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Formation and fragmentation of quantum droplets in a quasi-one-dimensional
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We theoretically investigate the droplets formation in a tightly trapped one-dimensional dipolar gas of bosonic
atoms. When the strength of the dipolar interaction becomes sufficiently attractive compared to the contact
one, we show how a solitoniclike density profile evolves into a liquidlike droplet on increasing the number of
particles in the trap. The incipient gas-liquid transition is also signaled by a steep increase of the breathing
mode and a change in sign of the chemical potential. Upon a sudden release of the trap, varying the number of
trapped atoms and the scattering length, the numerical solution of a time-dependent generalized Gross-Pitaevskii
equation shows either an evaporation of the cloud, the formation of a single self-bound droplet, or a fragmentation
in multiple droplets. These results can be probed with lanthanide atoms and help in characterizing the effect of
the dipolar interaction in a quasi-one-dimensional geometry.
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I. INTRODUCTION

The competition of short- and long-range interactions in
condensed matter systems gives rise to a rich variety of phases
ranging from stripes [1,2] or checkerboard phases [3] to a
periodic lattice in two dimensions [4] or to droplet phases
in three, two, and quasi-one dimensions [5]. The advent of
Bose-Einstein condensation of lanthanide atoms [6–8] with
large magnetic moments (like 164Dy or 166Er) has opened the
fascinating perspective of long-range dipolar interactions in
bosonic systems [9]. Recently, self-bound droplets [10,11]
have been unexpectedly observed [12], associated to a ro-
ton minimum of the excitation spectrum [13], leading to the
subsequent realization of dipolar supersolids in cigar-shaped
potentials [14–17]. In fact, it has been shown, both theo-
retically and experimentally, that increasing the harmonic
confinement along the direction of the dipoles, the ground
state of the system passes from a single-droplet to multiple-
droplet phase [12,18]. Quantum droplets have also been very
recently observed in a two-dimensional dipolar gas in the
presence of an isotropic optical dipole trap [19] confirming
the realization of a supersolid phase. Beyond dipolar gases,
droplets have also been observed in attractive bosonic mix-
tures [20,21]. In these systems, spherical droplets form due
to the balance (at the mean-field level) close to the collapse
threshold of competing attractive and repulsive forces, making
first-order Lee-Huang-Yang correction due to quantum fluctu-
ations relevant [22].

When dimensionality is reduced, quantum fluctuations are
enhanced and compete with interactions to determine the

nature of the ground state and excitations. To study the
interplay between the effective one-dimensional dipolar inter-
action in a tight transverse harmonic potential, and quantum
fluctuations due to reduced dimensionality, we combine a
variational approximation of the ground-state energy [23] of
a uniform dipolar gas with generalized Gross-Pitaevskii equa-
tion (GGPE).

It has been previously shown that, in the case of attrac-
tive dipolar interaction, an instability appears in at a critical
density: a deep minimum and the steep enhancement of the
breathing mode were signals of an incipient instability [24].
The nature of this instability is here analyzed by looking at
the evolution of both the chemical potential and the density
near the center of the trap. It is found that the density profile
evolves from a solitonlike shape [11] into a droplet with a
flat-top shape when the chemical potential turns from posi-
tive to negative values at increasing atom number. Varying
the interaction strength, the solitonlike and droplet regimes
can be smoothly connected. We numerically determine their
density profile for a broad range of atom numbers and inter-
action strengths, and map out the boundary of the region that
separates solitonlike density profile from quantum droplets.
Beyond statics, the time evolution of the droplet when the trap
is suddenly released is analyzed. The droplet can either remain
in a self-bound state with slight oscillations in time, or frag-
ment for a sufficiently high number of particles. Generally,
the fragmentation of a droplet takes place when density oscil-
lations establish at its edge and amplify until they break the
droplet. The fragmentation process can be understood using a
Euler-type equation, showing that under the effect of negative
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compressibility, low density regions get depleted of atoms to
the benefit of high density regions, leading to a final state
formed of dense stable clouds separated by the vacuum. Our
analysis shows that even when the long-range tail of dipolar
attraction stabilizes a quantum droplet, the excess density at
the center resulting from longitudinal confinement can result
in fragmentation upon a sudden release of the trap.

The paper is organized as follows: In Sec. II we give
the model and derive the generalized Gross-Pitaevski equa-
tion (GGPE); in Sec. III we discuss the formation of the
droplets when the dipolar interaction is attractive by following
the evolution of the chemical potential and density profile
for increasing number of particles; in Sec. IV, using a time-
dependent version of the GGPE, we follow the evolution of
the droplet after a sudden release of the trap, showing a pe-
culiar fragmentation upon increasing the number of particles
N . At varying the contact interaction and N , we follow the
evolution from self-bound droplets to fragmented ones and
derive a phase diagram. In Sec. V, we discuss the breathing
mode frequency as a marker of droplet formation. Finally, we
draw our conclusions in Sec. VI.

