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Sensitivity of superconducting states to the impurity location in layered materials

Bastian Zinkl 1 and Aline Ramires 2

1Institute for Theoretical Physics, ETH Zurich, CH-8093 Zurich, Switzerland
2Condensed Matter Theory Group, Paul Scherrer Institute, CH-5232 Villigen PSI, Switzerland

(Received 2 February 2022; revised 2 July 2022; accepted 12 July 2022; published 20 July 2022)

The family of multilayered superconductors derived from doped topological insulators in the family of
Bi2Se3 has been found to be unusually robust against nonmagnetic disorder. Recent experimental studies have
highlighted the fact that the location of impurities could play a critical role in this puzzling robustness. Here
we investigate the effects of four different types of impurities, on-site, interstitial, intercalated, and polar, on
the superconducting critical temperature. We find that different components of the scattering potential are active
depending on the impurity configuration and choice of orbitals for the effective low-energy description of the
normal state. For the specific case of Bi2Se3-based superconductors, we find that only the symmetric share of
impurity configurations contribute to scattering, such that polar impurities are completely inactive. We also find
that a more dominant mass-imbalance term in the normal-state Hamiltonian can make the superconducting state
more robust to intercalated impurities, in contrast to the case of on-site or interstitial impurities.
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I. INTRODUCTION

The effects of impurities in simple superconductors are
well understood in terms of elementary symmetry arguments,
elegantly summarized in what is known as Anderson’s the-
orem [1,2]. In fully gapped conventional superconductors,
Cooper pairs are formed between electrons related by time-
reversal symmetry. As a consequence, impurities have a
detrimental effect on superconductivity only if they break
this key symmetry, namely, if the impurities are magnetic.
For unconventional nodal superconductors both magnetic and
nonmagnetic disorder have a negative effect on the criti-
cal temperature [3,4]. The sensitivity of superconductors to
nonmagnetic disorder has therefore been taken as a strong
indication of the unconventional nature of the order parameter,
as observed in UPt3 [5], Sr2RuO4 [6], and in the cuprates [7],
to name a few.

In contrast, the effects of impurities in complex supercon-
ductors have only recently started to attract attention, mostly
motivated by the phenomenology of iron-based superconduc-
tors [8–10]. Complex superconductors are characterized by
multiple Fermi surfaces, or by single Fermi surfaces emerging
from a combination of multiple internal degrees of freedom.
In this context, one result that goes beyond the prediction of
Anderson’s theorem concerns fully gapped superconductors
in multiband systems. A two-band system with full gaps of op-
posite signs is known to be sensitive to nonmagnetic disorder
[8–10]. Naturally, the extra sensitivity to disorder of such fully
gapped systems is not a desirable feature to explore potential
applications of these materials.

Intriguingly, the traditional picture has recently been
challenged by the observation of unconventional supercon-
ductors that are unusually robust against nonmagnetic doping.
For instance, the superconductor Cux(PbSe)5(Bi2Se3)6 [11],

showing nematic properties and a nodal gap structure [12],
survives scattering rates much larger than anticipated by An-
derson’s theorem [13]. Other materials in the same family,
CuxBi2Se3 [14–16] and NbxBi2Se3 [17–19], also display un-
usual robustness against nonmagnetic disorder. In-doped SnTe
remarkably shows a larger critical temperature for samples
with high residual resistivity [20]. Irradiated PdTe2 also shows
robustness against nonmagnetic disorder, with its critical tem-
perature suppressed at a rate that is about sixteen times slower
than predicted by standard estimations [21].

The first theories developed to address this unusual robust-
ness were based on the presence of strong spin-orbit coupling
(SOC) [22,23]. Later, it became clear that for complex super-
conductors (with extra internal degrees of freedom such as
orbitals or sublattices), the concept of superconducting fitness
allows for a generalization of Anderson’s theorem, providing
a universal framework and explanation for the unusual ro-
bustness of unconventional superconducting states [13,21,24].
Specific results for Cu-doped Bi2Se3 report that the robustness
of the superconducting state depends not only on the super-
conducting order parameter, but on details of the electronic
structure in the normal state [25]. Recently, this understand-
ing was corroborated by a more complete analysis of the
sensitivity of pairing states to various scattering potentials in
two-orbital systems [24,26,27].

Here we focus on superconductors derived from Bi2Se3.
Common among these materials is the basic crystallo-
graphic unit consisting of quintuple layers (Se-Bi-Se′′-Bi′-Se′)
[28], as schematically depicted in Fig. 1. Superconductivity
emerges in these systems only after doping, which intrin-
sically also introduces disorder. The location of impurities
within these layers has attracted some interest, since evi-
dence has accumulated that their distribution, and not just the
electron donation, plays a decisive role for the formation of
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unconventional superconductivity [29]. Density-functional
theory calculations suggest that the most energetically fa-
vorable location for Cu [30] and Sr [31] dopants should be
between the quintuple layers, i.e., in the van der Waals (vdW)
gap. X-ray diffraction experiments seem to support this sug-
gestion, since an expansion of the c axis has been observed
in both CuxBi2Se3 [32–34] and SrxBi2Se3 [35,36]. However,
dopants in the vdW gap have not been directly detected so
far, either with neutron-scattering experiments in the case of
CuxBi2Se3 [34] or with transmission electron microscopy in
the case of SrxBi2Se3 [31]. In the latter compound the vertical
position of the impurities has only recently been determined
using normal-incidence x-ray standing wave measurements
[29]. It was found that the dopants lie close to the Se and
Se′ sites with a small vertical displacement toward the center
of the quintuple layer, hence not in the vdW gap. Lastly, for
Nb-doped Bi2Se3 it was initially assumed that superconduc-
tivity is induced by impurities located in the vdW layers [37].
However, recent observations rather suggest that its origin lies
in the (BiSe)1.10NbSe2 misfit phase, which is characterized by
structural deformations [38].

Motivated by these observations, we investigate in detail
how the location of impurities influence the renormalization
of the critical temperature in layered superconductors. Using
Bi2Se3 as our example, we derive the scattering matrices for
four different scenarios: substitutional (on-site), interstitial (in
between two sites), intercalated (in the vdW gap), and polar
defects, as illustrated in Fig. 2. We start with an effective
microscopic model for the electronic states in the quintuple
layers and analyze the effects of impurities in case different
pairs of orbitals dominate the effective low-energy electronic
structure. Here we are guided by the concept of superconduct-
ing fitness and the generalized Anderson’s theorem to discuss
the robustness of superconducting states in multiple scenarios.

This paper is organized as follows. In Sec. II we review the
microscopic description of the electronic structure of mate-
rials in the family of doped Bi2Se3 and the possible s-wave
superconducting states. In Sec. III after modeling different
impurity configurations in the layer basis, we discuss how
these manifest in effective two-orbital models. In Sec. IV we
then evaluate the effective scattering rates for different im-
purity distributions and effective model scenarios. Finally, in
Sec. V we summarize our findings and how these can help us
understand the unusual robustness of superconducting states
in layered materials.

II. EFFECTIVE MICROSCOPIC DESCRIPTION

In this section, we introduce and discuss the microscopic
structure of the normal-state Hamiltonian and the supercon-
ducting order parameters.

