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collective quantum phase
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We theoretically examine behavior of superconductivity at parallel interfaces separating the domains of
another dominant collective excitation, such as charge density waves or spin density waves. Due to their
competitive coupling in a two-component Ginzburg-Landau model, suppression of the dominant order parameter
at the interfacial planes allows for nucleation of the (hidden) superconducting order parameter at those planes.
In such a case, we demonstrate how the number of the parallel interfacial planes and the distance between
them are linked to the number and the size of the emerging superconducting gaps in the system, as well as the
versatility and temperature evolution of the possible superconducting phases. These findings bear relevance to
a broad selection of known layered superconducting materials, as well as to further design of artificial (e.g.,
oxide) superlattices, where the interplay between competing order parameters paves the way towards otherwise
unattainable superconducting states, some with enhanced superconducting critical temperature.
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I. INTRODUCTION

Controlling and enhancing the thresholds of superconduct-
ing (SC) phase have been challenging physicists since the very
discovery of superconductivity. Over the past decades, dif-
ferent approaches have been proposed to enhance the critical
temperature Tc of different superconducting materials by, for
instance, reducing the sample dimensionality [1–4], curving
its surface [5], applying shear strain effects [6], or by imposing
hydrostatic pressure [7–10]. Understanding and tailoring the
mechanism behind the unconventional high-Tc superconduc-
tivity, exhibited by cuprates and iron pnictides, for example,
may provide additional pathways to enhance the temperature
domain of the superconducting phase. In these materials, the
high critical temperature is intimately connected with the in-
terplay between different collective quantum states, namely,
charge and spin density waves and the superconducting state
[11–14]. These additional ordered quantum phases may sup-
press superconductivity by competing for the same electrons
wrapped in the Cooper-pairing mechanism, but may also
assist Cooper pairing through, e.g., coupling between charge-
ordered states and the crystal lattice vibrations, enhancing
the superconducting state [13]. In fact, unlike conventional
superconductivity, where the pairing mechanism is mediated
solely by the phonon interaction, in high-Tc superconductors
the superconducting ground state is formed in presence of
strong fluctuations of the charge- and spin-ordered states as
discussed in Ref. [15].

The coexistence of superconductivity and other collective
states has been experimentally observed in several ma-
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terials, such as in Na(Fe,Co)As [14], in the underdoped
Ba(Fe0.953Co0.047)2As2 compound [16], in (Ba,K)Fe2As2 sys-
tems [17], in LaPt2(Si,Ge)2 [18,19], La2xSrxCuO4 [20,21], in
the quasi-one-dimensional material HfTe3 [22], in Pd-doped
2H-TaSe2 [23], 2H − TaSe2 under pressure [24], in NbSe2

films [25], etc. Aside from the bulk-layered materials, the
coexistence or competition of quantum phases in the context
of superconductivity is highly relevant to artificially com-
posed superlattices, be it thin films [26,27], consecutive oxide
interfaces [28,29], or van der Waals heterostructures [30,31].
Even within selected monolayer two-dimensional (2D) ma-
terials [especially transition-metal dichalcogenides (TMDs)]
[25,32], competition of quantum phases is expected, strongly
dependent on the sample thickness [33]. In that context, in
a recent work a two-component Ginzburg-Landau (GL) ap-
proach along with an extension of McMillan theory has been
used to describe the interplay between charge density waves
(CDW) and superconducting phases in layered TMDs [34].
Using a similar GL model, a more general analysis was pro-
vided by Moor et al. [35] to describe the rise of interface
superconductivity as a hidden order parameter only at the
interface between two separate regions where another collec-
tive phenomenon, such as charge and spin density wave, is
dominant. However, a model where superconductivity rises at
several parallel interfaces, which is a case of practical interest
[28–31], requires an extension of the single interface model
developed in Ref. [35] that has yet to be properly developed, in
order to allow one to investigate the role of interface coupling
on parameters such as superconducting critical temperatures
and Cooper-pair densities at the interfaces.

In this paper, motivated by many (bulk or artificial) layered
systems where competition of superconductivity with other
quantum orders is relevant, we apply the two-component GL
model to address physics stemming from the proximity of
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parallel material interfaces. We investigate how the con-
trollable geometric parameters of the system, such as the
number of parallel interfaces and the distance between them,
can be used to tune the possible superconducting states and
the overall critical temperature of interface superconductivity
competing with another bulk order. Our results demonstrate
the existence of “bands” of emerging superconducting gaps
(i.e., range of achievable critical temperatures) as the number
of parallel interfaces (translating to the thickness of the overall
system) is increased. Furthermore, we establish thresholds for
the constructive or destructive crosstalk of superconducting
order between the adjacent interfaces, and show different
states emerging when manipulating the distance between
interfaces, each with different temperature dependence and
different contribution to the overall critical temperature of the
system as a whole.