II. THE MODEL AND THE GENERALIZED
GROSS-PITAEVSKII EQUATION

We consider a system of dipolar bosons in highly elongated
traps, i.e., with a transverse confining harmonic oscillator
frequency ω⊥ sufficiently large compared with the longitu-
dinal trapping frequency ωho that it is possible to resort to
the so-called single-mode approximation [25,26] (SMA). The
transverse degrees of freedom remain in their ground state,
and the effective Hamiltonian for the atomic motion in the
longitudinal direction z reads as

H1D − h̄2

2m

∑
i

∂2

∂z2
j

+ g1D

∑
i< j

δ(zi − z j )

+
∑

i

Vext (zi ) +
∑
i< j

VQ1D(zi − z j ), (1)

where m is the mass particle, Vext (z) = 1
2 mω2

hoz2 is the po-
tential energy of the parabolic trap along the longitudinal z
direction, ωho is the trapping frequency giving the trapping
length aho = (h̄/mωho)1/2, g1D is the contact interaction com-
ing from van der Waals or other short-ranged interactions.
Within the SMA the effective 1D dipole-dipole interaction
VQ1D(z) [25] is

VQ1D(z/l⊥) = V (θ )

[
V 1D

DDI

(
z

l⊥

)
− 8

3
δ

(
z

l⊥

)]
, (2)

where

V (θ ) = μ0μ
2
D

4π

1 − 3 cos2 θ

4l3
⊥

(3)

encapsulates the sign and the effective strength of the inter-
action driven by the vacuum magnetic permeability μ0, the
magnetic dipolar moment μD of the given atomic species,
θ the angle between the dipoles’ orientation and the lon-
gitudinal z axis, and the transverse oscillator length l⊥ =√

h̄/(mω⊥). In the 162Dy case relevant to current experiments

[27], μD = 9.93μB [28]. The dimensionless form of effective
one-dimensional (1D) dipolar potential V 1D

DDI is

V 1D
DDI

(
z

l⊥

)
= −2

∣∣∣∣ z

l⊥

∣∣∣∣ +
√

2π

[
1 +

(
z

l⊥

)2]
,

e
z2

2l2⊥ erfc

[∣∣∣∣ z√
2l⊥

∣∣∣∣
]
. (4)

This potential remains finite at z → 0 and decays as |z|−3

at long distances, so that its Fourier transform is finite. So,
in contrast with the three-dimensional case [29], in one di-
mension, dipolar interactions in the presence of transverse
trapping behave as short-range interaction and renormalize
[28] the contact interaction term. As a consequence, a Lieb-
Liniger ground-state wave function [23] can be used as trial
function in a variational ansatz to calculate the ground state
energy per unit length. In the variational ansatz [23], the
strength g∗ of the contact interaction is used as the variational
parameter in the Lieb-Liniger ground-state wave function and
one tries to minimize the variational energy

Evar (g
∗) = E0(g∗) − (g∗ − g1D)

∂E0(g∗)

∂g∗

+ 〈ψ0(g∗)|V|ψ0(g∗)〉, (5)

where E0(g∗) is the ground-state energy [30–32] of the Lieb-
Liniger gas with interaction strength g∗, 〈ψ0(g∗)|V|ψ0(g∗)〉
the expectation value of the dipolar potential energy, and
(g∗ − g1D) ∂E0(g∗ )

∂g∗ is the difference in contact energy between
the variational Hamiltonian and the exact Hamiltonian. At a
given density and contact interaction, the variational ansatz
yields an energy par unit length for the dipolar gas of the form

e(n) = h̄2

2m
n3ε(n), (6)

where the dimensionless ε(n) is obtained by the variational
calculation [23] of the ground-state energy. Along the lines
of Ref. [24], we study the dipolar Bose gas in a trap using a
generalized Gross-Pitaevskii theory [33–35], in which we re-
place the mean-field potential energy of the gas in the standard
Gross-Pitaevskii equation by the approximate energy density
of the uniform quasi-one-dimensional dipolar gas given by
Eq. (6). Such approximation is analogous in spirit to the ones
used in Refs. [36–40] to treat the Lieb-Liniger gas. We expect
it to be accurate when the variation of the Gross-Pitaevskii
order parameter is sufficiently slow in space and time. Our
approximation to the Gross-Pitaevskii energy functional then
reads as

FGP =
∫

dz

[
h̄2

2m
∇φ∇φ∗ + [Vext (z) − μ]|φ|2 + e(|φ|2)

]
,

(7)

yielding the equation of motion [38,40] for φ(z, τ ), ih̄∂τφ =
δFGP/δφ

∗, i.e.,

ih̄∂τφ =
[

− h̄2∇2

2m
+ [Vext (z) − μ] + 1

φ

δe(|φ|2)