A. Normal state

Motivated by the phenomenology of Bi2Se3-based su-
perconductors, we start modeling the electronic structure in
the quintuple layer of these materials. First-principles cal-
culations suggest that the main orbitals contributing to the
low-energy electronic structure of Bi2Se3 stem from pz or-
bitals located at the four outermost layers (Se-Bi-Bi′-Se′),

FIG. 1. Side view of the quintuple layer unit cell of Bi2Se3. We
illustrate the PIα

z orbitals as symmetric (α = +) or antisymmetric
(α = −) combinations of the pz orbitals in each layer. We also
highlight which scattering matrices remain relevant, if two specific
states are chosen as the low-energy basis. As examples, we consider
the combinations {P1+

z , P2−
z } (top) and {P1+

z , P1−
z } (bottom). More

details on the matrix structures are given in Table IV.

here labeled as |Sz〉, |Bz〉, |B′
z〉, |S′

z〉, respectively [28]. It is
convenient to combine these in bonding and antibonding con-
figurations,

|P1±
z 〉 = 1√

2
(|Bz〉 ∓ |B′

z〉), (1)

|P2±
z 〉 = 1√

2
(|Sz〉 ∓ |S′

z〉), (2)

which are schematically indicated in Fig. 1. Note that the
upper index corresponds to the parity of the state.

The states written down in Eqs. (1) and (2) con-
stitute what we call the “orbital” basis, denoted by
{P1+

z , P1−
z , P2+

z , P2−
z }. In the “layer” basis {Se, Bi, Bi′,

Se′} they take the form

|P1±
z 〉 = 1√

2

⎛
⎜⎝

0
1

∓1
0

⎞
⎟⎠, |P2±

z 〉 = 1√
2

⎛
⎜⎝

1
0
0

∓1

⎞
⎟⎠. (3)
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TABLE I. Parametrization of the normal-state Hamiltonian
[Eq. (5)] for materials in the family of Bi2Se3 assuming orbitals
with OP. For each pair of indexes (a, b) corresponding to the basis
matrices τ̂a ⊗ σ̂b, the table highlights the irreducible representations
(Irrep) and the physical process that originates them. The last column
gives the expansion of the form factors hab(k) for small momentum.

(a, b) Irrep Process hab(k)

(0,0) A1g Intraorbital hopping C0 + C1k2
z + C2(k2

x + k2
y )

(3,0) A1g Intraorbital hopping M0 + M1k2
z + M2(k2

x + k2
y )

(1,3) A1u SOC R1kx (k2
x − 3k2

y )

(2,0) A2u Interorbital hopping B0kz

(1,1) Eu SOC −A0ky

(1,2) Eu SOC A0kx

The unitary transformation matrix corresponding to this basis
change is

Û = 1√
2

⎛
⎜⎝

0 0 1 1
1 1 0 0

−1 1 0 0
0 0 −1 1

⎞
⎟⎠, (4)

which will be important in Sec. III, where we analyze the
structure of different impurity configurations in different re-
duced orbital bases.

For Bi2Se3-based materials, it is clear from first principles
that only two of these orbitals contribute to the Fermi surface.
In particular, it is suggested that these orbitals are {P1+

z , P2−
z }

[28]. More generally, we can think of any pair of orbitals
effectively contributing to the Fermi surface. There are three
fundamentally distinct scenarios: (i) two orbitals with oppo-
site parity (OP) coming from different types of atoms (this
would be the case of Bi2Se3-based materials just mentioned,
but also {P2+

z , P1−
z }); (ii) two orbitals with OP coming from

the same type of atoms ({P1+
z , P1−

z } or {P2+
z , P2−

z }); (iii) two
orbitals with equal parity (EP), necessarily associated with
different atoms ({P1+

z , P2+
z } or {P1−

z , P2−
z }).

For all these cases the low-energy Hamiltonian of the sys-
tem can be parametrized as

Ĥ (k) =
∑
a,b

hab(k)(τ̂a ⊗ σ̂b), (5)

where τ̂a and σ̂b, with {a, b} ∈ {0, 1, 2, 3}, are Pauli matrices
encoding the orbital and spin degrees of freedom, respectively.
The explicit momentum dependence of the hab(k) terms in the
normal-state Hamiltonian depends on the point group sym-
metry of the system. The point group D3d can be generated
by the following symmetry operations: P = τ̂a ⊗ σ̂0, parity;
C3z = τ̂0 ⊗ ei π

3 σ̂3 , a rotation by 2π/3 around the z axis; and
C2x = τ̂a ⊗ ei π

2 σ̂1 , a rotation by π along the x axis (with a = 0
for EP and a = 3 for OP orbitals). For the OP scenario,
the symmetry-allowed terms in the Hamiltonian are the ones
summarized in Table I. Analogously, for the EP scenario, we
obtain the terms listed in Table II.

TABLE II. Parametrization of the normal-state Hamiltonian
[Eq. (5)] for the EP scenario. Same description as in Table I.

(a, b) Irrep Process hab(k)

(0,0) A1g Intraorbital hopping C′
0 + C′

1k2
z + C′

2(k2
x + k2

y )

(3,0) A1g Intraorbital hopping M ′
0 + M ′

1k2
z + M ′

2(k2
x + k2

y )

(1,0) A1g Interorbital hopping N ′
0 + N ′

1k2
z + N ′

2(k2
x + k2

y )

(2,3) A2g SOC R′
1kxkz(k2

x − 3k2
y )

(2,1) Eg SOC −A′
0kykz

(2,2) Eg SOC A′
0kxkz

B. Superconducting state

The order parameter of the superconducting state can be
written as

�̂(k) =
∑
a,b

dab(k)[τ̂a ⊗ σ̂b(iσ̂2)]. (6)

From now on we implicitly assume that the order parameter is
normalized, i.e., 〈||�̂(k)||2〉FS = 1, where 〈. . .〉FS denotes the
average over the Fermi surface, and ||M̂||2 = Tr[M̂M̂†]/4 is
the Frobenius norm of the matrix M̂. Fermionic antisymmetry
requires �̂(k) = −�̂T (−k), what means that even-k (odd-k)
order parameters are necessarily accompanied by antisym-
metric (symmetric) matrices. In the following, we restrict
ourselves to k-independent dab(k), also referred to as s-wave
superconducting states. Note, though, that once the problem
is rewritten in the band basis and the superconducting gap is
projected onto the Fermi surface, the order parameters in non-
trivial irreducible representations generally develop nodes.
See for example the discussion in Ref. [13].

This restriction reduces the space of order parameters to
the six antisymmetric basis matrices listed in Table III. Note
that they are labeled as [a, b] (rectangular brackets are used to
label the superconducting states, while round brackets label
the terms in the normal-state Hamiltonian) and that they are
independent of the choice of EP or OP orbitals contributing
to the Fermi surface. However, as summarized in Table III,
the parity of the orbitals influences the symmetry of the order
parameter and its associated irreducible representation. Order
parameters with a symmetry-enforced k dependence in the

TABLE III. Momentum-independent superconducting order pa-
rameters for two-orbital models. We highlight here the spin and
orbital characters as well as the irreducible representation of the
respective gap matrix for the opposite-parity (OP) and equal-parity
(EP) cases.

[a, b] Spin Orbital Irrep (OP) Irrep (EP)

[0,0] Singlet Symmetric A1g A1g

[3,0] Singlet Symmetric A1g A1g

[2,3] Triplet Antisymmetric A1u A2g

[1,0] Singlet Symmetric A2u A1g

[2,1] Triplet Antisymmetric Eu Eg

[2,2] Triplet Antisymmetric Eu Eg
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orbital basis can also be analyzed within our framework,
but the suppression of the superconducting critical temper-
ature as a function of impurities is purely determined by
the normal-state properties as the momentum average of the
order parameter, and consequently the superconducting scat-
tering rate, is zero. This is going to be discussed in detail in
Sec. IV C.

