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The propagation of incoherent elastic energy in a three-dimensional solid due to the scattering by many
randomly placed and oriented, pinned dislocation segments is considered in a continuum mechanics framework.
The scattering mechanism is that of an elastic string of length L that re-radiates as a response to an incoming
wave. The scatterers are thus not static but have their own dynamics. A Bethe-Salpeter (BS) equation is
established and a Ward-Takahashi identity (WTI) is demonstrated. The BS equation is written as a spectral
problem that, using the WTI, is solved in the diffusive limit. To leading order, a diffusion behavior indeed
results and an explicit formula for the diffusion coefficient is obtained. It can be evaluated in an independent
scattering approximation in the absence of intrinsic damping. It depends not only on the bare longitudinal
and transverse wave velocities but also on the renormalized velocities as well as attenuation coefficients of
the coherent waves. The influence of the length scale given by L, and of the resonant behavior for frequencies
near the resonance frequency of the strings can be explicitly identified. A Kubo representation for the diffusion
constant can be identified. Previous generic results, obtained with an energy transfer formalism, are recovered
when the number of dislocations per unit volume is small. This includes the equipartition of diffusive energy
density which, however, does not hold in general. The formalism bears a number of similarities with the behavior
of electromagnetic waves in a medium with a random distribution of dielectric scatterers; the elastic interaction,
however, is momentum dependent.
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I. INTRODUCTION

Dislocations have long been known to be a crucial com-
ponent in the mechanical behavior of metals and alloys. In
other areas of condensed-matter physics, however, they have
often been considered rather a nuisance. Nevertheless, in re-
cent years, increasing evidence has become available to the
effect that dislocations, rather than an obstacle, can become
a useful tool to increase the performance of functional ma-
terials. For example, dislocations have been shown to drive
the amorphization of phase-change materials [1]; they can
contribute to the control of polarization in bulk ferroelectrics
[2] and they considerably alter the distribution of electronic
and ionic defects in oxides [3,4]. Importantly, for optoelec-
tronic devices, Massabuau et al. [5] reported evidence for
carrier localization in the vicinity of dislocations in InGaN.
However, progress along these lines has been hampered by
a lack of understanding of the basic physics of dislocations,
considered one-dimensional, extended, topological defects in
a three-dimensional material.

Additionally, from a condensed matter physics point of
view, surprisingly little appears to have been studied about the
influence of dislocations on thermal transport, although exper-
imental evidence of a measurable effect have been reported.
Indeed, Kotchetkov et al. [6] showed, using a relaxation
time approximation, that dislocations have a measurable ef-
fect on the thermal conductivity of GaN layers. Kamatagi

et al. [7] and Ma et al. [8] studied the effect of point defects
and dislocations on bulk wurtzite GaN, and found it to be
significant. The same is true for freestanding GaN thin films
[9]. A relaxation time approximation was also used by Singh
et al. [10] to study the effect of stacking faults and dislocations
on the phonon conductivity of plastically deformed LiF and
Ge, with satisfactory results. Recently, the role of disloca-
tions has become the focus of much attention and there is
increasing quantitative evidence linking a decrease in thermal
conductivity with an increase in dislocation density [11–16].
Additionally, a numerical experiment [17] has concluded that
decorated dislocation engineering can lead to interesting fab-
rication strategies for thermoelectric devices.

Importantly, lack of a detailed understanding of phonon
transport seriously hampers the fabrication of practical ther-
moelectric materials [18] and there is significant activity
around this issue. It is worth mentioning here, for example,
the calculation of thermal conductivity using first-principles
atomistic simulations and the Boltzmann transport equa-
tion [19,20]. However, current simulation tools appear to still
be insufficient to gauge the impact of defects, particularly
extended, resonant defects such as dislocations, on phonon
transport [21]. Molecular dynamics methods have also been
used [22,23], but shortcomings have recently been pointed
out by Bedoya-Martínez et al. [24]. Quite recently, and after
decades of formulation of the traditionally used theoretical
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models for the phonon-dislocation interaction [25,26],
dislocation dynamics such as used in the present paper has
been incorporated into the understanding of thermal transport
[27,28].

The interaction of acoustic waves—phonons—with dislo-
cations has a long and distinguished history of scholarship
[29–33]. However, only in recent years has it been possible
to make sufficient quantitative progress to have, say, explicit
formulas for the scattering cross section of an elastic wave
by an oscillating dislocation segment in three dimensions for
arbitrary wave polarization, dislocation, and Burgers vector
orientation [34]. Use of the resulting formalism together with
a multiple scattering approach has led to a nonintrusive way to
characterize dislocation densities in metals and alloys through
resonant ultrasound spectroscopy [35] and in situ time-of-
flight measurements [36–38].

Maurel et al. [39], working within the framework of the
continuum theory of elasticity, have developed a perturbation
scheme for the propagation of elastic waves through a random
array of pinned vibrating dislocations. On the grounds of that
model, the problem of coherent propagation, and attenuation,
has been investigated thoroughly in the independent scattering
approximation (ISA) [40]. The coherent propagation regime
carries only part of the information about the transport prop-
erties of a given physical system [41]. A complete treatment
requires the investigation of incoherent behavior. Of special
interest is the diffusive range, which is determined by the
transfer of energy density and typically starts at transport
distances a bit larger than a few attenuation lengths. The
general approach to this problem is based on the asymptotic
solution of the Bethe-Salpeter (BS) equation accompanied
with the relevant Ward-Takahashi identity (WTI). In turn, the
form of the WTI depends on the specifics of the system under
consideration [41].

Diffusion techniques for incoherent waves were devel-
oped to treat the problem of electron localization [42–44]
and were later used for the description of the localization of
(scalar) acoustic waves moving through a random array of
hard scatterers [45]. An eigenvalue method to solve the BS
equation developed by Wölfle and Bhatt [43,44] was extended
to the problem of light diffusion in a random medium of di-
electric scatterers, which complies with the generalized WTI
by Barabanenkov and Ozrin [46,47]. In a similar vein, the
diffusion of light in a general anisotropic turbid media was
studied by Stark and Lubensky [48].

The multiple scattering of acoustic and elastic waves has
been dealt with in the literature: Kirkpatrick [45] studied the
problem of the localization of scalar acoustic waves in a
medium with hard scatterers, both in two and three dimen-
sions, using a diagrammatic approach. A diffusion behavior
appears in a Boltzmann approximation as a result of the
summation of the ladder diagrams. Weaver [49] studied the
diffusion of ultrasound in a polycrystalline material, introduc-
ing disorder through randomly fluctuating elastic constants,
and obtained an equation of radiative transfer. Van Tigge-
len and coworkers have studied the coherent backscattering
of elastic waves in an infinite isotropic medium [50], their
radiative transfer in a generalized diffusion approximation
[51], and their multiple scattering within a plate [52]. The
Schrödinger-like description used in the last work has been

carried over by Trujillo et al. [53] to the description of elastic
waves in dry granular media. The issue of localization of
elastic waves, a phenomenon that may appear when the diffu-
sion constant vanishes because of wave interference, has been
addressed experimentally by Cobus et al. [54] and Goïcoechea
et al. [55].

On a different perspective, the interaction of sound with
the Volterra dislocations that are used in the present paper
has been shown to lead to an improved understanding of
the acoustic properties of glasses in the THz range [56,57].
The use of continuum mechanics, without an intrinsic length
scale, offers a powerful tool since it applies to all glasses in
the appropriate length scale. The same point of view can be
helpful to advance our understanding of thermal transport in
amorphous solids. Indeed, as emphasized, for example, by
Beltukov et al. [58] through numerical simulations, there is
a complex dynamics underlying energy transport by phonons
in these materials.

The purpose of this paper is to address the above issues
from a macroscopic point of view; specifically, to study the
diffusion of elastic waves moving through a random array of
vibrating dislocations. To this end, we describe the dynamics
of a single dislocation following the Granato-Lücke vibrating
string model [29]. It is assumed that we deal with an ensemble
of noninteracting dislocations (or, more precisely, that they
interact solely through the scattering of elastic waves). On
this foundation, we extend the formalism developed by Bara-
banenkov and Ozrin [47] for electromagnetic waves to the
case of elastic waves with different polarizations that interact
with scatterers that obey the generalized Granato-Lücke string
equation [34].

This paper is organized as follows: Section II sets up the
formalism for the problem. It is an inhomogeneous wave
equation in which the inhomogeneous term describes the in-
teraction between wave and dislocation. This interaction term
is dubbed the potential term by analogy with the case of de
Broglie waves describing electrons. We shall use a pertur-
bation approach, in which the potential term is considered
a small perturbation. Previous results are briefly recalled. A
BS equation is derived in Sec. III. Following the approach of
Refs. [46,47] a WTI is obtained in Sec. IV. The eigenvalue
problem for the BS equation is formulated and solved in
Sec. V. A specific expression for the diffusion constant is
obtained. This result is discussed in Sec. VI. It is shown that
the diffusion constant can be cast in a Kubo-like expression
[47] and that, in the low frequency and low density of scatter-
ers limit, it reduces to the expression obtained in a radiation
transfer formalism [59]. Section VII offers a final conclusion
and outlook. A number of the more technical calculations are
described in six appendices.