The paper is organized as follows. In Sec. II, we present
the theoretical framework for the study of interface supercon-
ductivity in a system with competing density wave (DW) and
SC order parameters, within the linearized and the fully non-
linear GL formalism. In Sec. III, we detail the eigenfunctions
and eigenvalues of the linearized equations for the SC order
parameter, where we also propose an approximate minimal
tight-binding model that allows one to predict results for an
arbitrary number of parallel interfaces. Results obtained using
the full nonlinear two-component GL approach are discussed
in Sec. IV. Our main findings and conclusions are summarized
in Sec. V.

II. THEORETICAL MODEL

We consider two order parameters � and W describing,
respectively, a (hidden) superconducting phase and another
collective excitation, such as CDW or spin density wave
(SDW). The corresponding two-component Ginzburg-Landau
(GL) free energy F is then defined as

F =
∫

dx

{
ξ 2

s (∇�)2 − αs�
2 + βs

2
�4

+ ξ 2
w(∇W )2 − αw(x)W 2 + βw

2
W 4 + γW 2�2

}
, (1)

where αw and βw are the usual phenomenological expansion
parameters in the derivation of the GL formalism, while γ is
the coupling between condensate densities. This free energy
can be written in a dimensionless form F as

F =
∫

dx

{
1

δ2
(∇�)2 + ξ 2

r

δ2

[
− αs�

2 + 1

2
�4

]

+ (∇W )2 − �w(x)W 2 + 1

2
W 4 + σW 2�2

}
, (2)

where unit of energy is F0 = α2
w0/βw (αw0 is the density

wave parameter αw in the bulk), and δ = Wb/�b, with Wb

and �b as the maximum values of the respective order pa-
rameters. The coefficient ξ 2

r = ξ 2
w/ξ 2

s relates the coherence
lengths ξw = h̄/

√
2mαw0 and ξs = h̄/

√
2mαs of the (charge

and spin) density wave (DW) and superconducting phases,
respectively, σ = γ δ2/αw0, and αs = 1 − T/T�, where T� is
the bulk critical temperature of the superconducting phase. ξw

is taken as the unit for distances and for the space coordinate

x. The parameter �w(x) is used to induce suppression of W (x)
at the interfaces, such that

�(x) =
{−α0, |x − χ j | < L
+1, |x − χ j | � L

(3)

where α0 � 0, L is the width of the interfacial regions, and χ j

( j = 1, 2, 3, . . . , N) is the position of the jth interface in a
system with N interfaces.

Minimizing F with respect to � and W leads to two
coupled Ginzburg-Landau equations

−d2W

dx2
+ [−�w(x) + W 2 + σ�2]W = 0, (4)

− 1

ξ 2
r

d2�

dx2
+

[
− αs + �2 + σδ2

ξ 2
r

W 2

]
� = 0. (5)

Even though the numerical solution of Eqs. (4) and (5), based
on a self-consistent relaxation procedure, will be eventually
provided in Sec. IV, we will also discuss here the solutions
based on the following linearized GL formalism, to gain
insights in the physics behind the complete solution of the
system of GL equations. Assuming a weak superconducting
gap at the interface, higher-order terms in � can be neglected
in Eqs. (4) and (5), so that [35]

−d2W

dx2
+ [−�w(x) + W 2]W = 0, (6)

− 1

ξ 2
r

d2�

dx2
+

[
− αs + σδ2

ξ 2
r

W 2

]
� = 0. (7)

Equation (6) is then discretized on a uniform Cartesian grid
(with spacing 0.1 ξw) in a finite-difference scheme and nu-
merically solved by means of a relaxation method. An initial
(arbitrary) trial function for W (x) evolves in time as