C. The concept of superconducting fitness

The concept of superconducting fitness was originally
introduced as a theoretical tool to concisely address the ef-
fects of external symmetry-breaking fields [39,40]. Later,
the same concept was shown to be useful in the context of
electronic structure engineering for the optimization of the
superconducting critical temperature [41]. More recently, this
concept was proved to be related to a variety of unusual
properties and responses in unconventional superconductors:
the presence of odd-frequency correlations [42]; anomalous
Hall effect in chiral superconductors [43]; opening of high-
energy gaps in nonunitary superconductors [44]; abnormal
evolution of the critical temperature under strain [45]; the
presence of gap nodes in superconductors associated with lo-
cal pairing interactions [46]; photon-induced supercurrents in
anapole superconductors [47]; and Bogoliubov Fermi surfaces
in even-parity time-reversal symmetry-breaking superconduc-
tors [48].

Within the standard weak-coupling theories for supercon-
ductivity, if pairing happens between electrons in the same
band (intraband pairing), superconductivity is very robust and
is established for an arbitrarily small attractive interaction
through the formation of electron pairs with total zero mo-
mentum. If pairing happens between electrons in different
bands (interband pairing), superconductivity is not so robust
as a finite attractive interaction is necessary for the onset
of superconductivity. Based on these basic ideas, below we
present a heuristic discussion and introduction of the concept
of superconducting fitness. Here we closely follow the discus-
sion provided in Ref. [39].

In the presence of external symmetry-breaking fields or
multiple orbitals or sublattices, the normal-state Hamiltonian
Ĥ (k) is generally not diagonal in the microscopic basis. As the
Hamiltonian is a Hermitian matrix, there is always a unitary
transformation Û (k) which diagonalizes it, or rotates it to the
band basis: ĤB(k) = Û (k)Ĥ (k)Û †(k) (the subscript B stands
for the band basis). The gap matrix, by connecting particle
and hole spaces, transforms in a slightly different manner:
�̂B(k) = Û (k)�̂(k)Û T (−k). In the case of pure intraband
pairing �̂B(k) is block diagonal. A non-block-diagonal gap
matrix is an indication of interband pairing.

To get some intuition on the origin of the concept of su-
perconducting fitness, we consider the minimal multiorbital
problem consisting of two orbitals with an internal spin degree
of freedom. In the presence of time-reversal and inversion
symmetries, the eigenstates εa (a is the band label) of ĤB(k)
are doubly degenerate and as a consequence ĤB(k) has a
structure with 2 × 2 blocks proportional to the identity σ̂0 in
the pseudospin sector. Concerning the gap matrix, an arbitrary
gap structure has both intraband, �̂a, and interband, �̂ab,
components. Under these conditions, omitting the momentum

dependence we can write

ĤB =
(

ε1σ̂0 0
0 ε2σ̂0

)
, �̂B =

(
�̂1 �̂12

�̂21 �̂2

)
. (7)

Note that these matrices do not commute for finite interband
pairing, unless the artificial condition ε1 = ε2 is satisfied. On
the other hand, in case �̂ab(k) = 0, �̂B(k) is block diagonal
and commutes with the bare Hamiltonian ĤB(k) in the band
basis.

Taking the condition of pure intraband pairing as the one
leading to the most robust superconducting instability, we can
then look at this condition in the microscopic basis. Using
the unitary transformation introduced above and the fact that
ĤB(k) and �̂B(k) commute in case of pure intraband pairing,
we obtain

Ĥ (k)�̂(k) − �̂(k)ĤT (−k) = 0. (8)

If Ĥ (k) and �̂(k) satisfy this condition, the system develops
only intraband pairing and consequently has the most robust
superconducting instability. In case the identity above is not
satisfied, we have a measure of the incompatibility between
the superconducting state and the normal state, associated
with the presence of interband pairing, which we label as the
superconducting fitness matrix F̂C (k),

F̂C (k) = Ĥ (k)�̂(k) − �̂(k)ĤT (−k). (9)

This measure was also identified within the discussion
of the compatibility or incompatibility of superconducting
states regarding disorder, in the form of what is called the
generalized Anderson’s theorem [13]. In the original version
of Anderson’s theorem [1], the robustness of the supercon-
ducting state was argued based on symmetry aspects. If the
impurities do not break the symmetry that connects the two
states in the Cooper pair (for conventional superconductors
this is inversion symmetry), then it is guaranteed that the order
parameter is robust. In its generalized form, this information
is encoded in the commutation relation between the impurity
potential and the superconducting gap matrices. If these ma-
trices commute, they are compatible in the sense that they can
be diagonalized in the same basis and the superconducting
state is then robust in the presence of impurities. If these ma-
trices do not commute they are incompatible; impurities now
scramble the states and are pair breaking. As a consequence of
this incompatibility, the superconducting critical temperature
is reduced.

Having clarified our microscopic model and the concept of
superconducting fitness, we consider in the following different
scattering potentials out of nonmagnetic impurities.

III. IMPURITY CONFIGURATIONS IN THE QUINTUPLE
LAYER AND ORBITAL BASES

To unveil the effects of the impurity location in materials
belonging to the family of Bi2Se3, we distinguish between
on-site (on), interstitial (is), intercalated (ic), and polar (po)
configurations, which are illustrated in Fig. 2.

The scattering matrices written in the layer basis {Se, Bi,
Bi′, Se′} have an entry on the diagonal, if the corresponding
layer is affected by the impurity. For instance, the on-site
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FIG. 2. Schematic illustration of (a) on-site, (b) interstitial,
(c) intercalated, and (d) polar impurity configurations (marked as
dark gray circles). In Eqs. (16) to (18) we show that the scatter-
ing potential can be always decomposed into a superposition of
a symmetric and an antisymmetric impurity potential. The polar
configuration consists of oppositely charged impurities in opposite
layers, which leads to a fully antisymmetric potential [Eq. (19)].

configurations shown in Fig. 2(a) are given by

V̂ (i)
on =

⎛
⎜⎝

0 0 0 0
0 V 0 0
0 0 0 0
0 0 0 0

⎞
⎟⎠, V̂ (ii)

on =

⎛
⎜⎝

0 0 0 0
0 V 0 0
0 0 V 0
0 0 0 0

⎞
⎟⎠,

(10)

where V > 0 denotes the impurity scattering strength, which
we take to be the same for all impurities. If the impurities are
located between the Bi and Se sites, as in Fig. 2(b), we call
them interstitial and assume that their presence affects both
neighboring layers, which leads to

V̂ (i)
is =

⎛
⎜⎝

V 0 0 0
0 V 0 0
0 0 0 0
0 0 0 0

⎞
⎟⎠, V̂ (ii)

is =

⎛
⎜⎝

0 0 0 0
0 V 0 0
0 0 V 0
0 0 0 0

⎞
⎟⎠.

(11)

Correspondingly, we find for the intercalated scenario, de-
picted in Fig. 2(c),

V̂ (i)
ic =

⎛
⎜⎝

V 0 0 0
0 0 0 0
0 0 0 0
0 0 0 0

⎞
⎟⎠, V̂ (ii)

ic =

⎛
⎜⎝

V 0 0 0
0 0 0 0
0 0 0 0
0 0 0 V

⎞
⎟⎠,

(12)

and for the polar case, exemplified in Fig. 2(d),

V̂ (i)
po =

⎛
⎜⎝

V 0 0 0
0 0 0 0
0 0 0 0
0 0 0 −V

⎞
⎟⎠, V̂ (ii)

po =

⎛
⎜⎝

0 0 0 0
0 V 0 0
0 0 −V 0
0 0 0 0

⎞
⎟⎠.

(13)

There are two linearly independent symmetric (S) configu-
rations, which are even under inversion. They take the form

V̂S,1 =

⎛
⎜⎝

V 0 0 0
0 0 0 0
0 0 0 0
0 0 0 V

⎞
⎟⎠, V̂S,2 =

⎛
⎜⎝

0 0 0 0
0 V 0 0
0 0 V 0
0 0 0 0

⎞
⎟⎠.

