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Parametrically driven oscillators can display period tripling in response to a drive at thrice the resonance
frequency. In contrast to the parametric instability for period doubling, the symmetric fixed point corresponding
to the state of rest remains stable at arbitrary strong driving for the tripling transition. Previously, it has been
shown that fluctuations can circumvent this and induce a period-tripling instability. In this article, we explore
an alternative way of inducing a period-tripling transition by investigating properties of period tripling due to
parametric down-conversion beyond the rotating-wave approximation. We show that despite the absence of an
instability threshold, off-resonant frequency contributions can induce a period-tripling transition by activating the
parametric down-conversion. Moreover, we study the subsequent period-tripled states of the Josephson potential
and discuss the asymmetry between the clockwise and counterclockwise rotating fixed points that only arises
beyond the rotating-wave approximation.
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I. INTRODUCTION

In parametrically driven oscillators, period multiplication
can be observed in the spontaneous emergence of phase-
locked oscillations at an integer multiple of the driving period.
The most commonly studied example is the period doubling
in a degenerate parametric oscillator [1–3]. There, the sys-
tem undergoes a pitchfork bifurcation as a function of the
parametric driving strength. At the corresponding instability
threshold, the symmetric state of rest turns unstable and is split
up into two continuously emerging, symmetry-broken states
[2,4]. This second-order instability distinguishes period dou-
bling from multiple-period transitions, where the symmetric
state of rest remains stable for any driving strength. However,
thermal fluctuations [5] or quantum fluctuations [6] can be
employed to induce symmetry-breaking, multiple-period tran-
sitions despite the absence of a classical instability threshold.

Following the transition from the state of rest, the dynamics
of the system is subject to a discrete periodicity in phase space
that emerges due to period multiplication. This periodicity can
be used to engineer tunable energy band structures [7–11]. In
addition, the multiplicity of the states allows for the study of
higher-order squeezing and multipartite entanglement [12–14]
as well as multiple-state tunneling and correlations [15–19].
However, while period-doubling systems have been ana-
lyzed in detail even outside of rotating-wave approximations
[20–24], studies of multiple-period transitions have been fo-
cused, to our knowledge, solely on the system dynamics in
the rotating frame.

In this article, we build on the rotating-frame results of
Ref. [6] to investigated properties of the period-tripling tran-
sition and the subsequent period-tripled states beyond the
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rotating-wave approximation for Josephson parametric down-
conversion. Circuit QED setups utilizing Josephson junctions
as nonlinear elements have been successfully employed in
the past to observe multiple-period transitions [9,14,25,26].
Here, we discuss the dynamics of a dc-biased Josephson junc-
tion coupled to a microwave resonator that implements the
parametric drive by utilizing the ac-Josephson effect. For this
setup, we discuss how off-resonant frequency contributions
can be employed to induce a period-tripling transition. Addi-
tionally, we study the influence of the off-resonant effects on
the characteristic 6-fold symmetry of the period-tripled states
[6]. We find that off-resonant contributions of the paramet-
ric drive lead to an asymmetry between the clockwise and
counterclockwise rotating fixed points, even in the limit of
small dissipation and weak detuning where the rotating-wave
approximation is generally expected to be accurate.

The article is organized as follows. We introduce the mi-
crowave setup in Sec. II. In Sec. III, we summarize the
rotating-frame dynamics of the system based on Ref. [6]. We
introduce the Poincaré cross section in Sec. IV, as a means
to compare the rotating-frame results to the laboratory-frame
calculations. In Sec. V, we discuss how off-resonant contribu-
tions of the drive can be employed to induce a period-tripling
transition by ramping up the parametric driving strength. The
arising period-tripled states are analyzed in Sec. VI, before we
conclude in Sec. VII.

II. SETUP

Following Ref. [6], we investigate a setup composed of a
Josephson junction with Josephson energy EJ that is biased
by a dc voltage V0 in series with a microwave resonator (see
Fig. 1). The resonator is characterized by its resonance fre-
quency �, a small bandwidth γ , as well as an impedance Z0

at low frequency. Additionally, the resonator is assumed to be
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FIG. 1. The setup consists of a Josephson junction with
Josephson energy EJ biased by a dc voltage V0 and coupled to a
microwave resonator. The resonator is characterized by its resonance
frequency � with a small bandwidth γ , as well as an impedance
Z0 at low frequency. The resonator is assumed to be coupled to
a low-temperature environment with kBT � h̄�, such that thermal
fluctuations are negligible. The voltage difference across the junction
depends on the voltage V = h̄φ̇/2e across the resonator as well as the
applied dc voltage V0.

