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Magnetochemical effects on phase stability and vacancy formation in fcc Fe-Ni alloys
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We investigate phase stability and vacancy formation in fcc Fe-Ni alloys over a broad composition-temperature
range, via a density functional theory parametrized effective interaction model, which includes explicitly spin
and chemical variables. On-lattice Monte Carlo simulations based on this model are used to predict the tem-
perature evolution of the magnetochemical phase. The experimental composition-dependent Curie and chemical
order-disorder transition temperatures are successfully predicted. We point out a significant effect of chemical
and magnetic orders on the magnetic and chemical transitions, respectively. The resulting phase diagram
shows a magnetically driven phase separation around 10–40% Ni and 570–700 K, between ferromagnetic and
paramagnetic solid solutions, in agreement with experimental observations. We compute vacancy formation
magnetic free energy as a function of temperature and alloy composition. We identify opposite magnetic and
chemical disordering effects on vacancy formation in the alloys with 50% and 75% Ni. We find that thermal
magnetic effects on vacancy formation are much larger in concentrated Fe-Ni alloys than in fcc Fe and Ni due to
a stronger magnetic interaction.
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I. INTRODUCTION

Magnetism is an indispensable ingredient for understand-
ing and predicting properties in Fe and Fe-based alloys.
It plays a crucial role in phase stability and the bcc-fcc
phase transition in Fe [1–5]. In Fe-based alloys, the magne-
tochemical interplay can lead to a change of the chemical
order-disorder transition temperature, local segregation, or
unmixing tendency [6–9]. Thermal magnetic effects are also
known to have an impact on vacancy properties and atomic
diffusion in bcc Fe [10–13].

Effects of magnetism can be obtained via first-principles
calculations, which are routinely performed in magneti-
cally ordered systems. However, it remains a challenging
task to model magnetic excitations and paramagnetism [14].
First-principles approaches to simulate finite-temperature
magnetism in alloys include, for instance, the disordered local
moment (DLM) and partial DLM methods [15–18] and the
spin-wave method [19]. However, these approaches generally
require additional interpolation schemes such as the semiem-
pirical Ruch model [20] to obtain the temperature evolution
of magnetic and energetic properties. Furthermore, they are
too computationally expensive for a systematic exploration of
the spin-atom configurational space of magnetic alloys. On
the other hand, while upper-scale atomistic approaches such
as spin-lattice dynamics [21,22] and spin-atom Monte Carlo
simulations [23–25] provide an efficient way to investigate
finite-temperature magnetic effects, it is generally difficult
to develop accurate models and potentials for concentrated
alloys with the presence of structural defects.

This work is focused on fcc Fe-Ni alloys, which are the
basis of austenitic steels. The alloy with around 50% and 75%
Ni has a ferromagnetic L10 and L12 ordered structure, respec-
tively, at low temperatures. They undergo successive chemical
and magnetic transitions with increasing temperature [26,27].
A strong magnetochemical interplay is expected and can have
an impact on the phase stability and properties of structural
defects.

The phase stability of this system has been extensively
investigated experimentally and theoretically [24,26–35].
However, thermodynamic measurements of, e.g., activity co-
efficients and formation enthalpies were performed only in
paramagnetic and chemically disordered alloys [26,29]. It
is difficult to estimate the magnetic contribution to phase
stability based directly on experimental information. On the
theoretical side, magnetic effects on the phase stability of fcc
Fe-Ni alloys were studied using model Hamiltonians com-
bined with on-lattice Monte Carlo simulations, showing a
significant impact on the chemical order-disorder transition
temperatures [33–35]. However, the Ising or Heisenberg mod-
els adopted in these studies [33–35] were developed only for
specific compositions, and the composition dependence of
magnetic moments as well as the thermal longitudinal spin
fluctuations were not taken into account. Recently, a magnetic
cluster expansion model was parametrized for the whole com-
position range of fcc Fe-Ni alloys [24], but the predicted Curie
points of the disordered alloys are found to be much lower
than the experimental data.

As the simplest structural defect in metals and alloys, va-
cancy plays a dominant role in atomic diffusion. Knowledge
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of vacancy formation properties is thus crucial for the under-
standing of kinetic processes. From a general point of view,
theoretical studies addressing finite-temperature magnetic ef-
fects on vacancy formation properties have been focused
on metals and extremely dilute Fe alloys [11–13,18,36–39].
By contrast, vacancy formation energies in concentrated al-
loys are often computed with the magnetic ground states
[40–46] or, less commonly, in the ideal paramagnetic state
[16]. In addition, the investigations of the alloying effects
on vacancy formation energies are restricted to either nearly
perfect ordered phases [47–52] or fully random solid solutions
[40–46,53–55]. A continuous and comprehensive modeling of
vacancy properties as a function of temperature and hence
of chemical and magnetic orders is still missing. It is noted
that Girifalco [56] and Ruch et al. [20] proposed to express
vacancy formation free energy G f as a function of order
parameter S:

G f (S) = (1 + αS2) · G f (0), (1)

where α is a system-dependent parameter, S is the chemical
or magnetic long-range order parameter, and G f (0) is the va-
cancy formation free energy in the chemically or magnetically
disordered state. However, these interpolation schemes are not
applicable to the alloy systems with simultaneous chemical
and magnetic evolutions.

There are few theoretical and experimental studies on va-
cancy properties in fcc Fe-Ni alloys. Zhao et al. [46] used
density functional theory (DFT) calculations to obtain the dis-
tribution of vacancy formation energies in the ferromagnetic
disordered structures with 50% and 80% Ni, and compared
the DFT results with the predictions from empirical potentials.
Caplain and Chambron measured vacancy formation energies
in Fe-Ni disordered alloys with 50–94% Ni using the magnetic
anisotropy method [57,58]. However, the effects of magnetic
and chemical orders on vacancy properties remain largely
unexplored experimentally and theoretically. Besides, a com-
prehensive atomic-scale modeling of the vacancy properties as
a function of temperature and hence of chemical and magnetic
orders is still missing.

