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Pairs, trimers, and BCS-BEC crossover near a flat band: Sawtooth lattice
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We investigate pairing and superconductivity in the attractive Fermi-Hubbard model on the one-dimensional
sawtooth lattice, which exhibits a flat band by fine-tuning the hopping rates. We first solve the two-body problem,
both analytically and numerically, to extract the binding energy and the effective mass of the pairs. Based on the
density matrix renormalization group method, we address the ground-state properties of the many-body system,
assuming equal spin populations. We compare our results with those available for a linear chain, where the model
is integrable by the Bethe ansatz, and we show that the multiband nature of the system substantially modifies the
physics of the BCS-BEC crossover. We find that near a flat band, the chemical potential remains always close
to its zero-density limit predicted by two-body physics. In contrast, the pairing gap exhibits a remarkably strong
density dependence and, differently from the pair binding energy, it is no longer peaked at the flat-band point.
We show that these results can be interpreted in terms of polarization screening effects, due to an anomalous
attraction between pairs in the medium and single fermions. Importantly, we unveil that three-body bound states
(trimers) exist in the sawtooth lattice, in sharp contrast with the linear chain geometry, and we compute their
binding energy. The nature of these states is investigated via a strong-coupling variational approach, revealing
that they originate from tunneling-induced exchange processes.
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I. INTRODUCTION

During the past ten years, there has been a growing interest
in flat-band (FB) lattices [1]. These are periodic systems,
described by tight-binding models, in which one or more
dispersion relation is flat or almost flat. The corresponding
eigenstates are localized on a few lattice sites due to de-
structive quantum interference. The absence of kinetic energy
together with the inherent macroscopic degeneracy make FB
systems ideal candidates to enhance interaction effects. For
instance they provide a viable route to enhance the super-
conducting transition temperature [2–5], generate fractional
quantum Hall states at room temperature [6], and produce
many other intriguing quantum effects.

Lattice models containing a flat band have been realized
experimentally with optical lattices for ultracold atoms [7–9],
photonic lattices [10,11], semiconductor microcavities [12],
and artificial electronic lattices [13–15]. The recent discovery
[16] of unconventional superconductivity and strongly cor-
related phases in bilayer graphene twisted at a magic angle,
causing the emergence of flat bands in the electronic structure,
has further boosted the theoretical and experimental research
on FB systems.

The physics of two-body bound states in the presence of a
flat band has been recently explored theoretically in different
contexts, including topological matter [17–20] and the link
between the inverse effective mass of the bound state and
the quantum metric of the single-particle states [21–23]. This
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second direction is related to the more general question of
understanding how transport and superconductivity can oc-
cur in a system with quenched kinetic energy [24–33]. By
increasing the fermion-fermion attraction, the many-body sys-
tem progressively transforms into a bosonic gas of diatomic
molecules. The evolution from a Bardeen-Cooper-Schrieffer
(BCS) state to a Bose-Einstein condensate (BEC), commonly
referred to as the BCS-BEC crossover, has been investigated
both theoretically and experimentally in single-band disper-
sive systems, going from superconductors [34] to atomic
Fermi gases [35]. Recent theoretical works [36–38] have gen-
eralized the theory to two-band continuous models describing
superfluid Fermi gases near an orbital Feshbach resonance,
and a significant increase of the critical temperature Tc has
been predicted when the lower band becomes shallow [39,40].
Transport in many-body bosonic flat-band systems has also
been explored; see, for instance, [41–45].

In this work we study, in a unified framework, the in-
fluence of the multiband structure and the proximity to a
flat band on pairing phenomena, going from the formation
of molecules in vacuum to superconductivity in many-body
fermionic systems. Our investigation is based on the attractive
Fermi-Hubbard model on the one-dimensional (1D) sawtooth
lattice (also known as triangular or Tasaki lattice), shown in
Fig. 1(a). Its unit cell contains two lattice sites, called A and
B; particles can hop between two B sites with rate t , while
tunneling between A and B sites occurs at a rate t ′. Two
combinations of the tunneling rates are of special interest: (i)
the FB point, corresponding to t = t ′/

√
2, where the lower

Bloch band becomes dispersionless, and (ii) t = 0, where the
sawtooth lattice reduces to the linear chain, and the Hubbard
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FIG. 1. (a) Geometry of the 1D sawtooth lattice. The lattice
contains two sites per unit cell, indicated by A and B. We indicate
by t ′ the hopping rate between A and B sites and by t the hopping
rate between B sites. Notice that there is no tunneling between A
sites. Panels (b)–(d) Dispersion relations of the two bands for dif-
ferent values of the tunneling ratio: t/t ′ = 1/2 (b), t/t ′ = 1/

√
2 (c),

corresponding to the flat-band point, and t/t ′ = 1 (d). In this work,
we fix the energy scale by setting t ′ = 1.

model is then integrable by the Bethe ansatz. We first present
a thorough solution of the two-body problem, from which we
extract the binding energy and the effective mass of the pair as
a function of the tunneling rates t, t ′ and the Hubbard strength
U . We then show that in many-body systems, the proximity to
a flat band strongly modifies the nature of the superconduct-
ing state, as compared to the integrable limit. The chemical
potential remains always closed to its zero-density limit, even
in the weakly interacting regime. In contrast, the superfluid
pairing gap is strongly depleted at finite density, and its peak is
shifted with respect to the FB point. We explain this surprising
effect by studying the change in the ground-state energy of the
system upon adding an extra fermion. For nonzero t and |U |
sufficiently large, this quantity falls below the bottom of the
single-particle energy spectrum, indicating that pairs and sin-
gle fermions tend to attract each other. To support this picture,
we explicitly show that three-body bound states do appear in
the sawtooth lattice. We compute their binding energy E trim

b
as a function of the interaction strength and the tunneling
rates. We show that E trim

b exhibits a peak at the FB point, in
complete analogy with the two-body case. Importantly, we use
a strong-coupling variational approach to show that trimers
originate from tunneling-induced exchange processes.

Superconductivity in the sawtooth lattice at the FB point
has been recently investigated numerically in Ref. [30], with
a focus on the superfluid weight Ds. The authors introduced
a modified multiband BCS theory with sublattice-dependent
order parameters to account for the different connectivity of
the A and B sites. In this way, the mean-field approach was

shown to compare well with density matrix renormalization
group (DMRG) calculations.

The article is organized as follows. In Sec. II we review
the single-particle properties of the sawtooth lattice, and we
present the formalism used to solve the two-body problem in
a multiband lattice. In Sec. III we show our results for the
binding and the effective mass of the two-body bound states,
both at the FB point and for generic tunneling rates. In Sec. IV
we present our DMRG results for the BCS-BEC crossover at
finite density, while in Sec. V we discuss the formation of
trimers in the sawtooth lattice. Finally, in Sec. VI we present
our conclusions.

II. THEORETICAL APPROACH

A. Single-particle properties

We recall here the single-particle properties of the 1D
sawtooth lattice, shown in Fig. 1(a). The tight-binding Hamil-
tonian is given by

Hsp=
∑

i

t |iB〉〈i + 1B| + H.c.+t ′|iA〉(〈iB|+〈i + 1B|) + H.c.,

(1)
with |iA/B〉 denoting the local (site) basis. The dispersion rela-
tions of the two bands associated with the Hamiltonian (1) are
given by

ε±(q) = t cos q ±
√

t2 cos2 q + 2t ′2(1 + cos q), (2)

where q is the wave vector of the Bloch state, and we have
used the distance between two adjacent sites as length unit. In
Fig. 1 [panels (b)–(d)], we show how the shapes of the two
bands evolve as the tunneling ratio t/t ′ is changed. While the
upper band is always concave down at q = 0, the bottom q =
qB of the lower band changes from qB = 0 for t/t ′ < 1/

√
2,

to qB = π for t/t ′ > 1/
√

2. Exactly at t/t ′ = 1/
√

2, the lower
band becomes flat, ε−(q) = −√

2t ′ [panel (c)], implying that
the inverse effective mass 1/m∗ = ε′′

−(qB) vanishes. For any
other value of t , Eq. (2) yields

1

m∗ =
{

−t + t ′2+t2√
4t ′2+t2 if t

t ′ < 1√
2
,

− t ′2
t + 2t if t

t ′ > 1√
2
.