(14)

The antisymmetric (A) counterparts are given by

V̂A,1 =

⎛
⎜⎝

V 0 0 0
0 0 0 0
0 0 0 0
0 0 0 −V

⎞
⎟⎠, V̂A,2 =

⎛
⎜⎝

0 0 0 0
0 V 0 0
0 0 −V 0
0 0 0 0

⎞
⎟⎠.

(15)

Every impurity configuration can be split up into symmetric
and antisymmetric parts using Eqs. (14) and (15). For exam-
ple, the configurations introduced above can be rewritten as

V̂ (i)
on = 1

2 (V̂S,2 + V̂A,2),

V̂ (ii)
on = V̂S,2, (16)

V̂ (i)
is = 1

2 (V̂S,1 + V̂S,2 + V̂A,1 + V̂A,2),

V̂ (ii)
is = V̂S,2, (17)

V̂ (i)
ic = 1

2 (V̂S,1 + V̂A,1),

V̂ (ii)
ic = V̂S,1, (18)

and

V̂ (i)
po = V̂A,1, V̂ (ii)

po = V̂A,2. (19)

Using this framework, we can decompose every possible
impurity distribution for a single unit cell in terms of sym-
metric and antisymmetric scattering matrices. Assuming a
system with Nuc unit cells, each with four layers, the max-
imum number of impurities is equal to Nmax = 4Nuc, 3Nuc,
or 2Nuc for on-site, interstitial, or intercalated and polar con-
figurations, respectively. For a fixed number of impurities it
is a straightforward combinatorial problem to find all pos-
sible impurity configurations. To give a concrete example,
we show all possible, on-site configurations for Nuc = 1 in
Fig. 3. For a single impurity, n = N/Nmax = 1/4, there are
only asymmetric configurations. These can be decomposed
into a sum of symmetric and antisymmetric potentials, which
leads to a symmetric share S(n) = 1/2. The symmetric share
increases with growing N until it reaches one for the com-
pletely filled unit cell (n = 1). By calculating the symmetric
share numerically for all different configurations and for an
arbitrary large number of sites we find that S(n) quickly
converges to a universal result, which is depicted by the solid
lines in Fig. 4. The dashed lines represent the antisymmetric
shares A(n) = 1 − S(n). Note that for polar impurities, whose
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FIG. 3. Overview of all possible on-site impurity configurations
for a single unit cell with four layers. The maximum number of
impurities (indicated by the gray circles) is Nmax = 4. For each num-
ber of impurities N we included the corresponding symmetric share
S(n = N/Nmax).

scattering potential is completely antisymmetric, we simply
obtain Apo(n) = 1. Furthermore, as indicated in Fig. 4, the
shares for on-site and intercalated impurities evolve in the
same way as a function of the filling n.

We now examine which orbital wave functions are af-
fected by the different impurity scattering matrices. To this
extent we transform the symmetric and antisymmetric matri-

FIG. 4. Evolution of the symmetric share of impurity configura-
tions, S(n) (solid lines), as a function of the filling n = N/Nmax for
Nuc 	 1. The difference between on-site (on), interstitial (is), and
intercalated (ic) configurations is illustrated in Fig. 2. The dashed
lines represent the antisymmetric shares given by A(n) = 1 − S(n).

ces [Eqs. (14) and (15)] to the {P1+
z , P1−

z , P2+
z , P2−

z } basis
by evaluating Û †V̂ Û , with Û given by Eq. (4). We obtain for
the symmetric scattering matrices

V̂ ′
S,1 =

⎛
⎜⎝

0 0 0 0
0 0 0 0
0 0 V 0
0 0 0 V

⎞
⎟⎠, V̂ ′

S,2 =

⎛
⎜⎝

V 0 0 0
0 V 0 0
0 0 0 0
0 0 0 0

⎞
⎟⎠,

(20)

while the purely antisymmetric matrices are

V̂ ′
A,1 =

⎛
⎜⎝

0 0 0 0
0 0 0 0
0 0 0 V
0 0 V 0

⎞
⎟⎠, V̂ ′

A,2 =

⎛
⎜⎝

0 V 0 0
V 0 0 0
0 0 0 0
0 0 0 0

⎞
⎟⎠.

(21)

As discussed in the previous section, the ultimate low-energy
description of the electronic states can be cast in terms of two
orbitals. From Eqs. (20) and (21), we see that the effective
scattering matrices are going to depend on the choice of or-
bitals. In particular, some of the scattering matrices vanish
in the low-energy basis. A summary of the reduced scat-
tering matrices for all possible choices of two low-energy
states is given in Table IV. Note that for orbitals involv-
ing different types of atoms, {P1α

z , P2α′
z }, all antisymmetric

scattering matrices are zero in the low-energy basis. On the
contrary, if the combinations involve the same type of atom,
meaning {P1+

z , P1−
z } and {P2+

z , P2−
z }, both the symmetric and

TABLE IV. Explicit form of the symmetric and antisymmetric
scattering matrices for a particular two-orbital basis chosen from
{P1+

z , P1−
z , P2+

z , P2−
z }, with α, α′ ∈ {+,−}. Pauli matrices acting

in orbital space are denoted by τ̂i with i ∈ {1, 2, 3}, where τ̂0 corre-
sponds to the identity matrix.

Two-orbital basis V̂ ′
S,1 V̂ ′

S,2 V̂ ′
A,1 V̂ ′

A,2

{P1+
z , P1−

z } 0 τ̂0 0 τ̂1

{P2+
z , P2−

z } τ̂0 0 τ̂1 0

{P1α
z , P2α′

z } τ̂0 − τ̂3 τ̂0 + τ̂3 0 0
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antisymmetric matrices are finite, as illustrated in Fig. 1. In
the next section, we will analyze the implications of these
findings regarding the renormalization of the superconducting
temperature.

IV. RENORMALIZATION OF Tc

Within the standard self-consistent Born approximation,
the reduction of the critical temperature in the presence of
impurities for simple superconductors can be cast as [49]

log10

( Tc

Tc0

)
= �

(
1

2

)
− �

(
1

2
+ 1

4πτeff Tc

)
, (22)

with �(x) denoting the digamma function and τeff the effec-
tive scattering rate defined as

τ−1
eff = τ−1

n − τ−1
sc , (23)

in terms of the normal (τn) and superconducting (τsc) scat-
tering rates. Below we begin by discussing how τn and τsc

are obtained for complex superconductors with two orbital
degrees of freedom contributing to a single Fermi surface. In
Sec. IV C, we then discuss different scenarios with specific
choices of orbitals and impurity location.