coupled to a low-temperature environment with kBT � h̄�,
such that thermal fluctuations are negligible. The impedance
Z (ω) of the resonator is given by

Z (ω) = Z0�

γ − i(ω2 − �2)/2ω
. (1)

The voltage difference across the junction is the difference
of the voltage V = h̄φ̇/2e across the resonator and the ap-
plied dc voltage V0. To investigate period tripling, we choose
the Josephson frequency �J close to 3 times the resonance
frequency of the microwave resonator by setting the dc-bias
voltage to V0 = h̄�J/2e, with �J = 3(� − �). Here, the de-
tuning � is assumed to be small with |�| � �.

The impedance Z0 determines the strength of the quantum
fluctuations (δφ)2 = 4πGQZ0 = κ/2, with GQ = e2/π h̄ the
conductance quantum. The effects of quantum fluctuations
on the period-tripling transition and the subsequent period-
tripled states have been studied in Ref. [6] in the quasiclassical
limit κ � 1 by employing a rotating-wave approximation.
Here, we neglect the quantum fluctuations to instead focus on
the classical description of the system in the laboratory frame
and discuss effects that can only be studied outside of the
rotating-wave approximation.

The classical system can be described by the second-order
equation

φ̈ = −2γ φ̇ − �2φ + 16�ε sin (�Jt − φ), (2)

with the driving strength ε = κEJ/16h̄. We introduce the
dimensionless charge q = φ̇/� that relates to the current
flowing through the resonator via I = h̄q̇/4eZ0. For a better
comparison to the rotating-frame results, we introduce the
complex variable α = φ + iq that satisfies the first-order dif-
ferential equation

α̇ = −γ (α − α) − i�α + 16iε sin
[
�Jt − 1

2 (α + α)
]
. (3)

III. ROTATING-WAVE APPROXIMATION

While this paper focuses on properties of the system be-
yond the rotating-wave approximation, for comparison, we
first present the most important dynamical properties in the
rotating frame. In the following, we give a short summary of
the results found in Ref. [6].

In the limits γ , ε, |�| � �, it is possible to perform a
rotating-wave approximation [13] by introducing the slow,

FIG. 2. Stability map and selected trajectories for the period-
tripling system as described by the 3-fold-symmetric rotating-wave
approximation in Eq. (5) for � = 0 and γ = 0.1ε. Within the shown
region, the system exhibits 6 stable (circles) and 6 unstable (squares)
fixed points in the outer region, as well as 3 unstable and 1 stable
fixed point in the center (zoomed-in on the right [27]). The basins
of attraction for each stable fixed point are indicated by the colored
regions. Bluish and reddish colors refer to clockwise and counter-
clockwise rotation, respectively. The white region corresponds to
higher-order fixed points which are positioned outside the displayed
region and not of interest to the discussion in this article.

complex variable β(t ) via

α(t ) = β(t )e−i�J t/3, (4)

and neglecting all fast-oscillating terms. This leads to the
autonomous differential equation [11]

β̇ = −γ β − i�β − ε
∂

∂β
[(β3 − β

3
) f (ββ )], (5)

with f (x) = 16J3(x1/2)/x3/2 and J3 the Bessel function of the
first kind. The rotating-frame dynamics displays a 3-fold rota-
tional symmetry such that the transformations β �→ β e2π in/3,
where n ∈ Z, leave the equation of motion unchanged.

A stability map of the rotating-frame dynamics in Eq. (5)
is illustrated in Fig. 2. An important feature of the stability
map is the stable fixed point at β = 0 that corresponds to
the state of rest of the oscillator which remains stable for
any driving strength ε [18]. However, in the limit of small
dissipation and detuning γ , |�| � ε, the fixed point at the
origin is closely surrounded by 3 equidistant, unstable fixed
points that form a small, triangular basin of attraction around
the state of rest [28]. This is shown in the enlargement of
Fig. 2. Close to the origin, we can approximate f (x) ≈ 1/3
to obtain the differential equation

β̇ = −γ β − i�β + εβ
2
. (6)

From this equation, we obtain the distance |β| = (�2 +
γ 2)1/2/ε of the 3 unstable fixed points from the origin. In the
following sections, we focus on the limit γ , |�| � ε, where
the basin of attraction around the state of rest remains small.
As we discuss in Sec. V, this limit is favorable for inducing a
period-tripling transition.