II. PROBLEM SETUP AND PREVIOUS RESULTS

In the linear theory of elasticity, the dynamics of an
isotropic medium with mass density ρ and elastic constants
ci jkl = λδi jδkl + μ(δikδ jl + δilδ jk ) with (λ,μ) the Lamé con-
stants is described by displacements u(x, t ) as a function of an
equilibrium position x at time t . Velocity v is the time deriva-
tive, v = ∂u/∂t . The speed of sound is cL ≡ √

λ + 2μ/ρ, the
speed of shear waves is cT ≡ √

μ/ρ, and we shall denote
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their ratio by γ ≡ cL/cT . The vibration of edge dislocations
of length L that are pinned at the ends and characterized by
the Burgers vector b with a local tangent oriented along τ̂ and
situated in the equilibrium state at the point X0 perturbs the
medium in such a way that the whole system is governed by
the wave equation with a source [39,40],

ρ
∂2

∂t2
vi(x, t ) − ci jkl

∂2

∂x j∂xl
vk (x, t ) = Vikvk (x, t ), (1)

where the perturbation potential is defined as

Vik = A Mi j
∂

∂x j
δ(x − X0) Mlk

∂

∂xl

∣∣∣∣
x=X0

, (2)

with

A ≡ 8

π2

(μb)2L

m
g(ω). (3)

g(ω) ≡ [ω2+iω(B/m) − ω2
F ]−1, n̂ ≡ τ̂ ∧ t̂, t̂ ≡ b/|b| is the

unit Burgers vector that indicates the direction of glide, and
Mi j ≡ tin j + t jni, with

ωF ≡ π

L

√



m
(4)

the fundamental frequency of a vibrating string characterized
by effective mass per unit length m, line tension 
, and damp-
ing B, which represent the dislocation dynamics. Only glide
motion, that is, along t̂ , is allowed, a fact that translates into
τiVik ≡ 0. Dislocation climb implies mass transport and is not
allowed [60]. The medium is considered linear everywhere
outside the dislocations core. Consequently, when more than
one dislocation is present, their effect is obtained simply by
addition of the individual terms. Note that the potential Eq. (2)
involves two gradients, a feature that will lead, in momentum
space, to a dependence on the square of the momentum. Care
will have to be exercised then at short wavelengths.

An important quantity for the analysis is the Green’s tensor,
or impulse response function, for Eq. (1). Its average proper-
ties provide information about both coherent and incoherent
wave behavior. In the frequency domain, it obeys the equa-
tion [39,40]

ρω2Gim(x, x′, ω) + ci jkl
∂2

∂x j∂xl
Gkm(x, x′, ω)

= −
∑

disloc. lines

VikGkm(x, x′, ω) − δimδ(x − x′). (5)

Equation (5) carries information about the asymptotic behav-
ior of outgoing waves at large distances from the source.
For convenience, we have not written explicitly the second
argument in the Green’s tensor: Gim(x, ω) must be understood
as Gim(x, x′, ω) with x the detection point and x′ the source
point. The poles of the Fourier transformed averaged Green’s
tensor yield the modified spectrum of T (transversal) and L
(longitudinal) modes present in the medium. A solution of
Eq. (5) can be found perturbatively. Applying the ISA ap-
proach (i.e., that the random variables associated with each
one of the dislocation segments are statistically independent
of each other), we have found the averaged Green’s tensor for

outgoing waves 〈G〉+(k, ω) as [40]

〈G〉+(k, ω) = GT (I − Pk̂ ) + GLPk̂, (6)

with

GT,L = 1

ρω2
{

k2

K2
T,L

− 1
}

as well as the self-energy tensor �+(k, ω) defined through the
Dyson equation [39],

〈G〉−1 = (G0)−1 − �, (7)

with G0 the Green’s tensor for free space and

�+(k, ω) = �T (I − Pk̂ ) + �LPk̂, (8)

with

�T,L = ρ

(
c2

T,L − ω2

K2
T,L

)
k2,

KT = ω

cT

[
1 + nA

5ρc2
T (1 + iAI )

]−1/2

, (9)

KL = ω

cL

[
1 + 4nA

15ρc2
L(1 + iAI )

]−1/2

,

and

I = 1

30π

[
3γ 5 + 2

γ 5

]
ω3

ρc5
T

, (10)

where Pk̂ = k̂t k̂ and k̂t is the transposed unit vector along k.
The incoming waves, related to 〈G〉−(k, ω) and �−(k, ω), are
described by the complex conjugate form of Eqs. (6) and (8).

The average 〈·〉 is over dislocation position, orientation,
and Burgers vector. It has been described in detail by Mau-
rel et al. [39] On average, the medium is homogeneous and
isotropic. The effective wave numbers KT,L define an effective
phase velocity for wave propagation,

vT,L ≡ ω

Re[KT,L]
, (11)

and attenuation length:

lT,L ≡ 1

2Im[KT,L]
. (12)

These quantities will appear explicitly in the diffusion con-
stant that will be discussed in Sec. V.

III. BETHE-SALPETER EQUATION FOR AN ELASTIC
MEDIUM WITH MANY VIBRATING

DISLOCATION SEGMENTS

We have tested the methods of this paper in a simplified
setting: that of the incoherent behavior of elastic waves in
a two-dimensional continuum with a random distribution of
screw dislocations [61] and edge dislocations [62]. The screw
case is a scalar problem that keeps the whole basic physics
of the diffusion behavior of elastic waves when propagating
incoherently among a maze of dislocations. Being scalar, the
algebra is much simpler. The edge case keeps the full vector
nature of the three-dimensional problem but the algebra is still
simpler in two dimensions, particularly since dislocations are
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points and not lines. The physics of the present problem is
much richer because the dislocations have a finite length, a
precise orientation, and Burgers vector, and the elastic waves
have two polarizations that travel at different speeds. The
algebra, however, is quite close to that of Ref. [62] and we
shall refer to this reference for the details of the computation.

To track the wave transport after the phase coherence is
lost, we have to focus on the evolution of the correspond-
ing configurationally averaged intensity which is qualitatively
represented in momentum space as the two-point correlation
of the Green’s tensor [41]

�(k, k′; q,�) ≡ 
kl,mn(k, k′; q,�)

≡ 〈G+
km(k+, k′+, ω+)G−

nl (k
′−, k−, ω−)〉,

(13)

with

k± = k ± q
2
, ω± = ω ± �

2
. (14)

The reciprocity of the Green’s tensor, Gim(x, x′, ω) =
Gmi(x′, x, ω), implies


kl,mn(k, k′; q,�) = 
mn,kl (k′, k; q,�).

In this approach, diffusive behavior means that the two-point
correlation tensor Eq. (13) has a specific pole structure in
terms of the diffusive variables q and �. Just as the Dyson
equation yields the pole structure for the averaged Green’s
tensor, the BS equation yields the pole structure for the in-
tensity [41]. Using the standard formalism [41,42,45,62], the
BS equation for the elastic wave diffusion in the medium with
dislocations is found to be (see Appendix A)

[ıω�E + P(k; q)] : �(k, k′; q,�) +
∫

k′′
U(k, k′′; q,�) : �(k′′, k′; q,�) = δk,k′�G(k; q,�), (15)

where

U(k, k′; q,�) ≡ Ui j,kl (k, k′; q,�), (16)

≡ ��i j,kl (k; q,�)δk,k′ − �Gi j,mn(k; q,�)Kmn,kl (k, k′; q,�), (17)

�G(k; q,�) ≡ �Gi j,mn(k; q,�), (18)

≡ 1

2ıρ
(δim〈G〉−n j (k

−, ω−) − 〈G〉+im(k+, ω+)δn j ), (19)

��(k; q,�) ≡ ��i j,mn(k; q,�), (20)

≡ 1

2ıρ
(δim�−

n j (k
−, ω−) − �+

im(k+, ω+)δn j ), (21)

and

P(k; q) ≡ Pi j,kl (k; q), (22)

≡ 1

2ıρ
(δikLl j (k−) − Lik (k+)δl j ), (23)

E = Ei j,kl = δikδl j, (24)

Li j (k±) = −cik jl k
±
k k±

l . (25)

Here, Kmn,kl (k, k′; q,�) is the irreducible vertex, explicitly
presented in Appendix A. We denote

∫
p′′

= (2π )−3
∫

dp′′, (26)

and : is the inner tensor product defined in components for
arbitrary fourth rank tensors as E : F ≡ Ei j,klFkl,mn.

IV. WARD-TAKAHASHI IDENTITY

Energy conservation, formulated in the form of a WTI,
underlies the theoretical description of incoherent transport of
classical waves [63]. For specific forms of the perturbation po-
tential, the WTI has been obtained on the basis of Lagrangian
[63] as well as pre-WTI methods [46,47], an issue that was

the object of some debate [64,65]. In this paper, we shall
use the pre-WTI method [46,47] that deals directly with the
equations of motion.