This study is aimed at elucidating the magnetochemical
effects on phase stability and vacancy formation in fcc Fe-Ni
alloys. We develop an effective interaction model, which is
parametrized on DFT results only and includes explicit chem-
ical and magnetic variables. We treat the magnetic interaction
within a generalized Heisenberg formalism [24,59] to account
for the dependence of magnetic moments on local chemical
composition and the strong longitudinal spin fluctuations in
this system [32,39,60]. The model combined with on-lattice
Monte Carlo simulations enables one to fully take into account
the simultaneous magnetic and chemical evolutions with tem-
perature on the whole composition range of the Fe-Ni alloys.

The paper is organized as follows. Details of the DFT
calculations, model parametrization, and Monte Carlo sim-
ulations are given in Sec. II. Phase stability predictions,
including chemical and magnetic transition temperatures,
phase diagram, and magnetochemical interplay, are presented
in Sec. III. The temperature and concentration dependences
of vacancy formation magnetic free energy are discussed in
Sec. IV.

II. COMPUTATIONAL DETAILS

As a first step, we performed DFT calculations, pre-
sented in Sec. II A. Then, these results were used for the
parametrization of the effective interaction model, as detailed
in Sec. II B. Finally, several Monte Carlo schemes, as de-
scribed in Sec. II C, were employed to study the phase stability
and vacancy formation properties in fcc Fe-Ni alloys.

A. DFT calculations

DFT calculations were performed using the projector
augmented wave (PAW) method [61,62] as implemented
in the Vienna Ab-initio Simulation Package (VASP) code
[63–65]. The generalized gradient approximation (GGA) for
the exchange-correlation functional in the Perdew-Burke-
Ernzerhof (PBE) parametrization [66] was employed. 3d and
4s electrons of Fe and Ni atoms were considered as valence
electrons. The plane-wave basis cutoff was set to 400 eV.
The Methfessel-Paxton broadening scheme with a smearing
width of 0.1 eV was used [67]. The convergence cutoff for
the electronic self-consistency loop was set to 10−6 eV. The
k-point grids were adjusted according to the cell size to
achieve a sampling density equivalent to a cubic unit cell
with a 163 shifted grid following the Monkhorst-Pack scheme
[68]. Atomic magnetic moments were obtained by an inte-
gration of spin-up and spin-down charge densities within the
PAW spheres, with a radius of 1.302 Å for Fe and 1.286 Å
for Ni.

Random solid solutions were represented by special
quasirandom structures (SQSs) [69] with minimized atomic
short-range order parameters [70,71]. Supercells of various
sizes (up to 128 atoms) were used for vacancy-free systems.
For vacancy-containing alloys, 108-site and 128-site super-
cells were used.

In our previous work [32], DFT calculations had been
performed in the Fe-Ni alloys with the respective magnetic
ground states, in which the atomic positions, cell shapes, and
volumes were optimized. In this study, we explored via DFT
various magnetic states of the fcc Fe-Ni structures, namely,
magnetically ordered structures, magnetically partially or-
dered structures, and magnetic SQSs. Furthermore, the local
magnetic moment constraint [8] is also applied, for instance,
to ferromagnetic and antiferromagnetic structures and mag-
netic SQSs of Fe and Ni (0.1–0.9 μB for Ni and 0.1–3.5 μB

for Fe). For these configurations, the atomic positions were
fixed to those in the magnetic ground states, while the cell
shape and volume were optimized.

B. Effective interaction model

In our previous work, effective interaction models (EIMs)
were parametrized for pure fcc Fe and Ni systems, respec-
tively [39]. In this work, they are unified and extended as
a single EIM for the whole composition range of fcc Fe-
Ni alloys. The Hamiltonian form is similar to the previous
ones used to investigate magnetic properties, phase stability
[24,72,73], and vacancy formation and diffusion properties
[13,59] of the Fe-based systems. The current EIM has the
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following form:

H =
∑

i

σi ·
(

AiM
2
i + BiM

4
i +

∑
j

σ j · Ji jMiM j

)
︸ ︷︷ ︸

magnetic

+
∑

i

σi ·
[
εi +

∑
j

σ j · (Vi j + αi jT )

]
︸ ︷︷ ︸

chemical (nonmagnetic)

, (2)

where i denotes the ith fcc lattice site, σi is the occupation
variable and is equal to 1 (or 0) for an occupied (or vacant)
lattice site, and

∑
j is a sum over all the neighboring sites up

to the fourth-neighbor shell.
In the magnetic part of the Hamiltonian, Mi is the local

magnetic moment, Ai and Bi are the on-site magnetic parame-
ters, and Ji j are the exchange interaction parameters.

In the nonmagnetic part, εi is the on-site nonmagnetic
parameter, Vi j and αi j are the nonmagnetic interaction param-
eters, and T is the absolute temperature. Indeed, the impact
of vibrational entropies of mixing on the phase stability of
fcc Fe-Ni structures is shown to be significant [32,74]. In the
present rigid-lattice EIM, we choose a rather simple way to
incorporate these effects: we introduce the nonmagnetic pa-
rameters αi j to account for the vibrational entropies of mixing
of the ferromagnetic structures, which were computed in our
previous work within the harmonic approximation [32]. This
simple treatment neglects the possible magnon-phonon cou-
pling [75] and amounts to integrating the contribution from
the fast vibrational degrees of freedom into the nonmagnetic
pair interactions. The nonmagnetic interactions thus become
the pair free energies [76–79], instead of the simple pair ener-
gies of the usual models, due to the inclusion of the entropic
contribution. We are aware that the characteristic timescales of
the magnon and phonon excitations may not be very different
[14,80]. On the other hand, our EIM is not parametrized
to capture the vibrational contribution to vacancy formation.
Instead, vacancy formation vibrational entropy is computed a
posteriori from DFT calculations. A more sophisticated treat-
ment for the vibrational degree of freedom in concentrated
alloys is beyond the scope of the present study.

