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Ab initio calculations for the transport properties of metals within Boltzmann transport
theory: From equilibrium to nonequilibrium heating regime
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The paper offers an approach to ab initio calculations for predicting the electron transport properties of solid-
state metals in a case of nonequilibrium heating. Formulas for the electrical resistivity (also static conductivity)
and thermal conductivity of metals at different electron and lattice temperatures were derived within a method
proposed by Allen [Phys. Rev. B 17, 3725 (1978)] for the solution of the Boltzmann transport equation. The
approach works well under equilibrium heating too when electron and lattice temperatures are equal. It performs
most effectively if it is necessary to allow for the Fermi smearing of the electron distribution function over
quantum states and the energy dependence of the electron-phonon spectral function. Four metals—Cu, Ag, Au
and Pd—are considered as examples. We succeeded to reproduce well the temperature dependencies of electrical
resistivity and thermal conductivity of studied metals in a wide range of temperatures under equilibrium heating.
For the nonequilibrium regime of heating, calculations reproduce quite well the temporal evolution of the static
electrical conductivity of gold, observed in recent experiments for the interaction of thin gold foils with ultrashort
laser pulses.
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I. INTRODUCTION

The study for the transport properties of matter has been
of unflagging interest among researchers in various areas
of physics for several decades. The important steps in their
calculation for solid metals from first principles within den-
sity functional theory (DFT) were made in a series of
papers [1–6]. The papers describe a method to solve the
linearized Boltzmann transport equation (BTE) [2–4] and its
particular implementation with the use of the state-of-the-
art full-potential [5] and pseudopotential [6] band structure
calculation methods. For the linearized BTE, the authors of
Refs. [3,4] propose an approach based on the lowest-order
variational approximation (LOVA). The scattering operator
and the electron distribution function are presented as an
expansion in terms of basis functions composed of products of
Fermi-surface harmonics and energy-dependent polynomials.
After some simplifications (neglecting Fermi smearing and
the energy dependence of the electron-phonon spectral func-
tion), the calculation of electrical resistivity ρ and electron
thermal conductivity κe reduces to one-dimensional integra-
tion where the integrand includes the electron-phonon spectral
function defined at the Fermi energy [4]. Calculations [5,6]
show that even such an approximate approach helps attain
good agreement between calculated and experimental ρ and
κe for a number of metals at temperatures T � 300 K.

Results of calculations for the transport properties of met-
als utilizing a more general formula [3] within the LOVA
approximation has recently been demonstrated in papers [7,8],
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where the above mentioned simplifications were not used. The
authors succeeded to reproduce rather well the experimental
temperature dependencies of electrical resistivity and Seebeck
coefficient for a series of metals even at high temperatures,
which is not always possible to do with more rough ap-
proximation [4]. Unfortunately, in papers [7,8] the thermal
conductivity of the studied metals was not calculated, which
would have made it possible to more fully judge about the
success of their approach.

On the other hand, alternative methods for solving BTE
through calculations from first principles both for metals and
for semiconductors have recently appeared (see, for example,
[9–13]). Besides the approaches that use well-known relax-
ation time approximation in different variants [11–13], the
linearized Boltzmann equation can be solved by iterations [9],
starting from an initial approximation, which is taken to be
the relaxation time approximation. These papers mainly deal
with low temperatures (10 < T � 300 K) where the accurate
account of inelastic electron-phonon scattering is needed to
attain good agreement with experiment.

Another method often used for determining the transport
properties in DFT calculations is based on the Kubo-
Greenwood formula [14] that allows the electrical conductiv-
ity of material to be determined in the approximation of linear
response to an external electric field. Having calculated the
Onsager coefficients, one can obtain the other transport quan-
tities. This approach is intensively used to study the properties
of solids and melts [15–17], as well as the properties of warm
dense matter (WDM) [18–22] where density is comparable
with or higher than the solid-state density under ambient con-
ditions and the temperature may reach a few electron volts.
The Kubo-Greenwood formula enables calculation of the real
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part of conductivity σ as a function of frequency ω of a
time-dependent field. When used with the Kramers–Kronig
relation, it eventually gives the dynamic conductivity (AC
conductivity) of matter. Also, this formula is often used to
determine the electrical conductivity and optical properties
of materials with different electron Te, and ion Ti, temper-
atures, i.e., for the two-temperature WDM heating. Such a
nonequilibrium state occurs after irradiation of material by
ultrashort laser pulses with duration τp ∼ 100 fs. Under these
extreme conditions, none of the contact electrical probes is
applicable to measure electrical conductivity. Therefore, until
recently the measurable quantity in ultrashort laser interac-
tion experiments was AC conductivity that could be found
via the measured reflectivity and transmissivity of the probe
laser pulse. However, an experiment [23] has been taken
quite recently, where the static conductivity (DC conductivity)
was directly measured in thin gold foils after irradiation by
femtosecond laser pulses. That was accomplished with an
ultrafast terahertz probe pulse. The terahertz pulse characteris-
tics varying slowly relative to the time scale of the electron-ion
interaction were chosen such as to allow static electrical con-
ductivity measurements [23]. Additional experimental data
on DC conductivity, inter alia, help verify different mod-
els intended to calculate only the static transport properties
[24,25] and where some parameters have to be determined
empirically. In practice, DC conductivity can be found by
extrapolating the real part of dynamic conductivity to zero
frequency ω, but with account for the finite experimental
accuracy, this might lead to an uncontrolled error.