A. The normal scattering rate

The influence of impurity scattering on the electronic
system is described by the renormalization of the Green’s
function, which we calculate by solving Dyson’s equa-
tion [50],

Ĝ−1(k, iωn) = Ĝ−1
0 (k, iωn) − 
̂1(k, iωn). (24)

Here we introduced the bare Green’s function Ĝ0(k, iωn) and
self-energy 
̂1(k, iωn) of the normal state, which depend in
general on the wave vector k and the fermionic Matsubara
frequencies ωn = (2n + 1)πkBT . The bare Green’s function
is defined as

Ĝ−1
0 (k, iωn) = iωnτ̂0 ⊗ σ̂0 − Ĥ (k), (25)

with Ĥ (k) given by Eq. (5). Using the Born approximation
and assuming isotropic scattering, the self-energy has no k
dependence and takes the form


̂1(iωn) =
∑

i

niV̂i

∫
d3k

(2π )3
Ĝ(k, iωn)V̂i, (26)

where V̂i are the different scattering matrices in the two-orbital
basis, as summarized in Table IV. After inverting Eq. (25),
inserting the result in the equation for the self-energy, and
solving the Dyson’s equation self-consistently, we end up with
a renormalization of the Matsubara frequencies (more details
of this calculation are presented in the Appendix, which al-
lows us to identify the normal-state scattering rate [24],

τ−1
n =

∑
i

π

2
V 2

i N (0)niXi(n)

[
1 +

∑
a,b

Cab
n,i〈ĥab(k)〉2

]
, (27)

with N (0) denoting the density of states at the Fermi level,
Vi the magnitude of the scattering potential, and Xi(n) =
{Si(n), Ai(n)} depending on the specific impurity potential V̂i,
as indicated in Table IV. The factors Cab

n,i are equal to +1

TABLE V. Explicit values of the factors Cab
n,i = ±1 and Cab

sc,i =
±1, which encode the commutation relations between the scattering
potentials V̂ ′

i and hab(k) or dab, respectively. These factors appear
in the equations of the normal-state [Eq. (27)] and superconducting
[Eq. (31)] scattering rates. We assume an effective two-orbital model
with OP or EP basis states. The scattering matrices in the low-energy
model for each of these cases are contained in Table IV. Note that
in the upper panel we have only included the (a, b) terms, which can
belong to the A1g representation, since they do not vanish after a FS
average and ultimately contribute to the normal-state scattering rate.

Cab
n,i

V̂ ′
i

(a, b) τ̂0 τ̂1 τ̂3

(3,0) +1 −1 +1
(1,0) +1 +1 −1

Cab
sc,i

V̂ ′
i

[a, b] τ̂0 τ̂1 τ̂3

[0,0] +1 +1 +1
[3,0] +1 −1 +1
[2,3] +1 −1 −1
[1,0] +1 +1 −1
[2,1] +1 −1 −1
[2,2] +1 −1 −1

(−1), if the corresponding term (a, b) in the normal-state
Hamiltonian [Eq. (5)] commutes (anticommutes) with the
scattering potential V̂i. Here 〈 f (k)〉 denotes the average over
the Fermi surface of the function f (k). Note that the sum of
all symmetry-allowed pairs (a, b) excludes (0,0) and that the
coefficients are normalized,∑

a,b

ĥ2
ab(k) = 1. (28)

Moreover, we implicitly assume a weak momentum-
dependence of the scattering rate such that we can simply
consider its FS average. In Table V we list the values of Cab

n,i

for the all scattering potentials V̂i = τ̂0, τ̂1, τ̂3. Note that we
have to distinguish between OP and EP basis states, since
the structure of the normal-state Hamiltonian is different for
the EP or OP scenarios, as can be seen from Tables I and
II. In particular, the (1,0) term is allowed in the normal-state
Hamiltonian of a model with EP orbitals, but not with OP
orbitals.

B. The superconducting scattering rate

In the superconducting state, we additionally have to take
into account the renormalization of the anomalous Green’s
function F̂ (k, iωn), which incorporates the pairing potential.
Since we are only interested in the change of Tc, we can
restrict ourselves to linear order in the gap function. The
anomalous Green’s function is then simply given by

F̂ (k, iωn) ≈ −Ĝ(k, iωn)[�̂(k) + 
̂2(iωn)]

× ĜT (−k,−iωn), (29)
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where �̂(k) is given by Eq. (6). We introduced the self-energy
of the superconducting state 
̂2(iωn), which in the Born ap-
proximation is defined as


̂2(iωn) = −
∑

i

niV̂i

∫
d3k

(2π )3
F̂ (k, iωn)V̂ †

i . (30)

Analogously to before, we calculate first the anomalous
Green’s function and the corresponding self-energy. Solv-
ing then everything self-consistently enables us to find the
renormalization of the pairing potential. From here on, we
restrict ourselves to purely unconventional states, i.e., the non-
A1g s-wave gap functions. This allows us to directly obtain
closed-form solutions for the scattering rates. Of course, the
framework can also be extended to the A1g channel. How-
ever, one then has to account for a superposition of multiple
superconducting components, which we want to avoid here.
Note that the equation above also makes clear that any order
parameter with a nontrivial, symmetry-enforced k dependence
would lead to no renormalization of the order parameter, as
the superconducting self-energy is zero after the sum over
momenta is performed.

Neglecting interband pairing contributions we finally ob-
tain for the superconducting scattering rate [24]

τ−1
sc =

∑
i

π

2
V 2

i N (0)niXi(n)Cab
sc,i[1 − 〈FC〉], (31)

where Cab
sc,i is equal to +1 (−1), if the scattering potential

V̂i commutes (anticommutes) with the particular gap function
labeled as [a, b] [Eq. (6)]. The values for all different s-wave
superconducting states and scattering potentials are summa-
rized in Table V. Note that the EP scenario has less active
scattering matrices if compared to the OP scenario. In Eq. (31)
we introduced the normalized average of the fitness function,

〈FC〉 =
〈 ||F̂C (k)||2∑

(a,b)�=(0,0) h2
ab(k)

〉
, (32)

with the fitness matrix [39,41] given by

F̂C (k) = Ĥ (k)�̂(k) − �̂(k)ĤT (−k). (33)

In Table VI we provide an overview of the terms (a, b) in the
normal-state Hamiltonian, which contribute to a finite fitness
function for the different pairing channels of interest labeled
as [a, b]. As before, we also include the possibility of OP and
EP basis states.

C. Analysis of three scenarios

In the following, we will use these results to analyze
qualitatively the impurity-induced renormalization of the su-
perconducting critical temperature for three generic scenarios
of multilayered superconductors. The first example, which is
about OP basis states originating from distinct types of atoms,
is most closely related to the Bi2Se3-related superconductors.
In the second and third examples, we then discuss how the
renormalization changes if the states have EP or have OP
but originate from the same type of atoms. For all of these
instances we consider on-site, interstitial, intercalated, and
polar impurity configurations.

TABLE VI. The terms (a, b) of the normal-state Hamiltonian
[Eq. (5)], contributing to the finite fitness function as FC (k) =∑

a,b ĥ2
ab(k), for the corresponding s-wave superconducting states

labeled as [a, b] [Eq. (6)] in both OP and EP scenarios.

F̂ OP
C (k)

[a, b] Irrep (a, b)

[0,0] A1g

[3,0] A1g (2,0),(1,1),(1,2),(1,3)
[2,3] A1u (3,0),(1,3)
[1,0] A2u (3,0),(2,0)
[2,1] Eu (3,0),(1,2)
[2,2] Eu (3,0),(1,1)

F̂ EP
C (k)

[0,0] A1g

[3,0] A1g (1,0),(2,1),(2,2),(2,3)
[1,0] A1g (3,0),(2,1),(2,2),(2,3)
[2,3] A2g (1,0),(3,0),(2,1),(2,2)
[2,1] Eg (1,0),(3,0),(2,2),(2,3)
[2,2] Eg (1,0),(3,0),(2,1),(2,3)

1. OP orbitals from different atoms

For concreteness, here we assume the low-energy orbitals
are {P1+

z , P2−
z }, the first associated with an even parity orbital

originating from Bi atoms, the second associated with an odd
parity orbital stemming from the Se atoms. From Table IV,
we conclude that only the symmetric impurity configurations
contribute to scattering. Thus, our first conclusion is that in
the presence of purely polar impurities, which are entirely
antisymmetric, the superconducting state is left untouched.

