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Chiral superconductivity in UTe2 via emergent C4 symmetry and spin-orbit coupling
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A lot of attention has been drawn to superconductivity in UTe2, with suggestions of time-reversal symmetry-
breaking triplet chiral superconducting order parameter. The chirality of the order parameter has been attributed
to an accidental near degeneracy of two superconducting components belonging to one-dimensional (1D)
irreducible representations (irreps) B2u and B3u of the relevant D2h point group, and it has been argued that
the chiral B2u + iB3u combination is selected by ferromagnetic fluctuations. In this work we present a possible
explanation of the near degeneracy as a result of an accidental C4 symmetry of the band structure, with the
superconducting order parameter belonging to the 2D Eu irrep of D4h that uniquely descends to the sought-after
B2u + iB3u combination. We show that the C4 symmetry is emergent at the level of the interactions using a
renormalization group calculation and argue that the chiral combination of the order parameter is favored when
spin-orbit coupling is added to the model.
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I. INTRODUCTION

Recent experiments suggest that UTe2 may be a chiral
triplet superconductor (SC) [1–3] (see also Ref. [4] for a
recent review). In particular, SC has been observed in ex-
tremely high magnetic fields for all field directions, including
re-entrant SC [5] possibly due to the orbital effect [6–8],
and there are strong indications of spontaneous time-reversal
symmetry (TRS) breaking [1–3,9]. However, UTe2 is strongly
orthorombic with a D2h point group symmetry which has
only one-dimensional (1D) irreducible representations (ir-
reps). This poses a problem since the realization of chiral
superconductivity requires a gap function with multiple de-
generate components (meaning each component has the same
critical temperature in the linearized gap equation), which is
only guaranteed to happen for higher dimensional irreps [10].
To circumvent this issue, it has been proposed that there is an
accidental near degeneracy of two gap components belonging
to two different 1D irreps of D2h that effectively act as a single
2D irrep.

Though the precise symmetry of the order parameter has
not been conclusively established in experiment and several
alternative proposals exist [4,11,12], the B2u and B3u irreps
have been argued to most closely match the symmetries of
some of the experimentally observed responses [9,13–15].
Magnetic fluctuations have also been invoked to explain why
the chiral B2u + iB3u combination, corresponding to p ± ip
pairing in terms of angular harmonics, is preferred over the
TRS preserving the B2u + B3u combination [9,14,16]. The
mechanism is consistent with first-principles calculations that
indicate that the uranium f orbital is localized, giving rise to
ferromagnetic fluctuations [15,17]. The choice of two order
parameters with different symmetries is also supported by re-
cent observation of two jumps in heat-capacity measurements

indicating two phase transitions [14]. This is consistent with
the fact that the accidental degeneracy is not expected to be
exact. However, no apparent underlying reason for why those
two particular irreps are present and are nearly degenerate has
been offered.

In this work we propose a simple possible source of the
near degeneracy and illustrate it using a simple minimal
band-structure model. The model is not intended to closely
match the band structure obtained in experiments and nu-
merical simulations. However, it captures what we argue is
the main qualitative feature of UTe2: The quasi-1D nature
of the Fermi surfaces. This is motivated by DFT calculations
[15,17], ARPES data [18], and de Haas-van Alphen (dHvA)
oscillations [19], suggesting that the itinerant electrons are
largely constrained to perpendicular 1D U and Te chains. Our
model, therefore, consists of two arrays of perpendicular wires
made of U and Te atoms correspondingly. It is mathematically
similar to models that have been used in the context of prox-
imitized twisted quantum wires [20], crossed sliding Luttinger
liquids [21,22], two-legged ladder models [23–26], and the
quasi-1D model for Sr2RuO4 [27].