The DFT database for fitting the present EIM includes
around 1200 different structures, covering various (both
chemically and magnetically) ordered, partially ordered, and
disordered structures (SQSs). For the magnetic and chemical
interaction parameters, we introduce a linear dependence on
the local concentration and a dependence on the distance from
the vacancy, in order to capture the concentration-dependent
interactions and the effects of the vacancy (see the Supple-
mental Material [81]). The resulting EIM has 43 parameters
for the vacancy-free systems and, additionally, 26 parameters
for the vacancy-containing systems. The standard deviation of
the fitted energies per atom is around 14 meV/atom and the
standard deviation of the fitted vacancy formation energies is
around 35 meV/atom. Details of the model parametrization
can be found in the Supplemental Material [81].

C. Monte Carlo simulations

Temperature-dependent properties are determined from the
EIM combined with on-lattice Monte Carlo (MC) simulations,

using 163 fcc unit cells containing 16 384 lattice sites. Some
of these properties are defined as follows.

All the alloy concentrations are expressed in the Ni atomic
fraction. Following the Warren-Cowley formulation [70], the
atomic short-range order (ASRO) parameter for the nth coor-
dination shell is calculated as follows:

ASROn = 1 − xn
Ni

xNi
, (3)

where xNi is the nominal Ni concentration and xn
Ni is the

average local Ni concentration in the nth coordination shell
of Fe atoms. The atomic long-range order (ALRO) parameter
for L10-FeNi and L12-FeNi3 is defined as

ALRO = NFe
Fe

NFe
− NNi

Fe

NNi
, (4)

where NFe and NNi are the total numbers of Fe and Ni, re-
spectively, and NFe

Fe and NNi
Fe are the numbers of Fe in the Fe

and Ni sublattices, respectively. The Curie temperature TCurie

is estimated as the inflection point of the following function
[72] fitted to the obtained magnetization values:

M(T )

M(T = 1K )
= (1 − aT )

1 + exp
( − b

c

)
1 + exp

(
T −b

c

) . (5)

For vacancy-free systems, we use three types of MC
schemes for different purposes: spin Monte Carlo (SMC),
spin-atom canonical Monte Carlo (CMC), and semi-grand-
canonical Monte Carlo (SGCMC) [79]. In SMC simulations,
the atomic configuration is fixed while the magnetic config-
uration evolves with temperature. SMC simulations are used
to obtain magnetic properties (e.g., magnetization, magnetic
short-range order, and TCurie) for a fixed atomic configuration.
In CMC simulations, the chemical composition is fixed, while
the atomic and magnetic configurations are equilibrated. CMC
simulations allow one to determine magnetic properties, the
ALRO and ASRO parameters of the equilibrium phase for a
given Ni concentration and temperature. SGCMC simulations
are used as a convenient way to construct the phase diagram
and its principle can be found in Refs. [78,79,82].

In principle, quantum statistics should be used for the
magnetic degree of freedom below the magnetic transition
temperature. This has been previously done for the pure sys-
tems [12,13,39,83], but a systematic application to alloys can
be quite complicated and involve further approximations. In
this study, classical statistics is used to control the magnetic
and chemical evolutions in alloys for the whole composition
range.

For vacancy-containing systems, we compute the vacancy
formation free energy G f , which is linked to the equilibrium
vacancy concentration [V ]eq via

[V ]eq = exp

(
− G f

kBT

)
, (6)

where G f can include all the nonconfigurational entropic
contributions. To evaluate G f , we use a Widom-type MC
scheme [84–86], in which the free-energy difference G1 − G0

between the system 1 and 0 is computed as

G1 − G0 = −kBT ln

〈
exp

(
−E1 − E0

kBT

)〉
0

, (7)
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where E1 and E0 are the energies of the two systems in the
same microstate, and 〈·〉0 denotes the ensemble average of
exp(−E1−E0

kBT ) in the system 0. If there is the same number of
atoms in the system 1 as in the system 0, and if there is one
vacancy in the system 1 and no vacancy in the system 0, the
free-energy difference from Eq. (7) is equal to G f . The details
of the scheme are given in the Supplemental Material [81].

Please note that our EIM is not parametrized to predict the
vacancy formation vibrational entropy Svib

f . Therefore, what
is directly predicted from our EIM is the vacancy formation
magnetic free energy Gmag

f , which includes finite-temperature
effects due to magnetic and chemical excitations. On the
other hand, we adopt a very simplified treatment for Svib

f :
we compute it in the magnetic ground states of fcc Fe and
Ni from DFT, and use a linear interpolation with respect
to concentration to obtain Svib

f in concentrated alloys, which
is then added a posteriori to the EIM results to obtain the
complete G f (= Gmag

f − T Svib
f ). Indeed, accurately computing

Svib
f in concentrated alloys involves various challenging issues

in DFT and MC and necessitates a dedicated study. Therefore,
this paper is focused on finite-temperature magnetochemical
effects on vacancy formation free energy.

III. PHASE STABILITY OF FCC FE-NI ALLOYS

This section is focused on the phase stability prediction
from the EIM for vacancy-free fcc Fe-Ni alloys. First, we
validate our EIM by comparing its predictions to experimental
data. We also compare the vibrational and magnetic entropic
contributions to the chemical transitions. Then, we discuss the
calculated fcc phase diagram with other theoretical results. In
the last section, we elucidate the interplay between magnetic
and chemical degrees of freedom.

A. Magnetic and chemical transition temperatures

In the following, we evaluate the accuracy of the EIM by a
comparison of the predicted magnetic and chemical transition
temperatures with the experimental values. A comparison of
ground-state magnetic, energetic properties, and vibrational
entropies of mixing between the EIM and DFT results is also
given in the Supplemental Material [81].