The evolution of nonequilibrium heated material is usu-
ally described with a two-temperature model [26,27]. To
determine the temperature variation of the electron and ion
subsystems in the irradiated foil with time, a system of equa-
tions is solved, which includes the temperature dependence
of the electron thermal conductivity as one of the parameters.
Knowledge of the dependence κe on Te and Ti is needed, for
example, for successful simulation of ablation since the κe

value defines heat diffusion into deeper parts of the material
from its surface. Usually the behavior of the function κe(Te, Ti)
is determined with the help of various semi-empirical and
model representations [27–32]. For example, at low temper-
atures, Drude theory is used with coefficients adjusted against
low-temperature experimental data, and the hot plasma limit
(Spitzer theory) is utilized for high temperatures. The required
wide-range dependence κe(Te, Ti) results from interpolation
between these two limits. From the standpoint of accuracy,
there however exists an intermediate range of temperatures
(at least a few electron volts) where this interpolation may
become a source of inaccuracies. Since it is difficult to obtain
experimental data in this temperature range, the lack of infor-
mation can be balanced by calculations from first principles,
which are accurate enough to determine different properties
of matter.

As shown in experiments [23,33], even at ultrashort pulse
intensities of ∼1012 W/cm2, the crystal structure of some
metals is preserved after irradiation during a rather long
time (� 10 ps) compared with pulse duration (∼100 fs). At
the same time, the difference between lattice and electron
temperatures reaches a few tens of times [23,33]. Later the
electron-phonon interaction leads to a gradual equalization of

temperatures in the system and, possibly, to the destruction
of the crystal structure. Thus, calculation of the transport
properties of crystalline matter under nonequilibrium heating
is quite a live issue.

In this paper, we rewrite the solution of the linearized
Boltzmann equation for the case of nonequilibrium heating
using a method proposed by Allen [3]. Introducing some
approximations, which weakly affect calculation accuracy,
we derive formulas for electrical resistivity (also DC con-
ductivity) and thermal conductivity of metals, which can be
implemented in modern first-principles codes. Our imple-
mentation is done within the all-electron FP-LMTO method.
The obtained formulas are universal and can also be used
in the case of equilibrium heating where the electron and
lattice temperatures are equal. Additionally, we consider
the case of elastic scattering, which is of interest at rather
high temperatures (above the Debye temperatures �D). The
proposed method for calculating the transport properties of
two-temperature warm dense matter is an alternative to the
Kubo-Greenwood method for crystals and has certain advan-
tages. The next section provides the theory with derivation
of necessary formulas and gives a description of parameters
for ab initio calculations. Section III presents comparison
between calculated and experimental results for four metals—
Cu, Ag, Au, and Pd—for the case of Te = Ti (at temperatures
from about 30 K up to melting) and the case of Te �= Ti

where the electron temperature increases up to 23 kK (about
2 eV) while the lattice remains relatively cold. In addi-
tion, the section provides comparison with the semi-empirical
dependence of thermal conductivity κe ∼ Te often used in
two-temperature calculations at relatively low temperatures.
The last section briefly summarizes results of this paper.

II. THEORY AND CALCULATION METHOD

A. Solution of the Boltzmann transport equation

Let us briefly describe the method of solving the linearized
Boltzmann transport equation, proposed in Ref. [3]. Assume
that Te �= Ti, i.e., the system consists of electrons and ions,
which have different temperatures. If the system is under the
action of an external uniform electric field �E (the magnetic
field is neglected) and a uniform thermal gradient �∇Te, then
the electron transport properties can be determined from the
equation [3,14]

(εk

Te

�∇Te + e �E
)
�υk ∂ f (εk)

∂εk
=

∑
k′

Qkk′φk′ . (1)

Here �υk = (1/h̄) �∇kεk is the velocity of electrons with
energy εk (εk determined relative to the chemical poten-
tial μ), k is short for (�kj), wave number and band index,
f (εk) is the Fermi-Dirac distribution function, f (εk) =
1/[1 + exp ( f (εk)/kBTe)], and e is the electron charge. The
right-hand side of Eq. (1) has the scattering operator Qkk′

multiplied by a function φk′ , which is smooth in energy.
Equation (1) is written in the assumption that the electron dis-
tribution �k in the presence of perturbation can be expanded
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to the linear term as

�k = f (εk) + φk

(
−∂ f (εk)

∂εk

)
. (2)

With this form of the electron distribution function, expres-
sions for electrical and thermal currents are written as

�je = −2e
∑
k

�υkφk

(
− ∂ f

∂εk

)
= β00 �E + β01 �∇Te, (3)

�jQ = 2
∑
k

εk �υkφk

(
− ∂ f

∂εk

)
= β10 �E + β11 �∇Te, (4)

where the factors of 2 are for spin degeneracy. Here the
coefficients βi j are related to the transport coefficients: electri-
cal conductivity is σ = β00 and thermal conductivity is κe =
−β11 + β10β

−1
00 β01, where the second summand expresses the

thermoelectric contribution [3]. Beta coefficients are related
to Onsager coefficients as β00 = L11, β01 = −L12, β10 = L21,
β11 = −L22.

Let both �E and �∇Te point in one of the directions α =
x, y, z of Cartesian coordinates. For solving Eq. (1), Allen
introduces the following doubled set of basis functions:

χαζ (k) = Fα (k)ηζ (εk)

N (εk)υ(εk)
, (5)

γαζ (k) = Fα (k)ηζ (εk)υ(εk)

(
− ∂ f

∂εk

)
. (6)

Here Fα (k) = υα (k)/υ(εk) are surface harmonics being sim-
ply normalized electron velocities [2]. Functions (5) and (6)
are cell periodic because velocities are cell periodic. The
normalization factor υ(ε) ≡ 〈υ2

α (ε)〉1/2, which is the root-
mean-square velocity in direction α of an electron with energy
ε is found as

N (ε)
〈
υ2

α (ε)
〉 =

∑
k

υ2
α (k)δ(εk − ε), (7)

where N (ε) is the electron density of states per spin. As seen
from Eq. (7), velocity normalization to the electronic DOS
leads to singularity in calculations for semiconductors. For
semiconductors, this approach will only work if doping is
used, so that the chemical potential gets into the valence or
conduction band.