In the absence of interactions, we first show that the
model has an accidental approximate D4h symmetry of the
Bogolyubov-de Gennes Hamiltonian which does have a 2D
irrep Eu. Under the breaking of the accidental C4 symmetry
D4h → D2h and the two components of the Eu irrep descend
to B2u and B3u irreps, in agreement with observations. Adding
the interactions that include spin fluctuations, we find that
under the renormalization group (RG) flow the intrachain
coupling constants flow to the same values at least for some
range of the bare coupling constant, even if the bare constants
break the accidental C4 symmetry. The result is an emergent
D4h symmetry. A related phenomenon has been conjectured
for the two-channel Kondo lattice [28–31], though it was
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FIG. 1. Fermi surfaces of UTe2 in various approximations.
(a) Model without SOC assuming pure 1D dispersion along U (blue
curves) and Te (red curves). We also show the ordering vectors cor-
responding to peaks in intra-atomic U (red arrows), intra-atomic Te
(blue arrows), and interatomic (purple arrows) susceptibilities. (b),
(c) Quasi-1D model with SOC shown in 2D and 3D BZs. (d) Quasi-
1D model with an additional Z electron pocket without SOC between
d and f U electrons. (e) Same as (d) but including SOC between d
and f U electrons. Note that the Z electron pocket hybridizes with
the X electron pocket as a result, forming a doughnut shape (actually
a double doughnut once the walls of the BZ are identified). Cf. with
DFT calculations and ARPES and dHvA data [13,15,18,19].

not supported by RG calculations [32]. The RG flow for our
model also leads to a triplet instability belonging to the desired
Eu irrep. Finally, we show that the free energy is minimized
by a chiral p + ip paired state when spin-orbit coupling (SOC)
is included. Our approach thus provides a microscopic expla-
nation of the observed TRS breaking triplet pairing and two
superconducting transitions associated with chiral structure of
the order parameter.

The structure of the paper is as follows. In Sec. II we
introduce the free-fermion model and discuss the structure
of Fermi surfaces. In Sec. III we discuss the approximate
symmetry of BdG Hamiltonian and its effect on SC order
parameters. Section IV is dedicated to the RG analysis of
interactions and the emergence of effective C4 symmetry. We
show that the ground state is a chiral SC using the Landau
functional for SC order parameters in Sec. V. We discuss our
results and conclude in Sec. VI.

II. MINIMAL MODEL AND FERMI SURFACES

The actual Fermi surfaces of UTe2 have been partially
measured in ARPES experiments [18], but there are still a few
issues that have not been resolved, in particular whether or
not a pocket is present at the Z point in Brillouin zone (BZ).
Nevertheless, the known features of the Fermi surfaces can
be understood in a sequence of approximations (see Fig. 1).
The relevant degrees of freedom originate from the p orbital
holes of Te atoms and one electron each from the d and f

orbitals of the U atoms. The U atoms form double chains
while Te atoms form single chains running in the orthogonal
direction. The role of the f electrons is the main unresolved
question in the literature: in DFT calculations with intermedi-
ate interactions, they form the Z pockets, but at larger U the
pockets are gapped out, possibly due to the Kondo physics
[15,17]. We will mostly ignore the f electrons for simplicity,
though they likely play an important indirect role in producing
ferromagnetic spin fluctuations that we do include later in our
interaction model below.

Neglecting the f electrons, the U double chains can be
thought of as a single chain, and since the separation between
the chains is much larger than the separation between atoms
within the chain, to zeroth order the dispersions are 1D and
can be described by a 2 × 2 k · p Hamiltonian (not including
spin),

H0 =
(

p2
x

2mU
− μU 0

0 − p2
y

2mTe
− μTe

)
. (2.1)

In the simplest case, which we will adopt, mU = mTe and
μU = −μTe = μ. This is, of course, somewhat far away
from the real system but matches the qualitative features of
the ARPES Fermi surface data surprisingly well. The Fermi
surfaces in this approximation are simply straight lines, or-
thogonal for the electrons and holes [see Fig. 1(a)].