After an escape from the state of rest, e.g., due to thermal
[5] or quantum fluctuations [6], the system ends up close to
one of the 6 outer stable fixed points. Their dynamical prop-
erties can be investigated by expanding f (x) ≈ 1/3 − x/48
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to the next order. In the limit γ , |�| � ε, all fixed points
have the same amplitude |β| = (48/5)1/2 [29] and differ in
phase by π/3 [6]. Due to the additional mirror symmetry
of Eq. (5) with respect to the real axis, the dynamics in the
vicinity of the 6 stable fixed points alternates between clock-
wise and counterclockwise rotation. In different words, the
transformation β �→ βeπ i(2n+1)/3, where n ∈ Z, is equivalent
to a time-reversal operation. In the limit � → 0, the system is
equally likely to end up in any of the 6 stable fixed points,
since each of the 3 unstable fixed points relevant for the
period-tripling transition is equally connected to a mirrored
pair of fixed points in the outer region. For finite but small
values of γ /ε, the distance between these mirrored pairs of
fixed points decreases linearly with γ /ε.

At a fixed point β = |β|eiϕ , the current in the lab-
oratory frame approximately oscillates as I = h̄q̇/4eZ0 =
−(h̄�J/12eZ0)|β| cos[(�Jt − 3ϕ)/3]. Since the full dynam-
ics of Eq. (3) remains invariant under the transformation t �→
t + 2π/�J , only 3ϕ is a well-defined quantity in relation to
the parametric drive. This is a characteristic property of period
tripling and reflected by the 3-fold symmetry in the rotating
frame, where the system is invariant under the transformations
ϕ �→ ϕ + 2πn/3, with n ∈ Z.

In the microwave setup discussed, the order parameter
3ϕ of the phase-locked, period-tripled states can be obtained
by superposing I3 with the original Josephson current IJ ∝
sin(�Jt ) or its time derivative İJ ∝ cos(�Jt ). Averaging the
resulting signal over times t � 6π/�J yields

〈I (t )3IJ (t )〉 ∝ sin(3ϕ), 〈I (t )3 İJ (t )〉 ∝ cos(3ϕ), (7)

such that 3ϕ can be fully determined by these 2 measurements.

IV. POINCARÉ CROSS SECTION

The full system in the laboratory frame described by
Eq. (3) takes frequency contributions away from the reso-
nance frequency of the oscillator into account. Therefore, the
resulting signal can no longer be characterized by the single
frequency �J/3. However, for sufficiently small γ , ε, |�| �
�, an analogous approach to Eq. (4) remains useful, e.g., to
study how the stability map of Fig. 2 changes in the presence
of the off-resonant frequency contributions. To this end, we
define the Poincaré map [30]

P : α(t ) → α(t + 6π/�J ) (8)

that defines a stroboscopic evolution in time. Following the
rotating-frame ansatz in Eq. (4), the time steps δt = 6π/�J

correspond to a full oscillation period of the period-tripled
states. This choice ensures that in the limit γ , ε, |�| � � the
points obtained by the Poincaré map follow the rotating-frame
evolution of β(t ). Similar to the rotating-frame description,
the Poincaré map of the full system displays fixed points
characterized by P (α) = α. However, it is worth noting
that, conventionally, the Poincaré map corresponds to a time
evolution by 2π/�J in dependence on the periodicity of
the time-dependent drive. As such, each fixed point of the
Poincaré map defined in Eq. (8) that relates to a period-tripled
state corresponds to a triplet of points in the conventional
Poincaré map. The points in this triplet have roughly the same
amplitude and differ in phase by approximately 2π/3. This

reflects the previously discussed property that only 3ϕ is a
well-defined quantity for the period-tripled states.

The stroboscopic nature of the Poincaré map requires a
discussion of the origin in time t0 at which the first point of
the Poincaré map is recorded [31,32]. For the rotating-frame
results, a constant shift t �→ t + t0 of the origin in time can
be compensated by a simple rotation in phase space with
α(t ) �→ α(t )ei�J t0/3. However, due to off-resonant frequency
contributions, a constant shift of the origin in time translates
not solely to a rotation in phase space for the full dynamics.
As such, a Poincaré map of α(t ) taken at an initial time
t = 0 with α(0) = α0 is not generally identical to a Poincaré
map of α(t )ei�J t0/3 taken at an initial time t = t0 
= 0 with
α(t0)ei�J t0/3 = α0.