(3)

The amplitudes of the Bloch states at site j associated
with the energy bands εν (q) can be conveniently written as

�qν ( j) = eiq j√
L

(
αqν

βqν
), where L is the number of unit cells, while

αqν, βqν satisfy

αqν = t ′(1 + e−iq )

εν (q)
βqν, (4)

together with the normalization condition |αqν |2 + |βqν |2 = 1.
Since εν (−q) = εν (q), we are free to choose βqν real and
satisfying β−qν = βqν . From Eq. (4) we then find that α−qν =
α∗

qν , where the star indicates the complex conjugate.

B. Two-body problem

We now consider two particles hopping on the saw-
tooth lattice and coupled by contact interactions. The
two-body Hamiltonian is given by Ĥ = Ĥ0 + Û , where
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Ĥ0 = Ĥsp ⊗ 1 + 1 ⊗ Ĥsp is the noninteracting Hamiltonian,
and Û = U (P̂A + P̂B) accounts for contact interactions be-
tween the two particles. Here P̂σ = ∑

mσ |mσ mσ 〉〈mσ mσ | are
the pair projector operators over the doubly occupied sites of
the σ = A, B sublattices. The properties of two-body bound
states can be obtained by mapping the stationary Schrödinger
equation into an effective single-particle model for the center-
of-mass motion of the pair, as was done in Refs. [46,47] for
continuous and lattice models, respectively. If the external po-
tential is periodic, the momentum Q of the pair is conserved,
and the problem reduces further to finding the eigenvalues
of an Nb × Nb matrix, where Nb is the number of basis sites
per unit cell, as we shall see below for Nb = 2. The same
equation was obtained recently by Iskin in Ref. [22] by using a
different (variational) approach. Scattering states in flat bands
have instead been discussed in [48], but they can also be
obtained by adapting the formalism below, as was done in
Ref. [49].

We start by writing the two-body Schrödinger equation as
(E − Ĥ0)|ψ〉 = Û |ψ〉, where E is the total energy of the pair.
Substituting it into the Schrödinger equation and bringing the
operator (E − Ĥ0) on the right-hand side yields

1

U
|ψ〉 = (E − Ĥ0)−1P̂A|ψ〉 + (E − Ĥ0)−1P̂B|ψ〉. (5)

Next, by projecting the wave function (5) on the doubly
occupied states |mσ mσ 〉, we obtain a close equation for the
corresponding amplitudes f (n) = (〈n

AnA|ψ〉
〈nBnB|ψ〉) as

f (n)
1

U
=

∑
m

K (n, m) f (m), (6)

where, for given values of n and m, K (n, m) is a 2 × 2 matrix
depending parametrically on the energy and whose entries are
given by Kσσ ′

(n, m) = 〈nσ nσ |(E − Ĥ0)−1|mσ ′
mσ ′ 〉. The latter

can be conveniently expressed in terms of the components
of the single-particle Bloch wave functions �qλ( j), so that
Eq. (6) takes the form

f (n)
1

U
= 1

L2

∑
m,q,p,ν,ν ′

ei(q+p)(n−m)

E − εν (q) − εν ′ (p)
Mνν ′ (q, p) f (m),

(7)
where

Mνν ′ (q, p) =
(

αqνα
∗
qναpν ′α∗

pν ′ αqνβ
∗
qναpν ′β∗

pν ′

βqνα
∗
qνβpν ′α∗

pν ′ βqνβ
∗
qνβpν ′β∗

pν ′

)
. (8)

One can easily see that the eigenstates of Eq. (7) are plane
waves f (n) = eiQn√

L
fQ, with Q being the center-of-mass mo-

mentum of the pair. By substituting it into Eq. (7) and taking
the continuum limit, we end up with the eigenvalue problem

fQ
1

U
= R fQ, (9)

where R = R(E , Q) is a 2 × 2 matrix defined as

R =
∑
ν,ν ′

∫ π

−π

dq

2π

Mνν ′ (q, Q − q)

E − εν (q) − εν ′ (Q − q)
. (10)

The two eigenvalues of the matrix R are given by

λ± = R11 + R22

2
± 1

2

√
(R11 − R22)2 + 4|R12|2. (11)

For a given interaction strength U and quasimomentum Q,
the energy levels of bound states are obtained by looking for
a solution of λ±(E , Q) = 1/U , the energy E taking values
outside the noninteracting two-body energy spectrum. In the
following, we fix the energy scale by setting t ′ = 1, and we
restrict to attractively bound states, corresponding to U < 0.

III. TWO-BODY RESULTS

A. Bound states at the FB point

We present here our results for the two-body bound states
for the special case t = 1/

√
2, where the lower Bloch band be-

comes flat; see Fig. 1(c). We will be interested in the solutions
of Eq. (9) with energy E < Eref, where Eref = 2ε−(qB) =
−2

√
2 is the ground-state energy of the two-body system in

the absence of interactions. These states are often referred
to as doublons, since for large |U | the two particles sit at
the same site and form a tightly bound molecule with energy
E ∼ U .

The integration over momentum in Eq. (10) will be gen-
erally performed numerically. Analytical integration is also
possible via residue techniques, although the calculation can
become difficult for arbitrary combinations of the parameters
E and Q. As an example, we provide here the exact expression
for the matrix R valid for zero center-of-mass momentum and
E < Eref. This allows us to extract the pair binding energy
exactly for any U < 0. To this end, we substitute in Eq. (8) the
amplitudes of the Bloch wave functions obtained from Eq. (4):

αq− = − 1 + e−iq

√
2(2 + cos q)

, βq− = 1√
2 + cos q

, (12)

αq+ = 1 + e−iq

√
2(2 + cos q)(1 + cos q)

, βq+ =
√

1 + cos q

2 + cos q
,

and the corresponding dispersion relations of the two bands,
with ε+(q) = √

2(1 + cos q). For Q = 0, the integration over
momentum is performed by introducing the complex variable
z = eiq, so that the integrating function takes the form of a
ratio t (z)/y(z) of two analytical functions. We then calculate
the integral via Cauchy’s residue theorem of complex analy-
sis, after identifying the poles inside the circle |z| = 1. This
gives

R11 =
8
√

E (E − 4
√

2) + E (16 + 2
√

2E − E2 + 2
√

2
√

E2 − 2) − 12E (E+√
2)√

E2−2

E (32
√

2 + 24E − E3)
,

R12 = R21 =
2
(√

2
√

−E (E2−2)
4
√

2−E
+ √

2E + 2
)

(
E + 2

√
2
)2√

E2 − 2
, (13)
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R22 =
2
(√

2E + 2
)√−E − √

2 + E
(
E + √

2
)√E(2−√

2E )√
2E−8(

E + 2
√

2
)√√

2 − E
(
E2 + 3

√
2E + 4

) .