A. Corrections to the minimal model from SOC
and the Z pocket

There are several properties of UTe2 that the minimal
model does not capture that we discuss here for completeness.
First, an L · S-type SOC is present in the real system. The
SOC hybridizes the p and d orbitals, splitting the Fermi sur-
faces into an electron and a hole pocket centered at the Y and
X points. For moderate values of SOC, the splitting is small
and the pockets are nearly rectangular, as shown in Figs. 1(b)
and 1(c). There are several symmetry-allowed SOC terms, but
to capture the qualitative effect it is enough to include one,

H1 = H0 + ασ 0τ x =
(

p2
x

2m − μ α

α − p2
y

2m + μ

)
, (2.2)

where σ is the spin Pauli matrix, τ is the Pauli matrix in
the space of U/Te degrees of freedom, and α is the SOC
strength. Note we can take the SOC term to be nominally spin
independent due to inversion symmetry.

As mentioned above, we also neglect the f -electron pocket
at the Z point in BZ in our model, but in principle it can be
included, as shown in Fig. 1(d). If present, it is in general
hybridized with the Y pocket due to SOC between the d and
the f uranium orbitals, resulting in a doughnut-shaped Fermi
surface [see Fig. 1(e)]. We assume that even if the Z pocket
is present, it participates only weakly in the superconducting
condensate and so can be neglected. In contrast, though we
can initially neglect the SOC between p and d orbitals, we will
show in Sec. V that it has an important role in determining the
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relative phase between the two components of the supercon-
ducting order parameter.

III. ACCIDENTAL APPROXIMATE SYMMETRY OF THE
BOGOLYUBOV-DE GENNES HAMILTONIAN

We include superconductivity by considering the
Bogolyubov-de Gennes (BdG) Hamiltonian in the absence of
SOC,

HBdg =
(
H0(p) �̂(p)
�̂†(p) −H∗

0(−p)

)

=

⎛
⎜⎜⎜⎜⎝

p2
x

2m − μ 0 �U 0

0 − p2
y

2m + μ 0 �Te

�
†
U 0 − p2

x
2m + μ 0

0 �
†
Te 0

p2
y

2m − μ

⎞
⎟⎟⎟⎟⎠,

(3.1)

where �U and �Te are 2 × 2 matrices in spin space. Note
that due to inversion symmetry, the pairing is predominantly
between two uranium electrons or two tellurium holes (i.e.,
between opposite sides of the Fermi surfaces), and the pair-
ing between U and Te can be neglected as a result. In the
BdG formalism we introduce the Nambu spinors �τσ (p) =
(ψτσ (p), ψ†

τσ (−p)) (τ labels U or Te), resulting in a twofold
redundancy. This is accounted for by the antiunitary particle-
hole symmetry (PHS) which acts as C = ς xK where ς x is
a Pauli matrix acting on the new particle/hole degrees of
freedom and K is complex conjugation. PHS in particular
requires �̂(p) = −�̂†(−p).

We make the following observation: In the normal state
with �̂ = 0, the BdG Hamiltonian has a new unitary sym-
metry that is not present in the original Hamiltonian. The new
symmetry is C4τ

xς x, where C4 is a fourfold rotation symmetry
taking px → py and py → −px. This is intuitively clear: In the
BdG Hamiltonian we introduce additional redundant copies
of the Fermi surfaces but of opposite characters (electron
instead of hole and vice versa). The full symmetry of the
BdG Hamiltonian in the simplest version of our model is,
therefore, not D2h × P (P being the PHS symmetry group)
but rather D4h × P . Of course the symmetry is only exact
in our oversimplified model, but it remains an approximate
symmetry as long as the neglected terms are not too large (we
address some possible sources of such terms in Appendix A).

