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Nonreciprocal acoustic transmission through dynamic multilayer structures
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A time Floquet transfer-matrix method for the description of acoustic wave propagation through dynamic
stratified structures, modulated by another, low-frequency, pump acoustic wave, is reported. The method is
applied to a specific example of a GaAs/AlAs periodic superlattice, subject to a spatiotemporal modulation
induced by an evanescent pump wave with frequency in the lowest acoustic band gap of the structure. By
means of systematic numerical calculations, we provide compelling evidence for the occurrence of significant
nonreciprocal transmission of an acoustic signal with frequency in a high-order acoustic band gap, through
inelastic multiple-scattering processes. Our results indicate a promising route to design nonreciprocal acoustic
devices.
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I. INTRODUCTION

It has long been known that two simultaneously propa-
gating sound waves interact with each other, generating new
frequencies that result from linear combinations of the fre-
quencies of the primary waves [1,2]. This can be thought as
a nonlinear effect, coupling the two sound waves, which can
lead to useful applications. For example, based on the non-
linear interaction of an intense low-frequency pump acoustic
wave with a weak high-frequency acoustic signal, the so-
called nonlinear vibroacoustic wave modulation technique
was developed for structural damage detection (see, e.g.,
Ref. [3] and references therein).

It was also pointed out that phononic structures, the prop-
erties of which vary periodically in time, could be used for
wave switching, for parametric amplification [4,5], and as cir-
culators [6] and can support topologically protected states [7].
Moreover, time-varying media exhibit intriguing transmission
properties which arise from the broken time-reversal symme-
try. In general, the lack of time invariance of a linear medium
can lead to a nonreciprocal acoustic response, which is an
essential ingredient in the design of a phonon diode [8], while
mechanisms for nonreciprocal acoustic transmission using a
nonlinear element combined with an acoustic filter have been
proposed as well [9–12].

In recent years, time-varying structures are being widely
explored due to their nonreciprocal response. The existence
of unidirectional transmission has been predicted for sys-
tems with spatiotemporally modulated density or Young’s
modulus [13–15], as well as for piezophononic [16], piezo-
electric [17,18], and magnetophononic media [19,20]. On the
experimental side, nonreciprocal effects have been observed
in acoustic structures with rotating elements [21] as well as
in mass-spring [22] and electromechanical [23] systems with
time-modulated stiffness. However, despite the considerable
research activity in this field, dynamic layered acoustic com-
posites have received much less attention [24]. In this paper,

taking advantage of the band-gap structure of periodic layered
composites, we investigate how a localized temporal modula-
tion, induced by the excitation of an evanescent low-frequency
acoustic mode, can interact strongly with a high-frequency
acoustic signal incident normally on such a composite, giving
rise to significant unidirectional transmission. Owing to its
simplicity, the proposed design constitutes a versatile platform
for realizing nonreciprocal acoustic devices with similar per-
formance to or even better performance than other alternative
systems under realistic, experimentally achievable conditions,
due to the acoustic band-gap structure and the facile control
of the wave form in conjunction with the strong modulation
induced by the vibrating interfaces. Moreover, the structure is
easily amenable to nanofabrication and thus offers extended
possibilities for operation up to hypersonic frequencies.

Enhanced nonreciprocity is expected if the signal, depend-
ing on its direction of incidence, experiences very different
coupling with the modulation field. Our proposal to achieve
this is to choose both modulation and signal frequencies (�
and ω, respectively) to be inside acoustic band gaps and, in
particular, close to midgaps in order to ensure strong damp-
ing [25] and thus very asymmetric overlap in the forward and
backward configurations, as shown schematically in Fig. 1. At
the same time, the sum and/or difference frequencies, ω + �

and/or ω − �, should be adjusted to lie within passbands, so
that the beams produced by first-order inelastic scattering can
be efficiently transmitted through the structure. Of course, the
modal shape of the fields involved in the interaction process,
i.e., modulation and primary incoming and outgoing signal
waves, also plays an important role in achieving maximum
efficiency.