The functions ηζ (ε) are energy-dependent polynomials or-
thonormalized with weight function −∂ f /∂ε,∫ ∞

−∞

(
−∂ f

∂ε

)
ηζ (ε)ηζ ′ (ε)dε = δζζ ′ . (8)

Like Allen, we will only use the first two polynomials, η0 = 1,
η1(ε) = √

3ε/(πkBTe), and this seems to be quite an accu-
rate approximation giving well converging results at Te = Ti

[7,8]. In the case of nonequilibrium heating, we can also
expect good calculation accuracy because, as shown in our
first-principles calculations, the values of μ for the considered
metals are of the order of 102 kK, which is much higher
than the temperatures Te ∼ 10 kK we are considering and the
electron subsystem can be regarded as sufficiently degener-
ate. Thus, the surface harmonics effectively solve the angular
part of the problem, while the energy polynomials solve its
“radial” part [3].

The functions Fα (k) are orthonormalized according to the
rule

1

N (ε)

∑
k

Fα (k)Fα′ (k)δ(εk − ε) = δαα′ , (9)

and basis functions (5) and (6) possess the following useful
properties: ∑

k

χαζ (k)γα′ζ ′ (k) = δαα′δζζ ′ , (10)

∑
α′ζ ′

χα′ζ ′ (k′)γα′ζ ′ (k′′) = δk′k′′ . (11)

Our goal is to determine, with use of basis functions (5)
and (6), the scattering operator Qkk′ required for the further
calculation of transport properties. Note that χαζ is convenient
for expanding functions, which are smooth in energy, such as
φk, while γαζ is convenient for the scattering operator that
peaks at ε = μ. Expressing the left-hand side of Eq. (1) in
terms of the functions γαζ , where ζ =0,1, we obtain

−eEγα0(k) − (πkB/
√

3)∇Teγα1(k). (12)

If multiply Eq. (1) by χαζ and sum over k using expression
(10) for the left-hand side and expression (11) for the right-
hand one, then the Boltzmann equation takes the form

−eEδζ0 − (πkB/
√

3)∇Teδζ1 =
∑
α′ζ ′

Qαζ ,α′ζ ′φα′ζ ′ . (13)

Qαζ ,α′ζ ′ and φαζ are determined as

Qαζ ,α′ζ ′ =
∑
kk′

χαζ (k)Qkk′χα′ζ ′ (k′), φαζ =
∑
k

γαζ (k)φk.

(14)
Using (11), we can also obtain the inverse relations

Qkk′ =
∑

αζ ,α′ζ ′
γαζ (k)Qαζ ,α′ζ ′γα′ζ ′ (k′), φk =

∑
αζ

φαζ χαζ (k).

(15)
Now rewrite expressions (3) and (4) for currents in the direc-
tion α, using the introduced basis functions,

je = −2eφα0, (16)

jQ = (2πkBTe/
√

3)φα1. (17)

The scattering operator is written as the difference of
two parts allowing for scattering from state k into state
k′ (scattering-out process) and from state k′ into state k
(scattering-in process) [14]. After its linearization in the con-
ventional way with account for the energy conservation and
the principle of detailed balance, it can be expressed in terms
of the equilibrium transition probability Pkk′ as [14,34]

Qkk′ = Qout
kk′ − Qin

kk′ = 1

kBTe

(
δkk′

∑
k′′

Pkk′′ − Pkk′

)
.

(18)
Then Qαζ ,α′ζ ′ from (14) can be rewritten in the following form:

Qαζ ,α′ζ ′ = 1

2kBTe

∑
kk′

Pkk′[χαζ (k) − χαζ (k′)]

× [χα′ζ ′ (k) − χα′ζ ′ (k′)]. (19)
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In the case of electron-phonon scattering, Pkk′ is written as
[3]

Pkk′ = (2π/h̄)
∑
�qν

∣∣g�qν

kk′
∣∣2

f (εk)(1 − f (εk′ ))

× [(n(h̄ω�qν, Ti ) + 1)δ(εk − εk′ − h̄ω�qν )

+ n(h̄ω�qν, Ti )δ(εk − εk′ + h̄ω�qν )]. (20)

Here n(h̄ω�qν, Ti ) is the Bose-Einstein distribution function,
ω�qν is phonon frequency, g�qν

kk′ is an electron-phonon matrix
element, which defines the probability of electron scattering
from the initial state k into the final state k′ after its interaction
with a phonon with wave vector �q, polarization ν, and energy
h̄ω�qν (the determination of g�qν

kk′ for the FP-LMTO method
can be found in Ref. [5]). The product of square brackets in
Eq. (19) can be factorized,

[χαζ (k) − χαζ (k′)] · [χα′ζ ′ (k) − χα′ζ ′ (k′)] = 1

4

∑
s,s′=±1

[Fα (k) − sFα (k′)] · [Fα′ (k) − s′Fα′ (k′)]
[

ηζ (ε)

N (ε)υ(ε)
+ s

ηζ (ε′)
N (ε′)υ(ε′)

]

·
[

ηζ ′ (ε)

N (ε)υ(ε)
+ s′ ηζ ′ (ε′)

N (ε′)υ(ε′)

]
. (21)

Here we can introduce, for convenience, a generalized electron-phonon spectral function

α2
trF (s, s′, α, α′, ε, ε′,�) = 1

2N (ε)

∑
�qν

δ(� − ω�qν )
∑
kk′

∣∣g�qν

kk′
∣∣2

δ(εk − ε)δ(εk′ − ε) × [Fα (k) − sFα (k′)] · [Fα′ (k) − s′Fα′ (k′)]

(22)

and joint energy polynomials

J (s, s′, ζ , ζ ′, ε, ε′) = 1

4

[
ηζ (ε)

N (ε)υ(ε)
+ s

ηζ (ε′)
N (ε′)υ(ε′)

]
×

[
ηζ ′ (ε)

N (ε)υ(ε)
+ s′ ηζ ′ (ε′)

N (ε′)υ(ε′)

]
. (23)

Then the expression for the scattering operator written in integral form becomes

Qαζ ,α′ζ ′ = 2πV

h̄kBTe

∫ ∞

0
d�

∫ ∞

−∞
dε

∫ ∞

−∞
dε′ ∑

s,s′=±1

α2
trF (s, s′, α, α′, ε, ε′,�)N (ε)J (s, s′, ζ , ζ ′, ε, ε′) f (ε, Te)(1 − f (ε′, Te))

× [(n(h̄�, Ti ) + 1)δ(ε − ε′ − h̄�) + n(h̄�, Ti )δ(ε − ε′ + h̄�)]. (24)

Here V is the unit cell volume. In the static DFT methods
such as FP-LMTO, the spectral function α2

trF is determined
for specified fixed atomic positions.