Since the effective point group is D4h, the gap functions
have to be classified according to irreps of D4h, not D2h. We
note that D4h has two 2D irreps, Eg and Eu, corresponding to
singlet and triplet pairing, respectively. Since the symmetry
is only approximate, the irreps of D4h descend into irreps of
D2h. For Eu, the two components E (1)

u and E (2)
u descend into

two different 1D irreps of D2h, E (1)
u → B2u and E (2)

u → B3u

[33]. Therefore the chiral Eu phase, if established, descends
uniquely into the B2u + iB3u phase, explaining the experimen-
tal observations and ruling out other proposed combinations
(e.g., the nonunitary pairing proposed in Refs. [11,12]).
Moreover, since the C4 symmetry is broken, we expect the
degeneracy between B2u and B3u also to be inexact, resulting
in one of those two channels having higher Tc, in agreement
with the two jumps seen in the specific-heat data [14].

g1V

g3V

g2V

g1X g2X

g0V

L L

L L

L L

R R

R

L
R L

R L

B L

F R

F

B

FIG. 2. Coupling constants gnA with g = u, J ( j); n = 0, 1, 2, 3;
A = V, X (the diagrams for A = H are similar with L → B and
R → F ).

A valid objection to the argument above is that it only
holds for the noninteracting part of the Hamiltonian. The
interactions, on the other hand, only have to respect the D2h

symmetry and not necessarily the accidental D4h. As we show
in the following section, however, the accidental C4 symmetry
of the noninteracting Hamiltonian leads to an emergent C4

symmetry on the level of the interaction Hamiltonian within
the RG approach.

IV. EMERGENT C4 SYMMETRY OF THE INTERACTIONS
UNDER RG FLOW

In this section we address the issue of the absence of
C4 symmetry at the interaction level by showing that the C4

symmetry can be emergent within the RG paradigm. The key
to the result is the quasi-1D nature of the system. Assuming
that the interactions are dominant between sites within the
chains and negligible between neighboring chains as well
as between perpendicular chains, the interactions within the
chains are essentially 1D and we can write down two sets of
decoupled RG equations for each set of parallel chains. We
label those chains H and V for horizontal (U) and vertical
(Te). Note that in 1D one can solve the interaction problem
exactly by bosonization, which has also been done for crossed
wire networks to obtain the so-called crossed sliding Luttinger
liquid [21,22]. Before introducing the coupling between the H
and V wires, we assume that they are in the Luttinger liquid
regime, i.e., all the RG flows are at most marginal (or else
irrelevant). The bare coupling constants of H and V wires are
otherwise not assumed to be related and so explicitly break the
C4 symmetry. We then include interchain coupling between H
and V wires as a perturbation and find that it results in an
instability (i.e., a relevant flow in RG). The general argument
is that since the instability is driven by the infinitesimal inter-
chain interactions, the final fixed trajectory of the RG flow
does not sensitively depend on the particular choice of the
intrachain coupling constants (at least for some range) and is
therefore C4 symmetric. We verify numerically that the H and
V coupling constants are equal for some choices of the bare
interactions, i.e., there is an emergent C4 symmetry.

In 1D, the Fermi surfaces are two points, and as usual we
label them L and R (left and right) for the horizontal chains
and B and F (bottom and front) for the vertical chains. The
interactions within the vertical chains then have the following
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form (see Fig. 2),

HV = 1

2

∑
u0V c†

Aαδαα′cAα′c†
Aβδββ ′cAβ ′

+ 1

2

∑
u1V c†

Bαδαα′cBα′c†
Fβδββ ′cFβ ′

+ 1

2

∑
u2V c†

Bαδαα′cFα′c†
Fβδββ ′cBβ ′

+ 1

2

∑
u3V c†

Bαδαα′cFα′c†
Bβδββ ′cFβ ′

+ 1

2

∑
J ( j)

0V c†
Aασ

j
αα′cAα′c†

Aβσ
j

ββ ′cAβ ′

+ 1

2

∑
J ( j)

1V c†
Bασ

j
αα′cBα′c†

Fβσ
j

ββ ′cFβ ′

+ 1

2

∑
J ( j)