The remainder of this paper is structured as follows. In
Sec. II we present a detailed analysis of our theoretical
method. We begin by deriving the governing equation for
the eigenmodes of the acoustic field in an infinite medium
with a time-varying mass density. Then, we proceed to
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FIG. 1. Schematic description of the asymmetric overlap mech-
anism for realizing unidirectional transmission through a dynamic
one-dimensional periodic composite consisting of a finite sequence
of two alternating layers of thickness d1 and d2. A large-amplitude
compressional pump acoustic wave of angular frequency � within
a low-frequency band gap, incident from the left, induces a spa-
tiotemporal modulation localized in the left part of the composite.
A second small-amplitude acoustic signal, with angular frequency
ω in a high-order band gap, in the time-modulated composite is
upconverted in the frequency passband above the gap and transmitted
with much higher efficiency when it is incident from the left than
when it is incident from the right, because of the asymmetric overlap.
This effect can also be realized in the passband below the gap through
frequency downconversion.

develop a time Floquet transfer-matrix method for acoustic
wave propagation in stratified elastic composites, driven by
a low-frequency and high-amplitude pump acoustic wave,
including not only the effect of bulk modulation but also the
effect of the vibrating interfaces. We also show that, in the
limit of zero modulation amplitude, this method is reduced
to the usual transfer-matrix formalism for static structures.
In Sec. III we apply our method to a specific example of
a GaAs/AlAs periodic superlattice, spatiotemporally mod-
ulated by an evanescent pump wave with frequency in the
lowest acoustic band gap of the structure. Our numerical
calculations reveal the occurrence of considerable unidirec-
tional transmission of an acoustic signal with frequency in a
high-order acoustic band gap. We present a thorough analysis
of our results and provide a consistent interpretation of the
underlying physical mechanisms. The last section summarizes
the main findings of this paper.

II. THEORY

A. Description of the setup

In this paper we shall be concerned with time-varying
stratified structures made of alternating layers of homoge-
neous and isotropic materials, grown along the z direction.
More specifically, we consider a one-dimensional periodic
composite consisting of a finite sequence of two alternating
layers of thickness d1 and d2, so that a = d1 + d2 is the lattice

period, as schematically shown in Fig. 1. The layers are char-
acterized by mass densities ρ1, ρ2 and Young’s moduli E1, E2,
respectively. The structure is modulated in space and time
by a low-frequency and high-amplitude pump compressional
acoustic wave, of angular frequency �, incident perpendicular
to the layers, and is embedded in an unmodulated (static) host
material of mass density ρ0 and Young’s modulus E0.

The modulation displacement field, U (z, t )̂z =
Re[U (z) exp(−i�t )]̂z, induces a dynamic change in the
acoustic response of the structure, first through the vibration
of the boundaries of each layer. This translates to a
periodic alternation of the mass density and the Young’s
modulus at a given point z in close vicinity to a vibrating
interface. In addition to this interface contribution, the
strain field, ε(z, t ) = ∂U (z, t )/∂z = Re[ε(z) exp(−i�t )],
induces a spatiotemporal variation of the bulk density
�ρ(z, t ) � −ρ(z)ε(z, t ), while changes in the material
Young’s modulus are neglected as long as we remain in
the linear elastic region. Indeed, the mass density along
the z axis is given by ρ(z) = δm/(Aδz), where A is the
cross-section area and δm is the mass of an infinitesimal
slice extending from z − δz/2 to z + δz/2. In the presence
of a compressional acoustic wave, the slice boundaries
(containing the same mass, i.e., atomic planes) are displaced
and extend from z − δz/2 + U (z − δz/2, t ) to z + δz/2 +
U (z + δz/2, t ). Therefore the slice thickness becomes
δz + U (z + δz/2, t ) − U (z − δz/2, t ) � δz[1 + ε(z, t )], and
the mass density reads

ρ(z, t ) � ρ(z)[1 − ε(z, t )] = ρ(z)(1 − ε(z) cos[�t − φ(z)]),
(1)

where ε(z) and φ(z) are the modulus and phase of ε(z), re-
spectively.