A Poincaré stability map at fixed t0 = 0 is displayed in
Figs. 3(a)–3(c) for � = 0, γ = 0.1ε, and different values
of ε/�. At small values of ε/�, the Poincaré stability map
closely resembles the stability map in the rotating frame dis-
played in Fig. 2. In the case that the time shift t0 cannot be
controlled experimentally, it is useful to discuss an averaged
Poincaré stability map that presumes uniformly distributed
time shifts t0; see Figs. 3(d)–3(f). Due to the remaining de-
pendence of α(t )ei�J t0/3 on t0, a statistical mixing between the
different basins of attraction occurs in certain regions. This
mixing is particularly strong close to the origin and at larger
driving strength ε/�.

V. PERIOD-TRIPLING TRANSITION

After introducing the formalism of the Poincaré map in the
previous section, we utilize it in this section to study the dy-
namics of the full system for small oscillation amplitudes. In
the rotating-wave approximation in Eq. (6), the lowest-order
contribution of the Josephson potential is quadratic in β and
the system displays a stable state of rest at the origin. For the
full system, we can expand the Josephson term in Eq. (3) to
lowest order for small amplitudes α to obtain the differential
equation of a driven harmonic oscillator

α̇ = −γ (α − α) − i�α + 16iε sin (�Jt ), (9)

with the strongly off-resonant driving frequency �J = 3(� −
�). Even though the coherent drive is strongly off-resonant,
it dominates the dynamics for small amplitudes such that
close to origin the system displays coherent oscillations at
the frequency �J ≈ 3�. In the limit γ ,� � �, the ampli-
tude of the oscillating current is given by I0 = 9h̄ε/2eZ0. For
a Poincaré map with time origin t0, Eq. (9) results in the
fixed point

α = 2ε

�
[sin(�Jt0) − 3i cos(�Jt0)]. (10)

This corresponds to an average shift |α| ≈ 4.3ε/� of the fixed
point from the origin and a maximum shift |α| = 6ε/� for
�Jt0 = nπ with n ∈ Z. As Figs. 3(a)–3(c) show, these coher-
ent oscillations are not sufficient to destabilize the system and
induce a period-tripling transition as the triangular basin of
attraction is shifted in tandem with the fixed point.

However, the displacement of the fixed point and its
basin of attraction from the origin proportional to ε/� cre-
ates the opportunity to induce a period-tripling transition by
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FIG. 3. (a)–(c) Poincaré stability map of the dynamics in the laboratory frame [Eq. (3)] at fixed t0 = 0 for � = 0, γ = 0.1ε, and
ε/� = 0.01, 0.03, 0.06. The coloring is analogous to Fig. 2. Note that for increasing ε/�, the displacement of the fixed point, that corresponds
to the state of rest in the rotating frame, from the origin and its basin of attraction increases. (d)–(f) Corresponding averaged Poincaré
stability map for identical parameters. The map was obtained by averaging over 30 trajectories at random, equally distributed values of the
stroboscopic time t0 for each point of the map. Since the rotated solution α(t )ei�J t0/3 remains dependent on t0, a statistical mixing between the
different basins of attraction occurs in certain regions. This mixing is particularly strong close to the origin and at larger driving strength ε/�.
(g) Exemplary current I flowing through the junction during a period-tripling transition induced by abruptly switching on the parametric drive
with ε = 0.05 � at t = 0 for � = 0 and γ = 0.1ε. The switch is indicated by the dotted line. The dashed line corresponds to the Josephson
current IJ ∝ sin(�Jt ) in arbitrary units. Following the switch, the system undergoes a transient response on the timescale 1/γ during which
the current oscillates approximately with the driving frequency �J . As the system equilibrates, the current is phase-locked to the Josephson
current and oscillates with the frequency �J/3.

ramping up the driving strength ε. In the Poincaré stability
map, this ramp-up shifts the fixed point and its triangular basin
of attraction outward. If the displacement of the fixed point is
larger than the size of its basin of attraction after the ramp-up,
a period-tripling transition can be induced. As discussed in
Sec. III, the rotating-frame approximation suggests a distance
|β| = γ /ε of the 3 unstable fixed points from the state of
rest for � = 0. For the full system, numerical results for the
minimum distance of the unstable fixed points from the stable
fixed point at their center are displayed in Fig. 4(a) for � = 0.
These results show that a larger parametric driving strength
ε/� increases the size of the basin of attraction. While this
effect is not advantageous for inducing a period-tripling tran-
sition, Fig. 4(a) also indicates that achieving a displacement
larger than the size of the basin of attraction remains possible,
especially for small ratios of γ /ε.