We substitute Eqs. (13) in Eq. (11) and obtain the ex-
act energy of the bound state from the implicit condition
U = 1/λ−(E ) (notice that the eigenvalue λ+ yields the
energy of the first excited bound state). We then extract
the binding energy Eb from the relation E = −Eb + Eref,
so that Eb > 0 if the state is bound. In Fig. 2 we plot
our results for the binding energy as a function of the
interaction strength (blue solid curve). We can use the ex-
act relation between E and U to obtain the asymptotic
expansions for the binding energy in the weak- and strong-
coupling regimes. In the noninteracting limit, the binding
energy vanishes, implying that E = Eref = −2

√
2. For small

U we perform a quadratic expansion of 1/λ−(E ) in powers
of E + 2

√
2, yielding U 	 c1(E + 2

√
2) + c2(E + 2

√
2)2,

where c1 = (5 + 4
√

3 −
√

37 + 16
√

3)/2 	 1.942 and c2 =
27[3−4

√
3+2

√
3(67−36

√
3)]√

134−72
√

3(9−2
√

3+
√

3(67−36
√

3))2
	 0.365. The same result can

also be obtained by noting that for small U the dominant con-
tribution to the integral in Eq. (10) corresponds to ν = ν ′ = −,
leading to a pole at E = Eref in the matrix elements of R, while
in all the other contributions E can be safely replaced by Eref.
The binding energy of the pair in the weak-coupling regime is
then given by

Eb 	 −U

c1
+ c2

c3
1

U 2, (14)

which is shown in Fig. 2 by the dot-dashed curve. Notice that
the linear-in-U dependence of the binding energy for small U ,
also reported in [21], is a direct consequence of the localized

FIG. 2. Binding energy of the deepest two-body bound state at
the flat-band point, t = 1/

√
2, plotted as a function of the modulus

of the interaction strength (blue solid line). The dot-dashed line
corresponds to the weak-coupling expansion, Eq. (14), while the
dashed line represents the strong-coupling expansion, Eq. (15). We
set t ′ = 1 as the energy unit.

nature of the single-particle states forming the molecule. In-
deed, the same behavior was already observed [47] for two
interacting particles in the presence of a quasiperiodic lattice
once single-particle localization set in.

For strong interactions, we expand λ−(E ) in power of 1/E
up to second order. From this we find

Eb 	 −U − 2
√

2 − 6 + 2
√

5

U
− 16

√
2/5 + 6

√
2

U 2
. (15)

The strong-coupling expansion (15) is shown in Fig. 2 by
the dashed curve, and it agrees well with the exact result for
|U | � 5. Before continuing, it is worth mentioning that the
occupation of the two sublattices is asymmetric due to the
different connectivity of A and B sites: in the bound state
of lowest energy, the two constituent particles reside more
on the B sublattice, while in the first excited bound state the
two particles occupy predominantly the A sites. This point is
particularly clear in the strong-coupling regime, since the two
particles must share the same site to interact. Expanding the
matrix elements in Eq. (13) to lowest order in 1/E yields

R =
(

1/E + 4/E3 4/E3

4/E3 1/E + 8/E3

)
.

The eigenvalues of Eq. (16) are λ± = 1/E + (6 ∓ 2
√

5)/E3

and the associated normalized eigenvectors are, respectively,

v− = (v1, v2) and v+ = (−v2, v1), where v1 =
√

2/(5 + √
5)

and v2 =
√

(5 + √
5)/10. Hence the probability for the pair

to be in the A site is |vA
−|2 = 0.276 for the ground state and

|vA
+|2 = 0.724 for the first excited bound state. This result

is consistent with Ref. [30], also reporting an asymmetric
occupation of the two sublattices for the ground-state density
profile at finite filling.

Let us now discuss the effective mass m∗
p of the pair, which

is defined through the relation 1/m∗
p = E ′′(0), where E (Q) is

the dispersion relation of the bound state. In Fig. 3 we plot
the inverse effective mass of the pair as a function of the
interaction strength (solid blue line). For U = −0.1414 we
recover the numerical result obtained in Ref. [21]. To derive
the weak-coupling expansion for the pair effective mass, we
need to calculate the matrix R for a small but finite momentum
Q. To do so, in Eq. (10) we perform a quadratic expansion in
Q for the nonsingular contributions and replace therein the
energy E by −2

√
2. The integration can then be performed

analytically yielding the following approximate expressions
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FIG. 3. Inverse effective mass of the deepest bound state at
the flat-band point as a function of the modulus of the interaction
strength. The dot-dashed line corresponds to the weak-coupling
expansion, Eq. (17), while the dashed line represents the strong-
coupling expansion, Eq. (27).

for the matrix elements:

R11 	 (
√

3 − 2)(7 − cos Q) + 4

(7 − cos Q)
√

3(E + 2
√

2)
− 1008 + 187Q2

1728
√

6
,

R12 	 2e−iQ/2 cos(Q/2)

(7 − cos Q)
√

3(E + 2
√

2)
+ 432 − Q(185Q + i216)

1728
√

6
,

R22 	 4

(7 − cos Q)
√

3(E + 2
√

2)
− 5(144 + 11Q2)

1728
√

6
. (16)

We then substitute the right-hand side of Eqs. (16)
in (11) and expand 1/λ− = U up to second order in
E + 2

√
2. We obtain U 	 f1(Q)(E + 2

√
2) + f2(Q)(E +

2
√

2)2, where fi(Q) = ci + diQ2 are quadratic functions
of the momentum. The constant ci is defined as above,

while d1 = 1
8 (

√
1

601 (1504
√

3 + 3133) − 1) 	 0.261 and d2 =
6√
2

( 148 042 277−85 446 942
√

3√
67−36

√
3

−5 341 612+3 094 257
√

3)

32(36
√

3−67)2(9−2
√

3+
√

3(67−36
√

3))3
	 0.294. Solving for

the energy yields E (Q) 	 −2
√

2 + U
f1(Q) − f2(Q)

f1(Q)3 U 2. The ef-
fective mass of the pair is then given by

1

m∗
p

	 −2d1

c2
1

U + 6c2d1 − 2d2c1

c4
1

U 2, (17)

which is displayed in Fig. 3 with the dot-dashed red line. We
see that the inverse effective mass takes its maximum value
around U = −4.3. Interestingly, there is a wide window of U
values around this point, where both the perturbative expan-
sion (17) and the strong-coupling expansion, which will be
derived below [see Eq. (27)], become completely inadequate.
In particular, the pair effective mass is much more sensitive to
interband transitions than the binding energy, as one can see
by comparing Fig. 3 with Fig. 2.

The dependence of 1/m∗
p on |U | shown in Fig. 3 is clearly

reminiscent of the behavior of the superfluid weight Ds in-
vestigated in [30]: both quantities scale as |U | for weak
interactions and as 1/|U | in the strongly interacting regime.
For small |U |, the explicit relation between the pair effective

mass and the superfluid weight is [50] Ds = 4πn(1 − n)/m∗
p,

where n is the density (i.e., the number of fermions per lattice
site), and the factor π has been added to match the definition
of Ds used in [30]. In this regime, Eq. (17) yields 1/m∗

p 	
0.1385|U |, implying Ds 	 1.74|U |n(1 − n), which is close to
the value Ds 	 1.62|U |n(1 − n) found in [30] from DMRG
data at quarter filling, n = 1/4.