In order to study propagation of a small-amplitude acoustic
signal through the dynamic structure described above, we
subdivide each layer into a sufficiently large number of ele-
mentary slices, which can be assumed to be homogeneous,
though they vary periodically in time under the influence of
the pump field according to Eq. (1) dropping out the depen-
dence on z.

B. Infinite homogeneous medium with
a time-varying mass density

We begin our analysis by studying acoustic wave prop-
agation in an infinite, homogeneous time-varying medium,
characterized by mass density ρ(t ) = ρ[1 − ε cos(�t − φ)]
according to Eq. (1) and constant Young’s modulus E . The
parameters ε,�, φ are determined by the external stimulus
which modulates the medium.

The wave equation that describes the space-time evolution
of the displacement field u(z, t ) and, consequently, wave prop-
agation in this medium reads

E
∂2u(z, t )

∂z2
= ∂

∂t

[
ρ(t )

∂u(z, t )

∂t

]
⇒ ∂2u(z, t )

∂z2
− 1

v2
[1 − ε cos(�t − φ)]

∂2u(z, t )

∂t2

− �ε

v2
sin(�t − φ)

∂u(z, t )

∂t
= 0, (2)
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where v = √
E/ρ. We can seek solutions of the time-periodic

equation (2) in the Floquet [26] form

u(z, t ) = Re

[
ei(kz−ωt )

∞∑
n=−∞

wnein�t

]
(3)

and, substituting into Eq. (2), obtain

k2wn−
[

(ω − n�)

v2

]2

wn

+ ε

2v2
e−iφ[ω−(n − 1)�](ω − n�)wn−1

+ ε

2v2
eiφ[ω − (n + 1)�](ω − n�)wn+1 = 0. (4)

This is an eigenfunction-eigenvalue equation of a tridi-
agonal matrix, which can be solved by standard numerical
methods. In this equation, k2 is the eigenvalue, while the
angular frequencies of the pump wave and the incident signal,
� and ω, respectively, are tunable parameters. Obviously,
a monochromatic signal, incident on a periodically time-
varying medium, excites polychromatic modes of the form
of Eq. (3). The propagation direction of the different (poly-
chromatic) wave modes is determined by the corresponding
time-averaged Poynting vector

〈P〉 = lim
τ→∞

1

τ

∫ τ

0
dt

[
−E

∂u(z, t )

∂z

∂u(z, t )

∂t

]
, (5)

which yields

〈P〉 = Ek

2

∞∑
n=−∞

|wn|2(ω − n�). (6)

As in the static case, if 〈P〉 is positive (negative), then the
wave is propagating forward (backward). It is worth noting
that, since the eigenvalues of Eq. (4) are equal to k2, the eigen-
modes of the acoustic field in the homogeneous time-varying
medium appear in pairs of counterpropagating polychromatic
plane waves, with wave numbers ±k, associated with the same
eigenvector.

C. Interfaces between homogeneous time-varying media

The most general form of the displacement field in a slab,
s, of a homogeneous time-varying medium can be written
as a linear combination of the Floquet eigenmodes, given by
Eq. (3), which are labeled by an index p

us(z, t ) =
∞∑

p=−∞
Re

{
[u+

s;peiks;p(z−zs ) + u−
s;pe−iks;p(z−zs )]

×
∞∑

n=−∞
wsn;pe−i(ω−n�)t

}
, (7)

where ks;p corresponds to a forward-propagating mode and
therefore −ks;p refers to a backward-propagating one, u±

s;p are
the corresponding amplitudes, and wsn;p are the components
of the normalized eigenvector, while zs is a point inside slab s,
around which the displacement field is expanded. With p = 0
we label the eigenvalue for which the absolute difference of
ks;p from k = ω/v is smallest, and with p < 0 (p > 0) we la-
bel the eigenvalues with increasing absolute difference which
are greater (smaller) than k = ω/v.