Since the relaxation of the dynamics in the Poincaré map
takes place on a timescale 1/γ , it is natural to assume that the
time frame of the ramp-up has to be much smaller than 1/γ .
However, both the angle and the amplitude of the displace-
ment of the stable fixed point are strongly dependent on the
time shift t0 at which the Poincaré map is taken. Since the size
of the basin of attraction is only weakly dependent on the time
origin t0, the large displacement of the fixed point at �Jt0 =
nπ with n ∈ Z is favorable for inducing a period-tripling
transition. In contrast, a time shift of �Jt0 ≈ π

2 + nπ results in
a basin of attraction that is larger than the displacement from
the origin for the entire range of parameters studied in this
article. As a result, the success of the ramp-up is dependent on
the phase of the parametric drive at the time of the ramp-up.

Therefore, a successful period-tripling transition requires a
nearly instantaneous ramp-up on a timescale � 2π/�J which
in turn requires a large accessible bandwidth. Theoretically,
an ideal ramp-up can be approximated by multiplying the
Josephson potential in Eq. (3) with the step function �(t )

FIG. 4. (a) Numerical results for the minimum distance of the
3 unstable fixed points from the stable fixed point at their center
for t0 = 0, � = 0, and γ /ε = 0.01, 0.1, 0.2, 0.3 (solid lines from
bottom to top). The maximum shift of the fixed point from the
origin |α| ≈ 6ε/� for a time shift t0 ≈ 0 is indicated by the black,
dashed line. If this shift is smaller than the distance of the unstable
fixed points from the stable fixed point at their center a ramp-up is
unable to induce a period-tripling transition. (b) Probability that the
origin at |α| = 0 lies outside the basin of attraction of the central
fixed point for a random value of t0. The estimated probabilities
and error bars were obtained by a simulation of Eq. (3) for � = 0,
γ /ε = 0.01, 0.1, 0.2, 0.3 (from top to bottom), and 5000 randomly
chosen values of t0 for each point.
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FIG. 5. (a) Driving strength ε/� at which the unstable Poincaré fixed points surrounding the central fixed point switch from bordering
clockwise rotating regions to counterclockwise rotating regions in the stability map. This property directly indicates which fixed point is
dominantly accessed after the transition from the central fixed point. The points were obtained by numerical simulation of Eq. (3) for � = 0.
The line indicates a linear fit that returns an inverse slope of γ /ε = 0.20. (b)–(d) Poincaré stability map of the laboratory-frame dynamics
in Eq. (3) at fixed t0 = 0 for � = 0, γ = 0.1ε, and ε/� = 0.01, 0.08, 0.11. The coloring is analogous to Fig. 2. At ε/� ≈ 0.08-0.09,
the counterclockwise rotating fixed points (reddish colors) turn unstable. (e) Upper estimate for the critical driving strength at which the
counterclockwise fixed points become unstable for � = 0. The results were obtained by numerical simulations of Eq. (3) for 10 random initial
points α0 on a circle of radius 0.1 around the counterclockwise fixed points. The error bars were estimated by the distribution of the lowest
driving strength at which the initial points lead to a dynamics in the vicinity of a clockwise fixed point at time τ = 1000/γ . As the change
in stability is connected to the emergence of a long timescale over which the counterclockwise fixed points initially appear to be stable, the
results should be considered as an upper bound of the critical driving strength.

such that the parametric drive is turned on when the Josephson
current crosses through zero. The resulting period-tripling
transition is displayed in Fig. 3(g). Following the switch, the
system undergoes a transient response on the timescale 1/γ

during which the current oscillates approximately with the
driving frequency �J . As the system equilibrates, the cur-
rent is phase-locked to the Josephson current and oscillates
with the frequency �J/3. We note in passing that without
control over the time of the ramp-up of the amplitude ε, the
success of the switch is probabilistic. Numerical predictions
for the probabilities of success for a random distribution of
t0 are displayed in Fig. 4(b). Even at the very small dissi-
pation rate γ = 0.01ε, the probability of success does not
exceed 50%.