If the scattering is due to on-site or interstitial defects, the
situation changes and we have two finite scattering processes
in the effective low-energy model:

V̂ ′
S,1 = τ̂0 − τ̂3, (34)

V̂ ′
S,2 = τ̂0 + τ̂3. (35)

The overall impurity potential, which effectively renormalizes
the order parameter, corresponds to a superposition of these.
For random impurity distributions, the two scattering matrices
are equally likely, and their average is ultimately given by the
identity matrix τ̂0. This leads to scattering rates given by

τ−1
n,i = π

2
V 2

i N (0)nSi(n)(1 + 〈ĥ30〉2
) (36)

and

τ−1
sc,i = π

2
V 2

i N (0)nSi(n)
(
1 − 〈

F OP
C

〉 )
, (37)

where i = {on, is}. Here the k dependence is implicit inside
the brackets denoting the averages over the Fermi surface.
Combining both equations leads to an effective scattering rate
equal to

τ−1
eff,i = π

2
V 2

i N (0)nSi(n)
( 〈ĥ30〉2 + 〈

F OP
C

〉 )
. (38)

The first term inside the brackets is the same for all pair-
ing symmetries. Thus, the difference between the effective
scattering rate for different superconducting states is entirely
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FIG. 5. Suppression of the normalized superconducting transi-
tion temperature Tc/Tc0 versus the impurity concentration n, if only
the symmetric share Si(n) of impurity distributions contributes to
scattering, calculated from Eqs. (22) and (38). The standard case cor-
responds to the situation where the share of symmetric configurations
stays constant as a function of the filling, i.e., Sstand = 1. For the top
(bottom) figure we choose a small (large) prefactor to the scattering
rate, corresponding to a weak (strong) scattering potential.

governed by the average of the respective fitness function. As
we can infer from Table VI, all gap functions have a finite
fitness measure, whose size depends on the details of the
microscopic Hamiltonian. This aspect was already empha-
sized in previous works [24–26]. However, we also observe
that the evolution of the share of symmetric configurations,
Si(n), affects the scattering rate, which is a feature that
does not depend on the structure of the Hamiltonian, but on
the distribution of impurities. The influence of Si(n) on the
renormalization of Tc is illustrated in Fig. 5. As expected from
the shape of Si(n) (Fig. 4), we obtain that all superconducting
states are more sensitive to interstitial than on-site defects
(assuming same magnitude of the scattering potential on the
sites). Furthermore, we note that in the case of strong on-site
or interstitial impurity potentials, for which the superconduct-

ing state is suppressed by small impurity concentrations, there
is an enhancement of the critical concentration by a maximum
factor of approximately two [illustrated by Fig. 5(b)].

For intercalated configurations, the impurities can only oc-
cupy the first and fourth layer. Hence, the only finite scattering
matrix in the low-energy model is given by V̂S,1 [Eq. (34)],
which does not square to the identity matrix. This has impor-
tant consequences for the scattering rates. First of all, since the
gap functions not belonging to A1g commute (anticommute)
with τ̂0 (τ̂3), the superconducting scattering rate vanishes,
i.e., τ−1

sc,ic = 0. In contrast, the normal-state scattering rate is
finite because all terms of the averaged Green’s function fully
commute with the scattering potential. The effective scattering
rate is therefore equal to

τ−1
eff,ic = τ−1

n,ic = πV 2
icN (0)nSic(n)(1 − 〈ĥ30〉)2. (39)

We find that the normalized mass imbalance term in the
Hamiltonian, ĥ30, is again an important factor that controls the
renormalization of the superconducting state in the presence
of impurities. However, in contrast to the cases of interstitial
or on-site impurities, we obtain that a larger contribution
of ĥ30 to the normal-state Hamiltonian actually leads to a
smaller effective scattering rate. Depending on the details of
the normal-state Hamiltonian this could have profound conse-
quences on the suppression of Tc.

In order to make better connections with experiments, we
would like to emphasize here that the critical temperature is
usually investigated as a function of the residual resistivity
in the normal state [16,19]. The residual resistivity is propor-
tional to the normal-state scattering rate, so it is sensible to
study the evolution of the critical temperature not only with
respect to the impurity concentration, but also with respect to
the normal-state scattering rate. We can write

log10

( Tc

Tc0

)
= �

(
1

2

)
− �

(
1

2
+ 1

4πτnTc

τn

τeff

)
, (40)

such that the ratio τn/τeff can be thought of as the effectiveness
of the impurities in the superconducting state. If this ratio
is large (small) the superconducting critical temperature is
suppressed faster (slower) than naively expected for a single-
band superconductor. In the case of on-site and interstitial
scenarios, we find for superconducting states in nontrivial
irreps

τn

τeff
=

〈
F OP

C

〉 + 〈ĥ30〉2

1 + 〈ĥ30〉2
. (41)

From this ratio, let us discuss two extreme limits. The first
corresponds to 〈ĥ30〉 → 0 such that τn/τeff → 〈F OP

C 〉. In this
limit, assuming OP orbitals we obtain 〈F OP

C 〉 = 〈ĥ2
ab〉 for a

single (a, b) term in the normal-state Hamiltonian (according
to Table VI). If this term is dominant, τn/τeff → 1 and the
superconductor behaves as expected for simple single-band
scenarios. On the other hand, if the specific (a, b) term is
negligible, τn/τeff → 0 and the superconducting state is sup-
pressed at a much slower rate than expected from a naive
estimation. The second limit corresponds to 〈ĥ30〉 → 1, with
all other 〈ĥ2

ab〉 → 0. In this case, the ratio τn/τeff → 1/2 and
the superconducting state is suppressed at impurity concen-
trations that are twice as large as the naively expected values.
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For intercalated impurities the ratio τn/τeff = 1, meaning that
the suppression of the superconducting state would follow the
naive expectation for simple superconductors.

From this discussion, we can conclude that an arbitrar-
ily robust unconventional superconducting state is possible
in layered materials in the presence of on-site or interstitial
impurities, for the scenario with OP orbitals stemming from
distinct types of atoms under the condition that the (a, b)
terms enumerated in Table VI (top) for each superconduct-
ing state are the least dominant terms in the normal-state
Hamiltonian.

It is important at this point to highlight the role of the (3,0)
mass-imbalance term, which contributes to a finite supercon-
ducting fitness for all unconventional order parameters not
belonging to the A1g representation. First, note that the order
parameters considered here are all of interorbital nature. If we
start with the most plain type of electronic structure with only
the (0,0) term, we find four spin and orbital degenerate bands.
This configuration is associated with the most advantageous
scenario for interorbital pairing, as we fall in the case of
intraband pairing. Once we turn on the (3,0) term, the orbital
degeneracy is lost and now interorbital pairing is only pos-
sible through interband pairing, a suboptimal scenario. Note
also that the other terms contributing to the superconducting
fitness, displayed in Table VI (top), are symmetric (antisym-
metric) in the orbital degree of freedom for every odd-parity
order parameter, if the superconducting order parameter is
antisymmetric (symmetric) in the orbital degree of freedom.
This highlights the incompatibility of these terms with the
respective superconducting state.

This scenario with OP orbitals from different atoms is the
one associated with the physics of materials belonging to the
family of Bi2Se3. They have attracted a lot of attention given
their topological properties. As discussed in Ref. [28], the
condition for band inversion is given by M0M1 < 0 [param-
eters in Table I associated with the (3,0) term]. This constraint
makes the (3,0) term arbitrarily small for selected kz values. A
small (3,0) term is a necessary condition for the development
of an unconventional superconducting state that is arbitrarily
robust [in case the extra (a, b) term contributing to F̂C is also
negligible]. Here we can conclude that electronic structure
parameters related to nontrivial topology guarantee a more
robust superconducting state.

Let us analyze next how these qualitative results change for
EP basis states.

2. EP orbitals from different atoms

According to Table IV, for basis states with EP, such as
{P1+

z , P2+
z }, we obtain the same scattering matrices as in the

previous subsection. This means that polar impurities play
again no role in the renormalization of the superconducting
state. The only differences compared to the OP case arise due
to the changes in the structure of the Hamiltonian. Naturally,
these differences are more of quantitative than of qualitative
nature.