According to the EIM, the fcc random solid solutions
with more than 20% Ni have a collinear ferromagnetic (FM)
ground state (see the Supplemental Material [81]). Figure 1
shows the predicted and experimental TCurie. The experimental
TCurie were measured in the samples quenched from 923 to
1273 K [87,88] with nonzero ASRO. Our SMC results of
TCurie are obtained with the fully random structures (ASRO
equal to zero), whereas the CMC results are obtained with the
equilibrium spin-atom structures which have stronger ASRO
than the experimental samples. The predicted Curie tempera-
tures of the experimental samples should therefore lie between
the CMC and SMC curves.

In alloys with xNi > 0.45, the CMC results of TCurie are in
very good agreement with the experimental data in Fig. 1,
while the SMC results are slightly lower. This indicates that
the experimental ASRO is closer to that of the equilibrium
structures obtained in CMC simulations than the zero ASRO
of the random alloys. However, the CMC results show a large

FIG. 1. TCurie of fcc random solid solutions from the experiments
[87–89], the current EIM, and the previous model in Ref. [24]. The
spin Monte Carlo results in Ref. [24] are reported only for 50% and
75% Ni; here we compute the values for other concentrations using
their model.

deviation from the experimental data in alloys with xNi < 0.4.
Indeed, the predicted equilibrium structures around 10–40%
Ni at 570–700 K consist of two different disordered phases,
as will be shown in Sec. III B. Therefore, the structures from
the CMC simulations do not correspond to the experimental
homogeneous disordered samples. Meanwhile, the difference
between the SMC results and experimental TCurie in alloys
with xNi < 0.3 may be due to the nonzero ASRO in the mea-
sured samples. In addition, as the Invar region is not even
perfectly clear from first-principles studies (e.g., concerning
the magnetic ground states [32,90]), we prioritize the model
description for the Ni-rich alloys, and hence our model may
describe less well the properties in the alloys very rich in Fe.

The ordered structures L10-FeNi and L12-FeNi3 have a FM
ground state, with the experimental TCurie higher than those
in the disordered alloys of the same compositions. This point
is well reproduced by the EIM predictions, which compare
favorably with the experimental results, as shown in Table I.

The chemical order-disorder transition temperatures Tchem

at 50% and 75% Ni are obtained from the CMC simulations.
As shown in Fig. 2, the ALRO parameter changes abruptly
around 598 K and 766 K at 50% and 75% Ni, respectively, in
excellent agreement with the experimental Tchem of 593 K at
50% Ni [94] and of 770–790 K at 75% Ni [93,95,96]. Above
Tchem, the equilibrium structures are found to still retain a
degree of ASRO.

We find that Tchem at 50% and 75% Ni are increased by
332 K and 154 K, respectively, if the vibrational contribu-
tion is switched off in the EIM. This confirms the strong
vibrational effects on the chemical transitions in fcc Fe-Ni

TABLE I. Comparison of TCurie of L10-FeNi and L12-FeNi3

between the EIM prediction from SMC simulations and the
experiments.

This work Expt.

L10-FeNi 845 K 840 K [91]
L12-FeNi3 968 K 954 K [92], 940 K [93]
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FIG. 2. Predicted temperature evolution of the reduced magneti-
zation, the ASRO (of the first two shells) and ALRO parameters in
the alloys with (a) 50% and (b) 75% Ni.

alloys as suggested in our previous DFT study [32]. As shown
in Table II, the previous DFT study showed that considering
only the ideal configurational entropy leads to a largely over-
estimated values of Tchem, whereas a reasonable estimation
of Tchem can be obtained if vibrational entropies of mixing
are included. The effects of magnetic excitations, which are
neglected in the previous DFT study [32] but are accounted
for in the EIM, are found to have a smaller impact than the
vibrational contribution.

One of the motivations of developing the present EIM is
to improve the phase stability prediction of the previous fcc
Fe-Ni model in Ref. [24]. For instance, the predicted TCurie

from this previous model in the disordered structures show a
linear dependence on alloy composition and are lower than
the experimental data, as shown in Fig. 1. In addition, Tchem

in the structures with 50% and 75% Ni concluded in Ref. [24]
are higher than the corresponding TCurie, in contradiction with
the experimental results. These inconsistencies are fixed in
the present EIM, which gives a correct prediction of both the
magnetic and chemical transition temperatures.

B. Fcc Fe-Ni phase diagram

The phase diagram is constructed by means of the SGCMC
simulations. Figure 3 shows the fcc Fe-Ni phase diagram
predicted by the EIM, compared with those from the DFT
[32] and CALculation of PHAse Diagrams (CALPHAD) [27]
studies. Though, experimentally, the bcc Fe-Ni phase plays
an increasingly important role below 10% Ni [27,29], its
consideration is beyond the scope of the present fcc lattice-
based study. In the following, we denote L10 and L12 as the
ordered phases around 50% and 75% Ni, respectively, and γFM

TABLE II. Chemical order-disorder transition temperatures (in
K) in the alloys with 50% and 75% Ni. The contributions considered
in the calculations are indicated in the parentheses.

50% Ni 75% Ni

DFT [32] (conf) 920 1030
DFT [32] (conf+vib) 640 830
EIM, this work (conf+mag) 930 920
EIM, this work (conf+vib+mag) 598 766
Expt. [93–96] 593 770–790

and γPM as the FM and paramagnetic (PM) solid solutions,
respectively.

According to the EIM prediction, the phase diagram below
570 K consists of four monophasic regions (Fe-rich γPM, L10,
L12, and Ni-rich γFM), which are separated by three corre-
sponding biphasic regions. From 570 to 600 K, the biphasic
region γPM + L10 is replaced by the biphasic regions γFM +
L10 and γPM + γFM, which disappear at 600 K and 700 K,
respectively. The L10- and L12-disorder transitions at 50%
and 75% Ni occur at 600 and 776 K, respectively.