A. Pre-WTI

We establish, as a preliminary step, a relation between the
average Green’s function and its two-point correlation that
does not explicitly involve the interaction Vik . To this end, we
start with Eq. (5) written for Green’s tensors at two different
sets of variables, Gi1m1 (x1, x′

1, ω1) and Gi2m2 (x2, x′
2, ω2), and

we take the two-sided Fourier transform of these relations
with the definitions

F(k, k′; ω) =
∫∫

dxdx′e−ıkxF(x, x′; ω)eık′x′
, (27)

G(x, x′; ω) =
∫

k

∫
k′

eıkxG(k, k′; ω)e−ık′x′
. (28)

We now act on the first and second equations of the
system from the right by g∗(ω2)(G)−1

m1n1(k′
1, k′′

1 ; ω1) and
g(ω1)(G∗)−1

m2n2(k′
2, k′′

2 ; ω2), respectively. The next step consists
of subtraction of the second equation from the first, and
evaluating at i1 = n2 = i, n1 = i2 = n; k2 → k′′

1 , k′′
2 → k1.

Otherwise, it is not possible to eliminate the remaining parts
of the potentials in both equations that are subject to the
substraction from each other, since the parts imply not only
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summation over defects but also contain components of the
second rank tensor, i.e., to achieve identity of those parts
between each other, the components must be also identical.

Noting the explicit expression of the bare Green’s function,

(G0)−1
ik (k, ω) = −(ρω2δik − ci jlkk jkl ), (29)

we obtain

lim
k2→k′′

1
k′′

2→k1

( − (G0)−1
in (k1, ω1)δk1,k′′

1
g∗(ω2) + g∗(ω2)(G)−1

in (k1, k′′
1 ; ω1)

+ (G∗0)−1
ni (k2, ω2)δk2,k′′

2
g(ω1) − g(ω1)(G∗)−1

ni (k2, k′′
2 ; ω2)

) ≡ 0. (30)

Now, multiplying this identity on the right by

lim
k2→k′′

1
k′′

2→k1

G(k′′
1, k′′′

1 ; ω1)nlG
∗(k′′

2, k′′′
2 ; ω2)i j, (31)

averaging, and using the following notation:

k1 = k+, k′′
2 = k−, k′′

1 = k′′+, k2 = k′′−,

k′′′
1 = k′′′+, k′′′

2 = k′′′−, ω1 = ω+, ω2 = ω−,

G = G+, G∗ = G−, G0 = G0+, G0∗ = G0−,

(32)

the following pre-WTI is obtained:∫
k

(
(G0−)−1

ni (k; q,�)g(ω+) − (G0+)−1
ni (k; q,�)g∗(ω−)

)

ni,l j (k, k′′′; q,�)

+ g∗(ω−)〈G〉−(k′′′; q,�)l j − g(ω+)〈G〉+(k′′′; q,�)l j ≡ 0. (33)

If we use Eq. (13) and recall that

(G0±)−1
in (k±, ω±) = (G0±)−1

in (k; q,�)

〈G±(k′′′±, k′′′±; ω±) jl〉 = 〈G〉±(k′′′; q,�) jl , (34)

we see that the pre-WTI relates, in Fourier space, the averaged
Green’s function, with its two-point correlations without the
explicit appearance of the interaction Vi j .

B. WTI

The relation between averages obtained at the end of the
last subsection is now turned into a relation between their ir-
reducible parts, the irreducible vertex K and the mass operator
�. Multiplying Eq. (33) on the right by 
−1

l j,mt (k
′′′, k′′′′; q,�),

using Eqs. (A2) and (7), the following WTI is obtained:

(�−
mt (k

′′′′; q,�)g(ω+) − �+
mt (k

′′′′; q,�)g∗(ω−))

≡
∫

k′′′
(g∗(ω−)〈G〉−(k′′′; q,�)l j

− g(ω+)〈G〉+(k′′′; q,�)l j )Kl j,mt (k′′′, k′′′′; q,�). (35)

In terms of the general, i.e., symbolical, representation of
the WTI there are two differences compared to a well-known
tensorial version of the WTI for electromagnetic waves [47]:
First, g is a complex valued resonance like function; second,
the tensor rank of the WTI is two rather than four as in the
case of electromagnetic waves [47]. In our case, this is all we
need to solve the problem at hand.

The WTI can be written in the more compact form∫
k′′

U(k′′, k′; q,�) = i

2
A(k′; q,�)(g(ω+) − g∗(ω−)), (36)

with the following notation:

U(k′′, k′; q,�) =Uii,mt (k, k′; q,�), (37)

A(k′; q,�) = Ann,mt (k′; q,�),

A(k′; q,�) = 2

g(ω+) + g∗(ω−)

(
R�(k′; q,�)

+
∫

k′′
RG(k′′; q,�) : K(k′′, k′; q,�)

)
,

(38)

R�(k′; q,�) = 1

2ρ
(I ⊗ �−(k′−, ω−) + �+(k′+, ω+) ⊗ I),

(39)

The tensor U is given by Eq. (16). The operation R is defined
here for the self-energy tensor �; it is similarly defined for the
Green’s tensor G.

C. Low �, low q behavior

The diffusion behavior appears in the limit �, q → 0. In
this case, the following relations for the self-energy and for
the Green’s function will prove useful:

��(k; 0, 0) = ��(k) = ��im,tk (k)

= 1

2ıρ
(δit�

∗
km(k) − �it (k)δkm), (40)
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and its trace over two indices is given by

��ii,tk (k) = −1

ρ

(
(δkt − k̂k k̂t )Im[�T (k)] + k̂k k̂t Im[�L(k)]

)
.

(41)

Similarly,

�G(k; 0, 0) = �G(k) = �Gim,tk (k), (42)

= 1

2ıρ
(δit G

∗
km(k) − Git (k)δkm), (43)

so its trace is

�Gii,tk (k) ≈ −π (δkt − k̂k k̂t )k2

ρ2ω2
δ
(
k2 − Re

[
K2

T

])
, (44)

+ −π k̂k k̂t k2

ρ2ω2
δ
(
k2 − Re

[
K2

L

])
, (45)

The last approximation holds in the limit |Im[K2
T,L]| �

|k2 − Re[K2
T,L]|. (The meaning of this inequality in terms

of the dislocation parameters is explored in Sec. VI A 2).
Also, an abbreviated notation has been introduced:
〈G+〉km(k, ω) = Gkm(k), 〈G−〉km(k, ω) = G∗

km(k)) and
similarly for �±

km(k, ω).

D. Lossless case, B = 0, and independent scattering
approximation

When B = 0, i.e., when g is real, q,� tend to zero, and the
standard ISA expressions for � and K tensors, Eq. (47) below,
are taken (see Appendix C), the optical theorem is obtained.
Explicitly, the WTI reads in this case

(�∗
mt (k

′′′′) − �mt (k′′′′))

≡
∫

k′′′

(
G0∗(k′′′)l j − G0(k′′′)l j

)
Kl j,mt (k′′′, k′′′′), (46)

with the following expressions, valid to leading order in n, the
density of scatterers:

�mt (k′′′′) = �mt (k′′′′; 0, 0)

≈ n〈t〉mt (k′′′′), (47)

Kl j,mt (k′′′, k′′′′; 0, 0) = Kl j,mt (k′′′, k′′′′),

≈ n〈tlm(k′′′, k′′′′)t∗
t j (k

′′′′, k′′′)〉 (48)

〈G〉(k′′′; 0, 0) jl = 〈G〉(k′′′) jl

≈ G0(k′′′) jl . (49)

V. DIFFUSION BEHAVIOR

The similarity that has been established between the WTI
for elastic and electromagnetic waves motivates us to employ

the well-developed formalism [46–48,66] in the treatment of
the diffusion problem. In that approach, we deal with the BS
equation through the exploration of the eigenvalue problem
for the operator with the kernel:

H = [ıω�E + P(k; q)]δkk′′ + U(k, k′′; q,�). (50)

In terms of H, the BS Eq. (15) can be written as∫
k′′

H(k, k′′; q,�) : �(k′′, k′; q,�) = �G(k; q,�)δk,k′ .

(51)
Moreover, the definition of the kernel H ensures that it obeys
the symmetry property

Hi j,kl (k, k′′; q,�)�Gkl,mn(k′′; q,�)

= Hmn,kl (k′′, k; q,�)�Gkl,i j (k; q,�) (52)

To see this, the explicit form of U, and the reciprocity of the
tensor K, must be used.

In accordance with the general formalism [46–48,66], the
solution of Eq. (51) should be found through the consideration
of the spectral problem for the corresponding homoge-
neous equation with frn

kl (k′′; q,�) (respectively, f ln
kl (k′′; q,�))

as right (respectively, left) eigentensors and λn(q,�) as
eigenvalue:∫

k′′
Hi j,kl (k, k′′; q,�)frn

kl (k′′; q,�) = λn(q,�)frn
i j (k; q,�).