W t+1
i = W t

i + dt

[
W t

i+1 − 2W t
i + W t

i−1

dx2
− �i

wW t
i + (W t

i )3

]
,

(8)
with a (dimensionless) time step dt = 0.01, until convergence
is reached up to tolerance |W t+1

i − W t
i | � 10−8 at any point

in space xi. The converged solution for W (x) is then used as
input in Eq. (7),

−d2�

dx2
+ σδ2|W |2� = ε�, (9)

where ε = ξ 2
r αs and the equation is discretized in the same

spatial grid. Notice the resemblance of this equation with
Schrödinger equation for a σδ2|W (x)|2 potential. We numer-
ically solve this eigenvalue equation, which yields a series
of solutions for the superconducting order parameter, each
with an eigenvalue εn and a gap distribution �n(x) that is
nonzero at the interfacial regions, thus describing interface
superconducting states. This situation is sketched in Fig. 1,
illustrating the suppressed W (x) and increased �(x) at a pair
of parallel interfaces. Given the temperature dependence of αs

and the value of ξ 2
r , one can obtain the critical temperature

Tcn for the nth superconducting eigenstate of this system, as
we will demonstrate in what follows. Alternatively, one can
solve Eq. (7) through a relaxation procedure for different
temperatures, to reveal the temperature dependence of �n(x).
The full solution of the nonlinearized GL equtions (4) and
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FIG. 1. Sketch of a system with two adjacent interfaces, based
on the single-interface system proposed in Ref. [35]. Here, the order
parameter W (x) (dashed line) describes a collective excitation (e.g.,
spin or charge density waves) dominating in the bulk (green), that is
suppressed along parallel interfaces (blue) of width L, separated by
distance d [see Eq. (3)]. The hidden order parameter �(x), which de-
scribes the superconducting phase, arises at these interfaces (plotted
as a solid line).

(5), to be discussed in Sec. IV, is also obtained by the same
relaxation procedure, assuming convergence is achieved as the
error reaches |�t+1

i − �t
i | � 10−11 at any point in space xi.

In general, the model proposed here is applicable to super-
conductors with coexisting SDW, such as Fe-based pnictides,
as well as to those with a CDW, or cuprates. The correspon-
dence between the αs(w), βs(w), and γ paramaters in Eq. (1)
and the microscopic parameters for these materials is dis-
cussed in Refs. [35–39]. However, a proper application of
such a phenomenological model, as the one in Eq. (1), to these
materials is currently not possible, due to the lack of experi-
mental data on the spatial dependence of the order parameters
involved in our model for actual samples in the literature [35].
Therefore, in what follows, all discussions will be made in
terms of dimensionless units and conclusions will be mostly
drawn in a qualitative way.

III. INTERFACE EIGENSTATES AND THEIR
CRITICALITY

To begin with, we recall that Ref. [35] readily contains an
extensive study of the single interface case, and shows that
the eigenstates of Eq. (9) represent different possible distri-
butions of the superconducting order parameter �(x), each
with a different eigenvalue (critical temperature) εn, which are
reminiscent of the eigenstates of the Schrödinger equation for
a particle confined in a quantum well.

We therefore start our analysis from one pair of parallel
interfaces. In what follows, all interfaces will have the same
width L = 2 ξw, where the ground state of each interface is
well separated in energy from the first excited state, thus al-
lowing us to interpret the behavior of the system only using the
ground state of the SC order parameter in each interface. The
density wave W (x) and superconducting �(x) order parame-
ters in this case are shown in Figs. 2(a) and 2(b), respectively.
The two interfaces are separated by distance d = 12 ξw, and
we assume ξr = 1.0 (i.e., ξs = ξw). Notice the two dips in
W (x), calculated by Eq. (8) with �(x) given by Eq. (3) with
χ1 = −6 ξw and χ2 = +6 ξw, exactly at the position of the

FIG. 2. Spatial distribution of the order parameters (a) of the
density wave W , assuming its strong (α0 = 5, solid line) and weak
(α0 = 1, dashed line) suppression at the interfaces, and (b) lowest-
lying eigenfunctions of the SC state �n in the strong DW suppression
case, for two interfaces of width L = 2 ξw, separated by d = 12 ξw

(cf. Fig. 1).

interfaces, representing suppression of the DW phase at these
regions. Increasing the value of α0 then leads to a stronger
suppression of the order parameter W . We consider α0 = 1 for
a weak DW suppression, and α0 = 5 for strong suppression.
The two lowest-lying eigenfunctions of the SC order parame-
ter in the α0 = 5 case peak at the interfaces, thus representing
the rise of interface superconductivity. The symmetric and
antisymmetric characters of these solutions are reminiscent of
the double-quantum-well problem.