Consider a case where the thermal and electric currents
point in the x direction. Then, according to Eqs. (13), (16),
and (17), if the off-diagonal elements of the scattering matrix
Qαζ ,α′ζ ′ are small, the values of electrical resistivity (conduc-
tivity) and thermal conductivity are determined as [3]

ρ ≈ 1

2e2
Qx0,x0, (25)

κe ≈ 2π2k2
BTe

3

[
(Q)−1

x1,x1 − ∣∣(Q−1)x0,x1

∣∣2
Qx0,x0

]
, (26)

σ = 1/ρ. (27)

Expressions (24) and (26) were derived by Allen [3] and
we rewrote them here for Te �= Ti. Formula (24) inspires some
concerns regarding its practical implementation in the general
case. Further, we will do some reasonable approximations,
which make calculations a bit easier with almost no loss in
accuracy. Remind here that for electron-phonon interaction,
in accordance with the energy conservation law, ε′ will take
the value ε + h̄� if the phonon is absorbed and ε − h̄� if
it is emitted. Since the scale of electron energy variation is
much greater than that of phonon energies, we can write func-
tion (22) in the following way: α2

trF (s, s′, α, α′, ε, ε′,�) ≈

α2
trF (s, s′, α, α′, ε, ε,�) ≡ α2

trF (s, s′, α, α′, ε,�) [35]. Sim-
ilarly, assume that N (ε)υ(ε) and N (ε′)υ(ε′) are close to each
other, then the product N (ε)J in expression (24) can be written
as

N (ε)J (s, s′, ζ , ζ ′, ε, ε′)

= 1

4N (ε)υ2(ε)
[ηζ (ε) + sηζ (ε′)] · [ηζ ′ (ε) + s′ηζ ′ (ε′)].

(28)

Figure 1 shows the dependence N (ε)υ2(ε) we obtained in
this paper for gold at different values of Te and the cold lattice.
It is seen that N (ε)υ2(ε) is a smooth function oscillating at
low Te. But with the increasing temperature, its oscillations
get much smaller and at Te � 10 kK the function becomes
monotonic in the considered energy range.

Our calculations show that in expression (24), the terms
with s �= s′ can be omitted in summation over s, s′ because
of their negligible contribution to the determined quantity.
With the above approximations and the fact that η0 =1,
η1 = √

3ε/(πkBTe) expressions for Qx0,x0, Qx1,x1, and Qx0,x1
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present in Eqs. (25) and (26) can be written as

Qx0,x0 = 2πV

h̄kBTe

∫
d�

∫
dε

I0(x, x, ε,�)

N (ε)υ2(ε)
, (29)

I0(x, x, ε,�) = α2
trF (1, 1, x, x, ε,�)

∫
dε′ f (ε, Te)(1 − f (ε′, Te))

× [(n(h̄�, Ti ) + 1)δ(ε − ε′ − h̄�) + n(h̄�, Ti )δ(ε − ε′ + h̄�)], (30)

Qx1,x1 = 6V

π h̄(kBTe)3

∫
d�

∫
dε

I1(x, x, ε,�)

N (ε)υ2(ε)
, (31)

I1(x, x, ε,�) = 1

4

∑
s,s′=±1

α2
trF (s, s′, x, x, ε,�)

∫
dε′(ε + sε′)(ε + s′ε′) f (ε, Te)(1 − f (ε′, Te))

× [(n(h̄�, Ti ) + 1)δ(ε − ε′ − h̄�) + n(h̄�, Ti )δ(ε − ε′ + h̄�)], (32)

Qx0,x1 =
√

3V

h̄(kBTe)2

∫
d�

∫
dε

I01(x, x, ε,�)

N (ε)υ2(ε)
, (33)

I01(x, x, ε,�) = α2
trF (1, 1, x, x, ε,�)

∫
dε′(ε + ε′) f (ε, Te)(1 − f (ε′, Te))

× [(n(h̄�, Ti ) + 1)δ(ε − ε′ − h̄�) + n(h̄�, Ti )δ(ε − ε′ + h̄�)]. (34)

The values of I0, I1, and I01 can easily be calculated by
determining the function α2

trF (s, s′, x, x, ε,�) and take into
account that, according to energy conservation, integration
over dε′ can be eliminated for the processes of absorption
ε′ = ε + h̄� and emission ε′ = ε − h̄� of phonons. With the
known ε and h̄�, the value of ε′, which gives a nonzero
contribution to the integral is always determined. In our case it
is necessary to calculate the spectral function within a certain
range of interest, whose boundaries are defined by the Fermi-
Dirac distribution.

For temperatures above �D, we can apply the quasielastic
approximation δ(ε − ε′ ∓ h̄�) ≈ δ(ε − ε′), then the expres-
sions for Q become yet simpler,

Qx0,x0 = 2πV

h̄kBTe

∫
d�

∫
α2

trF (1, 1, x, x, ε,�)dε

N (ε)υ2(ε)

× f (ε, Te)(1 − f (ε, Te))[2n(h̄�, Ti ) + 1], (35)

FIG. 1. The value of N (ε)υ2(ε) vs energy at different electron
temperatures Te for gold.