It is also worth emphasizing that the linear-in-U behavior
of the pair inverse effective mass for small U is a generic
feature of FB lattices. Indeed, in this regime the matrix R
in Eq. (10) takes the approximate form R 	 W/(E − 2εfb),
where εfb is the energy of the flat band and W is a Q-dependent
matrix given by

W =
( ∑

q |αq|2|αQ−q|2
∑

q αqβ
∗
q αQ−qβ

∗
Q−q∑

q α∗
qβqα

∗
Q−qβQ−q

∑
q |βq|2|βQ−q|2,

)
(18)

with αk, βk being the amplitude components of the FB states.
Therefore, the energy dispersion of the weakly bound state
is E (Q) = 2εfb + UλW (Q), where λW (Q) = (W11 + W22 +√

(W11 − W22)2 + 4|W12|2)/2 corresponds to the largest pos-
itive eigenvalue of W . In particular, the inverse effective mass
of the pair is given by 1/m∗

p = U∂2λW /∂Q2 evaluated at Q =
0. Notice that this result is completely general, i.e., it does not
depend on any assumption of uniform pairing across the two
sublattices.

B. Bound states for generic tunneling rates

We investigate here the properties of the lowest energy
bound state in the absence of the flat band, i.e., for an arbitrary
t �= 1/

√
2. From Eq. (2) we find that the reference energy is

given by

Eref =
{

2(t − √
4 + t2) if t < 1√

2
,

−4t if t > 1√
2
.

(19)

This quantity exhibits a maximum with discontinuous deriva-
tive at the FB point, due to the crossing between the two
defining functions in Eq. (19). In Fig. 4 we plot the binding
energy as a function of the tunneling rate t for different values
of U (solid lines). The two panels (a) and (b) correspond to
the weak- and strong-coupling regimes, respectively. We see
that Eb takes its maximum value in correspondence of the
FB point (solid vertical line) for all values of the interaction
strength. The origins of the peak in the weak and in the
strongly interacting regimes are different. In the first case, it
directly follows from the fact that at the FB point Eb scales
linearly in U , while for any other values of t the binding
energy grows only quadratically in U . To see this, we perform
a quadratic expansion around the bottom of the lower band,
ε−(q) 	 ε−(qB) + ε′′

−(qB)(q − qB)2/2. Next, we approximate
the numerator on the right-hand side of Eq. (10) by a con-
stant, M−−(q,−q) 	 M−−(qB,−qB), and we integrate over
momentum. From Eq. (11) we obtain

1

U
	 − (|aqB−|4 + |bqB−|4)

2
√

ε′′−(qB)
√

Eb

, (20)

showing that for small U the binding energy grows as U 2.
This behavior is well known from the linear chain limit t = 0,
where Eb = √

U 2 + 16 − 4. Equation (20) breaks down for
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(a)

(b)

FIG. 4. (a) Binding energy vs tunneling rate for different values
of U in the weakly interacting regime, from U = −0.25 (bottom) to
U = −1 (top), shown with solid lines. The dot-dashed curves cor-
respond to the single-band approximation obtained by retaining only
the contribution from the lower band in Eq. (10). The dashed line cor-
responds to the weak-coupling result Eb = U 2 f , where the function
f (t ) is defined in Eq. (21). Notice that f diverges approaching the
flat-band point t = 1/

√
2 (vertical line). (b) Same as panel (a) but

for values of U in the strongly interacting regime, from U = −3
(bottom) to U = −8 (top), shown with solid lines. The dashed lines
correspond to the strong-coupling expansion, Eq. (23). Notice that
the binding energy takes its maximum value at the flat-band point for
any value of U .

t = 1/
√

2, since the single-particle inverse effective mass
vanishes at the FB point. We therefore write Eb 	 U 2 f (t ),
where

f (t ) =
{

− (2+t2 )2
√

4+t2(2+t2−t
√

4+t2 )2

(4+t2−t
√

4+t2 )4[−1+t (−t+√
4+t2 )]

if t < 1√
2
,

t
8t2−4 if t > 1√

2

(21)

is a function of the tunneling rate, which is obtained by
substituting in Eq. (20) the explicit expressions for the ef-
fective mass and the amplitudes of the Bloch states, given in
Eqs. (3) and (4), respectively. In Fig. 4(a) we display the result
based on Eq. (21) for the weakest interaction considered,
U = −0.25 (dashed line). We see that there is a wide region
of t values around the FB point, where the weak-coupling
approximation (20) deviates significantly from the numerical

result. We emphasize that Eq. (20) relies on the assumption
that Eb � w, where w = |√4 + t2 − 3t | is the width of the
lowest-energy band. This condition is necessarily violated
near the FB point, where the bandwidth vanishes.

The dot-dashed curve in Fig. 4(a) refers to the single-band
approximation for the binding energy, obtained by neglect-
ing completely the upper band in Eq. (10), thus retaining
only the contribution corresponding to ν = ν ′ = −. For weak
interactions, the approximation is accurate for any value of
t , in stark contrast with the weak-coupling expansion (20),
pointing out that all momenta inside the Brillouin zone must
be taken into account when approaching the FB point. As
|U | increases, interband transitions become important and the
single-band approximation deviates more and more from the
exact numerics.

In the presence of a very strong attraction, the two particles
sit at the same lattice site and form a tightly bound state.
Since E ∼ U is large and negative, the binding energy reduces
to Eb 	 −U + Eref. Thus, in this regime the binding energy
simply mirrors the reference energy, showing a singular peak
for t = 1/

√
2, as displayed in Fig. 4(b). To include higher-

order corrections to the binding energy, we use the formula
1

(E−x) = 1
E

∑+∞
n=0( x

E )n on the right-hand side of Eq. (10), with
x = εν + εν ′ , and we cut the series after the n = 3 term. The
integration over momentum can then be done analytically, and
from Eq. (11) we obtain

1

U
	 E3 + 12t + 4E (1 + t2)

E4

−4
√

13t2 + E (6t + 4t3) + E2(1 + t4)

E4
. (22)

Expanding the right-hand side of Eq. (22) in powers
of E , up to second order, gives U 	 E + a1/E + a2/E2,
where a1 = −4(1 + t2 + √

1 + t4) and a2 = −12t − (12t +
8t3)/

√
1 + t4. From this we obtain

Eb 	 −U + Eref − a1

U
− a2

U 2
, (23)

which reduces to Eq. (15) for t = 1/
√

2. The strong-coupling
prediction (23) is displayed in Fig. 4(b) with dashed lines.
We see that the approximation works better and better as |U |
increases.

Let us now discuss the behavior of the two-body inverse
effective mass. In Fig. 5 we display our numerical results as
a function of the tunneling rate t and for different values of
the interaction strength. The dotted line corresponds to the
noninteracting limit, where the bound state breaks down and
the pair effective mass reduces to twice the single-particle
mass, m∗

p = 2m∗. We see that, far from the FB point, weak
interactions tend to slightly increase the effective mass of
the pair. In contrast, close to it, the inverse mass is strongly
enhanced by interactions, an effect that persists until U ≈ −5.
We also note that the minimum in the inverse effective mass
shifts towards smaller values of t as |U | increases.

The interaction correction to 1/m∗
p in the weak-coupling

regime can be obtained by generalizing Eq. (20) to a finite
momentum of the pair. In particular, for Q > 0 the dominant
contribution to the integral in Eq. (10) comes from the region
centered around q = qB + Q/2, with qB defined as above. By
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FIG. 5. Inverse effective mass of the deepest bound state as a
function of the tunneling rate t for different values of the interaction
strength U = −0.25 (magenta solid line), U = −0.5 (orange dot-
dashed line), U = 1 (blue solid line), U = −3 (red long dashed line),
and U = −5 (green solid line). The dotted line corresponds to the
limit of vanishing attractive interactions, m∗

p = 2m∗. The vertical line

represents the flat-band point t = 1/
√

2.

replacing qB with qB + Q/2 in Eq. (20) and taking the square
of both sides of the equation, we obtain the dispersion relation

of the bound state,

E (Q) = 2ε−(qB + Q/2) − (|aqB+Q/2−|4 + |bqB+Q/2−|4)2

4ε′′−(qB + Q/2)
U 2.