As in a double quantum well, the eigenvalues of Eq. (9)
are expected to be degenerate if the interfaces are sufficiently
far from each other (i.e., d → ∞), whereas this degeneracy is
lifted as they are brought closer to each other. This is exactly
shown in Fig. 3, representing the eigenvalues ε of the SC
states with symmetric (black solid) and antisymmetric (red
dashed) eigenfunctions. One easily verifies that even a small
suppression of the DW order gives rise to interface supercon-
ductivity. Interestingly, the dependence of the eigenvalues on
the distance between interfaces d is affected by how strongly
the DW phase is suppressed at the interfaces. As shown in
Fig. 3(a), when the DW order is strongly suppressed, a sharp
kink appears at d = 2 ξw. Similar features are observed in
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FIG. 3. Eigenvalues of Eq. (9) as a function of distance d be-
tween two interfaces, assuming strong (a) and weak (b) suppression
of the DW order parameter W , i.e., with α0 = 5 and 1, respectively.
Lines show the numerically obtained results for symmetric (black
solid) and antisymmetric (red dashed) eigenfunctions, while open
symbols plot results of a tight-binding approach for the same states.
(c) The calculated hopping parameter τ as a function of distance d
for a weak suppression case (open symbols), with an analytical fitting
function plotted as well (solid curve). Inset in (a) shows the DW order
parameter with α0 = 5 assuming d = 4ξW (red dashed) and d = 6ξW

(black solid).

systems with more interfaces as well, as will be discussed
later.

In fact, in the case where α0 in Eq. (3) is set to a high
value to produce strong DW suppression at the interfaces,
as the distance between interfaces is made shorter, the DW
order parameter no longer reaches its maximum value in the
region between adjacent interfaces. This is shown in the inset
of Fig. 3(a), which shows W (x) for the two parallel interfaces
system, assuming two values for the distance between the
interfaces. One notices that for d < 2 ξw, in the case of strong
suppression, the crosstalk between the suppressions of the
DW order parameter at the interfaces suppresses the order
parameter between the interfaces as well, creating effectively
a single region of weakly modulated DW order parameter.

FIG. 4. DW order parameter W for a system consisting of (a) 3
and (b) 4 parallel interfaces, separated by distance d = 12 ξw. The
SC order parameters �n of the first 3 and 4 low-lying eigenstates of
these systems are shown in (c) and (d), respectively.

This maximizes the induced superconducting order parameter
�. For further shortened distance d the area of (nearly fully)
suppressed DW order is reduced, reducing the maximal emer-
gent �.

The lift of the eigenstate’s degeneracy, observed in
Figs. 3(a) and 3(b), allows us to propose an approximate
tight-binding model for the system, where we rewrite the
eigenvalue equation (9) as D� = ε�, and the eigenvalues
are obtained simply by diagonalization of the matrix D with
diagonal terms given by the ground-state eigenvalue of each
interface, D11 = D22 = ε0, and the off-diagonal terms D21 =
D12 = −τ , where the latter plays the role of a hopping pa-
rameter between the adjacent interfaces. Diagonalization of D
leads to eigenvalues ε± = ε0 ± τ along with symmetric and
antisymmetric eigenfunctions, qualitatively similar to those
shown in Fig. 2(b). The hopping parameter τ increases as
the distance d between interfaces decreases, thus controlling
the separation between eigenvalues. Results of this model are
shown as open symbols in Figs. 3(a) and 3(b), where very
good agreement with the actual numerical results is verified
in the case of weak suppression. In the strong suppression
case, the made approximation and its results are describing
the numerical data very well for larger interface separations.

The dependence of the hopping parameter τ on the inter-
face separation d is plotted as open symbols in Fig. 3(c) for
the weak suppression case. In order to facilitate the practical
use of the tight-binding model proposed here, the numerically
obtained hopping parameters are fitted by the function

τ (d ) = τmaxe− d
2 . (10)

The fitting function is plotted as a solid curve in Fig. 3(c),
using τmax = 0.24. The importance of such a simplistic model
as a convenient way to estimate the eigenvalues of Eq. (9) for
any number of interfaces will be discussed further on.

We next proceed with the case of multiple parallel inter-
faces. The DW order parameter W (x) is shown in Figs. 4(a)
and 4(b), for a system consisting of 3 and 4 parallel
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FIG. 5. Eigenvalues of the SC order parameter, from Eq. (9), as-
suming (a), (b) weak and (c), (d) strong DW suppression, in a system
with (a), (c) 3 and (b), (d) 4 interfaces. For separation larger than
d ≈ 4 ξw, the tight-binding model (symbols) predicts the eigenvalues
reasonably well in all cases.