(53)
Following Refs. [46–48,66], we assume the eigentensors in
Eq. (53) obey completeness and orthogonality conditions:∫

k
frm
i j (k; q,�)f ln

i j (k; q,�) = δmn,∑
n

frn
i j (k; q,�)f ln

kl (k′; q,�) = δkk′δikδl j . (54)

The left and right eigentensors are related, as a consequence
of the symmetry properties (52) of the operator H, as follows:

frn
mn(k; q,�) = �Gmn,kl (k; q,�)f ln

kl (k; q,�). (55)

A set of properties for the eigentensors reflected in Eqs. (54)
and (55) enable us to form the basis for the representation of
the solution � as a series over the states n [46–48,66]:


i j,kl =
∑

n

frn
i j (k; q,�)frn

kl (k′; q,�)

λn(q,�)
. (56)

The concept of diffusion assumes that in the limit q → 0,
� → 0 the function � has a pole structure, dictating the
lowest eigenvalue asymptotics λ0(q → 0,� → 0) → 0, and
being separated from a regular part [46,47,66]. Therefore, the
whole problem is reduced to the determination of coefficients
of perturbative expansion for λ0(q,�) with regard to q and
� up to the second and first order, respectively, taken around
the point q = 0, � = 0. To do this, Eq. (53) has to be treated
perturbatively, with the condition that Eqs. (36) and (52) hold
at every order of the perturbation in q, and � [46,47,66].

024105-6



DIFFUSION OF ELASTIC WAVES IN A CONTINUUM … PHYSICAL REVIEW B 106, 024105 (2022)

A. Perturbation approach to the eigenvalue problem

The solution to Eq. (53) is developed in a successive ap-
proximation scheme for small � and small q:

H(k, k′′; q,�) = H(k, k′′; 0, 0) + H1�(k, k′′; 0,�)

+ H1q(k, k′′; q, 0)+ H2q(k, k′′; q, 0)+ · · · ,

fr0(k′′; q,�) = f (k′′; 0, 0) + f1�(k′′; 0,�)

+ f1q(k′′; q, 0) + f2q(k′′; q, 0) + · · · ,

λ0(q,�) = λ1�(0,�) + λ1q(q, 0) + λ2q(q, 0) + · · · .

(57)

and, by deploying the perturbative scheme in detail (see Ap-
pendix D), the following set of coupled integral equations is
obtained: ∫

k′′
Hi j,kl (k, k′′)fkl (k′′) = 0, (58)∫

k′′

(
Hi j,kl (k, k′′)f1�

kl (k′′) + H1�
i j,kl (k, k′′)fkl (k′′)

) = λ1�fi j (k),

(59)∫
k′′

(
Hi j,kl (k, k′′)f1q

kl (k′′) + H1q
i j,kl (k, k′′)fkl (k′′)

) = 0, (60)∫
k
BPii,kl (k; q)f1q

kl (k) = λ2q, (61)

where the arguments q and � have been omitted. As shown in
Appendix D, the first-order-in-wave-number contribution to
the eigenvalue vanishes:

λ1q = 0. (62)

This result ensures the existence of a diffusion regime for the
problem at hand.

Using Eqs. (36) and (58), the eigentensor fr0 at q = 0, � =
0 is found to be

fi j (k′′) = B�Gi j,kk (k′′) (63)

with

B−2 =
∫

v
�Gj j,kk (v). (64)

Integrating Eq. (59) over k and using the WTI, Eq. (36), at the
corresponding order, the eigenvalue λ1� is obtained:

λ1� = iω�(1 + a), (65)

with

a = 1∫
k fss(k)

×
∫

k′′

(Aii,kl (k′′; 0,�)(g(ω+) − g∗(ω−)))1�

2ω�
fkl (k′′).

(66)

A similar parameter appears in the diffusion of light and,
since it is positive, it renormalizes the phase velocity to a value
that is smaller than the transport velocity [46,47,67,68]. To see
that our a is indeed positive, replace Eqs. (37) and (63) into

Eq. (66) to obtain

a = − ∫
k Im[�mn(k)Gmn(k)]

ρ2
(
ω2

r1 − ω2
) ∫

v �Gii, j j (v)
, (67)

≈ 2R3/2
2T

(
c2

T R2T − ω2
) + R3/2

2L

(
c2

LR2L − ω2
)

(
ω2

F − ω2
)(

2R3/2
2T + R3/2

2L

) , (68)

where R2L,T ≡ Re[K2
L,T ] and I2L,T ≡ Im[K2

L,T ]. The last ap-
proximation is obtained in the limit of small Im[K2

T,L], as
explained in Appendix F. Clearly, a > 0 for wave frequencies
ω smaller that the first fundamental mode of the vibrating
stringlike dislocation ω < ωF .

B. Diffusion constant

From Eqs. (55)–(61), the following leading order expres-
sion for the singular part of the intensity, �sing is obtained:



sing
i j,kl = f r0

i j (k; q,�) f r0
kl (k′; q,�)

λ1� + λ2q

= f r0
i j (k; q,�) f r0

kl (k′; q,�)
λ1�

−i�

(−i� + −i�λ2q

λ1�q2 q2
) . (69)

Then, using Eqs. (65) and (69), the diffusion constant can be
simply read off. It is

D ≡ − i�λ2q

q2λ1�
, (70)

≡ DR + D�G1q , (71)

with

DR ≡ B2

q2ω(1 + a)

∫
k

Pss,kl (k; q)

×
∫

k2


kl,i j (k, k2)Pi j,tt (q; k2), (72)

D�G1q ≡ − B2

q2ω(1 + a)

∫
k

Pss,kl (k; q)�G1q
kl,tt (k). (73)

To obtain Eq. (71), in which the diffusion constant is written as
the sum of two terms, we have substituted the values for λ2q,
λ1� given by Eqs. (61) and (65). The first one ensued from the
form of f 1q(k) (see Appendix E). Thus, the expression for the
diffusion constant in Eq. (71) is the sum of two contributions,
as defined in Eqs. (72) and (73). The computation, sketched in
Appendix F, is laborious but a fairly straightforward general-
ization of a similar computation carried out in two dimensions
for elastic waves diffusing among many edge dislocations
[62]. The result is the limit of small Im[K2

T,L],

Dlead ≈ 1

(1 + a)

(
c4

L
R7/2

2L
I2L

+ 2c4
T

R7/2
2T

I2T

)
3ω3

(
2R3/2

2T + R3/2
2L

) , (74)

with a given by Eq. (68). In the limit of small frequencies, this
becomes

Dlead
ω→0 ≈

(
v3

T c4
L(

2v3
L + v3

T

)
v4

L

vLlL
3

+ 2v3
Lc4

T(
2v3

L + v3
T

)
v4

T

vT lT
3

)
,

(75)
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where vT,L and lT,L are the effective velocities and attenuation
lengths introduced in Sec. II, Eqs. (11) and (12).

VI. DISCUSSION

The main result of this paper is expression Eq. (74) for the
diffusion coefficient for elastic waves traveling in a continuum
elastic medium populated with many, randomly placed and
oriented, dislocation segments, and the simpler expression
Eq. (75), its value in the limit of low frequencies. It is valid
(see below) for frequencies that are not too close to the funda-
mental string frequency ωF . It is the sum of two terms, each
one characterized by an attenuation length that appears be-
cause the imaginary part of the effective wave vector Im[K2

T ]
does not vanish. It has an overall factor (1 + a) with a given
by Eq. (67). Similar factors have been identified in the diffu-
sion of sound in a layer with a rough interface [66] and of light
waves in media with microstructure [68], in association with
resonant scattering, as here. Indeed, if ω = ωF , the diffusion
coefficient vanishes. Having a frequency exactly equal to ωF ,
however, takes us outside the domain of validity of the ap-
proximations employed in this paper. In any case, it is allowed
for the frequency to approach the resonant frequency, and the
associated diffusion constant does get smaller. This raises the
question of looking more closely at this regime (see below).
The aforementioned models [66,68] also allow the possibility
of an additional factor (1 + �), associated with the extended
nature of the scatterers present. Our formalism allows for the
presence of this factor as well—it appears in Eq. (F17). In our
specific example, however, the analog of � vanishes because
we have taken scatterers that are effectively pointlike.

A. Restrictions placed by approximations employed

1. Long wavelength by comparison with dislocation
segment length

At the outset, in Sec. II we have formulated the wave-
dislocation interaction problem in an approximation in which
the whole interaction takes place at a single point, the dislo-
cation center, although the specific interaction Eq. (2) does
contain the information that the dislocation segment is a vi-
brating string of length L, with a specific eigenfrequency, at
which a resonant interaction may occur.

Also, while the coherent behavior of the elastic waves has
been studied including internal losses, encapsulated by the
constant B in Eq. (3), the diffusion coefficient, Eqs. (74) and
(75), considers B = 0 because our derivation of the diffusion
regime necessitates that conservation of energy holds. We ex-
pect these internal losses to become significant for frequencies
near the first fundamental mode for the string, but not at the

low frequencies considered here, where wavelength is large
compared to dislocation length.