At an interface, at z0, between two different media, the
boundary conditions of continuity of the displacement and the
stress fields read

us(z0, t ) = us+1(z0, t ),

Es
∂us(z, t )

∂z

∣∣∣∣
z0

= Es+1
∂us+1(z, t )

∂z

∣∣∣∣
z0

. (8)

However, in this paper, because of the dynamic modulation,
the interface oscillates with an angular frequency �. If � 	
ω, which is the case that we consider in this paper, the po-
sition of the interface does not vary substantially within a
period 2π/ω of the acoustic signal. Therefore we can employ
Eqs. (8) with z0 replaced by z0 + ξ cos(�t − θ ), where ξ and
θ are the modulus and phase of U (z0), respectively, and the
first equation in (8), with the help of Eq. (7), yields

∞∑
p,n=−∞

[u+
s;peiks;pds eiks;pξ cos(�t−θ ) + u−

s;pe−iks;pds e−iks;pξ cos(�t−θ )]wsn;pe−i(ω−n�)t

=
∞∑

p,n=−∞
[u+

s+1;pe−iks+1;pds+1 eiks+1;pξ cos(�t−θ ) + u−
s+1;peiks+1;pds+1 e−iks+1;pξ cos(�t−θ )]ws+1n;pe−i(ω−n�)t ,

where ds = |z0 − zs| and ds+1 = |z0 − zs+1|.
Taking advantage of the Jacobi-Anger identity

eia cos θ =
∞∑

m=−∞
imJm(a)eimθ ,

where Jm(a) is the mth Bessel function of the first kind [27], we have
∞∑

p,n,m=−∞
[eiks;pds Jm(ks;pξ )u+

s;p + e−iks;pds Jm(−ks;pξ )u−
s;p]ime−imθwsn;pei(m+n)�t

=
∞∑

p,n,m=−∞
[e−iks+1;pds+1 Jm(ks+1;pξ )u+

s+1;p + eiks+1;pds+1 Jm(−ks+1;pξ )u−
s+1;p]ime−imθws+1n;pei(m+n)�t .
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This equation must be valid at any moment of time t . Setting n′ = n + m and introducing the coefficients

a±
n′;p = e±iks;pds

∞∑
n=−∞

in′−ne−i(n′−n)θJn′−n(±ks;pξ )wsn;p,

b±
n′;p = e∓iks+1;pds+1

∞∑
n=−∞

in′−ne−i(n′−n)θJn′−n(±ks+1;pξ )ws+1n;p, (9)

we finally obtain
∞∑

p=−∞
[a+

n′;pu+
s;p + a−

n′;pu−
s;p] =

∞∑
p=−∞

[b+
n′;pu+

s+1;p + b−
n′;pu−

s+1;p], ∀n′. (10)

Correspondingly, from the continuity of the stress field, we obtain
∞∑

p=−∞
[A+

n′;pu+
s;p + A−

n′;pu−
s;p] =

∞∑
p=−∞

[B+
n′;pu+

s+1;p + B−
n′;pu−

s+1;p], ∀n′, (11)

where A±
n′;p = ±Esks;pa±

n′;p and B±
n′;p = ±Es+1ks+1;pb±

n′;p. We
remind the reader that the presence of Bessel functions in
the above formulas, while directly resulting from the Jacobi-
Anger identity, is also a staple of frequency modulation
tutorials in signal theory [28].