For example, for on-site or interstitial distributions we find

τ ′−1
n,i = π

2
V 2

i N (0)nSi(n)(1 + 〈ĥ30〉2 + 〈ĥ10〉2
) (42)

and

τ ′−1
sc,i = π

2
V 2

i N (0)nSi(n)
(
1 − 〈

F EP
C

〉)
, (43)

with i = {on, is}. Consequently, the effective scattering rate
becomes

τ ′−1
eff,i = π

2
V 2

i N (0)nSi(n)
( 〈ĥ30〉2 + 〈ĥ10〉2 + 〈

F EP
C

〉 )
. (44)

The only difference to Eq. (38) is therefore a different
prefactor determined by the microscopic structure of the
Hamiltonian. Surprisingly, for intercalated impurities we ob-
tain exactly the same results as before, since the ĥ10 term
of the Hamiltonian anticommutes with τ̂3. Consequently, its
contribution vanishes in the normal-state scattering rate and
we again end up with Eq. (39). From this we can deduce that
disorder located in the vdW gap has the same effect in OP and
EP two-orbital models stemming from distinct types of atoms.

For the EP orbitals scenario, the discussion of the evolution
of the critical temperature as a function of the normal-state
scattering rate is similar to the one given above for the OP
scenario. We can again conclude that an arbitrarily robust
unconventional superconducting state is theoretically possible
in layered materials with EP orbitals stemming from distinct
types of atoms under the condition that the (a, b) terms enu-
merated in Table VI (bottom) are not the dominant terms in
the normal-state Hamiltonian. Note that the number of terms
in Table VI is four, in contrast to two for the OP scenario.
This means that superconductors stemming from Fermi sur-
faces formed by EP orbitals are generally much less likely
to be robust than the ones stemming from OP orbitals. The
condition for robustness would require four out of the six
symmetry-allowed terms in the normal-state Hamiltonian to
be negligible.

3. OP orbitals from the same atoms

If the states occupy the same type of atoms, as is the case
for {P2+

z , P2−
z }, the renormalization changes substantially.

From Table IV, we see that polar impurities, with scattering
potential in the low-energy basis given by τ̂1, now suppress
the superconducting state. The corresponding scattering rates
read

τ ′′−1
n,po = π

2
V 2

poN (0)nApo(n)(1 − 〈ĥ30〉2
) (45)

and

τ ′′−1
sc,po = Cab

sc,po
π

2
V 2

poN (0)nApo(n)
(
1 − 〈

F OP
C

〉)
, (46)

where we obtain a different overall sign in the last equa-
tion due to the Cab

sc,po factors (Table V). Subtracting the
scattering rates leads now to

τ ′′−1
eff,po = π

2
V 2

poN (0)nApo(n)

×
[
1 − 〈ĥ30〉2 − Cab

sc,po

(
1 − 〈

F OP
C

〉)]
. (47)

Note that again the scattering rates for different gap functions
merely differ by the overall factor in the square brackets.
Assuming the system is purely populated by polar impurities
such that the share of antisymmetric configurations stays con-
stant, i.e., Apo(n) = 1, Eq. (47) yields a renormalization which
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FIG. 6. Suppression of the normalized critical temperature
Tc/Tc0 as a function of the impurity filling fraction n, if only the
antisymmetric share A(n) of impurity distributions contributes, cal-
culated from Eqs. (22) and (51). We used the antisymmetric shares
Aon/is calculated in Sec. III and Astand = 1. We again choose a small
and large prefactor to illustrate the effects of a weak and strong
scattering potential, respectively.

only depends on the details of the microscopic Hamiltonian.
In Fig. 6, we show how this feature can influence the robust-
ness of the superconducting state irrespective of the expansion
coefficients of the normal-state Hamiltonian.

For on-site, interstitial, and intercalated impurities the scat-
tering rates contain both symmetric and antisymmetric shares.

We obtain

τ ′′−1
n,i = π

2
V 2

i N (0)n[Si(n)(1 + 〈ĥ30〉2
) + Ai(n)(1 − 〈ĥ30〉2

)]

(48)

and

τ ′′−1
sc,i = π

2
V 2

i N (0)n
[
Si(n)

(
1 − 〈

F OP
C

〉)
+Cab

sc,iAi(n)
(
1 − 〈

F OP
C

〉)]
, (49)

with i = {on, is, ic}. Note that not all non-A1g gap functions
commute with τ̂1; hence we have to include the different Cab

sc,i
in the second line of the last equation. The effective scattering
rate is

τ ′′−1
eff,i = π

2
V 2

i N (0)n
{
1 + [Si(n) − Ai(n)] 〈ĥ30〉2

− (
1 − 〈

F OP
C

〉)[
Si(n) + Cab

sc,iAi(n)
]}

, (50)

where we used Si(n) + Ai(n) = 1. We observe that if the states
originate from the same layers, we cannot in general separate
the symmetric and antisymmetric shares from the microscopic
details of the Hamiltonian. Similar to the previous cases, we
find that the explicit structure of the shares influences the
scattering rate. Analyzing to what extent, however, requires
a more detailed calculation of the microscopic parameters,
which is not the scope of this paper. Nevertheless, we can
deduce from Eq. (50) that there might be a fine-tuned value
of parameters, for which only the antisymmetric share con-
tributes. Rewriting Eq. (50),

τ ′′−1
eff,i = π

2
V 2

i N (0)n
{
Si(n)

( 〈ĥ30〉2 + 〈
F OP

C

〉 )
+ Ai(n)

[
1 − 〈ĥ30〉2 − (

1 − 〈
F OP

C

〉)
Cab

sc,i

]}
, (51)

we see that this is the case if

〈ĥ30〉2 + 〈
F OP

C

〉 = 0. (52)

Assuming 〈F OP
C 〉 → 0 and Cab

sc,i = −1, the renormalization
of the critical temperature is governed by the antisymmetric
share of scattering potentials, as shown in Fig. 6. Intriguingly,
we observe that the robustness of the superconducting state
increases drastically for small scattering potential, since the
share of antisymmetric configurations is reduced as the sys-
tem is gradually filled with on-site or interstitial impurities.
As an aside, we also have to emphasize that for intercalated
impurities only our basis choice of {P2+

z , P2−
z } leads to the ex-

pression given in Eq. (50). Naturally, choosing a basis which
originates from the inner layers yields no renormalization for
intercalated distributions.

Continuing with the discussion of the evolution of the crit-
ical temperature as a function of the normal-state scattering
rate, we find now according to Eq. (40)

τn

τeff
= 1 + [Si(n) − Ai(n)] 〈ĥ30〉2 − (

1 − 〈
F OP

C

〉 )[
Si(n) + Cab

sc,iAi(n)
]

1 + [Si(n) − Ai(n)] 〈ĥ30〉2 . (53)
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As before, we want to consider two extreme limits. The first
concerns 〈ĥ30〉 → 0, in which case the ratio simplifies to

τn

τeff
= 1 − (

1 − 〈
F OP

C

〉 )[
Si(n) + Cab

sc,iAi(n)
]
, (54)

and becomes equal to 〈F OP
C 〉 for Cab

sc,i = +1. As the normal-
ized fitness parameter satisfies 0 < 〈F OP

C 〉 < 1, the ratio is
necessarily smaller than one, and the superconducting state
is generally less suppressed than in the naive single-band sce-
nario. For Cab

sc,i = −1, the form of the ratio is not as simple, but
the conclusion, based on the fact that 0 � τn/τeff � 1, is the
same. Overall, we find that for the scenario of two OP orbitals
stemming from the same type of atoms, the conclusion that the
superconducting state can be arbitrarily robust, as long as the
normal-state Hamiltonian terms (a, b) contributing to 〈F OP

C 〉
are negligible, is essentially the same as for the case of two
OP orbitals stemming from distinct types of atoms.