2. |Im[K2
T,L]| � |k2 − Re[K2

T,L]|
This approximation has been repeatedly used in the alge-

bra, with KT,L the transverse (T ) and longitudinal (L) effective
wave vectors Eq, (9) characterizing the coherent propagation
of waves. Using Eq. (9) for B = 0, the case with no internal
losses for which we have carried out the computations in the
ISA, the inequality of this subsection translates into

∣∣ω2 − ω2
F

∣∣ 
 1

π2

ω3

ωF
, (76)

so the working frequency ω can be close, but not equal to, the
resonant string frequency ωF .

3. Independent scattering approximation

The ISA means that the random variables characterizing
the dislocation segments, position, and orientation are statis-
tically independent. It simplifies the computation of statistical
averages, keeping only leading order terms in n, the number
of dislocation segments per unit volume, in Eqs. (47). To have
a rough estimate of what this means in terms of dimensionless
variables, consider the value of the t matrix at low frequencies
[40] and the following inequality results: nL3 � 1. That is, the
two length scales of the model, L and n−1/3, are related by the
requirement that the separation among dislocation segments
be larger that their length.

B. Kubo representation for the diffusion constant

We have obtained an explicit form for the diffusion con-
stant of elastic wave energy when traveling through an elastic
medium full of vibrating dislocation segments by use of a
perturbation approach to the solution of the BS equation,
regarded as an eigenvalue problem. In this subsection, we will
show that the diffusion constant, given by Eq. (70), admits a
Kubo representation similar to that for diffusion of electro-
magnetic waves [47].

To achieve a Kubo representation for the diffusion con-
stant, we have to focus on the transformation of the
�G1q

kl,mm(k) from Eq. (E2). According to Ref. [47], this im-
plies, first, the construction of the equation similar to Eq. (33)
but for

�−−(k, k′; q,�)

≡ 
−−
kl,mn(k, k′; q,�)

≡ 〈G−
km(k+, k′+, ω−)G−

nl (k
′−, k−, ω−)〉. (77)

It should be noted that the subtraction trick, briefly mentioned in Sec. IV A, is rather general and can be implemented without
loss of generality to get the equation for �−−(k, k′; q,�). Passing through similar steps, one can obtain∫

k

(
(G0−)−1

ni (k−, ω−) − (G0−)−1
ni (k+, ω−)

)

−−

ni,l j (k, k′′′; q,�) + 〈G−(k′′′−, k′′′−; ω−)l j〉 − 〈G−(k′′′+, k′′′+; ω−)l j〉 ≡ 0 (78)

or, at � → 0, ∫
k

∂Lni(k)

∂k
· qRe[
−−

ni,l j (k, k′′′; q, 0)] ≡ Re[−〈G−(k′′′−, k′′′−; ω)l j〉 + 〈G−(k′′′+, k′′′+; ω)l j〉], (79)
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and, to first order in q, the identity reduces to

ı

ρ

∫
k

∂Lni(k)

2∂k
· qRe[
−−

ni,l j (k, k′′′; 0, 0)] ≡ �G1q
l j,mm(k′′′). (80)

Hence, we get for f1q
kl (k′′) :

f1q
kl (k′′) = − ıB

ρ

∫
k2

(〈G+
kk1

(k′′, k2; ω)G−
l1l (k2, k′′; ω)〉 − Re

[〈
G−

kk1
(k′′, k2; ω)G−

l1l (k2, k′′; ω)
〉])∂Lk1l1 (k2)

2∂k2
· q. (81)

In Eq. (81), we deal with the difference of products of complex numbers that may be symbolically presented in the form

X ∗
kk1

Xl1l − Re
[
Xkk1 Xl1l

] = 2Im[X ]kk1 Im[X ]l1l + ı
(
Re[X ]kk1 Im[X ]l1l − Im[X ]kk1 Re[X ]l1l

)
. (82)

Using Eqs. (81), (82), and (61), we get

λ2q = 2B2

ρ2

∫
k

∫
k2

q · ∂Lkl (k)

2∂k

〈
Im

[
G−

kk1
(k, k2; ω)

]
Im

[
G−

l1l (k2, k; ω)
]〉∂Lk1l1 (k2)

2∂k2
· q, (83)

so, from Eqs. (65), (70), and (83) the diffusion constant reads

D = −2B2

ρ2q2ω(1 + a)

∫
k

∫
k2

q · ∂Lkl (k)

2∂k

〈
Im

[
G−

kk1
(k, k2; ω)

]
Im

[
G−

l1l (k2, k; ω)
]〉∂Lk1l1 (k2)

2∂k2
· q, (84)

which is the desired Kubo representation.

C. Transport equation approach and equipartition of energy

Ryzhik et al. [59] studied the transport of elastic energy
density in a random medium. They showed that diffusive be-
havior occurs on long time and distance scales, and they have
determined a diffusion coefficient. They, however, dealt with
continuous random media and not, as in our case, with discrete
scatterers that are randomly distributed in a medium. It is still
of interest to compare our result Eq. (75) with the value they
give for the diffusion constant, which is their Eq. (5.46) (in
their notation):

Del = 1(
2/v3

S + 1/v3
P

)(
lPvP

3v3
P

+ 2lSvS

3v3
S

)
. (85)

Here P means primary, or longitudinal (L) in our language,
and S means secondary, or transverse (T ) in our case. The
quantities lP and lS are longitudinal and transverse mean-
free paths that are determined by unspecified scattering cross
sections. We find there is a strong resemblance to Eq. (75).
One important difference, however, is that Eq. (75), based
as it is on a solution to the BS equation, involves not one
phase velocity for each polarization but two: the velocity in
the absence of scatterers and the velocity of coherent waves
in the presence of scatterers. The latter quantity appears be-
cause of the relation between mass operator and irreducible
kernel provided by the WTI. These considerations are absent
in a transport equation approach. Both approaches coincide,
however, in the limit of a very small density of dislocations,
in which case vL,T ≈ cL,T .

Ryzhik et al. [59] also noted that, in their diffusive limit,
the energy of elastic waves is “equipartitioned” in the sense
that, if EL (respectively, ET ) is the longitudinal (respectively,
transverse) energy density so the total energy E = ET + EL,
then

ET

EL
= 2γ 3. (86)

Earlier, Weaver [69] obtained this result, taking as the
definition of the diffuse field a state in which energy is
equipartitioned among all normal modes available to the elas-
tic solid, and using the Debye density of states to compute the
ratio between longitudinal and transverse modes.

In our formulation, the diffuse field energy tensor is defined
by

E (q,�)i j,kl = lim
q→0,�→0

∫
k

∫
k′


i j,kl (k, k′; q,�). (87)

It is a straightforward calculation, using the solution Eq. (56)
to lowest order, Eqs. (57) and (63), to show that

E (0,�)i j,kl = i

�

δi jδkl

36πρ2ω3

[
2Re

[
K2

T

]3/2 + Re
[
K2

L

]3/2
]

(1 + a)
,

(88)

−→ i

�

δi jδkl

36πρ2

(
2

c3
T

+ 1

c3
L

)
, (89)

where the last limit is obtained when the density of disloca-
tions is very small. Note that, in general, the diffuse energy
density does not split into a sum of longitudinal and transverse
terms, because of the (1 + a) denominator which, as we have
discussed, is a consequence of the timescale introduced into
the problem by the fundamental mode of the vibrating strings
that are doing the scattering of the elastic waves.

Additional insight into these results can be obtained noting
that, using the result Eq. (6) for the coherent Green’s function,
it is straightforward to verify that, in the limit |Im[K2

T,L]| �
|k2 − Re[K2

T,L]| already discussed in previous sections,

Tr[Im[〈G〉+(k, ω)]] = −�Gii,mm(k, ω)

≈ πk2

ρω2

(
2δ

(
k2 − Re

[
K2

T

])
+ δ

(
k2 − Re

[
K2

L

]))
. (90)

Now, if we consider the diffusive energy as being carried
by the coherent waves whose states are labeled by three
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polarizations and three real numbers, the components of a
wave vector k, we see that

gT,L
(
Re

[
K2

T,L

]) =
∑

k

δ
(
k2 − Re

[
K2

T,L

])
(91)

counts the number of states that have the same Re[K2
T,L], and

gT,L(ω) = 1

V
gT,L

(
Re

[
K2

T,L

])∂Re
[
K2

T,L

]
∂ω

= 1

6π2

∂
(
Re

[
K2

T,L

]3/2)
∂ω

(92)

is the density of states per unit frequency ω and unit volume
V . The second equality follows from Eq. (91). The ratio of
transverse states to longitudinal states is then

2gT (ω)

gL(ω)
= 2

∂

(
Re

[
K2

T

]3/2)
∂ω

∂

(
Re

[
K2

L

]3/2)
∂ω

−→ 2γ 3, (93)

where the limiting behavior is obtained for a small density of
dislocations. We see that, in general, diffuse energy density,
given by Eq. (88), at a given frequency is not proportional to
the density of states at that same frequency, given by Eq. (92).
However, said proportionality (equipartition) is recovered in
the limit of very few dislocations.