Equations (10) and (11) can be cast in the matrix form(
a+ a−
A+ A−

)(
u+

s
u−

s

)
=

(
b+ b−
B+ B−

)(
u+

s+1
u−

s+1

)
, (12)

from which the dynamic transfer matrix T can be readily
defined:(

u+
s+1

u−
s+1

)
= T

(
u+

s
u−

s

)
, T =

(
b+ b−
B+ B−

)−1(
a+ a−
A+ A−

)
.

(13)
In practice, we truncate the Fourier series to a finite number
of terms n′ = {−N, . . . , 0, . . . , N}. Therefore we have p =
{−N, . . . , 0, . . . , N} Floquet eigenmodes, and T is a 2(2N +
1) × 2(2N + 1) square matrix. The value of N is determined
by requiring convergence of the solution. In this paper, ε, ξ

are small, and thus the convergence is very fast.
In the absence of time modulation (ε = 0), Eq. (4) yields

kp = ±
(

ω − p�

v

)2

, wn;p = δnp,

which expresses frequency invariance of monochromatic
waves in a static medium. At an interface between two such
media, s and s + 1, since ξ = 0, taking into account the prop-
erty of Bessel functions Jn′−n(0) = δn′n, it is straightforward
to show that the matrices a±, b±, A±, and B± defined above
are diagonal. In this case, the linear system (13) of 2(2N + 1)
coupled equations is reduced to 2N + 1 independent 2 × 2
linear systems

eiks;pu+
s;p + e−iks;pu−

s;p = e−iks+1;pu+
s+1;p + eiks+1;pu−

s+1;p,

Esks;p(eiks;pu+
s;p − e−iks;pu−

s;p) = Es+1ks+1;p(e−iks+1;pu+
s+1;p

− eiks+1;pu−
s+1;p), (14)

one for each value of p = {−N, . . . , 0, . . . , N}, which define
the usual transfer matrix in the static case.

At an interface between a static and a time-modulated
medium, say, with εs = 0, εs+1 
= 0, and ξ 
= 0, the matrices

a±, b±, A±, and B± are nondiagonal, and monochromatic
waves of different frequencies are generated due to time mod-
ulation and propagate in the static medium. This configuration
appears, e.g., when a time-modulated structure is embedded in
a static host medium, as we assume in this paper.

At this point, it is essential to stress again the meaning
and the role of the different fields discussed in this pa-
per. First, the displacement, U (z, t ), and the corresponding
strain, ε(z, t ), fields are associated with a pump compressional
acoustic wave which, propagating through the static structure,
induces a spatiotemporal modulation. On the other hand, the
displacement field u(z, t ) describes a much-higher-frequency
and small-amplitude acoustic signal, which propagates in the
modulated layered medium.

The transfer matrix, M, for the whole structure is obtained
by multiplying the transfer matrices of the successive inter-
faces [29]

M =
Ni∏

i=1

Ti ≡
(

MI MII
MIII MIV

)
, (15)

where Ni is the total number of interfaces.
For a monochromatic acoustic wave, incident on the dy-

namic structure from the left, we obtain the polychromatic
transmitted and reflected fields from the equation(

utr

0

)
=

(
MI MII

MIII MIV

)(
uinc

urf

)
, (16)

where uinc = (0, . . . , 0, uinc, 0, . . . , 0)T . Since, as we have
already mentioned, the host material is assumed to be un-
modulated, the reflected and transmitted monochromatic wave
components will propagate independently inside it. Combin-
ing the analysis carried out here in Sec. II C with Eq. (6),
we obtain the total transmittance and reflectance from the
equations