(24)
From Eq. (24) we then find that the effective mass of the pair
in the weak-coupling regime reduces to

1

m∗
p

	 1

2m∗ + hU 2, (25)

where h is a function of the tunneling rate, whose explicit form
is obtained by making use of Eqs. (2) and (4) in Eq. (24). We
find h(t ) = 4−t (8u+t{60+t[40u+t (86+t{25u+t[36+5t (t+u)]})]})

16u5(2t2−1) for t <

1/
√

2, with u = √
4 + t2, while h(t ) = (1 + t2)/[16t (1 −

2t2)] for t > 1/
√

2. Notice that h diverges for t = 1/
√

2,
since in Eq. (24) ε′′

−(q) = 0 in the entire Brillouin zone. The
divergence signals that Eq. (25) does not hold at the FB point,
in agreement with Eq. (17).

The strong-coupling expansion for the pair effective mass
can be obtained by following the same procedure used to
derive Eq. (22), but this time we retain the full Q dependence
of the matrix elements on the right-hand side of Eq. (10).
The integration can still be performed analytically, and from
Eq. (11) we obtain

1

U
	 1

E4
{E (4 + E2) + 6t (1 + cos Q) + 2Et2(1 + cos Q) −

√
8(E + 3t )2(1 + cos Q) + 4t2[1 + Et + (3 + Et ) cos Q]2},

(26)

which provides an implicit equation for the dispersion relation
of the bound state. To make it explicit, we expand the right-
hand side of Eq. (26) in powers of 1/E , retaining up to second-
order terms, and we solve for the energy. This yields

1

m∗
p

	 −1 + 2t2(t2 + √
1 + t4)

U
√

1 + t4

− t (3 + 8t2 + 6t6 + 6
√

1 + t4 + 6t4
√

1 + t4)

U 2(1 + t4)3/2
, (27)

holding for any value of t , including the FB point (see the
dashed curve in Fig. 3). Notice that the 1/U 2 correction in
Eq. (27) accounts for the nonmonotonic behavior of the in-
verse effective mass displayed in Fig. 5, including the shift of
the minimum towards smaller values of t as interaction effects
become stronger.

IV. BCS-BEC CROSSOVER

In this section, we use the DMRG method to investigate
the ground-state properties of a spin-1/2 Fermi gas on the
sawtooth lattice undergoing the BCS-BEC crossover. The un-
derlying Fermi-Hubbard Hamiltonian is given by

H =
∑

iα

[
tcB†

iα cB
i+1α + t ′cA†

iα

(
cB

iα + cB
i+1α

) + H.c.
]

+U
∑

i

(
nA

i↑nA
i↓ + nB

i↑nB
i↓

)
, (28)

where cσ†
iα (cσ

iα ) is the local creation (annihilation) operator
for fermions with spin component α =↑,↓ in the sublattice
σ = A, B, and nσ

iα = cσ†
iα cσ

iα are the corresponding density op-
erators. We recall that t ′ = 1 in our energy units. We define
the density of the two spin components with respect to the
total number of lattice sites, nα = Nα/(2L), where Nα is the
number of fermions with spin α. In this work, we restrict
our attention to fully paired systems, corresponding to equal
densities of the two spin components, and we assume that only
the flat band is occupied in the absence of interactions, that is,
n↑ = n↓ < 1/2.

Two important observables characterizing the BCS-BEC
crossover in Fermi gases are the pairing gap pg and the
chemical potential μ. The first, also known as the spin gap,
corresponds to the energy needed to break a pair in the
many-body system by reversing one spin, while the second
corresponds to half the energy change upon adding a pair (one
fermion with spin up and one fermion with spin down) to the
system. Let ε(n, s) be the ground-state energy per lattice site,
expressed in terms of the total fermion density n = n↑ + n↓,
and the spin density s = n↑ − n↓. The pairing gap and the
chemical potential are given by

μ =
(

∂ε

∂n

)
s=0

, pg = 2

(
∂ε

∂s

)
s=0

. (29)

We compute the ground-state energy E (N↑, N↓) of the system
as a function of the spin populations Nα for a large enough

014504-7



GIULIANO ORSO AND MANPREET SINGH PHYSICAL REVIEW B 106, 014504 (2022)

system size L. We consider system sizes up to L = 60, corre-
sponding to 120 sites, with open boundary conditions.

We evaluate the chemical potential by approximating
the derivative in Eq. (29) by a finite difference,
μ 	 [E (N↑ + 1, N↓ + 1) − E (N↑, N↓)]/2. For the pairing
gap, we use −pg 	 E (N↑ + 1, N↓ + 1) − 2E (N↑ +
1, N↓) + E (N↑, N↓). In the thermodynamic limit, this
formula is equivalent to the finite difference pg 	
E (N↑ + 1, N↓ − 1) − E (N↑, N↓), but it is less sensitive
to finite-size effects. For vanishing densities, both the pairing
gap and the chemical potential possess a well-defined
limit, which is consistent with the solution of the two-body
problem. The pairing gap reduces to the binding energy,
since for N↑ = N↓ = 0 we find from Eq. (29) that
pg = E (2, 0) − E (1, 1) = Eb. Here we use the fact that
E (2, 0) = 2E (1, 0) = Eref and E (1, 1) = E (Q = 0), where
E (Q) is the energy dispersion of the two-body bound state
calculated in Sec. III. From Eq. (29) we instead find that
μ = E (1, 1)/2, since E (0, 0) = 0, implying that the chemical
potential reduces to

μ = −Eb + Eref

2
. (30)

A peculiar feature of 1D fermionic systems is that interac-
tion effects become stronger as the density n decreases. As a
consequence, the binding energy provides an upper bound for
the pairing gap. In contrast, the two-body prediction (30) is
a lower bound for the chemical potential, because the inverse
compressibility ∂μ/∂n must be positive or null to ensure the
energetic stability of the gas.

Before presenting our results, we emphasize that the pair-
ing gap discussed here is different from the pairing order
parameters σ investigated in Ref. [30]. The latter are defined
in terms of the diagonal part of the sublattice-resolved pair-
pair correlation function through the relation |σ |2/U 2 =∑

i(〈cσ†
i↑ cσ†

i↓ cσ
i↓cσ

i↑〉 − 〈nσ
i↑〉〈nσ

i↓〉)/L. These quantities clearly
depend on the many-body wave function and can therefore
take different values on the two sublattices, A �= B, due to
the different connectivity of A and B sites. In contrast, the
pairing gap is obtained solely from the ground-state energy of
the system through Eq. (30) and therefore it cannot depend on
the sublattice index. It is also worth adding that in Ref. [30] the
pairing parameters σ are shown to be increasing functions of
the density, while the pairing gap discussed here exhibits the
opposite behavior [see Fig. 8(b) below]. Notice that the same
difference in the density dependence of the two observables is
also present in the linear chain limit t = 0; see, for instance,
[51].