D. Low-frequency behavior of the diffusion coefficient

As noted in Sec.VI A 3, our ISA approximation allows us
to keep terms that are linear in the density of scatterers n only.
However, we can look at what happens to the diffusion coeffi-
cient Eq. (75) as a function of frequency, for low frequencies,
ω � ωF . In this case, Eq. (9) leads to

Re[KL,T ] ≈ ω

cL,T

[
1 + 8nLc4

T CL,T ρb2

10π2c2
L,T mω2

F

(
1 + ω2

ω2
F

+ . . .

)]
,

(94)

Im[KL,T ] ≈ 16nL2ω4CL,T c3
T

75c3
L,T π5ω4

F

(
ρb2

m

)2

×
(

3γ 5 + 2

γ 5

)(
1 + 2

ω2

ω2
F

+ . . .

)
, (95)

where CL = 4/3, CT = 1. Substitution of Eqs. (11) and (12)
into (75) yields

Dlead
ω→0 ≈ γ 3(3γ + 8)

4(1 + 2γ 3)

cT lT
3

≈ 25π5γ 3(3γ + 8)cT

128(1 + 2γ 3)

(
m

ρb2

)2

×
(

γ 5

3γ 5 + 2

)
ω4

F

nL2ω4

(
1 − 2

ω2

ω2
F

+ · · ·
)

. (96)

We see that the attenuation length, and consequently the dif-
fusion coefficient, are inversely proportional to frequency to
the fourth power, indicating that there is a diffusion that is
due to loss of coherence originating in Rayleigh scattering, as
it should for long wavelengths and in the absence of internal

losses. Also, it is inversely proportional to dislocation density
n and length L, as one would expect.

VII. CONCLUSIONS AND OUTLOOK

We have studied the diffusive behavior of elastic waves
in a continuum that is populated by many edge-dislocation
segments of length L, pinned at their ends. Their position is
random, as well as the orientation of their tangent and Burgers
vectors. The dislocations are modeled as elastic strings with
internal losses and are dynamical objects in their own right.
The study relies on the existence of a regime where coherent
wave behavior occurs, previously studied [40]. The elastic
waves are assumed to be monochromatic, with a frequency
that is small compared to the first resonant frequency of the
stringlike pinned dislocations and computations are actually
carried out in an ISA, that is, when the random variables,
position, and orientation, characterizing the dislocations, are
statistically independent. In this case, the coherent wave has
an effective velocity and an attenuation that are, to leading
order, proportional to the number n of dislocation segments
per unit volume, the small dimensionless parameter being
nL3.

The diffusion behavior is studied using a BS equation,
supplemented by a WTI. Both equations hold in the presence
of internal losses by the strings. However, to use the ISA,
a necessary requirement for the actual computation of a dif-
fusion coefficient, it is necessary to assume that these losses
vanish. If this were not the case, the diffusive behavior would
be influenced not only by the incoherent diffusion induced by
the disordered dislocation segments but also by a decay in-
duced by the internal losses. It should be of interest to explore
this regime, especially in view of the possible experimental
measurements of the diffusion reported here.

Alternatively, one may ask about the origin of the in-
ternal losses. If they are due to inelastic scattering of the
dislocation with phonons, a complete calculation of the
phonon-dislocation interaction has been recently carried out
[27] for phonons of arbitrary frequency. That is, without the
requirement that their wavelength be long compared to dislo-
cation length L. It should be of interest then to explore a BS
equation and attendant WTI in this case, since the inelastic ef-
fects would be explicitly considered from the very beginning.

A study of the diffusion problem without the restriction of
dislocation lengths small compared to wavelength would have
the added benefit to clarify the role played by the vibrating
string resonances. As indicated in the previous section, the
diffusion constant that has been computed in the present pa-
per can, formally, vanish when the wave frequency coincides
with the resonant frequency. A similarly strong effect that
resonances can have upon the diffusion of light has been
considered by Lubatsch et al. [70]. This regime is outside the
frame of approximations employed to carry out our computa-
tions, however, it would be of interest in the future to explore
in some detail the actual behavior of the diffusion coefficient
for frequencies comparable to the resonant string frequency.

It should be possible to experimentally verify our results,
for example, the low-frequency approximation to the diffu-
sion coefficient, Eq. (96), using setups as those described by
Weaver et al. [71] using aluminum, or by Sotelo et al. [72]
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using stainless steel. It should suffice to consider samples that
differ only in dislocation content, such as can be achieved by
cold rolling or annealing. This approach has been successfully
followed to experimentally verify the influence of dislocations
on the coherent propagation of elastic waves [35,37,38].

The continuum mechanics approach employed in the
present paper has the advantage of being applicable to any
homogeneous solid material at all length scales down to sev-
eral interatomic spacings. This is true even if the atomic
structure does not have long-range order, and it has been
established [57] that the coherent wave behavior already al-
luded to provides an adequate understanding of the behavior
of amorphous materials in the THz range. Recently, Beltukov
et al. [58] performed a numerical study of wave packet be-
havior in amorphous silicon, and detected a transition from
propagating to diffusive regimes, depending on the frequency

of the waves. This phenomenology is relevant to the un-
derstanding of heat transport in amorphous solids, one of
the significant unknowns in contemporary condensed-matter
physics, and it looks tempting to apply the methods presented
in this paper to try and elucidate the nature of heat propagation
in glasses.
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APPENDIX A: BETHE-SALPETER EQUATION

The key idea of the BS equation is the existence of an
analogy of the Dyson equation for the intensity 〈G+ ⊗ G−〉.
To get it explicitly, we use the representations

〈G+ ⊗ G−〉 = 〈G+〉 ⊗ 〈G−〉 + (〈G+ ⊗ G−〉 − 〈G+〉 ⊗ 〈G−〉)

= 〈G+〉 ⊗ 〈G−〉 + 〈G+〉 ⊗ 〈G−〉 : 〈G+〉−1 ⊗ 〈G−〉−1

: (〈G+ ⊗ G−〉 − 〈G+〉 ⊗ 〈G−〉) : 〈G+ ⊗ G−〉−1 : 〈G+ ⊗ G−〉

= 〈G+〉 ⊗ 〈G−〉 + 〈G+〉 ⊗ 〈G−〉 :
(〈G+〉−1 ⊗ 〈G−〉−1 − 〈G+ ⊗ G−〉−1

)
: 〈G+ ⊗ G−〉. (A1)

From the last equality in Eq. (A1), it is easy to introduce the pole structure for the intensity by defining the irreducible vertex K
as

K = 〈G+〉−1 ⊗ 〈G−〉−1 − 〈G+ ⊗ G−〉−1. (A2)

The BS equation in the form Eq. (A2) clearly corroborates the pole specificity of the intensity 〈G+ ⊗ G−〉 in the sense that the
K plays the same role as the self-energy � for both averaged 〈G〉 and free medium G0 Green’s tensors in the Dyson equation:

� = G−1
0 − 〈G〉−1. (A3)

Replacing Eq. (A2) into the last equality of Eq. (A1), the BS equation takes the widely accepted form

〈G+ ⊗ G−〉 = 〈G+〉 ⊗ 〈G−〉 + 〈G+〉 ⊗ 〈G−〉 : K : 〈G+ ⊗ G−〉. (A4)

If we now define the Fourier transforms as [41]

G+
i1m1

(x1, x′
1; ω+) =

∫
k1

∫
k′

1

eık1x1 G+
i1m1

(k1, k′
1; ω+)e−ık′

1x′
1 ,

G−
i2m2

(x2, x′
2; ω−) =

∫
k2

∫
k′

2

e−ık2x2 G−
i2m2

(k′
2, k2; ω−)eık′

2x′
2 , (A5)

then

〈G+ ⊗ G−〉 =
∫

k

∫
k′

∫
q
�(k, k′; q,�)eı(kr−k′r′+q(R−R′ )). (A6)

With space and momentum variables being specified as

x1 = R + r
2
, x2 = R − r

2
,

x′
1 = R′ + r′

2
, x′

2 = R′ − r′

2
,

k1 = k+ = k + q
2
, k′

1 = k′+ = k′ + q
2
,

k′
2 = k′− = k′ − q

2
, k2 = k− = k − q

2
.