δφ∗

]
φ, (8)

with the wave function normalized to the number N of
atoms in the trap, N = ∫

dz|φ(z)|2. At zero temperature the
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condensate is well described by a mean-field order param-
eter, or “wave function”, φ(z, τ ) and this defines an atomic
density distribution via n(z, τ ) = |φ(z, τ )|2. Static solutions
satisfy the time-independent Gross-Pitaevskii equation (8)
with ∂τφ = 0. For the sake of definiteness, we will focus
our analysis on the case θ = 0 where the attractive dipolar
interaction is the strongest. As is customary [41], we will use
the scattering length

a1D = − 2h̄2

mg1D
(9)

to measure the strength of the repulsive contact interaction
that stabilizes the dipolar gas against collapse. We choose the
dipolar length ad = μ0μ

2
Dm/(8π h̄2) = 195a0, l⊥ = 57.3 nm,

and aho = 24000a0, to make contact with recent experimental
works, where a0 is the Bohr radius.

III. PHASE DIAGRAM OF THE QUASI-1D DIPOLAR GAS

By reducing the strength of the repulsive short-range
contact interaction, using for instance Feshbach resonances
[42,43], the attractive dipolar interaction becomes predom-
inant and enables droplet formation since the long-range
attractive part of the interparticle potential binds the parti-
cles while collapse is still prevented by the repulsive core
[24,38,44].

Within the variational Bethe ansatz, for the the 162Dy with
l⊥ = 57.3 nm we find that for |a1D/a0| > 6000, the equa-
tion of state develops a very shallow minimum for extremely
low density and then, at larger density, a deep one whose depth
increases with |a1D| [23]. Yet, in order to have a self-bound
stable liquid droplet, we need both the total energy of the sys-
tem and the chemical potential μ to be negative to prevent the
system from evaporating in absence of trap. The liquid density
is fixed by the relation for pressure P = −e(n) + nμ = 0, and
dP/dn should be positive to ensure the stability with respect
to excitations. When this situation is realized, a Maxwell
construction can be applied to determine the transition to
a liquid droplet (see Appendix A). The fulfillment of these
conditions depends on the number of particles in the trap and
the scattering length.

We can construct a phase diagram based on the sign of the
chemical potential as shown in Fig. 1, whose phases we will
be detailed in the following.

We start by considering the region with a small number of
particles in the trap(6 < N < 10, a1D/a0 � −6250). In this
region, roughly sketched by the blue dashed area in Fig. 1, the
density profile is well described by solitonic sech shape. In
Fig. 2 for a1D = −6500a0 we show density profiles for several
number of particles and the agreement with the sech shape
profile f (x) = a/[ex/lz + e−x/lz ]2 where lz is the height. De-
spite the profile density closely resembles the solitonic one,
this cannot be considered a true bright soliton since, within
this approximation, the chemical potential is found to be posi-
tive [45]. Moreover, the sech-profile form ceases to be a good
approximation as soon as the chemical potential becomes
negative, which occurs at N 	 20 (see Fig. 2). Let us note
that usually a bright soliton in a BEC is a solution of GP
equation with attractive interaction existing even in absence
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-a1D/a0

µ < 0

FIG. 1. Phase diagram for the one-dimensional dipolar boson gas
at θ = 0 as a function of number of particles in trap and scattering
length. In the blue dashed region, the chemical potential is positive,
and density profiles take a “solitonlike” shape. After releasing the
trap, the condensate evaporates. In the violet region, the chemical
potential is negative and droplets form in the ground state and they
are stable even when the trap is released. Above the violet region,
droplets are still present in the ground state, but upon release of
trapping, they fragment into smaller droplets.

of a trap [46,47] while in our case it is the density profile in
the trap that has a solitonlike shape.

When μ has become negative the density profile departs
from the solitonic shape and slowly approaches the flat-top
shape of a droplet. In Fig. 3(a) we show density profiles for
a1D/a0 = −7500 where we can follow the formation of the
flat-top region at the center of the trap, together with two
density profiles at large N where the chemical potential is
again positive for larger number of particles. In Fig. 3(b)
we show density profiles for the same number of particles
yet in the absence of the the trapping potential showing the
typical droplet shape profiles with the flat top at the center.
We note that a quantum Monte Carlo study of a model with
N = 400 bosons with dipolar attraction and Lennard-Jones
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FIG. 2. Density profiles for (top to bottom) N = 20, 10, 8, and
6 are shown as solid red curves. Dashed black lines are fits to data
using the sech shape profile f (x) = a/[ex/lz + e−x/lz ]2. The quality of
the fit degrades when the number of particles in the trap is increased.
The values of the fitting parameter lz(aho) together with total chemi-
cal potential μ for each number of particles are shown in the legend.
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FIG. 3. Density profile for the system in the trap are shown in
(a) solid red lines for N for which μ < 0 (N = 20, 100, 200, 300,
and 400) and black ones for N = 1000 and 2000 for which μ > 0
at a1D/a0 = −7500. In (b) we show density profiles for the same
number of particle in the absence of confining potential.

repulsion [48] finds freestanding one-dimensional droplets for
weak enough repulsion.