interfaces, respectively, separated by d = 12 ξw. The first 3
and 4 low-lying eigenfunctions �n(x) are shown in Figs. 4(c)
and 4(d) for 3 and 4 interfaces, respectively. Interestingly,
different eigenvalues produce eigenfunctions �n(x) describ-
ing higher superconducting gaps at specific interfaces. For
example, considering four interfaces, �0 and �3 (�1 and
�2) states exhibit higher peaks at the two internal (external)
interfaces. This suggests that, as the temperature of the system
is decreased, the critical temperatures associated with εn states
(n = 1, 2, . . . ) are exceeded sequentially and, consequently,
the �n superconducting states become available one by one,
each with a different spatial distribution of superconducting
gaps among the interfaces. The actual solution of the nonlin-
earized GL equations (4) and (5) for � is a linear combination
of the available eigenstates �n, therefore, as the temperature
decreases, one may find stable solutions where � contains
contributions of higher n eigenstates that lead to nontrivial
spatial distributions of the Cooper-pair condensate among the
interfaces, as we will discuss in greater detail in the next
section.

The numerically obtained εn eigenstates in the systems
with 3 and 4 interfaces are plotted as solid lines in Figs. 5(a)
and 5(b), respectively, for the weak DW suppression case.
Results obtained with the tight-binding model, using hopping
parameters given by Eq. (10), are shown as open sym-
bols, where good agreement is observed only for interface
separations beyond d ≈ 4 ξw. As previously discussed, the
disagreement between the numerical and the tight-binding
results for shorter d stems from the fact that, for small sepa-
rations, the DW order parameter W decreases in the regions
between the interfaces [see the inset of Fig. 3(a)], so that
the problem of several interfaces with short separation can
no longer be described as a combination of several single-
interface problems in a tight-binding approach. For instance,
in the case of 3 interfaces, even the intermediate eigenvalue
state ε1, which in the tight-binding model is a constant ε0 for
any d , starts to decrease as d becomes smaller in the actual

system as a consequence of the decreasing W (x) between
the interfaces. This situation expectedly worsens in the strong
DW suppression regime, and yields further departure of the
approximate tight-binding model from the actual numerical
results of Eq. (9), as shown in Figs. 5(c) and 5(d). The sharp
kinks seen in these figures result from the strong suppres-
sion of DW in-between the interfaces at small separations
d , similar to those observed for the two-interfaces case in
Fig. 3(a). Nevertheless, the tight-binding model proposed here
still yields a good quantitative prediction for d > 4 ξw in all
cases, while preserving at least good qualitative predictions of
the eigenvalues behavior in the weak-suppression regime even
for smaller d .

The maximum value of the SC order parameter �max,n

provides us an estimate of the superconducting gap at the
interfaces. This value raises from zero as the temperature is
decreased below the critical temperature of the nth eigen-
state of Eq. (9). Notice that although Eq. (9) provides the
critical temperature Tcn of each eigenstate, through the rela-
tion between the eigenvalue and the critical temperature εn =
ξ 2

r (1 − Tcn/T�), it does not provide the actual temperature
dependence of each eigenstate �max,n. In order to obtain this
value, we solve Eq. (7) through a relaxation procedure for
different temperatures. The result is shown in Fig. 6(a) and
6(b), plotting �max,n for the first three (four) states of a system
with three (four) interfaces as a function of temperature.

At this point we can employ the reasonable reliability of
our tight-binding model to extend our results to the case of
N → ∞ interfaces. For an arbitrary N , the proposed tight-
binding matrix D assumes the tridiagonal Toeplitz form [40],
whose eigenvalues are

εn = ε0 − 2τ (d ) cos

(
nπ

N + 1

)
. (11)

It is straightforward to verify that previous results for N = 2–4
are specific cases of this general expression. As N → ∞, an
infinite series of states form a band of eigenvalues ε(k) =
ε0 − 2τ (d ) cos(kd ), limited within the range [ε0 − 2τ, ε0 +
2τ ]. Consequently, there will be a range of critical temper-
atures so that, as the system cools down, a series of SC
eigenstates at the interfaces sequentially become energetically
favorable, for temperatures within this range. This is illus-
trated by the shaded area in Fig. 6(c). Most importantly, the
upper bound of this range of critical temperatures is controlled
by the strength of the coupling between interfaces τ , which
depends, e.g., on the separation between the interfaces. This
can thus be seen as a mechanism to effectively enhance crit-
ical temperature of interface superconductivity in a system
consisting of a large number of parallel interfaces, as we
will discuss further on. Notice that the critical temperatures
obtained here are enhanced as compared to those expected
either for a single interface or for multiple noncoupled inter-
faces (i.e., far apart from each other), although they are still
smaller than the critical temperature expected for the same
order parameter in the bulk case.