Qx1,x1 = 6V

π h̄(kBTe)3

∫
d�

∫
α2

trF (1, 1, x, x, ε,�)ε2dε

N (ε)υ2(ε)

× f (ε, Te)(1 − f (ε, Te))[2n(h̄�, Ti ) + 1], (36)

Qx0,x1 = 2
√

3V

h̄(kBTe)2

∫
d�

∫
α2

trF (1, 1, x, x, ε,�)εdε

N (ε)υ2(ε)

× f (ε, Te)(1 − f (ε, Te))[2n(h̄�, Ti ) + 1]. (37)

We have thus obtained the formulas to calculate the trans-
port properties of metals in case of nonequilibrium heating,
which will also be applicable in the equilibrium heating
regime. Formulas (29)–(34) take into account all important
effects, including the inelastic electron-phonon scattering.
Having calculated from first principles the required quantities
present in the formulas for the static lattice at different values
of Te, we can determine ρ (or σ ) and κe as functions of (Te, Ti)
for any specified value of specific volume.

If switch to the equilibrium case Te = Ti ≡ T and con-
sider only relatively low temperatures T � 300 K, we
can neglect Fermi smearing, the dependence of α2

trF on
energy, and the thermoelectric term in κe [Eq. (26)].
As a result, formulas (29)–(32) become much simpler
[3]. Taking into account that energy is measured relative
to the Fermi energy μ = EF , we introduce the nota-
tions α2

trF (1,�) ≡ α2
trF (1, 1, x, x, 0,�) and α2

trF (−1,�) ≡
α2

trF (−1,−1, x, x, 0,�), where the spectral function takes
the form

α2
trF (±1,�) = 1

2N (0)υ2(0)

∑
�qν

δ(� − ω�qν )

∑
kk′

∣∣g�qν

kk′
∣∣2

(υx(k) ∓ υx(k′))2δ(εk)δ(εk′ ).
(38)

024109-5



N. A. SMIRNOV PHYSICAL REVIEW B 106, 024109 (2022)

Then, after appropriate transformation of energy integrals in
Eqs. (29)–(32), formulas for electrical resistivity and thermal
conductivity can be written as [3,4]

ρ = 2πV kBT

e2h̄N (0)υ2(0)

∫ ∞

0

d�

�

x2

sinh2(x)
α2

trF (1,�), (39)

1

κe
= 6V

π h̄kBN (0)υ2(0)

∫ ∞

0

d�

�

x2

sinh2(x)

×
[
α2

trF (1,�)

(
1 + x2

π2

)
+ 3x2

π2
α2

trF (−1,�)

]
. (40)

where x = �/(2kBT ). It should be noted here that at high
temperatures formula (39) gives a linear dependence of ρ on
T , and κe calculated from (40) will be approaching a constant
value [4]. Below these formulas are used for comparison with
more general expressions (25), (26), (29)–(34) in the equilib-
rium heating regime.

B. Parameters of ab initio calculations

To calculate the transport properties of copper, silver, gold,
and palladium from first principles, we used in this paper
the all-electron full-potential linear muffin-tin orbital method
[36]. Within density functional theory, the FP-LMTO method
calculates the energy and the electron density distribution
at various electron temperatures and material densities. The
phonon spectra and spectral electron-phonon functions for
the above metals were calculated with linear response theory
implemented in the FP-LMTO code [5,36]. The high accuracy
of our ab initio calculations was attained through the careful
choice of FP-LMTO parameters. Since we have already stud-
ied some of the metals [35,37], calculation parameters were
largely the same as used earlier. First of all, this concerns
the choice of the exchange-correlation (XC) functional. It
was chosen so as to allow the best possible description of
ground-state properties and phonon spectra for the metals of
interest. These were the functional from Ref. [38] with gra-
dient corrections [39] for copper and palladium, the local XC
functional [40] for gold, and the PBEsol [41] XC for silver.
The valence electrons in calculations were 3p, 3d , 4s for Cu;
4p, 4d , 5s for Ag; 5p, 5d , 6s for Au; and 4d , 5s for Pd. These
were quite sufficient because calculations were done for the
densities of metals close to those at ambient conditions and
electron temperatures � 20 kK.

Integration over the Brillouin zone was done with the im-
proved tetrahedron method [42]. The mesh in �k space was
taken to be 40 × 40 × 40 for all metals under consideration.
As shown by calculations, such dense meshes are necessary
for accurate determination of the electron-phonon spectral
function. A mesh of 10 × 10 × 10 appeared sufficient for
phonon spectrum integration over �q points. For more details
about meshes, see the first part of the Appendix. The cutoff
energy in the representation of basis functions by a set of
plane waves in the interstitial region was taken to be 1000 eV.
The set of basis functions was limited to the orbital moment
lb
max = 5. The spherical harmonic expansion of the charge

density and the potential was done to the moment lw
max = 7.

The FP-LMTO parameters, such as linearization energies, tail
energies, and others were selected with an approach similar to
that described in Ref. [43].

FIG. 2. Phonon spectra of silver and palladium at experimental
equilibrium specific volume. The red lines show the calculation done
in this paper at zero temperature, and the circles connected by lines
show experimental results at room temperature [44].

With the thoroughly adjusted parameters of the FP-LMTO
method we succeeded to reproduce the experimental equilib-
rium specific volume V0 to better than 2%. The accuracy of
phonon spectra calculated for Cu and Au was demonstrated
earlier in paper [35]. Therefore, here we only provide com-
parison for silver and palladium as shown in Fig. 2. The
calculated phonon densities of state (PDOS) are seen to agree
well with experiment. Such a good agreement gives us a hope
that the function α2

trF will also be reproduced well in the
calculations presented below.

III. RESULTS

First consider results we obtained in our calculation of
transport properties for Cu, Ag, Au, and Pd in the equilibrium
heating regime. Since we are dealing with cubic crystals, only
the x component of Q needs to be calculated in order to
obtain ρ and κe. For convenience, let us use EF to refer to
calculations by formulas (25), (26), and (29)–(34) as the most
accurate, QE for calculations in quasielastic approximation by
formulas (25), (26), and (35)–(37), and AF for calculations by
approximations (38)–(40).