(A7)
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and applying the inverse Fourier transform [48]∫
d (R − R′)drdr′e−ı(kr−k′r′+q(R−R′ )) (A8)

to Eq. (A4), the BS equation in momentum space is obtained:

�(k, k′; q,�) = 〈G+〉 ⊗ 〈G−〉(k; q,�)δk,k′ + 〈G+〉 ⊗ 〈G−〉(k; q,�) : K(k, k′′; q,�) : �(k′′, k′; q,�), (A9)

where δk,k′ = (2π )3δ(k − k′) and the internal momentum variables, i.e., k′′, are integrated over. To modify further Eq. (A9) to
its kinetic form, we use the following identity for the outer product of the averaged Green’s tensors:

(〈G+〉−1 ⊗ I − I ⊗ 〈G−〉−1) : 〈G+〉 ⊗ 〈G−〉 = I ⊗ 〈G−〉 − 〈G+〉 ⊗ I, (A10)

where I is a unit tensor. Acting from the left on Eq. (A9) with the tensor (〈G+〉−1 ⊗ I − I ⊗ 〈G−〉−1) and using the property
Eq. (A10), the following relation is obtained:

(〈G+〉−1 ⊗ I − I ⊗ 〈G−〉−1) : � = (I ⊗ 〈G−〉 − 〈G+〉 ⊗ I) : (I ⊗ Iδk,k′ + K(k, k′′; q,�) : �(k′′, k′; q,�)). (A11)

Finally, substituting Eqs. (A3), (16), and (18) into (A11) as well as the explicit form of the Green’s tensor for the free medium
[39], we obtain the BS equation in the form of Eq. (15).

APPENDIX B: INTEGRATION OVER SOLID
ANGLES IN 3D

The developed approach requires evaluation of the follow-
ing integrals over a n-dimensional solid angle �n, comprised
of the product of radial unit n-dimensional vectors r̂ (r̂2 = 1):

Ink =
∫

d�
(n)
r̂ r̂i1 · · · r̂ik . (B1)

In a previous paper [62], we were interested in the diffusion
of waves in a two-dimensional continuum. Now we have a
problem in three dimensions and we are led to the evaluation
of integrals

I32 =
∫

d�
(3)
r̂ r̂i1 r̂i2 ,

I34 =
∫

d�
(3)
r̂ r̂i1 r̂i2 r̂i3 r̂i4 , (B2)

with �(3) = 4π , d�
(3)
r̂ = sin θdθdφ and θ ∈ [0, π ], φ ∈

[0, 2π ] are azimuthal and polar angles of a 3D spherical
frame. To do this, we use the results of Ref. [73], according
to which the tensor integral of the product of k radial unit
n-dimensional vectors

〈
r̂i1 · · · r̂ik

〉
r̂
= 1

�(n)

∫
d�

(n)
r̂ r̂i1 · · · r̂ik = Ink

�(n)
(B3)

vanishes when k is odd, and is equal to a totally symmetric
isotropic tensor when it is even,〈

r̂i1 · · · r̂i2k
〉
r̂ = L̃i1···i2k

(2k) , (B4)

that is, defined recursively,

L̃i1···i2k
(2k) = 1

n + 2k − 2

(
δi1i2L̃i3···i2k

(2k−2)

+ δi1i3L̃i2i4···i2k
(2k−2) + · · · + δi1i2k L̃

i2···i2k−1

(2k−2)

)
, (B5)

with initial condition L̃0 = 1.

These formulas provide us with the values we need for the
integrals in Eq. (B2):

〈r̂i r̂ j〉 = δi j

n
= I32

4π
,

〈r̂i r̂ j r̂k r̂l〉 = 1

n + 2

(
δi jL̃kl

(2) + δikL̃ jl
(2) + δil L̃ jk

(2)

)
= 1

n(n + 2)
(δi jδkl + δikδ jl + δilδ jk ),

= I34

4π
, (B6)

where n = 3 in Eq. (B6) for three dimensions, the case of in-
terest here. It should be noted that the meaning of an averaging
symbol 〈 〉 is a bit different from the orientation averaging
in the main text. The latter suggests averaging that includes
integration over three Euler angles, whereas the former is
just averaging over a solid angle defined by two angles of a
spherical frame. At some limiting cases, the integration over
Euler angles might be reduced to the integration over spherical
angles only.

APPENDIX C: OPTICAL THEOREM

We need to show that Eq. (46),(
�∗

i j (k) − �i j (k)
)

=
∫

k1

(
G0∗(k1)mn − G0(k1)mn

)
Kmn,i j (k1, k), (C1)

holds, in the ISA, when B = 0. In this case, the mass and
irreducible vertex operators are related to the t matrix by
Eq. (47) and the t matrix itself is given by Eq. (29) from Ref.
[40]. We have then, for the left-hand side,

(
�∗

i j (k) − �i j (k)
) = 2inIm

[ A
1 + AI

]
〈MikMl j〉kkkl

= −2inA2Im[I]

[1 + AI][1 + AI]∗
〈MikMl j〉kkkl ,

(C2)
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and, for the right-hand side,∫
k1

(
G0∗(k1)mn − G0(k1)mn

)
Kmn,i j (k1, k) (C3)

= −in

4π2

∫
k1

∫
k̂1

k4
1

(
δ
(
k2

1 − k2
T

)
ρc2

T

δmnk̂1sk̂1t +
(

δ
(
k2

1 − k2
L

)
ρc2

L

− δ
(
k2

1 − k2
T

)
ρc2

T

)
k̂1mk̂1nk̂1sk̂1t

) A
1 + AI

( A
1 + AI

)∗
〈MmsMkiM jlMtn〉kkkl

≡ −2inA2Im[I]

[1 + AI][1 + AI]∗
〈MkiM jl〉kkkl , (C4)

which coincides with the left-hand side given by Eq. (C2). We have used results of Appendix B, properties of tensor M, as well
as the explicit expressions for tensors, which are included into Eq. (C1). This calculation, being three-dimensional, differs from
the analogous computation carried out in Ref. [62] in two dimensions.

APPENDIX D: PERTURBATION SCHEME FOR THE SPECTRAL PROBLEM

To build up the system of equations for the determination of the diffusive pole structure, we have to substitute the series from
Eqs. (57) into Eq. (53) and gather together all terms of the same order, either in � or in q. Moreover, we assume that at every
order of the perturbation scheme both WTI from Eq. (36) and symmetry constraints from Eq. (52) are valid. This yields (omitting
the � and q arguments, as well as indices for brevity)∫

k′′
(H(k, k′′) + H1�(k, k′′) + H1q(k, k′′) + H2q(k, k′′) + . . . )(f (k′′) + f1�(k′′) + f1q(k′′) + f2q(k′′) + . . . )

= (λ1� + λ1q + λ2q + . . . )(f (k) + f1�(k) + f1q(k) + f2q(k) + . . . ). (D1)

At first order in � and zero order in q, Eq. (D1) easily leads to Eqs. (58) and (59) in the text. In a similar manner, collecting the
first order in q terms from Eq. (D1), we obtain the following equation for λ1q:∫

k′′
(H(k, k′′)f1q(k′′) + H1q(k, k′′)f (k′′)) = λ1qf (k). (D2)

Integrating Eq. (D2) over k and subsequently summing over the external indices cancels the contribution from the first term on
its left-hand side because of the WTI, so using (63) we have∫

k

∫
k′′

H1q
ii,kl (k, k′′)�Gkl,mm(k′′) = λ1q

∫
k
�Gii,mm(k). (D3)

The left-hand side of Eq. (D3) is equal to zero because of the WTI written to first order in q, as well as the odd in k character of
the tensor Pii,kl defined in Eq. (22). Therefore, we obtain

λ1q = 0. (D4)

To complete the set of equations for the reconstruction of λ0(q,�), we need λ2q. To second order in q, Eq. (D1) gives∫
k′′

(H(k, k′′)f2q(k′′) + H1q(k, k′′)f1q(k′′) + H2q(k, k′′)f (k′′)) = λ2qf (k). (D5)

Then, Eq. (61) of the text is obtained integrating Eq. (D5) over k, summing over the external indices and using the explicit form
of the WTI at corresponding orders.

APPENDIX E: SOLUTION FOR f1q(k)

f 1q(k) is obtained by replacing Eq. (63) into Eq. (59), using the symmetry property from Eq. (52), applying the WTI to
H1q(k, k′′), and substituting δk′′,k�Gkl,mm(k) by its value given by Eq. (15) to get∫

k′′
H1q

ii,kl (k, k′′)B�Gkl,mm(k′′) =
∫

k′′
B

(
Pii,kl (q; k′′)δk′′,k�Gkl,mm(k) − Hii,kl (k, k′′)�G1q

kl,mm(k′′)
)

= B
∫

k′′
Hii,kl (k, k′′)

[ ∫
k2


kl,k1l1 (k′′, k2)Pk1l1,ii(q; k2) − �G1q
kl,mm(k′′)

]
.