V. CONCLUSION

Inspired by the open questions concerning the robustness
of the superconducting state found in materials belonging to
the family of doped Bi2Se3, we have investigated the effects
of the impurity location and orbital content at the Fermi
surface on the critical temperature of layered superconduc-
tors. We started revisiting the microscopic description in the
layer basis to faithfully account for four distinct impurity
configurations: on-site, interstitial, intercalated, and polar. Af-
ter moving to the orbital basis by projecting our model into
two low-lying degrees of freedom, we found three fundamen-
tally distinct effective two-orbital bases. This allowed us to
discuss whether the symmetric and antisymmetric shares of
the scattering potentials were active or inactive in each of
these cases. In particular, we find that choosing two orbitals
stemming from distinct types of atoms, the antisymmetric
part of the scattering potential is inactive, irrespective of
the relative parity of the orbitals. We then elaborated on the
renormalization of the superconducting critical temperature
within the self-consistent Born approximation by providing
closed-form expressions for the effective scattering rate. For
simplicity, we restricted ourselves here to the unconventional
states not belonging to the A1g representation. We obtain that
the effective scattering rate depends on three important prop-
erties: (i) the commutation/anticommutation relation between
the normal-state Hamiltonian and the scattering potential; (ii)
the commutation/anticommutation relation between the su-
perconducting order parameter and the scattering potential;
and (iii) the commutation/anticommutation relation between
the normal-state Hamiltonian and the superconducting order
parameter (known as the superconducting fitness measure).

For the main case of interest, OP orbitals stemming from
distinct types of atoms, we observe that purely polar impu-
rities do not suppress the superconducting state. Moreover,
on-site and interstitial impurities behave qualitatively the
same: the superconducting state is more robust for the smaller
mass imbalance, (3,0) term, in the normal-state Hamiltonian.
Nevertheless, on-site impurities are generally less effective in
suppressing the superconducting state compared to interstitial
impurities (assuming the magnitude of the scattering potential

and the normal-state Hamiltonian are the same). This is due
to the distinct evolution of the symmetric share as a function
of doping. The superconducting state is also possibly more
robust than usual for intercalated impurities, but now the ro-
bustness is enhanced if the contribution of the (3,0) term to
the normal-state Hamiltonian increases.

We also conclude that superconductors emerging from
Fermi surfaces formed by two OP orbitals are generally more
robust than superconductors stemming from Fermi surfaces
with EP orbitals. This effect is purely controlled by the fit-
ness measure 〈FC〉. Furthermore, considering two OP orbitals
stemming from the same type of atoms as the basis states, we
conclude that these are affected by purely polar impurities, in
contrast to the scenario where the orbitals stem from different
types of atoms.

In addition, within the scenario of OP orbitals, we dis-
covered a new mechanism to enhance the robustness of
superconducting states. In case the antisymmetric share of the
impurity potential is dominant, the superconducting state can
also be exceptionally robust to on-site, interstitial, and interca-
lated impurities since the antisymmetric share decreases with
doping.

Finally, we highlighted the difference in discussing the
robustness of the superconducting state as a function of
the impurity concentration or of the normal-state scattering
rate. Our findings show that an enhanced robustness can be
observed for both on-site and interstitial impurities when ana-
lyzing the critical temperature either as a function of impurity
concentration or τ−1

n . On the other hand, an enhanced robust-
ness for intercalated impurities only appears when analyzing
the evolution of the superconducting critical temperature with
the impurity concentration. These results can have important
implications for the interpretation of experiments and the
identification of the impurity location in layered materials.

We believe our work provides an important starting point
to answer the questions concerning the stability of super-
conducting states in the presence of impurities in layered
materials. This work also opens further questions concerning
the connections between the normal-state topology and the
robustness of the superconducting state and the possibility
of engineering the normal-state electronic structure to make
superconductors less susceptible to disorder. We believe these
are interesting directions for future work.
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APPENDIX: DERIVATION OF τn

Here we illustrate the derivation of the normal-state scat-
tering rate τn introduced in Sec. IV A. Our starting point is
Dyson’s equation [50],

Ĝ−1(k, iωn) = Ĝ−1
0 (k, iωn) − 
̂1(k, iωn), (A1)
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which contains the bare Green’s function Ĝ0(k, iωn) defined
in Eq. (25) in the main text. Inserting the expression of Ĥ (k)
given by Eq. (5), the renormalized Green’s function in the
band basis reads

Ĝ(k, iωn) = 1

2

∑
j=±

1

iω̃n, j − Ek, j

×
(

τ̂0 ⊗ σ̂0 + j
∑
a,b

ĥab(k)τ̂a ⊗ σ̂b

)
, (A2)

where j = ±1 denotes the band index, ω̃n the renormalized
Matsubara frequencies, and Ek, j the band energies given by

Ek, j = h00(k) + j
√∑

a,b

h2
ab(k). (A3)

Note that the sum over (a, b) in Eqs. (A2) and (A3) excludes
(0,0) and that we normalized the terms of the Hamiltonian:

∑
a,b

ĥ2
ab(k) = 1. (A4)

We should also emphasize that expressed in terms of the
renormalized Matsubara frequencies the inverse of Eq. (A2)
is equal to

Ĝ−1(k, iωn)

= iω̃n,+ + iω̃n,− − 2h00

2
τ̂0 ⊗ σ̂0

+
iω̃n,+ − iω̃n,− − 2

√∑
a,b h2

ab

2

∑
a,b

ĥabτ̂a ⊗ σ̂b, (A5)

where we for once omitted writing down the explicit k depen-
dence of the ĥab(k) terms.

As discussed in the main text, we want to work in the Born
approximation where the self-energy is given by


̂1(iωn) =
∑

i

niV̂i

∫
d3k

(2π )3
Ĝ(k, iωn)V̂i, (A6)

with V̂i denoting the scattering matrices in the two-orbital
basis. Inserting Eq. (A2) in Eq. (A6) and performing the
integration over k yields


̂1(iωn) = −i
π

2
sgn(ω̃n)

∑
i

ni|Vi|2
∑

j

Nj (0)

×
(

τ̂0 ⊗ σ̂0 + j
∑
a,b

Cab
n,i 〈ĥab(k)〉 j τ̂a ⊗ σ̂b

)
, (A7)

where we introduced the density of states at the Fermi level
for band j, Nj (0). This equation is finally inserted in Dyson’s
equation [Eq. (A1)] along with the inverses of the bare and
renormalized Green’s functions. Since we have two equations,
one multiplied by τ̂0 ⊗ σ̂0 and the other one by

∑
a,b τ̂a ⊗ σ̂b,

we can add and subtract them to obtain

ω̃n,+ = ωn + π

2
sgn(ω̃n)

∑
i

ni|Vi|2
∑

j

Nj (0)

×
(

1 + j
∑
a,b

Cab
n,i 〈ĥab(k)〉2

j

)
(A8)

for the first band and

ω̃n,− = ωn + π

2
sgn(ω̃n)

∑
i

ni|Vi|2
∑

j

Nj (0)

×
(

1 − j
∑
a,b

Cab
n,i 〈ĥab(k)〉2

j

)
(A9)

for the second band. Note that we have averaged the scattering
rate over the Fermi surface, since we assume that its k depen-
dence is small. Most notably, we find that every even hab(k)
term of the Hamiltonian modifies the scattering. Restricting
ourselves now to the upper band with index j = +1 we end
up with the normal-state scattering rate shown in Eq. (27) of
the main text.
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