Figures 3–6 present the temperature dependencies of elec-
trical resistivity and thermal conductivity calculated in this
paper in different approximations in comparison with avail-
able experimental data. The light green curves show the EF
calculations, and the blue ones show the AF calculations
along the isochore of the equilibrium specific volume V0.
In addition, QE results (green-dashed line) for copper and
gold at V = V0 are provided. Since experimental results are
measured along an isobar rather than an isochore, we also did
calculations where volume was changed with the increasing
temperature. That was done in a simple form using experi-
mental equations of state for Cu, Ag, and Au [52], and precise
crystallographic data for Pd [53]. The band structure compu-
tations were done for each specific volume considered. The
red line in Figs. 3–6 shows EF results in the case of volume
variation.
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(a)

(b)

FIG. 3. Electric resistivity (a) and thermal conductivity (b) of
copper vs temperature. Experimental data: circles [45,46], triangles
[47], and squares [48]. Computational results: the solid green and
red lines are EF calculations for V = V0 and with account for vol-
ume variation, respectively (see the text); the dashed green line is
QE calculations for V = V0, and the solid-blue line is AF calcu-
lations also for V = V0. The inset shows the region of low T for
resistivity ρ.

As seen from Figs. 3–6, the utilization of the EF formulas
with account for volume variation helps catch the correct
shape of the curves ρ(T ) and κe(T ), and get results, which
agree well with experiment in a wide range of temperatures
as for Cu, Ag, and Au, so for Pd. A specific feature is seen
for palladium. Unlike the other metals, the changing volume

(a)

(b)

FIG. 4. Electrical resistivity (A) and thermal conductivity (B)
of gold versus temperature from experiments (circles [45,46] and
triangles [47]) and calculations (see the legend of Fig. 3 for details).
The inset shows the region of low T for ρ.

(a)

(b)

FIG. 5. Electrical resistivity (a) and thermal conductivity (b) of
silver vs temperature from experiments (circles [45,46] and triangles
[47]) and calculations (see the legend of Fig. 3 for details)

weakly influences ρ(T ), while for κe(T ), the growth of V at
T > 600 K becomes important.

For Cu, Ag, and Au, the AF results agree rather well
with the EF calculations for isochoric heating, i.e., account
for Fermi smearing and the energy dependence of spectral
function α2

trF is of a small effect (<5%). However, as seen
from Fig. 6, the situation markedly differs for palladium. With
the simplified AF expressions we failed to reproduce both
the slowing growth of electrical resistivity and the increase
of κe above room temperature, as observed in experiment. In

(a)

(b)

FIG. 6. Electrical resistivity (a) and thermal conductivity (b) of
palladium vs temperature. Experimental data: circles [45,46], tri-
angles [47], turned triangles [49], squares [50], pentagons [51],
diamonds [55]). The lines are computed results (see the legend of
Fig. 3 for details).
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the EF calculations for Pd at high T , ρ(T ) is not linear and
κe(T ) does not become constant at high temperatures. The
differences in calculations for the considered metals come
from a significant difference in their band structure [54].
Bands with d electrons in palladium cross the Fermi level
in such a way that the electron density of states in the near
vicinity of EF significantly changes in contrast to the other
metals where it remains almost constant. So, on the Fermi
level, the electron density of states in Pd is more than eight
times higher than in the other metals. The changes induced
by the increasing temperature in the electron density of states
of Pd near the Fermi level give a greater contribution to the
determined quantities, and the inclusion of Fermi smearing
and the energy dependence of spectral function helps correctly
account for the effect of these changes.

It is clearly seen from Figs. 3 and 4 that at T above the
Debye temperature (�D ≈ 340 K for Cu and ≈165 K for
Au), the QE results give good agreement with calculations
by the more accurate formulas (i.e., the EF results) and above
these temperatures one can safely use quasielastic expressions
(35)–(37) to calculate ρ and κe. It is also seen that at low T , the
accuracy of the quasielastic approximation strongly decreases
and the results begin to differ significantly from the most
accurate solution. It is of critical importance here to include
inelastic scattering.

Now consider the nonequilibrium heating regime of the
metals under study. Here gold is the most studied material. As
mentioned above, in the experiment reported in Ref. [23], the
authors succeeded to measure the temporal evolution of DC
electrical conductivity σ in free-standing thin (30 nm) gold
foils irradiated by ultraviolet laser pulses of duration τp =
150 fs. When such ultrashort pulses interact with matter, they
are almost immediately absorbed by the electron subsystem
whose temperature sharply increases while the ions remain
relatively cold. With time, the temperatures equalize due to
electron-phonon interaction. Since according to estimates, the
temperatures achieved in the experiment are noticeably lower
than the Fermi temperature, the excited electrons are assumed
to recombine fast and their distribution will be close to the
Fermi-Dirac one [23].

In order to describe such an experiment we need to know
how the electron and lattice temperatures vary with time.
We limited ourselves to a simulation time of 20 ps because
experiments [23,33] show that the foil that absorbed the ap-
propriate amount of energy, viz, 0.89 MJ/kg [23], can be
considered completely molten after that time. Electron and
ion temperatures can be found with a two-temperature model
[26,27]. Ion thermal conductivity can be neglected because in
this case it is much lower than electron thermal conductivity.
Since the irradiated foil is quite thin, we will also neglect the
electron thermal conductivity since such targets are uniformly
heated due to energy transfer by ballistic electrons and elec-
tron thermal diffusion over times of the order of τp [23]. The
equations to be solved are

Ce(Te)
∂Te

∂t
= −(Te − Ti )G(Te) + S(t ), (41)

Ci(Ti )
∂Ti

∂t
= (Te − Ti )G(Te). (42)

FIG. 7. The time dependence of DC conductivity for gold irradi-
ated by ultrashort laser pulses (τp = 150 fs). Circles are experimental
data from paper [23] and stars connected by a line are calculation
results.