The occurrence of a positive chemical potential for large
number of particles turns out to be an effect of the trapping
potential; indeed, in the absence of confinement, the chemical
potential is negative and the system shows the typical density
profiles of a droplet. The equilibrium density is reached when
the pressure is zero, and when we increase the number of
particles the size of the droplet increases in order to keep the
density at the equilibrium value [see Fig. 3(b)]. We assess the
effect of the trapping potential by looking at the scaling of
the density at center of the trap and of the chemical potential
as a function of the strength α(ω2

ho) of the confining potential
αVext (z) (see Fig. 4).

FIG. 4. (a) Density at the center of the trap for atom numbers
N = 100, 200, 300, 400, and 500 (bottom to top) as a function of
α(ω2

ho), the strength of the confining potential. In (b) the chemical
potential is shown for the same numbers of atoms as a function of
α(ω2

ho).
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FIG. 5. Density profile when the trap is suddenly released for
N = 600 and |a1D/a0| = 8000 as a function of time. The solid blue
line shows the density oscillation at the center of the trap. The solid
red lines show the density profile soon after the release of the trap
and for the final observation.

IV. FREE EXPANSION AND FRAGMENTATION
OF DROPLETS

For the repulsive Lieb-Liniger gas the sudden removal of
the trapping potential undermines the stability of the conden-
sate cloud that simply evaporates. However, in the presence
of an attractive potential such as the dipolar interaction, the
dynamics of the free expansion of the cloud is more varied de-
pending of the number of particles in the trap and the strength
of their interaction. To study this nonequilibrium problem, we
have used a real-time version of the GGPE equation (8), with
initial condition the ground-state wave function in the trap.
The latter was obtained using the imaginary-time program to
overcome the lesser accuracy of the real-time program [49].

As expected, below a critical number of atoms, in
the region where μ > 0 (blue shaded region in Fig. 1),
once the confining trap is removed, the cloud simply evapo-
rates: the minimum developed in the ground-state energy is
not sufficiently deep to sustain a self-bound state.

When increasing the number of particles in the trap, the
chemical potential μ becomes negative and the density profile
tends to the flat-top droplet shape [see the violet region in
Fig. 1 and the red solid lines in of Fig. 3(b)]. Well inside
the violet region of Fig. 1, where the system is already in flat
droplet shape and the effect of the trap on the density profile
is negligible, removing the trap essentially does not alter the
droplet profile as shown in Fig. 5.

If we move towards the upper boundary in the phase di-
agram (Fig. 1), either by increasing the number of particles
at fixed scattering length or by reducing scattering length
modulus at fixed number of particles, the sudden removal of
the trap leads to an oscillation of the density profile around
the equilibrium droplet shape that preserves the single droplet
aspect. A typical situation is shown in Fig. 6 where we show
the density profile evolution as a function of time.

Further increasing the number of the particles in the trap,
the chemical potential becomes positive and the sudden re-
lease of the trap leads to the fragmentation of the cloud (see
Figs. 7 and 8) into droplet or soliton-shaped fragments. In
Fig. 7 we follow the time evolution of the densities profile,

014503-4



FORMATION AND FRAGMENTATION OF QUANTUM … PHYSICAL REVIEW B 106, 014503 (2022)

0 0.5 1 1.5 2 2.5 3 3.5 4
-4

-2
0

2
4

0

20

40

60

80

t/ ho

x/a0

n
(µ

m
-1

)

FIG. 6. Density profile after a sudden release of the trap for N =
300 and |a1D/a0| = 7000 as a function of time. The system oscillates
between a regular droplet shape (solid red line) and another one that
shows a depression of the density at the center of the profile (red
dashed lines). The solid blue line shows the oscillation at the center
of the trap.

after the trap has been switched off, for increasing particle
numbers, namely, N = 220, 240, 260, and 280 at a1D/a0 =
−6500. The oscillations previously observed (see Fig. 6) be-
come so deep to eventually break the condensate cloud. In
Fig. 8, instead, we follow the evolution of the cloud for the
case a1D/aho = −6500 and N = 300, a situation in which the
chemical potential of the system is positive and the density in
the trap (see blue solid line) shows a buildup of particles in
the center induced by the confining potential. Once the trap
is released, the potential energy of these particles converts
into kinetic energy, they accumulate at the edges of the cloud,
and hence form two outer and inner droplets that steadily
move away from the center of the cloud with a constant
velocity that solely depends on the initial condition. At the
center of the trap remains a peak that slowly melts down
as its particles escape into the droplets. We can follow the
migration of particles from the center of the cloud to the two
side droplets in the inset of Fig. 8 where we plot the num-
ber of particles N (x) = ∫ x

−∞ dx′n(x′) at the left of position
x. The outer droplets contain each roughly 	 106 particles,
while the inner ones only N 	 35, their shape being the one
of the systems in the absence of a trap for that number of

FIG. 7. Density profile as a function of time after a sudden
release of the trap for a1D/a0 = −6500 varying the number of parti-
cles: N = 220, 240, 260, and 280 in (a)–(d), respectively.
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FIG. 8. In the main panel we show the density profile as a func-
tion of time after the the trap is suddenly released for a1D/a0 =
−6500 for N = 300. The blue solid line shows the density profile
for t = 0. The inset provides the quantity N (x) = ∫

dx n(x) using
the same color code of the main panel.

particles, while the central peak progressively is melting
down.

