions of random force and inertial term could not
be treated as the simple accumulation.
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