Here Ce and Ci are electron and lattice specific heats, respec-
tively, S(t ) is a Gaussian-shaped source term [18], and G is the
electron-phonon coupling factor dependent on Te. The way of
calculation from first principles and the values of the above
parameters for gold and copper can be found in Ref. [35]
and we will not go into these details here. The accuracy of
those calculations is also discussed in that paper. For silver
and palladium, the calculated factors G(Te) are presented in
the Appendix. Knowing the values of Te and Ti for each time,
one can calculate electrical conductivity using formulas (25),
(27), (29), and (30).

Figure 7 shows calculated results obtained in this work
in comparison with experiment [23]. It is seen that σ dra-
matically changes with time; its value drops very fast after
irradiation. Calculated values agree quite well with the exper-
imental behavior of electrical conductivity, and the agreement
improves as time increases. It is quite possible that for better
agreement between the experimental and calculated results
at t < 4 ps, it will be necessary to take into account the
electron-electron scattering in the calculation of σ , as noted
in Ref. [23], since for these times the electron temperature is
rather high, above 12 kK, while the ion temperature is still
low. On whole, the results obtained with formulas (25), (27),
(29), and (30) demonstrate rather high accuracy.

Further, consider how electrical and thermal conductivities
calculated by EF formulas (25)–(27) and (29)–(34) vary with
Te for several lattice temperatures Ti. The calculations were
done for volume corresponding to the experimental specific
volume V0 under ambient conditions. Figures 8–11 present
their results for the considered metals. Here we do not provide
results obtained with the quasielastic approximation because
they agree very well with the more accurate EF calculations
in this temperature range. Also note that calculations at a
lattice temperature Ti = 2000 K, which is above the known
melting point for these metals can be of sense since, as stated
in Refs. [56,57], there exists a possibility for lattice to become
strongly overheated because the interionic potential strongly
changes after the heating of the electron subsystem by the
ultrashort pulse. So, for example, ab initio calculations [57]

024109-8



AB INITIO CALCULATIONS FOR THE … PHYSICAL REVIEW B 106, 024109 (2022)

(a)

(b)

FIG. 8. Calculated DC conductivity (a) and thermal conductivity
(b) of copper vs Te for different lattice temperatures Ti: EF calculation
results (solid lines) and κe calculations by semi-empirical formula
(43) (dashed lines).

show vacancy formation enthalpy in the gold lattice to become
more than three times higher at Te = 23 kK than at room
temperature. Surely, this must be of effect on the melting
temperature. There are various estimations of the possible
change in the melting temperature of metals as a result of
its nonequilibrium heating [35,58,59]. All of them based on
the Lindemann criterion, which is an approximate approach
for calculation of the melting temperature. For more accurate
calculations, more sophisticated methods such as ab initio
molecular dynamics may be needed.

(a)

(b)

FIG. 9. Calculated DC conductivity (a) and thermal conductivity
(b) of gold vs Te for different lattice temperatures Ti: EF calculation
results (solid lines) and κe calculations by semi-empiric formula (43)
(dashed lines).

(a)

(b)

FIG. 10. Calculated DC conductivity (a) and thermal conduc-
tivity (b) of silver vs Te at different lattice temperatures Ti: EF
calculation results (solid lines) and κe calculations by semi-empiric
formula (43) (dashed lines).

First, look at electrical conductivity. As seen from Figs. 8–
10(a), the conductivity of Cu, Ag, and Au for a given Ti

first decreases with the growing Te and then begins to slowly
increase (in Au this happens above 23 kK). For palladium, the
situation is somewhat different: At a given Ti, σ (Te) increases
at temperatures � 8 kK and at higher Te firstly slightly de-
creases and then grows a little bit. Such a behavior is due to
the previously mentioned feature of the band structure of this
metal. With the increasing lattice temperature the value of σ

(a)

(b)

FIG. 11. Calculated DC conductivity (a) and thermal conductiv-
ity (b) of palladium vs Te at different lattice temperatures Ti: EF
calculation results (solid lines) and κe calculations by semi-empiric
formula (43) (dashed lines).
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sharply decreases as for Cu, Ag, and Au, so for palladium.
Also seen, as Ti elevates, electrical conductivity becomes
practically independent of Te, which agrees well with calcula-
tions by the Kubo-Greenwood formula for some other metals
[60].

Let us consider thermal conductivity [Figs. 8–11(b)]. The
dashed lines additionally drawn in Figs. 8–11(b) show results
obtained with the formula, which is often used in two-
temperature calculations [27,61],

κe = K0
Te

Ti
, (43)

where K0 is a constant that is adjusted through comparison
with low-temperature experiment at Te = Ti. In formula (43),
we neglect the term associated with electron-electron scat-
tering, which is not considered in this paper. As stated in
Refs. [27,61,62], this dependence works well for quite low
temperatures. It is however difficult to determine the range of
its applicability for each specific element from general consid-
eration. Besides formula (43) known from the literature, there
is the more general wide-range formula [27]

κe = C · (θ2 + 0.16)5/4(θ2 + 0.44) · θ

(θ2 + 0.092)1/2(θ2 + b · θi )
, (44)

where θ = kBTe/EF , θi = kBTi/EF , and C and b are adjustable
constants. Unlike (43), expression (44) tends to a dependence
typical of nondegenerate plasma, κe ∼ T 5/2

e , in the limit of
high Te, while in the limit of low temperatures its functional
form coincides with formula (43).