Hence,

f 1q
kl (k′′) = −B

(∫
k2


kl,k1l1 (k′′, k2)Pk1l1,ii(q; k2) − �G1q
kl,mm(k′′)

)
, (E1)
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with

�G1q
kl,mm(k) = q · ∂�Gkl,mm(k; q′, 0)

∂q′ |q′=0 (E2)

= − 1

2ıρ
q · ∂ (Re[Gkl (k)])

∂k
(E3)

= −qt Re[GL − GT ]

2ıρ

∂Pk̂

∂kt
− qt

2ıρ

(
∂ (Re[GT ])

∂kt
(I − Pk̂ ) + ∂ (Re[GL])

∂kt
Pk̂

)
(E4)

and

∂Pk̂

∂kt
= ∂

( kkkl
k2

)
∂kt

=
(

klδkt + kkδlt

k2

)
− 2kkklkt

k4
(E5)

Re[GT,L] = FT,L(ω, k)

ρω2Im
[
K2

T,L

](
Re

[
K2

T,L

](
k2 − Re

[
K2

T,L

]) − Im
[
K2

T,L

]2
)

(E6)

∂ (Re[GT,L])

∂kt
= 2kt FT,L(ω, k)

ρω2Im
[
K2

T,L

] (
2k2FT,L(ω, k)Im

[
K2

T,L

] − Re
[
K2

T,L

])
(E7)

FT,L(ω, k) =
(

Im
[
K2

T,L

]
(
k2 − Re

[
K2

T,L

])2 + Im
[
K2

T,L

]2

)
. (E8)

APPENDIX F: CALCULATION OF D

The calculation reported herein follows very closely an analogous computation in two dimensions [62], for which the reader
is referred for a more detailed presentation. As we noted in Eq. (71), the diffusion constant is the sum of two terms: D =
DR + D�G1q , and we sketch how to compute each term.

1. D�G1q

Using Eqs. (10), (E2), and (E5), Eq. (73) turns into

D�G1q = −B2

q2ω(1 + a)

∫
k

Pii,kl (k; q)�G1q
kl,mm(k)

= B2

4ρ2q2ω(1 + a)

∫
k

qs
∂Lkl (k)

∂ks

∂ (Re[G−
kl (k)])

∂kt
qt

= −B2qsqt
(
c2

L − c2
T

)
2ρq2ω(1 + a)

∫
k

(
Re[GL − GT ]

(
δst − kskt

k2

))
+ −B2qsqt

2ρq2ω(1 + a)

∫
k

(
2c2

T

∂ (Re[GT ])

∂kt
+ c2

L

∂ (Re[GL])

∂kt

)
ks.

(F1)

The following two types of integrals have to be considered in Eq. (F1):

Ist
T,L =

∫
k

Re[GT,L]

(
δst − kskt

k2

)
= δst

3π2

∫ ∞

−∞
k2�(k)Re[GT,L]dk (F2)

J st
T,L =

∫
k

(
∂ (Re[GT,L])

∂kt

)
ks.

Using Eqs. (E6), (E7) we have

Ist
T,L =

∫ ∞

−∞

δst k2�(k)FT,L(ω, k)
(

Re
[
K2

T,L

](
k2 − Re

[
K2

T,L

]) − Im
[
K2

T,L

]2
)

3π2ρω2Im
[
K2

T,L

] dk,

J st
T,L =

∫
k

2kskt
(
2k2F 2

T,L(ω, k)Im
[
K2

T,L

] − Re
[
K2

T,L

]
FT,L(ω, k)

)
ρω2Im

[
K2

T,L

]
=

∫ ∞

−∞
δst�(k)k4dk

(
2k2F 2

T,L(ω, k)Im
[
K2

T,L

] − Re
[
K2

T,L

]
FT,L(ω, k)

3π2ρω2Im
[
K2

T,L

]
)

. (F3)
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The integral J st
T,L in Eq. (F3) includes an ill-defined term, proportional to F 2

T,L(ω, k), that can be regularized [74] when
|Im[K2

T,L]| � |k2 − Re[K2
T,L]| to obtain

FT,L(ω, k) = πδ
(
k2 − Re

[
K2

T,L

])
,

FT,L(ω, k)2 = πδ
(
k2 − Re

[
K2

T,L

])
2Im

[
K2

T,L

] . (F4)

Consequently, Eqs. (F1)–(F4) yield

Ist
T,L = −δst Re

[
K2

T,L

] 1
2 Im

[
K2

T,L

]
6πρω2

, (F5)

J st
T,L = 0, (F6)

so

D�G1q = 1

3

−B2
(
c2

L − c2
T

)
4πρ2ω3(1 + a)

(
Re

[
K2

T

] 1
2 Im

[
K2

T

] − Re
[
K2

L

] 1
2 Im

[
K2

L

])
. (F7)

2. DR

In this calculation, which is similar to the analogous one carried out in two dimensions [62], we apply a method introduced
in the treatment of light diffusion [75], introducing an auxiliary tensor function �,s(k) defined by

�,s(k)qs ≡ �kl,s(k)qs, (F8)

≡
∫

k′

kl,mn(k, k′)Pmn,tt (q; k′), (F9)

= −
∫

k′

kl,mn(k, k′)

1

2iρ

∂Lmn(k′)
∂k′

s

qs. (F10)

Use of Eq. (15) gives the following expression for �,s(k):

Pi j,kl (p)�kl,s(p) + ��i j,k1l1 (p)�k1l1,s(p) −
∫

p′′
�Gi j,k2l2 (p)Kk2l2,k1l1 (p, p′′)�k1l1,s(p

′′) = −�Gi j,kl (p)
1

2iρ

∂Lkl (p)

∂ ps
. (F11)

Using the explicit expression Eq. (29) for the free medium Green’s function, as well as Eqs. (7) and (10), we get

�Gi j,k2l2 (p) = (��i j,n2m2 (p) + Pi j,n2m2 (p))Gn2k2 (p)G∗
l2m2

(p). (F12)

Next, we define an angular tensor ϒ, in analogy to the coefficient that relates the transport mean-free path and extinction length
in the diffusion of electromagnetic waves [76,77]:

�mn,s(p)qs = G(p)miG
∗
n j (p)ϒi j (p, q). (F13)

It obeys the following integral equation:

Pi j,tt (p; q) = ϒi j (p, q) −
∫

p′′
Ki j,k1l1 (p, p′′)Gk1m1 (p′′)G∗

n1l1 (p′′)ϒm1n1 (p′′, q), (F14)

so, using Eqs. (F8) and (F13), the following expression for DR [defined by Eq. (72)] results in:

DR = B2

q2ω(1 + a)

∫
k

Pss,i j (k; q)Gim(k)G∗
n j (k)ϒmn(k, q). (F15)

Now, looking at Eq. (F13), we make the ansatz that ϒ(p, q) is proportional to q, and we look for a solution in the form

ϒmn(p, q) = αPmn,kk (p; q). (F16)

Multiplying Eq. (F14) on the left by Pss,k1l1 (p; q)Gk1i(p)G∗
jl1

(p) and integrating over p, we are left with

α−1 = 1 −
∫

p

∫
p′′ Pnn,t1t2 (p; q)Gt1k1 (p)G∗

k2t2
(p)Kk1k2,m1n1 (p, p′′)Gm1k3 (p′′)G∗

k4n1
(p′′)Pk3k4,ll (p

′′, q)∫
k Pss,k1l1 (k; q)Gk1i(k)G∗

jl1
(k)Pi j,tt (k; q)

. (F17)

The second term on the right-hand side is the analog of the 〈cos θ〉 term in the diffusion of electromagnetic waves [77]. We are
left with the following expression:

DR = B2

q2ω(1 + a)

∫
k
αPii,kl (k; q)Gkm(k)G∗

nl (k)Pmn,tt (k; q). (F18)
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The coefficient α is now evaluated: The symmetry properties of the Green tensor, tensor P, and the kernel K from Eqs. (6),
(10), and (47), respectively, yield

Ki j,m1n1 (p,−p′′)Gm1t1 (−p′′)G∗
s1n1

(−p′′)Pt1s1,ll (−p′′, q) = −Ki j,m1n1 (p, p′′)Gm1t1 (p′′)G∗
s1n1

(p′′)Pt1s1,ll (p
′′, q).

Hence ∫
p′′

Ki j,m1n1 (p, p′′)Gm1t1 (p′′)G∗
s1n1

(p′′)Pt1s1,ll (p
′′, q) = 0 (F19)

and α = 1.
Therefore, DR from the Eq. (F18) is given by

DR = B2

q2ω(1 + a)

∫
k

Pll,mn(k; q)Gmi(k)G∗
jn(k)Pi j,tt (k; q). (F20)

Finally, using approximation from Eq. (F4) for Eq. (E5) in Eq. (F20), we can write

DR = −B2
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. (F21)

Then, the total diffusion constant is

D = DR + D�G1q

= −B2
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, (F22)

and the leading term in the limit of small Im[K2
T,L] is

Dlead ≈ −B2

12πρ2ω5(1 + a)

(
c4

L

(
Re

[
K2

L

]7/2

Im
[
K2

L

]
)

+ 2c4
T

(
Re

[
K2

T

]7/2

Im
[
K2

T

]
))

(F23)

Explicitly, from Eq. (64), we have

−B2 = 4πρ2ω2(
2Re

[
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T

]3/2 + Re
[
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L

]3/2
) . (F24)

Then, using Eqs. (44), (64), (67), and (F23),
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which is Eq. (74). In the low-frequency limit, it reads as

Dlead
ω→0 ≈

(
v3

T c4
L(

2v3
L + v3

T

)
v4

L

vLlL
3

+ 2v3
Lc4

T(
2v3

L + v3
T

)
v4

T

vT lT
3

)
, (F26)

which is Eq. (75).
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