A. Results at the flat-band point

In Fig. 6 we plot the chemical potential versus |U | at
the FB point, together with the zero-density prediction (30).
For weak enough interactions, finite density corrections are
small, due to the infinite compressibility associated with the
flat band. From Eqs. (14) and (30) we obtain, to first order
in U , μ 	 −√

2 + U/(2c1), which is fully consistent with
our numerics. This result differs from the BCS mean-field
estimate given in [30], where the linear-in-U correction to

FIG. 6. Chemical potential at the flat-band point as a function
of the modulus of the interaction strength for filling n↑ = n↓ = 1/3
(black circles). The dashed line represents the zero-density limit of
the chemical potential, μ(n = 0) = −Eb/2 + Eref/2; see Eq. (30).
The data symbols in the inset correspond to the difference μ =
μ − μ(n = 0), plotted as a function of |U |. The red solid curve shows
the corresponding result for t = 0, obtained from the Bethe ansatz
integral equations, where μ = 1 in the noninteracting limit. The
solid connecting lines are a guide to the eye.

the chemical potential was found explicitly to depend on the
density.

In the inset of Fig. 6 we plot the difference between the
two curves in the main panel, corresponding to μ = μ −
μ(n = 0). This quantity shows a nonmonotonic behavior as a
function of |U |: μ = 0 in the absence of interactions, then
it increases with |U |, reaching a maximum around |U | ≈ 8,
and finally it decreases as μ ∼ 1/|U | in the strong-coupling
regime. Notice that μ � 0, because the inverse compress-
ibility (∂μ/∂n)s=0 must be positive or zero to ensure the
mechanical stability of the system. For large |U |, bound states
behave as pointlike hard-core bosons, hopping between neigh-
boring sites of the sawtooth lattice and experiencing repulsive
nearest-neighbor interactions as well as a uniform potential
of different strength in the two sublattices. Since all these
processes are characterized by the same energy scale 1/U ,
as demonstrated in Ref. [34], the leading density correction
to Eq. (30) must be of the same order. For comparison, in
the inset of Fig. 6 we also show the corresponding result for
the integrable point t = 0 (red solid curve). This is obtained
by solving numerically the Bethe ansatz integral equations,
as was done in Ref. [52]. Differently from the FB case, at
the integrable point μ is a monotonic decreasing function
of |U |. In particular, μ = 1 for U = 0 (because n = 2/3),
while in the strong-coupling regime we find μ ∼ 1/|U |.

In Fig. 7 we show the pairing gap as a function of the
modulus of the interaction strength (black circles), together
with the two-body binding energy (red dashed line). For
weak interactions, the numerical data are well fitted by pg =
0.44|U |, shown by the blue dot-dashed line. For strong in-
teractions, the difference between the binding energy and the
pairing gap saturates to a constant value, as shown in the inset
of Fig. 7. For comparison, in the inset we also display the
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FIG. 7. Pairing gap at the flat-band point as a function of the
modulus of the interaction strength, for filling n↑ = n↓ = 1/3 (black
circles). The dashed line represents the zero-density limit of the pair-
ing gap, pg(n = 0) = Eb. The data symbols in the inset correspond
to the difference Eb − pg, plotted as a function of |U |. The red
solid line is the corresponding prediction for t = 0, obtained from the
Bethe ansatz integral equations, showing that the difference instead
vanishes as 1/|U | for strong interactions. The connecting solid lines
are a guide to the eye.

corresponding prediction for t = 0 (red solid line), showing
that the difference is instead nonmonotonic and decreases as
1/|U | in the strong-coupling regime.

The chemical potential and the pairing gap at the FB point
show very different behaviors as a function of the density, as
outlined in Fig. 8 [panels (a) and (b)] for U = −15. While
the chemical potential is nearly constant for small n, the pair-
ing gap decreases very rapidly at low densities (n � 0.08),
suggesting a singular (i.e., nonanalytic) behavior for n = 0.
Moreover, finite-density effects are typically one order of
magnitude larger for the pairing gap than for the chemical
potential. The above results strongly contrast with the known

(a)

(b)

(c)

FIG. 8. Chemical potential (a), pairing gap (b), and excess en-
ergy (c) at the flat-band point as a function of the total fermion
density n for U = −15. The solid connecting lines are a guide to
the eye.

FIG. 9. Excess energy μ↑ (see the text for definition) at the
flat-band point as a function of |U | for filling n↑ = n↓ = 1/3 (black
circles). The blue dashed line represents the asymptotic behavior for
weak interactions. The connecting line is a guide to the eye.

behavior at the integrable point t = 0, where [53]

μ = −
√

U 2 + 16

2
+ π2n2

4
√

U 2 + 16
,

pg = Eb − π2n2

2
√

U 2 + 16
, (31)

which is valid for n � 1 and |U | � 1, with Eb =√
U 2 + 16 − 4. From Eqs. (31) we infer that density correc-

tions are of the same order (1/|U |) for both quantities, and no
singular behavior occurs at zero density.

To better understand the origin of the strong finite-density
effects on the pairing gap, we study the excess energy μ↑,
corresponding to the change in the ground-state energy of the
system upon adding an extra spin-up fermion, μ↑ = E (N↑ +
1, N↓) − E (N↑, N↓). From Eq. (29) we find that this quantity
is related to the previous observables by the general equation

μ↑ = μ + pg/2, (32)

holding for any tunneling rate t and interaction strength U .
From Eq. (32) we then find

pg = Eb − Eref + 2μ↑ − 2μ, (33)

implying that the density dependence of the pairing gap comes
not only from the equation of state, as in Eqs. (31), but also
from the excess energy. This point is particularly clear in
Fig. 8(c), where μ↑ is plotted as a function of the density,
showing that the excess energy is responsible for the anoma-
lous behavior of the pairing gap at low density.

In Fig. 9 we plot the excess energy as a function of the
interaction strength. We see that μ↑ is a decreasing function
of |U |. For a noninteracting gas, μ↑ = μ = εF = −√

2, since
for n < 1 the upper dispersive band is empty. To first order in
U we find μ↑ 	 −√

2 + UF (n), where F (n) is a function of
the density, satisfying F (n = 0) = 0. This behavior is shown
in Fig. 9 by the blue dashed line for n = 2/3. From Eq. (33)
we then find, to the same order, that pg 	 U (2F (n) − 1/c1)
since μ 	 0. For large |U |, the excess energy does not
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FIG. 10. Chemical potential μ as a function of the tunneling rate
t plotted for different values of U = 0, −0.25, −0.5, −1, −3, −5
with n↑ = n↓ = 1/3. The two-body limit μ = (−Eb + Eref )/2 for
U = −5 is shown with the dot-dashed line. The vertical solid line
indicates the flat-band point t = 1/

√
2. The connecting lines are a

guide to the eye.

scale linearly with U , as the chemical potential does, because
adding an extra fermion to a fully paired system does not
change the number of pairs. Instead it saturates to a density-
dependent value, which sits well below the energy of the flat
band for the chosen density, μ↑ < Eref/2. From Eq. (33) this
implies that the pairing gap is strongly reduced by the finite
density, as shown in the inset of Fig. 7, while corrections from
the equation of state are subleading, since μ ∼ 1/|U |.

It is interesting to note that for strong interactions, Eq. (33)
reduces to pg 	 −E (1, 1) + 2μ↑, showing that the pairing
gap yields the ground-state energy of the pair in vacuum,
but measured with respect to the many-body reference energy
2μ↑, instead of the reference energy Eref. In particular, the
condition μ↑ < Eref/2 indicates that the excess fermion and
tightly bound pairs tend to attract each other, possibly leading
to the formation of three-body bound states, as discussed
in Sec. V below. We stress that this effective attraction is
instead absent at the integrable point t = 0, since for large
|U |, Eqs. (31) and (32) yield μ↑ = −2 = Eref/2.