The major difference between the EIM-predicted phase
diagram and the DFT one [32] is the absence of γPM in the
latter, which considered fully FM phases only. On the other
hand, there is no significant difference in the other parts of
the two phase diagrams involving the ordered phases. This
is not surprising considering the high Curie temperatures of
the ordered phases, which remain FM up to the order-disorder
transition temperatures.

Recently, Ohnuma et al. [27] determined experimentally
the phase equilibria in Fe-Ni alloys between 673 K and
973 K and revised the thermodynamic descriptions in the
CALPHAD modeling. In particular, the L10-disorder transi-
tion temperature is predicted to be 550 K using the revised
CALPHAD parameters, in better agreement with the experi-
mental value of 593 K [94,97] than the previous CALPHAD
prediction of 313 K by Cacciamani et al. [29]. The fcc phase
diagram calculated with the revised CALPHAD parameters of
Ohnuma et al. [27] is presented in Fig. 3. Despite some dif-
ferences in the phase boundaries involving the paramagnetic
phase, the calculated phase diagrams from EIM and CAL-
PHAD are similar overall. Both predict a small two-phase
region between γFM and L10, and a triangle-shape miscibility
gap between the ferromagnetic and paramagnetic random al-
loys. The miscibility gap is consistent with the observations of
chemical and magnetic clusters in the Invar alloys [98–101],
in which the Ni-rich and Fe-rich local regions are suggested
to be ferromagnetic and paramagnetic, respectively [99,100].
This miscibility gap will be discussed in more detail in the
next section.

C. Interplay between chemical and magnetic orders

Magnetization is known to have an impact on the chemical
order-disorder transition temperature [6,34]. To study how
different magnetic states influence the chemical transitions,
we control the magnetic state with a temperature Tspin different
from the temperature controlling the chemical evolution. To
do so, we adopt the adiabatic approximation for the mag-
netic degree of freedom, namely, assuming that the magnon
excitations are faster than the chemical evolution. Here we
consider two extreme cases for the magnetic state, namely,
the magnetic ground state and the PM state.

Table III shows the chemical transition temperatures in the
alloys with 50% and 75% Ni with different magnetic states.
In the alloy with 75% Ni, the predicted transition temperature
ranges from 715 K to 885 K depending on the magnetic state
of the system. A strong ferromagnetic order as in the magnetic
ground state tends to further stabilize the ordered alloy over
the disordered one, while the paramagnetic order reduces the
phase stability of L12-FeNi3. On the other hand, the trend is
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FIG. 3. The fcc Fe-Ni phase diagram predicted by the present EIM, compared to the fcc phase diagrams from (a) our previous DFT study
[32] and (b) the CALPHAD study by Ohnuma et al. [27]. Here the CALPHAD phase diagram is computed for the present study by using the
parameters of the fcc phases given in Ref. [27], in which only the stable bcc-fcc phase diagram was reported.

reversed in the alloy with 50% Ni. In addition, the influence
of the magnetic state on the L10-disorder transition temper-
ature is less important than on the L12-disorder transition
temperature.

We have shown that there is a phase separation in the
phase diagram around 10–40% Ni and 570–700 K. To observe
the phase separation in a canonical system, the equilibrium
structure for a given composition is obtained from CMC
simulations. The compositions of the coexisting phases are
then estimated from the distribution of local Ni concentration
[72], which is computed for each fcc lattice site as the atomic
fraction of Ni atoms within the fifth coordination shell.

Figure 4(a) shows such distributions in the equilibrium
spin-atom structures at 600 K. According to our computed
phase diagram, the two-phase composition range at 600 K is
between 14% and 40% Ni, as indicated by the vertical lines
in Fig. 4(a). For the equilibrium structures with 14% and
40% Ni, we observe a single peak centered on the nominal
composition, which is the signature of a homogeneous single-
phase system. At intermediate concentration, the distribution
exhibits two peaks, indicating the compositions of the two
separated phases, namely, 14% and 40% Ni.

The phase separation may be chemically driven, with the
magnetic state simply following the composition of the sep-
arated phase, or it may be magnetically driven. To elucidate
this point, we study the phase equilibrium in the coexis-
tence region by constraining the magnetic state of the system.
Four types of constraints are considered, namely, the FM
state, the nonmagnetic (NM) state, the magnetic ground state
(GS), and the fully paramagnetic (PM) state. Figure 4(b)

TABLE III. Chemical order-disorder transition temperatures (in
K) in the alloys with 75% and 50% Ni, obtained with different mag-
netic states. EQ: equilibrium magnetic state. GS: magnetic ground
state within the adiabatic approximation (Tspin = 1 K). PM: param-
agnetic state within the adiabatic approximation (Tspin = 1500 K).

Composition EQ GS PM

75% Ni 766 885 715
50% Ni 598 555 610

presents the resulting distributions of local Ni concentra-
tion in the equilibrium structures with nominal 35% Ni at
600 K. The distributions obtained in the FM, GS, and PM
states exhibit one single peak at the nominal concentration,
while those obtained in the equilibrium magnetic state and
the NM state exhibit two peaks but at different locations.
Thereby, there are three different equilibrium atomic states.
The equilibrium atomic structure in the NM state is practi-
cally a phase separation between fcc Fe and Ni, in line with
the positive mixing energies of the nonmagnetic fcc solid
solutions. From these results, we conclude that the phase
separation between γPM and γFM is driven by the magnetic
interactions.

On the other hand, the magnetic properties of the al-
loy with a given composition depend on both the atomic
long-range and short-range orders (ALRO and ASRO, respec-
tively). In order to perform a quantitative analysis of such
effects, we extract from the CMC simulations 10 different
chemical configurations of the 75% Ni alloy. These structures
are representative of the perfect L12 ordered structure and
the fully random alloy, as well as other intermediate states.
For these atomic configurations, we run SMC simulations to
equilibrate the magnetic state and measure the corresponding
Curie temperature.