T =
∞∑

n=−∞
Tn =

∞∑
n=−∞

∣∣∣∣utr;n

uinc

∣∣∣∣2(
1 − n

�

ω

)2

,

R =
∞∑

n=−∞
Rn =

∞∑
n=−∞

∣∣∣∣urf;n

uinc

∣∣∣∣2(
1 − n

�

ω

)2

. (17)
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FIG. 2. Transmission spectrum of a one-dimensional periodic
acoustic composite, with period a, consisting of an alternating se-
quence of GaAs and AlAs layers, of thickness d1 = 0.6a and d2 =
0.4a, respectively, around the lowest-frequency band gap (a) and a
high-frequency band gap (b), at normal incidence. The structure has
a total length of 40a and is embedded in an otherwise homogeneous
GaAs material. The amplitude profile of the displacement field, asso-
ciated with a normally incident acoustic wave of angular frequency
�a/v0 = 3.435 and ωa/v0 = 74.68 (inside these two gaps), is de-
picted in (c) and (d). Enlarged views in the first ten periods and one
period, respectively, are shown in the insets.

III. RESULTS AND DISCUSSION

We shall now apply the method developed in the previous
section to a specific example of a periodic layered composite,
with its structural unit consisting of two layers of thickness
d1 = 0.6a and d2 = 0.4a, where a is the lattice period. The
multilayer structure has a total length of 40a and is embed-
ded in an otherwise homogeneous host medium. Examples
of such structures, in the nanoscale, are, e.g., semiconductor
superlattices, such as Si/Ge [30] or GaAs/AlAs [31–35], or
metal/metal superlattices [36–38].

We express all relevant material parameters in dimension-
less form, normalized to the corresponding parameters of
the host medium (v0, ρ0). In this paper we assume v1/v0 =
1, v2/v0 = 1.0829, ρ1/ρ0 = 1, ρ2/ρ0 = 0.7015, which are
appropriate for a GaAs/AlAs superlattice embedded in
GaAs [31], while by ωa/v0 and ka we denote the dimension-
less frequency and wave number, respectively.

Periodic acoustic composites exhibit spectral gaps, i.e., fre-
quency regions wherein wave propagation is prohibited [25],
due to the destructive interference of the scattered waves,
while the magnitude of the gap increases with the contrast
of the material parameters. In the case under consideration,
taking advantage of the formation of these gaps in the (static)
structure, we choose the frequency of the pump wave, �, to
be inside the lowest-frequency band gap, namely, at �a/v0 =
3.435. The transmission spectrum in the vicinity of the gap is
shown in Fig. 2(a). It can be seen that, outside the gap, the
transmission exhibits the usual Fabry-Pérot oscillations due
to multiple reflections at the surfaces of the sample while,

inside the gap, the transmission is negligibly small because,
purposefully, we chose the sample to be relatively thick (40a).

Because of the choice of the pump wave frequency in-
side a band gap, the modulation is induced by an evanescent
wave, and only the first few slabs oscillate significantly. The
amplitude profile of the corresponding displacement field is
depicted in Fig. 2(c).

Reciprocity implies that, in the absence of time modula-
tion, passbands and band gaps of periodic acoustic composites
are bidirectional. This means that the acoustic response
remains the same when the source and receiver are inter-
changed. In contrast, when a system is modulated in time,
unidirectional band gaps can be formed [13,39], and in this
respect, our dynamic structure can support nonreciprocal
acoustic transmission. Nevertheless, if the signal has a fre-
quency inside a passband, we have a traveling wave that
extends over the entire structure. Therefore the interaction
with the dynamic modulation is not radically different when
the wave is incident from the left or from the right, even if the
modulation is localized at a given surface as we consider in
this paper. As a result, only weak nonreciprocal phenomena
are expected and indeed observed in this case.

If we want to achieve an enhanced nonreciprocal response,
we must take advantage of the localization of the modulation,
depicted in Fig. 2(c), and consider an evanescent signal as
well. In this case, a left incident wave will propagate only
for a few periods and will interact strongly with the dynamic
structure which is modulated close to the left boundary. In
contrast, if the wave is incident on the structure from the
right, it will decay before reaching the left boundary, and
only minor interactions will take place since there will be no
significant overlap with the modulation. Therefore we choose
the frequency of the signal to be inside a high-frequency band
gap, namely, that depicted in Fig. 2(b), at ωa/v0 = 74.68
within the 20th gap. The desired localization of the signal,
which indeed undergoes significant decay before it reaches the
opposite boundary, is clearly visible in Fig. 2(d). We note that
the choice of such a high-order band gap, instead of a lower
and probably more robust one, is made in order to ensure the
validity of our quasistatic approach to scattering by a vibrating
interface (� 	 ω), discussed in Sec. II C.