On whole, the dependencies κe(Te) calculated by the EF
formulas show a tendency to increase with the growing Te

[Figs. 8–11(b)]. However for Cu, Ag, and Au, the interval
where κe initially shows a quite sharp increase is followed
by a small interval where it slightly decreases. Like in the
case of electrical conductivity, the increase of Ti results in a
strong decrease of thermal conductivity. If compare the EF
results with calculations by formula (43), then for Cu, Ag,
and Au, a clear tendency is seen to overestimate κe in the
semi-empirical approach at temperatures above 2 kK. Below
these temperatures the results of two calculations agree very
well. At Te = 10 kK, the two types of calculations differ
by more than three times. The dependence κe(Te) from EF
calculation noticeably departs from linear as Te increases.
Possibly, it is caused by the effect of the energy dependence
of the transport function α2

trF at high temperatures. Note that
in the temperature range under consideration, the effect of the
thermoelectric term in Eq. (26) is less than 10% for Cu, Ag,
and Au.

The effect of difference in the band structure on thermal
conductivity can be seen from comparison between results for
Cu, Ag, and Au and results for palladium [Fig. 11(b)]. Firstly,
the κe(Te) curves for Pd do not have the temperature interval
where thermal conductivity decreases. Secondly, formula (43)
here underestimates κe at rather low (Te < 7 kK) and high
(Te > 14 kK) temperatures. Even at relatively low tempera-
tures where Te and Ti are still close to each other, the results
obtained by the two types of calculations differ markedly,
especially for Ti > 600 K. This is due to the fact that the
dependence of the thermal conductivity κe(T ) (for Te = Ti)
of palladium along the isochore does not reach a constant

value with the increasing temperature, but increases, which,
of course, is not taken into account by formula (43). Expres-
sion (43) will give incorrect results for all metals for which
such behavior occurs. Consequently, heat diffusion from the
surface into deeper parts of the irradiated target will be un-
derestimated. Thus, in the case of palladium, the influence
of the dependence of α2

trF on energy manifests itself already
at rather low temperatures (below the melting point). The
effect of the thermoelectric term on the thermal conductivity
of Pd is also much higher. Its correction may reach 50% at
Te > 10 kK.

IV. CONCLUSIONS

In this paper, on the basis of the method proposed by Allen
[3] to solving the Boltzmann equation, formulas were derived
to calculate the electron transport properties of solid-state
metals in the nonequilibrium heating regime with account for
electron-phonon interaction. These formulas are applicable
within a rather wide range of electron temperatures (a few
eV) and can be used in cases where electron and lattice tem-
peratures strongly differ. They also give good results in case
of equilibrium heating for T from a few tens of kelvins up
to melting. The expressions work most effectively in calcu-
lations where the Fermi smearing of the electron distribution
function and the energy dependence of the electron-phonon
spectral function need to be taken into account. We also pro-
pose formulas to calculate the transport properties in a more
simple quasielastic approximation and show it to be accurate
for T above �D. In contrast to the frequently used Kubo-
Greenwood formula, in the proposed approach no averaging
over ionic configurations is required for a given density of
matter, but only one calculation of the phonon spectrum and
the electron-phonon spectral function is sufficient. Also, since
the linear response method was used for phonon spectrum
calculations, there is no need to consider a supercell for sim-
ulation, it is quite enough to take only the unit cell of the
crystal.

Our approach is implemented within the first-principles
all-electron FP-LMTO method. Calculations performed in
this work gave the temperature dependencies of electrical
resistivity (DC conductivity) and thermal conductivity of Cu,
Ag, Au, and Pd both for equal and different electron and
lattice temperatures. Obtained results agree well with avail-
able experimental data. So, for Te = Ti they reproduce well
the slowing growth of electrical resistivity and the increase
of thermal conductivity in palladium above room temper-
ature. Results for the nonequilibrium heating of gold well
reproduce the temporal evolution of its DC electrical con-
ductivity observed in modern laser experiments [23]. It is
also shown that in case of Cu, Ag, and Au, the widely-used
semi-empiric dependence κe ∼ Te works well only at rela-
tively low temperatures (� 2 kK) and overestimates thermal
conductivity at higher temperatures. For palladium, κe is un-
derestimated already at relatively low temperatures. These
factors should be taken into account in the simulation of
ultrashort laser interaction with matter and the construction
of new wide-range analytical thermal conductivity models for
metals.
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FIG. 12. Relative deviation of thermal conductivity of palladium
versus temperature for different �k and �q meshes (normal specific
volume, equilibrium heating). The data are presented relative to the
40 × 40 × 40 �k mesh and 10 × 10 × 10 �q mesh used for calculations
in this paper.
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APPENDIX

1. Selection of the�k and�q meshes

Figure 12 presents the calculated relative deviations of
palladium thermal conductivity versus T under equilibrium
heating for different �k and �q meshes. They are given relative

TABLE I. The electron-phonon coupling factors, G
(1017 W/m3K), at different electron temperatures for Ag and Pd.

Te (kK) GAg GPd

0.3 0.264 9.63
2.5 0.273 7.43
5.0 0.288 6.08
7.5 0.427 5.46
10 0.623 5.04
12.5 0.830 4.72
15 1.020 4.48
17.5 1.190 4.32
20 1.350 4.22
22.5 1.520 4.16

to the calculation of 40 × 40 × 40 �k mesh and 10 × 10 × 10 �q
mesh. The equidistant meshes of �k and �q vectors are consis-
tent, i.e., any point of the �q mesh is a point of the �k mesh.
Calculations were done with no interpolation procedure from
less dense meshes to more dense ones. It is seen that at tem-
peratures from 30 K and above, all calculations except for, the
20 × 20 × 20 �k mesh and 10 × 10 × 10 �q mesh are accurate
within 5%. This accuracy is quite sufficient since different
experiments give a scattering of 5–10% on κ . At temperatures
below 30 K, better accuracy requires denser meshes, but for
these temperatures it is also necessary to consider the electron-
electron interaction that begins to dominate.

2. The electron-phonon coupling factors of Ag and Pd

Table I presents calculated electron-phonon coupling fac-
tors for silver and palladium. The method of their calculation
is described in Ref. [35]. The coefficients are determined for
the static fcc lattice.
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