Physically, at the initial time the system possesses an ex-
cess of potential energy that gets converted into kinetic energy
of the particles expelled from the center to form the side
droplets moving at constant velocity, as we will show below
by using time-dependent GGPE equation.

A. Fragmentation of the droplet within
the time-dependent GGPE

In classical physics the fragmentation of a droplet takes
place because density oscillations establish at the interface be-
tween the liquid and the gas. These can be amplified until they
break the droplet. In this process the superficial forces, due to
superficial tension, and the inertial forces, due to the relative
velocity between the two phases, give rise to the oscillations.
Depending on the geometry of the system and the proper-
ties of the liquid, some oscillations can propagate amplifying
while others can attenuate due to dissipative effects. Those
that amplify are causing the fragmentation of the droplet. In
our quantum case, we can describe the fragmentation of the
droplet within the time-dependent GGPE.

Using density and phase variables, φ(x, t ) =√
n(x, t )eiψ (x,t ), we can rewrite the time-dependent GGPE in

the form

∂tψ + (∂xψ )2

2m
+ e′(n) + V (x)θ (−t ) − 1

2m
√

n
∂2

x (
√

n) = 0,

∂t n + ∂x(n∂xψ )

m
= 0. (10)

For t < 0, we have the static solution with ∂t n = 0 and
∂tψ = −μ. For t > 0, the trapping potential is removed. For
t = 0, both ρ and ψ are continuous, therefore, the initial con-
ditions are ∂t n(x, 0+) = 0 and ∂tψ (x, 0+) = V (x) − μ. After
a short time interval t , ∂xψ = t∂xV (x), indicating that
particles are ejected away from the center of the trap with a
velocity gradient. Differentiating Eq. (10) with respect to x
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FIG. 9. Illustration of the instability when e′′(ρ ) < 0. (a) With a
minimum of the density, the particles are pushed away from the min-
imum by the pressure, deepening the minimum with time. (b) With a
maximum of the density, the particles are attracted to the maximum,
heightening it with time.

leads to the Euler equation with a quantum pressure term

∂tv + v∂xv + e′′(n)∂xn − ∂x

[
1

2m
√

n
∂2

x (
√

n)

]
= 0, (11)

with v = ∂xψ/m. Let us consider values of n(x, t ) such that
e′′(n) < 0. If we neglect the quantum pressure term, Eq. (11)
implies that the acceleration ∂tv + v∂xv has the sign of ∂xn.
Therefore (see Fig. 9), the atoms are pushed away from low
density regions and attracted towards high density regions,
leading to instability of atomic densities with e′′(n(x, t )) < 0.
For long enough times, we expect to have only regions where
n(x, t ) = 0 or regions with n(x, t ) large enough to ensure
e′′(n) > 0. This picture is obtained neglecting completely
quantum pressure, an approximation that is justified if the den-
sity is sufficiently uniform. Clearly, at the boundary between
zero density and stable density regions, the quantum pressure
becomes important and ensures a continuous transition be-
tween zero and stable density, as explained in Appendix B. A
more precise picture of the effect of quantum pressure can be
given at initial times. Linearizing Eqs. (10) around the initial
equilibrium state, and combining them into a single equation,
we obtain

∂2
t ψ −

[
e′′(n0)

m

∂n0

∂x
− ∂2

x (ln n0)

4m2

]
∂xψ

−
[

n0e′′(n0)

m
− ∂2

x (
√

n0)

m2√n0

]
∂2

x ψ

+ ∂xn0

2m2n0
∂3

x ψ + ∂4
x ψ

4m2
= 0. (12)

For long-wavelength excitations, we can neglect ∂3
x ψ, ∂4

x ψ

in Eq. (12). The resulting second-order partial differential
equation is elliptic [50] when

n0e′′(n0) <
∂2

x (
√

n0)

m
√

n0
, (13)

and, in such case, disturbances are growing exponentially with
time. Using the equilibrium GGPE, the instability condition
(13) reduces to n0e′′(n0) − 2e′(n0) + μ − 2V (x) < 0. Since
V (x) is maximal and the initial density n0 is lowest near the
edges, an instability is favored there. This leads us to expect
at long times the formation of droplets as the condensate ex-
pands. In the simplest case of very shallow trapping, the final

state can be a single droplet. With a deeper trap, the density
near the edges of the trap is low, while the initial acceleration
is strong, a situation that favors the breakup of the condensate
in multiple droplets at long times. The asymptotic form of
the solution can be described as follows. A droplet mov-
ing at uniform velocity is described by a solution φ(x, t ) =
φ0(x − vt )eimvx−m v2t