It is well known from the study of time-varying media [39]
that a periodic modulation with angular frequency � gener-
ates new frequencies. These frequencies, ωn, differ from that
of the incident wave, ω, by n�, where n = {0,±1,±2, . . .}.
We recall that we have chosen the signal of frequency ω to be
evanescent. Therefore, if it is incident on the structure from
the left, a high-amplitude modulation, localized in the vicinity
of the left surface, can generate new waves of frequencies
ωn with significant amplitude. Although static and dynamic
structures do not share the same transmission spectrum, it
would be not unreasonable to expect that some frequency ωn,
if it corresponds to a propagating wave of significant ampli-
tude, can lead to a relatively high transmission coefficient.
On the other hand, if the signal is incident on the structure
from the right, no strong interaction takes place because of
the small overlap with the modulation, and thus no significant
propagating waves are expected to be generated.

Nonreciprocity is controlled by the amplitude of the pump
wave, |Uinc|, which must be high enough in order to have
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FIG. 3. (a) Relative intensities of the elastic (n = 0) and inelastic
(n 
= 0) transmitted beams, defined by Eq. (17), with respect to the
intensity of an acoustic signal incident normally on the periodic
composite described in Fig. 2, modulated by a pump acoustic wave
with amplitude |Uinc| = 10−3a. Both waves (signal and pump) are in-
cident normally on the structure and have frequencies within acoustic
band gaps: ωa/v0 = 74.68 and �a/v0 = 3.435, respectively. Solid
(hatched) bars correspond to signal incidence parallel (antiparallel)
to that of the pump wave. (b) Variation of the relative intensity of
the predominant transmitted beam with the amplitude of the pump
wave. The other transmitted beams remain at a relatively low level,
as in (a).

a considerable effect. However, this amplitude cannot be ar-
bitrarily large, because the associated high-amplitude strain
field may induce inelastic deformations of the materials.
Choosing |Uinc| ∼ 10−3a, the corresponding strain field does
not exceed 7 × 10−3, which is experimentally achievable
and ensures that the structure remains in the linear elastic
regime [40,41] while, at the same time, causing a significant
nonreciprocal response.

It is worth noting that, in view of optimizing the non-
reciprocal response for given modulation frequency �, the
signal frequency ω should be properly adjusted in order to
maximize the intensity of a predominant inelastic transmitted
beam, keeping all other transmitted beams at a vanishingly
low level, as shown in Fig. 3(a). Figure 3(b) shows that the
relative intensity of the predominant transmitted beam grows
quadratically with the amplitude of the pump wave and can
reach 8% under realistic conditions. Different choices of pa-
rameters, e.g., geometry, materials, and frequencies, could
lead to increased coupling of the primary incoming and out-
going signal waves with the pump field, thus achieving the
even higher frequency conversion efficiency that is desirable
in practical applications.

If both � and ω are inside band gaps, as in the case under
consideration, to first order in perturbation theory one expects
relatively high transmission of the n = ±1 inelastic beams,
for incidence parallel to that of the pump wave, if ω ∓ �,
respectively, is within a passband of the static structure. The
relevant transmission spectra in the frequency ranges of in-
terest here, for � and ω inside the band gaps displayed in
Figs. 2(a) and 2(b), are depicted in Figs. 4(a) and 4(b).