For instance, Fig. 7 shows the square modulus of the SC
order parameter (Cooper-pair density) corresponding to the
(a) first, (b) second, (c) third, and (d) fourth eigenstates of
a N = 10 interfaces system. Different eigenstates exhibit di-
verse probability density distributions of Cooper pairs: the
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b

b
b

FIG. 6. Maximum values of the superconducting order parameter
�n(x) as a function of temperature, for the first (a) three eigen-
states of a three-interfaces system, and (b) four eigenstates of a
four-interfaces system. (c) The same as (a), (b), but for an infinite
superlattice of equally spaced parallel interfaces. In all cases, inter-
faces are separated by d = 3.5 ξw, assuming weak DW suppression
α0 = 1.

FIG. 7. The Cooper-pair density associated with eigenfunctions
(a) �0, (b) �1, (c) �2, and (d) �3 of the SC order parameter in
a system with 10 interfaces separated by d = 3 ξw. The number
of nodes, where the SC order parameter reaches zero in-between
adjacent layers, increases with n, where each node coincides with
a phase shift by π .

first eigenstate, with higher critical temperature, shows higher
probability density in the central interfaces, and SC persists
in-between the interfaces. For higher n, on the other hand,
the odd-even nature of the eigenfunctions causes the SC order
parameter to reduce to zero in-between some interfaces, due
to appearance of the nodes in the order parameter (i.e., slips
of phase by π ). In Fig. 7(b), the eigenfunction for n = 1
exhibits zero SC order parameter at x = 0, effectively form-
ing a π -Josephson junction between the left and the right
sides of the 10-interfaces system. The number of such nodes
increases with n, which is reminiscent of eigenfunctions in
a finite square quantum well. Since for large interface sep-
aration d all the eigenstates are degenerate, i.e., having the
same critical temperature, one expects to be able to observe
stable nontrivial states such as those with SC stronger in some
interfaces than in other, as well as states with π -Josephson
junctions formed between some interfaces, as we discuss in
what follows.

IV. SUPERCONDUCTING STATES AS A FUNCTION OF
TEMPERATURE: THE COMPLETE SOLUTION

The solutions obtained from our linearized GL formalism
suggest an interesting interplay of superconductivity among
the interfaces, namely, there is a critical temperature degen-
eracy of different SC eigenstates if there is more than one
interface, and this degeneracy is lifted as the interfaces are
brought closer to each other. However, these results do not
represent the complete solution of the GL equation. Actually,
these states rather form a basis in which one can express
the complete solutions. For instance, assuming only two in-
terfaces, the complete solution can be written as a linear
combination of �0 and �1 eigenstates. It is now important
to discuss the impact of these eigenstates on the actual solu-
tion, i.e., as we consider the full nonlinear form of the GL
equation for the SC order parameter. To answer this question,
the coupled equations (4) and (5) are solved self-consistently
using a relaxation method.

First, let us consider the simplest case of two interfaces.
According to the eigenstates shown in Fig. 2(b), the com-
plete solutions must be either symmetric, antisymmetric, or
a combination of the two. Nevertheless, Fig. 3 shows that
the symmetric and antisymmetric eigenstates have different
critical temperature, depending of the separation d , with �0

always having a higher critical temperature. Figure 8 shows
the reduced temperature T/T� below which the SC order
parameter � emerges from zero. Notice that, in our model, if
the sample was entirely superconducting, the reduced temper-
ature where superconductivity appears is T/T� = 1. Instead,
our sample is in the DW state, which competes with super-
conductivity and suppresses it across the system. It is the
suppression of the DW order parameter at the interfaces that
gives rise to superconductivity, and this is expected to occur at
temperatures that are only a fraction of the critical temperature
T�. Indeed, interfaces separated by d = 6 ξw become super-
conducting at T ≈ 0.09T� in Fig. 8(a), whereas this effective
critical temperature decreases to T ≈ 0.058T� and ≈0.052T�

for larger separations d = 12 ξw and 40 ξw in Figs. 8(b) and
8(c), respectively. In fact, this dependence of the effective
SC critical temperature on the separation d is expected from
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FIG. 8. Color maps of the Cooper-pair density � as a function
of the reduced temperature T/T�, calculated by the self-consistent
solution of Eqs. (4) and (5), for two interfaces separated by (a)
d = 6 ξw, (b) 12 ξw, and (c) 40 ξw. For shorter separations, the SC
order parameter in the interfaces is enhanced and the effective critical
temperature, marked by the horizontal dashed lines, increases, in
accordance with the predictions from the linearized GL formalism.