2 −μ̄t , where φ0 satisfies the static GGPE
with effective chemical potential e(n1)/n1 < μ̄ < 0. The final
state is made of such moving droplets of increasing velocities
as one moves away from the origin. This guarantees that the
separation of the droplets increases with time as observed in
Fig. 7. The ansatz for the final state is thus

φ(x, t ) =
∑

j

φ(x − v jt − x j, μ̄ j )e
imv j t−

mv2
j

2 t−μ̄ j t . (14)

Since in one dimension dipolar interactions between droplets
of finite width fall off as the inverse of the cube of their dis-
tance, the potential energy between droplets falls off as 1/t3,
becoming negligible in the final state. Particle number, mo-
mentum, and energy conservation then give some constraints
on the final state. The energy of the final state is the sum
of energies at rest and kinetic energies of the droplets. With
two droplets moving at velocities v and −v with N/2 particles
each,

Einitial = 2Edroplet (N/2) + N

2
mv2, (15)

allowing us to find the final velocity of the droplets.

V. BREATHING MODE APPROACHING
THE GAS-LIQUID TRANSITION

We can see the incoming gas-liquid transition that leads
to the formation of the droplets by looking at the breathing
mode:

ω2
b = −2

〈
N∑

i=1

z2
i

〉[
∂
〈∑N

i=1 z2
i

〉
∂ω2

ho

]−1

(16)

that strongly departs from the effective Lieb-Liniger behav-
ior [24] in close agreement with the the recent experiments
[27]. Approaching an incompressible liquid is signaled by the
increase of the breathing mode frequency.

In Fig. 10 we show the breathing mode frequency, com-
puted along the lines of Ref. [24] as a function of the particle
number N inside the trap for two selected coupling strengths:
a1D = −1000a0 and −6500a0, respectively, in Figs. 10(a) and
10(b). When the strength of the dipolar component is small
compared to the contact interaction one, so that, despite its
different sign, the system follows the Lieb-Liniger physics
once we have “renormalized” the contact strength [24] with
an effective strength that takes care of the short-range dipolar

interaction. The breathing mode ω2
B

ω2
ho

is indeed a monotonic

function bounded between 4 (the low density limit) and 3,
the chemical potential is always positive [Fig. 10(a)] and the
condensate needs the external confinement to form a cloud.

This behavior changes when the role of the attractive dipo-
lar interaction becomes predominant and a minimum occurs
in the equation of state whose depth gets larger on increasing
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FIG. 10. Breathing mode frequency (solid black dots) is shown
for the case θ = 0 as function of the number of particles in the trap
for fixed a1D/a0 = −1000 and −6500 in (a) and (b), respectively. In
(b) the breathing mode frequency has been reduced by a factor 1

5 . In
the gray shaded area of (a) the chemical potential of the system is
negative.

|a1D|. When the number of particles in the trap is small, the
chemical potential is positive and breathing mode decreases
on increasing N , as the in the “renormalized” Lieb-Liniger
behavior. On increasing the number of particles the chemical
potential becomes negative followed by a steep increase of
the breathing mode frequency as a function of the number of
particles in the trap. The values in this region largely above
the Lieb-Liniger upper bound and eventually diverge for very
large |a1D|, denoting the increasing rigidity of the system.

VI. DISCUSSION AND CONCLUSIONS

In conclusion, we have studied the droplets formation
and fragmentation in a trapped quasi-one-dimensional dipo-
lar Bose gas. This system is described within an effective
Lieb-Liniger gas model whose ground-state energy is deter-
mined by a variational Bethe-ansatz approach. In the case of
attractive dipolar interaction (θ = 0) we have shown, using
a generalized Gross-Pitaevski equation, that the instability in
the system at increasing the scattering length is associated
with the formation of a droplet. The transition is signaled
by the sign change of the chemical potential, as well as the
appearance of a sufficiently deep minimum in the bulk en-
ergy as a function of density. On increasing the number of
particles the density profile shows a solitonlike shape, typical
of a trapped Lieb-Liniger gas, that becomes a flat top when
the droplet is formed. The scaling of the density at the cen-
ter of the trap at increasing number of particles is another
indicator of the droplet phase. The density does not scale
with number of particles N deep in the droplet phase, and
scales linearly with N away from it. Analogous results were
obtained in Ref. [51] with hard-core bosons and in Ref. [38],
with Lieb-Liniger bosons when the dipolar attraction was
added to as a perturbation the generalized Gross-Pitaevskii
equation [36,40]. Using a more accurate expression, we have
confirmed the presence of solitons and droplets stabilized by
dipolar attraction. Furthermore, we have also analyzed the

evolution of the droplet after a sudden release of the trap,
by using a real-time-dependent version of the GGPE. The
evolution of the droplet shows a rich scenario depending on
the number of particles and the scattering length. At higher
scattering length |a1D| the droplet remains self-bound oscil-
lating around the center of the trap or undergoes a blocking
phenomenon at even larger scattering length. For intermediate
values of the scattering length, and few hundreds of particles,
the droplet fragments and the density passes from the center of
the trap towards the edges of the trap where two droplets are
formed. Finally, for very low scattering length the droplet sim-
ply melts at longer times. The fragmentation of a droplet after
a sudden trap release is a phenomenon that could be observed
in lanthanide atoms for trapped in quasi-one-dimensional
geometry.