On the other hand, in Figs. 4(c) and 4(d) we show the rel-
ative intensities of the first-order inelastic transmitted beams,
with respect to the intensity of an acoustic signal incident nor-
mally on the structure, parallel to a pump acoustic wave with
amplitude Uinc = 10−3a, in the domain of interest spanned by
the pump and signal frequencies. With the dashed lines we
represent the equation ω − � = ω−

1 in Fig. 4(c) and the equa-
tions ω + � = ω+

1 and ω + � = ω+
2 in Fig. 4(d), where ω∓

1

FIG. 4. Transmission spectra of the static, periodic acoustic com-
posite described in Fig. 2, below (a) and above (b) the signal
frequencies, at normal incidence. The plotted spectral regions differ
from the signal frequencies, ω, by the frequency of the modulation,
�, that will be applied by a pump wave. (c) and (d) Relative inten-
sities of the first-order inelastic transmitted beams, with respect to
the intensity of an acoustic signal incident normally on the struc-
ture, parallel to a pump acoustic wave with amplitude Uinc = 10−3a,
in the domain spanned by the pump and signal frequencies. The
dashed lines represent the equation ω − � = ω−

1 in (c) and the equa-
tions ω + � = ω+

1 and ω + � = ω+
2 in (d), where by ω∓

1 and ω∓
2 we

denote the bottom and top, respectively, of the corresponding band
gaps, shown in (a) and (b).

and ω∓
2 denote the bottom and top, respectively, of the corre-

sponding band gaps, shown in Figs. 4(a) and 4(b): ω−
1 a/v0 =

71.03, ω−
2 a/v0 = 71.55, ω+

1 a/v0 = 77.65, and ω+
1 a/v0 =

77.90. It can be readily seen that the regions of total reflection
for the dynamic structure coincide with the corresponding
band gaps of the static structure. It is also worth noting that
the dynamic transmission spectrum follows the Fabry-Pérot
oscillations. However, since the pump wave at each frequency
� induces a different spatiotemporal modulation, the corre-
sponding overlap integral with the initial and final states is
different, which explains the variation of the transmittance
along a given line of constant frequency ω + � or ω − �. We
note that the borderline ω − � = ω−

2 for the onset of inelastic
transmission above the band gap in Fig. 4(c) is not visible
because it is outside the spectral ranges considered.

Last but not least, it should be pointed out that, as shown
by explicit calculations, the effects discussed here are almost
entirely due to the vibrating interfaces while the bulk density
modulation is negligible, which justifies the neglect of mod-
ulation of the homogeneous embedding medium. Therefore,
clearly, stratified structures are essential for the manifestation
of strong nonreciprocal effects.

IV. CONCLUSIONS

In summary, we developed a time Floquet transfer-matrix
method to describe acoustic wave propagation through strat-
ified structures, subject to dynamic modulation by another,
low-frequency, pump acoustic wave. Applying this method
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to a specific example of a GaAs/AlAs periodic superlattice,
under a spatiotemporal modulation induced by an evanescent
pump wave with frequency in the lowest acoustic band gap
of the structure, we provided evidence for the occurrence of
considerable nonreciprocal acoustic effects. More specifically,
the simultaneous localization of both pump and signal waves
in the vicinity of the same surface of the acoustic composite
leads to significant one-way transmission of an evanescent
signal at in-gap frequency, when strong inelastic scattering
produces a propagating outgoing wave with frequency inside a
passband. The proposed design, which takes advantage of the
acoustic band-gap structure of periodic elastic composites in
order to properly adjust the interaction of the acoustic signal
with the dynamic modulation, indicates a promising route to-

wards the realization of nonreciprocal acoustic devices. Other
stratified microstructures, which can operate in the linear
elastic regime under higher strain fields, will exhibit even
better performance. It is worth noting that our results apply
to different regions of frequency, provided that the size of the
structural units is scaled accordingly. In the high-gigahertz
regime that is also relevant to acousto-optics [42,43], non-
linear [44] and phonon damping [45,46] effects, which are
not considered in this paper, might play a significant role and
influence the device performance.
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