the results of the linearized equations: as the interfaces get
closer, the critical temperature of the symmetric eigenstate
�0, which is the highest one, increases. This demonstrates the
potentially practical enhancement of the SC critical temper-
ature by creating superlattices with interfaces stacked closer
together or, alternatively, by increasing the number of stacked
interfaces, since the critical temperature of the eigenstate �0

also increases with N , as verified in Fig. 6.
For further reduced temperature, the critical temperature

of the antisymmetric eigenstate �1 is reached, which triggers
its role as a possible basis state for the SC order parame-
ter. As both eigenstates are now achievable, solutions in the
form � = a0�0 + a1�1 are possible. A combination, e.g.,
with a0 = a1 results in superconductivity nucleating only in
one interface. This is shown in Fig. 9(a), where a solution
with superconductivity active only in one interface is found
metastable up to T/T� ≈ 0.01. Even at zero temperature,
this solution is only stable when the interfaces are far from
each other (beyond 35ξw in this case), so that the energies
of either symmetric, antisymmetric, or a combination of the
two eigenstates are practically the same. As the interfaces get
closer, the single-interface SC state is no longer stable [see
Fig. 9(b)]. This is due to the tunneling of Cooper pairs through
the DW region that separates the interfaces, so that if one
interface is superconducting, it induces superconductivity in
the other interface as well.

The tight-binding model introduced in Sec. III predicts
that the critical temperature of interface superconductivity
increases with the number of stacked interfaces. Figure 10
illustrates three possible states found by solving the complete
GL formalism for a system of N = 10 interfaces. Indeed, in
all cases, the effective critical temperature of the system is
significantly higher than those observed for the two-interface
system in Fig. 8. The state shown in Fig. 10(a), obtained
by relaxation of a spatially randomized initial trial function,
has all interfaces exhibiting superconductivity at low tem-
peratures, with slightly higher Cooper-pair densities in the
inner interfaces than in the outer ones. As the temperature is
increased, SC at the peripheral interfaces is suppressed first.

FIG. 9. Color map of the Cooper-pair density in two parallel
interfaces, obtained by solving the full nonlinear GL set of equations,
as a function of (a) temperature, for a fixed interface separation
distance d = 40 ξw, and (b) as a function of d , for a fixed temperature
T = 0. The metastable solution where SC is active only in one of
the interfaces (left) is obtained only for larger separation between the
interfaces, and is expected to be experimentally achieved after a rapid
quench to low temperatures.

Conversely, Figs. 10(b) and 10(c) exhibit stable states where
SC is entirely suppressed in some of the inner interfaces.
Indeed, as temperature is decreased, the critical temperatures
of different SC eigenstates are reached, allowing several pos-
sible combinations of eigenfunctions with different numbers
of spatial nodes and associated phase shifts. Consequently,
at sufficiently low temperatures, there may exist stable

FIG. 10. Color map of the Cooper-pair density in 10 parallel in-
terfaces separated by d = 6 ξw, obtained by solving the full nonlinear
GL set of equations as a function of temperature. (a)–(c) Exemplify
three different metastable states at low temperatures, obtained after
initialization from many different initial conditions (simulating nu-
cleation from the normal state).
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FIG. 11. Projections of the Cooper-pair densities shown in
Fig. 10(b) (top panel) and Fig. 10(c) (bottom panel) on the eigen-
states �n of a system with 10 stacked interfaces.

solutions with Cooper-pair density suppressed in one or more
interfaces, similar to what is observed in Fig. 9(a) for N = 2.
These are actually metastable states (i.e., they are obtained by
convergence of an initial arbitrary � in the relaxation proce-
dure), but higher in energy than the state shown in Fig. 10(a),
hence are less frequently obtained when starting the calcula-
tion from different initial conditions.1 They remain, however,
relevant towards experimental observation, especially upon
rapid cooling to low temperatures from the normal state (so-
called field-cooled regime).