The experimental system currently under investigation is
made of an array of decoupled tubes [27,28], each containing
a certain number of particles Ni, where the tubes with the
largest number of particles are at the center while the outer
tubes contain a smaller number of particles. Since the gas-
liquid transition depends on the number of particles in the
tube, at fixed scattering length, in principle one can perform
the following cycle: First, switch off the longitudinal trapping
and let the clouds expand in 1D. The condensates in tubes
where Ni is small will melt and fragment in tubes where Ni

is too large, while in some tubes there could be just enough
particles to form a single self-bound state. In such a situation,
the clouds with inadequate Ni evaporate or fragment, while
the ones forming droplets stay in place. Then if the system
is confined again, the atoms in the self-bound states and a
fraction of atoms in the tubes with condensate fragmentation
will remain. After a few cycles, only the self-bound droplets at
lower temperatures would remain. Let us finally stress that our
results have been obtained in the case of very tight transverse
trapping so that the single-mode approximation is applicable.
In the case of a less tight transverse trapping, some energy
could be gained by allowing the transverse wave function to
be more spread out than in the SMA approximation. Such an
effect could be especially important in the case of a tighter
longitudinal trapping that gives rise to an excess density
compared with the regular droplet. The investigation using a
more general variational ansatz taking into account allowing
variation of the transverse width of the trapped gas [52,53] is
underway.
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APPENDIX A: MAXWELL CONSTRUCTION

Let us consider a system whose ground-state energy per
unit length e0(n) has a local maximum at n = 0, a sin-
gle minimum at n = n∗ > 0, and grows to infinity with n.
These conditions imply that d2e0

dn2 changes sign at n = ni with

0 < ni < n∗. For 0 < n < ni,
d2e0

dn2
i

< 0, so the system has a
negative compressibility and becomes unstable against phase
separation. The stable ground state of a system of length L,
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at a nominal density n = N/L, is formed of a stable region
of length x, with a density of atoms n1 > ni, that we call the
droplet, surrounded by a vacuum of size L − x. The conserva-
tion of atom number yields N = nL = n1x, i.e., x/L = n/n1.
The actual ground-state energy is

E (n, n1) = e0(n1)x + e0(0)(L − x), (A1)

giving a ground-state energy per unit length

e(n, n1) = e0(n1)n/n1 + e0(0)(1 − n/n1). (A2)

The density n1 is obtained by minimizing energy e(n, n1) at
fixed n, giving

de0

dn1
= e0(n1) − e0(0)

n1
. (A3)

Geometrically, e(n, n1) represents a line segment of the secant
to the graph of e0(n) joining the points n = 0 and n1, and
Eq. (A3) indicates that we minimize the energy by choosing
the tangent to the curve e0(0) that goes through the origin [54].
This guarantees that the function e(n) is less than e0(n) for
0 < n < n1. To summarize, the Maxwell construction shows
that with n1 determined by (A3), for n < n1 our system will
form a droplet of density n1 and size x = Ln/n1 with ground-
state energy given by Eq. (A2). For densities greater than
n1 the homogeneous system is stable. So concluding, n1 is
the smallest possible ground-state density for a homogeneous
system.

Now, instead of considering a fixed number of particles, let
us consider a fixed chemical potential. We work with the pres-
sure [54] p = e0(n) − μn. According to the previous results,
with μ � e(n1)/n1 the ground-state energy is minimal when
n = 0. With μ > e(n1)/n1, the minimum of the ground-state
energy energy is for n > n1. Therefore, at μ = e(n1)/n1, the
density jumps from n = 0 to n1. Graphically, n1 is determined
from ∫ n1

0
dn

(
de0

dn
− μ

)
= 0 (A4)

i.e., the area delimited by 0 < n < n1 between the graph of
de0/dn and the straight line de0/dn = μ is algebraically zero
[54]. The pressure p is vanishing for 0 < n < n1, that is in the
entire droplet phase. The gas-liquid transition can be followed
looking at the chemical potential as a function of the particle
density as shown in Fig. 11, where μ(n) is shown for three se-
lected scattering lengths: namely, a1D/a0 = −6000, −6200,
and −6500. At a1D/a0 = −6000 there is the hint of the min-
imum that forms at large density as it will occur at larger
|a1D/a0|.