B. Results for the generic tunneling rate

In Fig. 10 we plot the chemical potential as a function
of the tunneling rate for a fixed total density n = 2/3; the
different curves correspond to different values of |U |. In the
noninteracting limit (black solid line), the chemical potential
coincides with the Fermi energy εF of the system, implying
that μ = ε−(qB − πn/2). The curve exhibits a minimum at
the FB point, due to the moderately large value of the density.
In the presence of interactions, however, this minimum pro-
gressively disappears and the chemical potential flattens out
because μ ≈ U/2 for large |U |. In Fig. 10 we also display the
zero-density limit (30) of the chemical potential for U = −5.
We see that the system is more compressible at t ≈ 0.6.

In Fig. 11 we plot the ratio pg/|U | between the spin gap
and the modulus of the interaction strength as a function of

FIG. 11. Ratio between the pairing gap and |U |, plotted as
a function of the tunneling rate t for different values of U =
−0.25, −0.5, −1, −3, −5 with n↑ = n↓ = 1/3. The two-body bind-
ing energy Eb for U = −5 is shown for reference (dashed line).
The vertical solid line indicates the flat-band point t = 1/

√
2. The

connecting lines are a guide to the eye.

the tunneling rate t for increasing values of |U |. The obtained
results are clearly similar to their two-body counterpart, pre-
sented in Fig. 4, showing a drastic enhancement of pairing in
the vicinity of the FB point for weak to moderate interactions.
There are other interesting and unexpected effects brought
about by the finite density. First, the position of the maximum
of the pairing gap drifts to smaller values of t as |U | increases,
while the two-body binding energy always remains peaked at
t = 1/

√
2 (see Fig. 4). Second, for strong interactions density

corrections are more prominent near the FB point, as can
be seen in Fig. 11, where we contrast the pairing gap with
the binding energy (dashed line) for U = −5. By comparing
Fig. 10 with Fig. 11, we also see that density corrections for
the chemical potential can be significantly smaller than for the
pairing gap, except in a neighborhood of the integrable point
t = 0, where Eqs. (31) apply.

In Fig. 12 we plot the corresponding results for the excess
energy as a function of the tunneling rate. Far from the FB
point, weak interactions cause a fast decrease of μ↑ with
respect to the Fermi energy, while near the FB point the de-
crease is rather modest. As a consequence, a local maximum
appears, drifting towards smaller values of t as |U | increases
and turning into a global maximum at t ≈ 0.66. Since for
finite interactions the chemical potential in Fig. 10 depends
smoothly on the tunneling rate, we find from Eq. (32) that the
drift of the peak in the pairing gap simply reflects the behavior
of the excess energy. As |U | increases, we see from Fig. 12
that there is a growing window of t values around the FB
point, in which the condition μ↑ < Eref/2 is satisfied. In this
region, the pairing gap is density-depleted for arbitrarily large
|U |, as shown in Fig. 11. The anomalous attraction between
Cooper pairs and extra fermions is therefore not specific to
the FB point, but it appears as a general feature of multiband
lattices as opposed to linear chains, provided |U | is large
enough.
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FIG. 12. Excess energy vs tunneling rate for different values of
U = 0, −0.25, −0.5, −1, −3, −5 with n↑ = n↓ = 1/3. The dotted
line represents the energy bottom Eref/2 of the lower band. The verti-
cal solid line indicates the flat-band point t = 1/

√
2. The connecting

lines are a guide to the eye.

V. THREE-BODY BOUND STATES

In this section, we consider two spin-up fermions and one
spin-down fermion, obeying the Hamiltonian (28), and we
show that the fermion-pair anomalous attraction can induce
the formation of a three-body bound state in vacuum (see
[54–58] for earlier studies of trimers in 1D fermionic or
bosonic lattice models). The binding energy E trim

b of the trimer
is defined as

E trim
b = −E (2, 1) + E (1, 1) + E (1, 0), (34)

under the assumption that the length L of the chain is infinite.
We calculate the ground-state energy E (2, 1) of the system
numerically, based on the DMRG method, and we extract
E trim

b from Eq. (34). The obtained results for t = 1/
√

2 are
displayed in Fig. 13 as a function of the interaction strength,
confirming the existence of trimers at the FB point. While

FIG. 13. Binding energy of a three-body bound state (trimer) at
the flat-band point t = 1/

√
2 plotted as a function of the modulus

of the interaction strength. The connecting line is a guide to the eye.
The binding energy saturates to a constant C 	 0.531 for |U | = ∞.

FIG. 14. Binding energy of the trimer as a function of the tun-
neling rate t for U = −10. The connecting line is a guide to the eye.
The vertical line represents the flat-band point t = 1/

√
2.

in the strong-coupling regime the pair binding energy can
become arbitrarily large, since Eb ∼ |U |, this is not the case
for trimers. Due to the Pauli exclusion principle, the pair and
the extra fermion are separated by at least one lattice site,
implying that the binding energy of the trimer must saturate
to a constant value. Our DMRG calculations indicate that
E trim

b (U = −∞) ≈ 0.531.
By continuity arguments, we expect that trimers exist for

t �= 1/
√

2 provided |U | is large enough. In Fig. 14 we show
the binding energy of the trimer as a function of the tunneling
rate t for a fixed value of the interaction strength U = −10.
We see that E trim

b is peaked at the FB point, in complete
analogy with the two-body binding energy. Moreover, trimers
break down near the integrable point, t = 0, in agreement with
the Bethe ansatz solution.

Trimers in spin-1/2 fermionic systems arise from a subtle
combination of Hubbard interactions and tunneling processes,
similarly to trions in semiconductors, where the constituent
particles are the exciton (electron-hole pair) and an extra
charge (electron or hole). When two spin-up fermions are on
neighboring sites, the spin-down fermion can decrease its ki-
netic energy by delocalizing between them, without changing
the double occupancy. In the linear chain geometry, this effect
cannot occur because the energy gain due to the delocaliza-
tion of the spin-down fermion is exactly compensated by the
energy cost to approach the two spin-up fermions. Trimers
can nevertheless appear if the spin-up component is heavier
than the spin-down counterpart, that is, if it possesses a larger
effective mass [56,59–62] (see also [63] for an equivalent
result for continuous 1D models). A strong attractive atom-
dimer interaction has indeed been observed experimentally
[64] in Fermi-Fermi mixtures of ultracold atoms with unequal
masses, although in higher (three) dimensions. Our DMRG
results establish that the constraint of unequal masses for
the existence of trimers is no longer necessary in multiband
systems.

We can better understand the formation of trimers starting
from the strong-coupling regime |U | � 1, t . Since the pair is
strongly bound, due to energy conservation it can never break
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in vacuum. We therefore consider a class of three-body states,

eσσ ′†
r =

∑
i

cσ†
i↑ cσ†

i↓ cσ ′†
i+r↑|〉, (35)

describing a pair sitting in the σ sublattice, with the extra
spin-up fermion living in the sublattice σ ′ at a distance r
from the dimer (the symbol |〉 refers to the vacuum state).
Notice that, due to the Pauli exclusion principle, we have
eAA†

0 = eBB†
0 = 0. We write the Hamiltonian (28) as a sum

of two terms, H = Ht + HU , where Ht describes tunneling
processes while HU accounts for the Hubbard interaction.
We note that the states in Eq. (35) are all eigenstates of HU

with eigenvalue U . The variational ground-state energy of
the trimer can then be obtained from degenerate perturbation
theory as E (2, 1) ≈ U + λt , where λt is the lowest eigenvalue
of the following block matrix:

M =

⎛
⎜⎜⎜⎝

eAA
i Ht eAA†

r eAA
i Ht eAB†

r eAA
i Ht eBA†

r eAA
i Ht eBB†

r

eAB
i Ht eAA†

r eAB
i Ht eAB†

r eAB
i Ht eBA†

r eAB
i Ht eBB†

r

eBA
i Ht eAA†

r eBA
i Ht eAB†

r eBA
i Ht eBA†

r eBA
i Ht eBB†

r

eBB
i Ht eAA†

r eBB
i Ht eAB†

r eBB
i Ht eBA†

r eBB
i Ht eBB†

r

⎞
⎟⎟⎟⎠.