FIG. 4. Distribution of local Ni concentration at 600 K. (a) Equi-
librium structures with various Ni content, without constraining the
magnetic state. (b) Equilibrium structures with 35% Ni. EQ: equi-
librium magnetic state. FM: ferromagnetic. NM: nonmagnetic. PM:
paramagnetic within adiabatic approximation (Tspin = 1500 K). GS:
magnetic ground state within adiabatic approximation (Tspin = 1 K).
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FIG. 5. Curie temperatures as functions of ALRO and ASRO1 in
the structures with (a), (b) 75% Ni and (c), (d) 50% Ni. The numbers
beside the symbols are used to label the same chemical configuration.
The top X axis in (b) and (d) indicates the corresponding average
number of first nearest Ni neighbors for an Fe atom.

Figure 5 shows the Curie temperatures of these structures
as functions of ALRO and the atomic short-range order of the
first shell (ASRO1). The ordering of the configurations is the
same in the two figures [e.g., the fifth data from the left in (a)
and (b), or in (c) and (d), correspond to the same structure].
The Curie temperature decreases from 968 K in the perfect
L12 structure to 821 K in the completely disordered one. For
structures with vanishing ALRO, their Curie temperatures can
still differ by as much as about 80 K due to the remaining
ASRO. Indeed, it is found that the Curie temperatures have
a rather linear dependence on ASRO1 [Fig. 5(b)]. A similar
investigation is also performed at 50% Ni [Figs. 5(c) and
5(d)]. The Curie temperatures are found to be similar among
the ordered structures (ALRO > 0), whereas they are more
sensitive to the variation in the ASRO1 in the disordered state
(ALRO = 0).

IV. VACANCY FORMATION PROPERTIES IN fcc
Fe-Ni ALLOYS

A. Accuracy of the model for vacancy-containing systems

The present EIM is based on our previously developed
EIMs of fcc Fe and Ni (namely, the previous model param-
eters are kept), whose accuracy has been demonstrated in a
previous study [39]. In the following, we validate the EIM
description of vacancy-containing Fe-Ni alloys by comparing
its predicted vacancy formation energies with DFT results in
the ordered and disordered structures.

TABLE IV. Vacancy and antisite formation energies (in eV) in
the Fe and Ni sublattices calculated from DFT and EIM for the
stoichiometric L12-FeNi3 and L10-FeNi structures at the 0 K limit.
VFe and NiFe denote a vacancy and a Ni antisite in the Fe sublattice,
respectively.

L12-FeNi3 L10-FeNi

DFT EIM DFT EIM

VFe 1.392 1.300 1.897 1.561
VNi 1.593 1.666 1.847 1.794
FeNi 0.256 0.287 0.275 0.253
NiFe

Calculating vacancy formation energies in alloys from
DFT is nontrivial because chemical potentials in alloys cannot
be obtained in a straightforward way as in pure systems. In
an ordered phase with a dilute amount of point defects (e.g.,
vacancies and antisites), chemical potentials and point-defect
formation energies can be calculated within the grand canon-
ical ensemble formalism [47,50] or the canonical ensemble
formalism [48,49,51,52]. Here we use the canonical ensemble
formalism, which was first proposed by Hagen and Finnis
[48] and further developed by Mishin and Herzig [49], to
compute vacancy and antisite formation energies. The re-
sults calculated using the DFT and EIM data are shown in
Table IV.

First, it can be seen that the antisite formation energies are
much lower than the vacancy formation energies in the Fe-Ni
ordered structures. The Fe-Ni ordered structures are therefore
the so-called antisite-disorder compounds, which have been
studied in detail by Mishin and Herzig [49]. In particular,
it is shown that the antisite formation energies in the two
sublattices are equal in antisite-disorder compounds [49].

As shown in Table IV, there is a reasonable agreement
between the DFT and EIM predictions of the vacancy for-
mation energies in the Fe and Ni sublattices of L12-FeNi3

and in the Ni sublattice of L10-FeNi, while the EIM result
in the Fe sublattice of L10-FeNi is underestimated by 0.34 eV
compared with the DFT one.

In concentrated disordered alloys, it is customary to
calculate the local vacancy formation energy at site i as
[41,43,46,55] Ei

f ,

Ei
f = Etot,Vi − Etot,0 + μ, (8)

where Etot,0 is the energy of the system without a vacancy,
Etot,Vi is the energy of the system with a vacancy at site i,
and μ is the chemical potential of the removed atom in the
system. In the DFT-SQS approach, μ is often calculated via
the Widom substitution [43,46,84], which requires a large
number of atom substitutions at different sites. Since our
objective is to validate the present EIM, we may consider the
arithmetic average of vacancy formation energy 〈Ei

f 〉, which
can be readily obtained from the DFT data without calculating
μ. Indeed, the relation Etot,0 = N (xAμA + xBμB) allows one to
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FIG. 6. Average vacancy formation energy as a function of Ni
concentration for the random Fe-Ni structures in the magnetic ground
state. The error bars denote the standard deviations of local vacancy
formation energies.

eliminate μA and μB in 〈Ei
f 〉 [41]:

〈Ei
f 〉 = xA(〈Etot,VA〉 − Etot,0 + μA)

+ xB(〈Etot,VB〉 − Etot,0 + μB)

= xA〈Etot,VA〉 + xB〈Etot,VB〉 − N − 1

N
Etot,0, (9)

where 〈Etot,VA〉 is the average energy of the system with an A
atom removed.