If we take a system in the canonical ensemble in the pres-
ence of a potential V (x), the situation is analogous to the case
of the grand canonical ensemble. To find the particle density,
we must minimize∫

dx[ε(n(x)) + n(x)V (x)], (A5)

where ε(x) = e(0)[1 − n(x)/n1] + e(n1)n(x)/n1 when
n(x) � n1 and ε(n(x)) = e0(n(x)) when n(x) � n1. This
yields the condition

de0

dn
= −V (x), (A6)

-4

-3

-2

-1

0

1

2

3

4

0 4 8 12

a1D/a0=-6000

a1D/a0=-6200

a1D/a0=-6500

µ

n(µm-1)

FIG. 11. Chemical potential from the equation of state com-
puted using the variational Bethe ansatz for three different scattering
lengths: namely, a1D/aho = −6000, −6200, and −6500 from top to
bottom. The Maxwell construction, in which the two green-shaded
areas are equal, only applies in the a1D/aho = −6200 case among the
ones shown.

when n(x) > n1 and

e0(n1) − e0(0)

n1
= −V (x) (A7)

if n(x) < n1. While the first condition (A6) can be satisfied by
varying the density n(x), the second condition (A7) cannot.
Physically, this indicates that the system separates into regions
with density n(x) � n1 with a local density determined by the
applied external potential, and vacuum regions. Equation (A7)
defines the boundaries between these regions.

APPENDIX B: GENERALIZED GROSS-
PITAEVSKII EQUATION

Within the Maxwell construction, we have completely ne-
glected surface tension effects, and allowed for discontinuity
of the density in the presence of an external potential. Now, we
return to the generalized Gross-Pitaevskii equation (7) assum-
ing that e(|φ|2) satisfies the condition for droplet formation of
the Maxwell construction.

From our previous considerations on the grand canonical
case, we expect that the densities n = 0 and n1 can coexist
when the chemical potential is

μ = e(n1)

n1
=

(
de

dn

)
n=n1

. (B1)

To simplify the calculations, we set e(0) = 0. Minimizing
FGP, we find

δFGP

δφ∗(x)
= − h̄2

2m

d2φ

dx2
+ [e′(|φ|2) − e′(n1)]φ = 0, (B2)

that is integrated into

− h̄2

2m

(
dφ

dx

)2

+ e(φ2) − e′(n1)φ2 = C. (B3)

For x → −∞, φ → 0 and dφ/dx → 0, implying C = 0. That
condition also permits φ2(x → +∞) = n1. By the arguments
of Appendix A, for 0 � φ2 � n1, e(φ2) − e′(n1)φ2 � 0, and
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we rewrite (B3) as∫ φ(x)

0

dφ√
2m
h̄2

[
e(φ2) − e(n1 )

n1
φ2

] = ±(x − x0). (B4)

Equation (B4) describes a soliton interpolating between φ = 0
at −∞ and φ = √

n1 at +∞. The sudden jump of the density
given by the Maxwell construction is replaced by transition
region whose width is controlled by quantum fluctuations. In
the vicinity of φ = 0,

φ(x → −∞) ∼ exp

[√
2m

(−e(n1 )
n1

)
h̄

(x − x0)

]
, (B5)

while, for φ2 close to n1, e(φ2) − e(n1)φ2/n1 = e′′(n1)(φ2 −
n1)2 + o(φ2 − n1), leading to

φ(x → +∞) = √
n1 tanh

[√
me′′(n1)n1

h̄
(x − x0)

]
. (B6)

The energy associated with the formation of the soliton is

Es =
√

2h̄2

m

∫ √
n1

0

√
e(φ2) − e(n1)

n1
φ2, (B7)

it is finite, due to the exponential decay at ±∞, and represents
the surface tension between the vacuum and the droplet. When
0 > μ > e′(n1), the profile is given by the equation∫

dφ√
2m
h̄2 [e(φ2) − μφ2]

= (x − x0). (B8)

The amplitude φ(x) first increases as

φ(x → −∞) = exp

[
2m|μ|

h̄
(x − x0)

]
, (B9)

until it reaches a maximum for φ(x) = φc with e(φ2
c ) = μφ2

c ,
then it decreases and returns to φ = 0.

For φ close to φc, we can approximate

h̄√
2m

[
μ − e′

0

(
φ2

c

)]
∫

dφ√
φ2

c − φ2
= ±(x − x0), (B10)

and find

φ(x) = φc cos

(√
2m

[
μ − e′(φ2

c

)]
h̄

(x − x0)

)
. (B11)

When e(φ2
c )/φ2

c − e′(φ2
c ) is a small quantity, φ varies slowly

in the vicinity of its maximum, giving rise to a near plateau
of the density. This corresponds precisely to a droplet of finite
length. When the size of the droplet is large, it can be treated
as a soliton and an antisoliton weakly bound together, with a
binding energy decreasing exponentially with the width of the
droplet. With larger values of e(φc)2/φ2

c − e′
0(ψ2

c ), instead of
a plateau, a density peak is obtained.
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