Different combinations of involved eigenstates in the com-
position of the superconducting states in Figs. 10(b) and 10(c)
are shown in the top and bottom panels of Fig. 11, respec-
tively. Notice that the state in Fig. 10(a) is composed of only
the ground eigenstate �0 for any temperature and is therefore
not shown in Fig. 11. On the other hand, the state in Fig. 10(b)
results from a combination of eigenstates with odd index up
to T = 0.1T�, where the �0 state becomes dominant and the
converged state resembles that of Fig. 10(a) for higher tem-
peratures. Notice that the eigenstates with higher eigenvalues
(i.e., lower critical temperature) contribute less to the state,
especially for higher temperatures. The state with a strong
suppression of SC at the inner interfaces for temperatures
up to T = 0.01T�, shown in Fig. 10(c), is composed of the

1Results in Figs. 10(b) and 10(c) are obtained by relaxation of
initial order-parameter functions with specific symmetries: they are
given by a random number distribution multiplied by sin(πx/LT ) and
sin(2πx/LT ) backgrounds, respectively, where LT is the length of the
computational box.

eigenstates with even indices, as shown in the bottom panel of
Fig. 11.

We point out that such exotic states, where superconduc-
tivity is suppressed in specific interfaces, is a special case
of latent superconductivity: the system is below the effec-
tive superconducting critical temperature and no competing
order parameter is present in these interfaces since the DW is
strongly suppressed in all interfaces. Even so, superconduct-
ing state may nucleate in nontrivial configurations across the
interfaces, due to the specific combination of eigenstates of
the system, where eigenfunctions with opposite phases may
lead to (partial) cancellation of the SC order parameter at the
inner interfaces. We also point out that the metastable exotic
states discussed here are not expected to be experimentally
achievable by simply slowly lowering the temperature, but
rather only by rapid quenching the temperature to below the
critical temperature of the exotic state. Such a rapid quench
would lead to one of the metastable states at very low temper-
atures, so that Figs. 9 and 10 would thus capture the behavior
of the order-parameter distribution upon slowly warming the
system.

All results discussed here were made assuming a constant
interface width. Nevertheless, it is straightforward to predict
how a different interface width would affect our results and
conclusions: within the linearized version of the theory in
Eq. (9) and Sec. III, the suppression of the DW order pa-
rameter at the interface effectively acts like a quantum well,
whereas the emergent modes of the SC order parameter at the
interface play the role of confined eigenstates of that quantum
well. Increasing the interface width would simply lead to more
SC eigenstates in each interface, with lower eigenvalues ε

[35]. Consequently, the formation of a band of SC modes
discussed in Sec. III for a series of parallel interfaces still
holds, but now there will be one band originating from each
excited eigenstate of the interface as well, similar to the
formation of bands due to a series of finite quantum wells
in a superlattice. The thin interface width considered here
guarantees that all possible excited bands in the system give
negligible contribution to the SC states numerically obtained
with Eqs. (4) and (5) and discussed in Sec. IV. This choice
was made for the sake of clarity of the results in Figs. 9–11,
where, indeed, only the states �n originating from the ground
state of the isolated interface play a significant role. In the case
of thicker interfaces, due to the lower eigenvalues of the series
of states stemming from the excited states of each interface,
more eigenstates may significantly contribute to the SC order
parameter in Figs. 9–11, beyond the �n states series, which
may lead to even more exotic spacial distributions of the latent
SC state. Nevertheless, qualitatively, all conclusions drawn
here, especially regarding the existence of metastable states
where SC is suppressed in some interfaces due to interference,
remain valid.

V. CONCLUSIONS

In summary, we have employed a two-component GL
model to investigate properties of superconductivity arising in
competition with another dominant (spin and charge density)
order in a series of parallel interfaces. The model is developed
on top of the one previously proposed in Ref. [35], where two
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competing order parameters exhibit density-density coupling,
but is easily extendable to other coupling forms stemming
from a microscopic derivation. We go beyond this previous
model by expanding its concept to the case of several paral-
lel interfaces, where we demonstrate that as more interfaces
are stacked together, the number of possible superconducting
states across these interfaces increases as well, each with a
different critical temperature. The critical temperature of the
ground state, which would thus be the superconducting critical
temperature of the system, depends on the distance between
interfaces, on the number of stacked interfaces and, gener-
ally speaking, on the coupling between adjacent interfaces.
Bearing in mind the large number of systems where interface
superconductivity is relevant, especially the artificially fabri-
cated ones, our study conveniently indicates pathways towards
control of critical temperature by nanoengineering of material
superlattices.

Different (meta)stable superconducting states we found
in the superlattice of interfaces are not only rich in num-
ber, but also in different physical manifestation, since
some of them can host rather nontrivial spatial distribution
of the Cooper-pair condensate, and even contain intrinsic
π -Josephson junctions between parts of the superlattice.
That suggests very rich possible behavior of the system in
applied current and/or magnetic field, worthy of further ex-
ploration.
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