A comparison of 〈Ei
f 〉 in the random Fe-Ni structures be-

tween the DFT and EIM predictions is given in Fig. 6. The
DFT results are obtained with the 108-site SQSs. For each
SQS, nine different Fe and Ni sites are considered to obtain
〈Etot,VFe〉 and 〈Etot,VNi〉, respectively. The EIM results are cal-
culated in the 16 384-site random structures in the magnetic
ground state, and 〈Etot,VFe〉 and 〈Etot,VNi〉 are averaged over all
the Fe and Ni sites, respectively. The DFT results suggest that
〈Etot,VNi〉 decreases with increasing Ni concentration, which is
also well reproduced by the EIM.

B. Temperature dependence of vacancy formation properties

The temperature evolution of Gmag
f in the Fe-Ni alloys with

50% and 75% Ni, where the system successively undergoes
the chemical and magnetic transitions with increasing tem-
perature, is investigated and the results are shown in Fig. 7.
In the equilibrium phases, Gmag

f first increase with increasing
temperature, then decrease abruptly across the chemical tran-
sition temperatures, and, finally, increase slowly.

This variation of Gmag
f is clearly related to the changes of

magnetic and chemical orders in the equilibrium phases. To
separate these contributions, we calculate Gmag

f in the struc-
tures where the chemical configurations are frozen, while the
magnetic configurations are equilibrated at each temperature.
It can be seen that Gmag

f in the equilibrium phases with 50%
and 75% Ni closely follow those in the corresponding ordered
structures up to 500 K and 600 K, respectively. This can be
correlated with the previous results in Fig. 2, which show that
these alloys remain fairly ordered up to 500 K and 600 K,

FIG. 7. Gmag
f as a function of temperature in the alloys with (a) 50

and (b) 75% Ni. The solid lines are obtained in the equilibrium
structures and the vertical lines denote the corresponding chemical
and magnetic transition temperatures. The dash-dotted (or dashed)
lines are obtained in the random (or ordered) structures where the
chemical order is frozen and only the magnetic order evolves with
temperature. The dotted lines are obtained in the ordered structures
in the magnetic ground state (both chemical and magnetic configura-
tions are frozen).

with an ALRO > 0.96. Near the chemical transition temper-
atures, Gmag

f in the equilibrium phases deviate the trends in
the ordered structures, but approach those in the disordered
phases. As Gmag

f are higher in the ordered structures than in
the respective disordered ones, the chemical transitions thus
lead to a decrease in Gmag

f .
Figure 7 indicates that Gmag

f in the ordered and disordered
structures increase with increasing temperature. Such varia-
tions are related not only to magnetic excitations, but also
to the changes of weights in the local vacancy formation
energies. Indeed, even if the structures are chemically and
magnetically frozen, Gmag

f still tend to increase with temper-
ature. For example, Gmag

f in L12-FeNi3 with the magnetic
ground state can be calculated as

Gmag
f = − kBT ln

[
0.25 exp

(
− EFe-lat

f

kBT

)

+ 0.75 exp

(
− ENi-lat

f

kBT

)]
, (10)

where EFe-lat
f and ENi-lat

f are the vacancy formation energies
in the Fe and Ni sublattices given in Table IV, respectively.
As suggested by the expression, the lower EFe-lat

f has a dom-
inant weight in the evaluation of Gmag

f at low temperatures,

but EFe-lat
f and ENi-lat

f eventually have similar weights at high
temperatures. As a result, Gmag

f in L12-FeNi3 increases from

EFe-lat
f at low temperature, to the arithmetic average of all lo-

cal vacancy formation energies at the high-temperature limit,
namely,

Gmag
f = 0.25EFe-lat

f + 0.75ENi-lat
f for T → +∞. (11)

The dotted lines in Fig. 7 denote Gmag
f in L10-FeNi and

L12-FeNi3 in the respective magnetic ground states. Com-
paring these results to Gmag

f in the same ordered structures
but with the equilibrium magnetic configurations, it can be
concluded that the increase of Gmag

f in the latter cases is
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TABLE V. Solute-vacancy binding free energy (in eV) in fcc
Fe and Ni in the magnetic ground state (MGS) and the PM state.
The binding free energies in the intermediate temperature range lie
between the values of the MGS and PM states. In our convention,
a positive value indicates an attraction between the vacancy and the
solute.

Ni+V in fcc Fe Fe+V in fcc Ni

1NN 2NN 1NN 2NN

MGS 0.02 0.03 −0.05 −0.03
PM (1500 K) 0.01 −0.03 −0.04 −0.07

mainly due to the magnetic excitations. More specifically, it
is primarily related to the transversal spin fluctuations since
the longitudinal spin fluctuations in the ordered structures are
found to be relatively weak below the Curie temperatures.
With additional DFT calculations, we confirm the increasing
behavior of Gmag

f predicted by the EIM, though the magnetic
disordering effects are found to be somehow exaggerated by
the EIM (see the Supplemental Material [81]).

Finally, Fig. 7 shows that the variation in Gmag
f due to

magnetic excitations occurs even at very low temperatures.
This is related to the use of classical statistics instead of Bose-
Einstein statistics for the spin degree of freedom [13,39].
The quantum statistics was adopted in our previous study
of vacancy formation in pure fcc Fe and Ni [39]. For that,
it is necessary to estimate the magnon density of states,
which are configuration dependent. As alloys with various
chemical orders and compositions are investigated in this
study, a systematic application of quantum statistics to these
configurations can be very complicated and is therefore not
considered here.

C. Concentration dependence of vacancy formation properties

The predicted magnetic free energies of the Ni-vacancy
binding in Fe and the Fe-vacancy binding in Ni are shown
in Table V. The solute-vacancy binding free energy is defined
as the following free-energy difference:

Gb = G(SN−1V ) + G(SN−1X ) − G(SN ) − G(SN−2XV ),

(12)

where S, V , X denote, respectively, host atoms, the vacancy,
and the solute. The solute-vacancy interactions in Fe and Ni
in the magnetic ground state are quite weak, being marginally
attractive and repulsive, respectively. The magnetic transition
in fcc Fe and Ni changes the binding magnetic free energy
only slightly, by less than 0.04 eV. According to these results,
the Ni-V interaction in fcc Fe and the Fe-V interaction in Ni
are not significant at any temperature.