(36)
To evaluate M, we need to know how the tunneling Hamil-

tonian acts on a generic state (35). When Ht acts on the
spin-up fermion forming the pair, it produces a state of zero
double occupancy, which is orthogonal to the basis, so these
processes can be neglected. The situation is different when Ht

acts on the spin-down fermion, because the latter could land
on a neighboring site that is already occupied by the second
spin-up fermion. In this case, the pair and the extra fermion
simply exchange their positions. Within the subspace of one
double occupancy, we find

Ht e
AA†
r = eAB†

r + eAB†
r+1,

Ht e
AB†
r = eAA†

r−1 + eAA†
r + teAB†

r−1 + teAB†
r+1

− δr,1eBA†
−1 − δr,0eBA†

0 ,

Ht e
BA†
r = −δr,0eAB†

0 − δr,−1eAB†
1 + eBB†

r + eBB†
r+1,

Ht e
BB†
r = eBA†

r−1 + eBA†
r + teBB†

r−1 + teBB†
r+1

− tδr,1eBB†
−1 − tδr,−1eBB†

1 . (37)

The terms on the right-hand side of Eqs. (37) with a neg-
ative sign originate from the exchange processes between
the pair and the extra spin-up fermion, which can only oc-
cur if r = 0 or ±1. For instance, the first negative term in
the third line of Eqs. (37) comes from

∑
j cB†

j+1↓cA
j↓eAB†

r =∑
i cA†

i↓ cB†
i+1↓cB†

i+r↑|〉 = −δr,1eBA†
−1 .

By using Eqs. (37), it is now straightforward to evaluate
all the entries of M. Notice that many blocks are actually
null matrices; for instance, in the first row of Eq. (36) only
one block (the second) is nonzero. We diagonalize the ma-
trix (36) numerically after introducing a cutoff integer N for
the relative distance between the pair and the extra spin-up
fermion, thus limiting the size of each block according to
|i|, |r| � N . For a given N , M is a square matrix of dimension
8N + 2. We extract its lowest eigenvalue by choosing N large
enough to ensure full convergence and extract the binding
energy from Eq. (34). The obtained results as a function of

FIG. 15. Binding energy of the trimer as a function of the tunnel-
ing rate t . The solid line is the prediction of the variational approach
for infinite attraction, obtained by diagonalizing the Hamiltonian
over the class of three-body states in Eq. (35). The square symbols
are DMRG results for three different values of t = 1/2, 1/

√
2, 1

and U = −1000. The vertical line represents the flat-band point
t = 1/

√
2.

the tunneling rate are shown in Fig. 15 by the solid line. We
see that our variational approach for U = −∞ reproduces
all the expected features, notably the absence of trimers for
t = 0 and the peak in the three-body binding energy at the
FB point. For t = 1/

√
2 it gives E trim

b ≈ 0.530 87, which is in
very good agreement with the DMRG data for U = −1000
(square symbols). Moving away from the FB point, the vari-
ational approach slightly underestimates the binding energy
of the trimer. A fit to the numerical results for small t reveals
that the binding energy of the trimer, calculated within the
variational approach, vanishes as t2 approaches the integrable
point, t = 0. This result implies that, for infinite attraction,
trimers exist for any nonzero value of t .

Our numerics shows that the convergence of the binding
energy as a function of the cutoff N is particularly fast ap-
proaching the FB point. Indeed using N = 1 yields E trim

b ≈
0.513 17, corresponding to a relative error of only 3%. In this
case, the matrix in Eq. (36) reduces to the 10 × 10 matrix

M =

⎛
⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎝

0 0 1 1 0 0 0 0 0 0
0 0 0 0 1 0 0 0 0 0
1 0 0 t 0 0 0 0 0 0
1 0 t 0 t 0 −1 0 0 0
0 1 0 t 0 −1 0 0 0 0
0 0 0 0 −1 0 0 0 1 0
0 0 0 −1 0 0 0 0 0 1
0 0 0 0 0 0 0 0 0 1
0 0 0 0 0 1 0 0 0 −t
0 0 0 0 0 0 1 1 −t 0

⎞
⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎠

.

(38)
By moving away from the FB point, the value of N needed
to ensure convergence becomes larger and larger, signaling
that the mean distance between the pair and the extra fermion
increases and the binding energy is reduced.
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VI. CONCLUSION AND OUTLOOK

In this work, we have investigated the Fermi-Hubbard
model with attractive interactions on a 1D sawtooth lattice.
From the solution of the two-body problem, we have extracted
the binding energy and the effective mass of the pair, both
analytically and numerically. We have shown that, in a broad
region of t values around the FB point, both quantities are
highly sensitive to weak interactions. In particular, the binding
energy possesses a pronounced maximum in correspondence
with the FB point, t = 1/

√
2, which persists for any U < 0.

From the inverse effective mass of the pair at the FB point,
we have estimated the superfluid weight Ds of the many-body
system, showing that it is in good agreement with the DMRG
calculations of [30].

Our numerical results for fully paired many-body systems
reveal that the proximity to a flat band significantly modifies
the nature of the BCS-BEC crossover. While the chemical
potential remains always pinned near its two-body value, the
pairing gap is strongly depleted at finite density and takes its
maximum value not at the FB point, but at a shifted position
t∗ < 1/

√
2, which depends on the value of the density. We

show that the anomalous pairing in the sawtooth lattice comes
from the fact that the energy change upon adding an extra
spin-up fermion to the system falls below the bottom of the
single-particle spectrum, μ↑ < Eref/2, causing the appearance
of an effective attraction between the pairs in the medium
and the excess fermion. Importantly, we have unveiled that a
spin-down fermion and two spin-up fermions in the sawtooth
lattice can form a three-body bound state, whose binding
energy is also peaked at the FB point and vanishes at the
integrable point, t = 0. Our results establish that trimers exist
in flat-band lattices and they are detrimental to superconduc-
tivity.

It would be interesting to study by exact numerics the be-
havior of the superfluid weight Ds in the sawtooth lattice for a
generic tunneling rate and its relation with the pair inverse ef-
fective mass. Our results show that for finite |U |, the minimum
of 1/m∗

p drifts towards smaller values of t . Another intriguing
direction is to understand whether multiband BCS theory can
correctly predict the anomalous behavior of the pairing gap
observed in our numerics, especially at low density.

The results discussed in this work can be investigated ex-
perimentally with cold atoms in optical lattices. In particular,
a viable scheme to implement the sawtooth lattice has been
recently proposed [41,65]. The interaction strength can be
controlled either directly, via a Feshbach resonance, or indi-
rectly, by varying the tunneling rates t, t ′ and consequently
the ratios t/U and t ′/U . While we have mainly focused on
the sawtooth lattice, we expect that our results will apply also
to other FB systems.

Note added: The existence of trimers in the 1D sawtooth
lattice at the FB point has been confirmed in a very recent
paper [66] by Iskin, reporting a very good agreement with
our DMRG results displayed in Fig. 13. In that work, the
three-body problem is solved numerically by mapping it into
an effective integral equation [54,56], and the presence of
trimers for other values of the tunneling rates has also been
discussed.
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