VI. PERIOD-TRIPLED STATES

In this section, we take a closer look at the period-tripled
states that emerge following the period-tripling transition.
Within the framework of the rotating-wave approximation,
the system ends up close to one of the 6 outer stable fixed
points after an escape from the state of rest; see Sec. III.
For � = 0, the rotating-wave approximation predicts that the
system is equally likely to end up in any of the 6 stable fixed
points, since each of the 3 unstable fixed points relevant for the
period-tripling transition is equally connected to a mirrored
pair of stable fixed points in the outer region. This no longer
holds for the corresponding 6 Poincaré fixed points of Eq. (3),
since the equivalency between a rotation by π/3 and a time-
reversal operation only applies in the rotating frame. Instead,
either the clockwise or the counterclockwise fixed point of the
mirrored pair dominates the dynamics after the period-tripling
transition. This is evident in the stability map in Fig. 3(a).

Whether the system at � = 0 is more likely to end up
close to a clockwise or a counterclockwise rotating point
depends on the ratio γ /ε. Figure 5(a) displays the param-
eter regimes for which the unstable Poincaré fixed points

surrounding the central fixed point are bordered by either
clockwise or counterclockwise rotating regions in the stability
map. This directly implies which of the fixed points is domi-
nantly reached after the transition. The two different regimes
are separated by a line at γ ≈ 0.2ε. At lower dissipation rates,
the system is more likely to end up in a counterclockwise ro-
tating region, while for higher dissipation a clockwise rotation
is more likely.

However, we observe this distinction only for small values
of ε/� � 0.03. In this regime, the borders between differ-
ent areas of the stability map remain smooth, as shown in
Fig. 5(b). At larger driving strength, the basins of attraction
for different fixed points begin to mix as indicated in Fig. 5(c).
This mixing is strongest in the vicinity of the unstable fixed
points, rendering a clear distinction between the clockwise
and counterclockwise regime impossible.

We observe that, at an even larger value ε/� = 0.11 of
the driving strength, the counterclockwise (reddish) solution
disappears altogether; see Fig. 5(d). We associate this transi-
tion with the fact that the counterclockwise fixed points turn
unstable altogether. This is based on the numerical evidence
that this switch happens very suddenly at a certain threshold
in driving strength and that the switch is not preceded by
a strong shrinking of the counterclockwise basins of attrac-
tion. Figure 5(d) shows that the basins of attraction of the
counterclockwise fixed points before the transition are largely
incorporated into the basins of attraction of their clockwise
counterpart in the mirrored pairing described above. The
change in stability is connected to the emergence of a long
timescale over which the counterclockwise fixed points ini-
tially appear to be stable before “escaping” to the clockwise
solution. The long timescale makes it difficult to deter-
mine the critical driving strength numerically very accurately.
Figure 5(e) shows an upper bound for the critical driving
strength that was obtained for a simulation time τ = 1000/γ .
The numerical results indicate that the critical driving strength
is only weakly dependent on γ /� in the parameter regime

014513-5



LISA ARNDT AND FABIAN HASSLER PHYSICAL REVIEW B 106, 014513 (2022)

considered. The critical driving strength is given by ε/� ≈
0.08-0.09.

VII. CONCLUSION

In this paper, we have investigated properties of the period-
tripling transition and the subsequent period-tripled states of
the Josephson potential beyond the rotating-wave approxima-
tion. After a short summary of the previously well-studied
rotating-frame dynamics, we discussed the properties of the
state of rest in the laboratory frame. Here, we have shown
that off-resonant effects can be employed to induce a period-
tripling transition by ramping up the driving strength ε over a
short time � 2π/�J . This constitutes a classical alternative to
the escape in the presence of quantum fluctuations previously
studied in Ref. [6]. Furthermore, we have discussed that either
the clockwise or the counterclockwise period-tripled states of
the system dominate after the escape from the state of rest.

The more likely rotation depends on whether γ is larger or
smaller than 0.2ε. This result is in contrast to the rotating-
wave approximation, which, for � = 0, predicts an equal
likelihood to end up in any of the 6 stable fixed points. Lastly,
we have investigated the critical driving strength ε/� ≈
0.08-0.09 at which the counterclockwise Poincaré fixed points
in the laboratory frame turn unstable altogether. Our results
highlight the necessity of critically examining the results of
the rotating-wave approximation. In particular, it is a priori
difficult to predict which of the results in the rotating frame
remain valid in a more accurate theoretical description of the
system.
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