The predicted concentration dependence of Gmag
f in fcc Fe-

Ni alloys at several temperatures is shown in Fig. 8. According
to the calculated phase diagram, the equilibrium phases above
770 K are solid solutions for all compositions. As shown
in Fig. 8, the computed Gmag

f at 800 K and above tends to
decrease with increasing Ni concentration. This trend is also
observed in the curve of Gmag

f at 700 K, except in the com-

FIG. 8. The predicted Gmag
f as a function of Ni concentration

at several temperatures, compared to the experimental vacancy for-
mation energies (fcc Fe [102–105], fcc Ni [106–110], fcc Fe-Ni
alloys [57,58]). The solid lines denote the results obtained in the
equilibrium spin-atom structures, whereas the dotted line denotes
the results obtained in the chemically disordered structures in the
magnetic ground states (MGS), which are collinear FM above 25%
Ni and noncollinear below 25% Ni (see the Supplemental Material
[81]).

position range of 60–80% Ni where the alloys have an L12

ordered structure.
As shown in Fig. 8, Gmag

f increase weakly with increasing
temperature in the disordered structures with more than 30%
Ni, while the trend is reversed in the disordered structures be-
low 30% Ni. This can be correlated with our previous results,
which suggest that Gmag

f in fcc Fe and in Ni decreases and
increases with increasing temperature, respectively [39].

The small variation of Gmag
f with temperature in Fig. 8 does

not mean that magnetism has no impact on Gmag
f . Indeed, there

is already a large extent of magnetic disorder at temperatures
where the equilibrium chemical configurations are disordered.
Therefore, the effects of thermal spin fluctuations are less
significant in the disordered alloys with the equilibrium mag-
netic states. In Fig. 8, we also show Gmag

f calculated in the
disordered structures in the respective magnetic ground states.
They are much lower than the alloys with the equilibrium
magnetic states in the concentrated composition range. As
presented in Fig. 9, the difference between the two curves of
Gmag

f at 1500 K reaches a maximum of 0.32 eV around 65%
Ni, where the Curie temperature is also the highest. The latter
is a sign of the magnitude of the magnetic interaction energy,
which is also the strongest around 65% Ni according to our
model. Indeed, it is shown that the difference between Gmag

f in
the paramagnetic state and the ground state is closely related
to the magnetic interaction energy [39].

Finally, the calculated Gmag
f are compared to the exper-

imental vacancy formation energies E f in Fig. 8. We note
that the calculated Gmag

f and E f are similar above 1000 K,
which is in the range of temperatures where the measurements
of E f were performed. To the best of our knowledge, the
measurements of E f in fcc Fe-Ni alloys have been reported
only by Caplain and Chambron using magnetic anisotropy
measurements [57,58]. In their first study, measurements were
performed in the disordered Fe-Ni samples with 70% Ni

024106-9



LI, FU, NASTAR, SOISSON, AND LAVRENTIEV PHYSICAL REVIEW B 106, 024106 (2022)

FIG. 9. Difference between Gmag
f in the disordered structures at

1500 K with the equilibrium magnetic states and with the magnetic
ground states, the average magnetic exchange interaction energies
|〈Ji jM iM j〉|, and the Curie temperatures in the disordered structures.

quenched from between 873 and 973 K, and E f was found
to be 1.57 eV [57]. In their subsequent study in the disor-
dered samples with 50% to 94% Ni quenched from above the
chemical transition temperature, E f were found to be 1.80 eV
regardless of the composition [58]. It is difficult to draw a
definitive conclusion regarding the concentration dependence
or the values of E f based solely on these two experiments,
which could have large experimental uncertainty as in the
cases of pure fcc Fe and Ni. On the other hand, our results
of Gmag

f fall between E f from these two sets of measurements
and they are within the uncertainty of the available experi-
mental data over the whole concentration range. It would be
useful to have further experimental investigations to clarify
the validity of the current predictions.

V. CONCLUSION

Phase stability and vacancy formation in fcc Fe-Ni alloys
are investigated for a broad composition-temperature range,
using an effective interaction model (EIM) combined with on-
lattice Monte Carlo simulations.

Parametrized on DFT data only, the present EIM enables
a good prediction of the experimental magnetic and chemi-
cal transition temperatures in the fcc Fe-Ni alloys over the
whole range of composition. Compared with magnetic excita-
tions, lattice vibrations show a larger impact on the chemical
order-disorder transitions. The predicted fcc phase diagram is
compared to the most recent CALPHAD assessment, showing
an overall good agreement. In particular, the EIM predicts a
phase separation in the disordered alloys around 10–40% Ni
and 570–700 K, which is shown to be magnetically driven.
In addition, the magnetic state has a strong influence on the
chemical order-disorder transition temperature, which can dif-
fer by up to 170 K. The Curie temperature is sensitive to
both atomic long-range and short-range orders, and tends to
increase with increasing chemical ordering.

Vacancy formation magnetic free energy Gmag
f in fcc Fe-Ni

alloys is studied as a function of temperature and composition.
It is worth noting that the temperature evolution of Gmag

f in the
magnetic alloys cannot be described by the Ruch model [20]
or the Girifalco model [56] due to the simultaneous evolution
of magnetic and chemical degrees of freedom. We find that
magnetic disorder leads to an increase of Gmag

f , while chem-
ical disorder has the opposite effect. In the solid solutions,
Gmag

f tends to decrease with increasing Ni concentration. Our
results reveal that the effects of magnetic excitations and
transitions on vacancy formation properties are much more
significant in concentrated Fe-Ni alloys than in pure Fe and
Ni, due to the strong magnetic interaction in the concentrated
alloys as revealed in the concentration dependence of Curie
temperatures.
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