2V c†
Bασ

j
αα′cFα′c†

Fβσ
j

ββ ′cBβ ′

+ 1

2

∑
J ( j)

3V c†
Bασ

j
αα′cFα′c†

Bβσ
j

ββ ′cFβ ′ + H.c. (4.1)

(A is summed over B and F while j is summed over x, y, z).
Within the horizontal chains we have similarly (with A
summed over L and R instead),

HH = 1

2

∑
u0H d†

Aαδαα′dAα′d†
Aβδββ ′dAβ ′

+ 1

2

∑
u1H d†

Lαδαα′dLα′d†
Rβδββ ′dRβ ′

+ 1

2

∑
u2H d†

Lαδαα′dRα′d†
Rβδββ ′dLβ ′

+ 1

2

∑
u3H d†

Lαδαα′dRα′d†
Lβδββ ′dRβ ′

+ 1

2

∑
J ( j)

0H d†
Aασ

j
αα′dAα′d†

Aβσ
j

ββ ′dAβ ′

+ 1

2

∑
J ( j)

1H d†
Lασ

j
αα′dLα′d†

Rβσ
j

ββ ′dRβ ′

+ 1

2

∑
J ( j)

2H d†
Lασ

j
αα′dRα′d†

Rβσ
j

ββ ′dLβ ′

+ 1

2

∑
J ( j)

3H d†
Lασ

j
αα′dRα′d†

Lβσ
j

ββ ′dRβ ′ + H.c. (4.2)

Finally, the perturbing interactions between the two chains are

HX = 1

2

∑
u1X d†

Lαδαα′cBα′d†
Rβδββ ′cFβ ′

+ 1

2

∑
u2X d†

Lαδαα′cFα′d†
Rβδββ ′cBβ ′

+ 1

2

∑
J ( j)

1X d†
Lασ

j
αα′cBα′d†

Rβσ
j

ββ ′cFβ ′

+ 1

2

∑
J ( j)

2X d†
Lασ

j
αα′cFα′d†

Rβσ
j

ββ ′cBβ ′ + H.c. (4.3)

These are the only momentum-conservation allowed in-
teractions that are relevant for the RG flows; u’s correspond
to density-density interactions, while J’s correspond to spin

u1V u1V

u3V

= u1V

= u1V u3V

u2V= u2V u1V

x2
u2V

u1V

x2
u3V

x2

u3V

u1V u1V u2V u2V u3V u3V

J1V J1V J1V J1V J2V J2V J3V J3V

x3 x3 x3 x3
u1X u1X u2X u2X J1X J1X J2X J2X

x3 x3

u3V

u3V

x2

J2V J1V

x6 
u2V

J1V

x6
u2V

x2

u2V

u3V

J3V

x6

u1X u2X u2X u1X J1X J2X J2X J1X

x3 x3

u3V u1V u3V

u1V

x2
u2V

u3V

x2

J1V J3VJ3V J1V

x3 x3
u2V

x2

u3V

u3V

x2

u2V

u3V

J1V

x6
u2V

J3V

x6

u1X u1V= u1X u2V u2X u1X u1H u2X u2H

J1V J1X J2V J2X J1X J1H J2X J2H

x3 x3 x3 x3

u2X u1V= u2X u2V u1X u2X u1H u1X u2H

J1V J2X J2V J1X J2X J1H J1X J2H

x3 x3 x3 x3

FIG. 3. Diagrammatic representation of RG equations for
density-density interactions ui. Note the corrections coming from the
spin J couplings that generate unA even if they are absent initially;
see Appendix B.

fluctuations; we use g as a generic label for coupling constants
of either type. We include spin fluctuations as they have been
suggested to mediate the triplet superconductivity [9,14,34–
37]; g0 are intrapocket interactions that as we will see do
not flow under the RG and do not affect other flows and so
henceforth can be ignored; g1 are interpocket interactions, g2

are exchange interactions, and g3 are umklapp processes only
allowed at half filling (we will later drop the g3 terms and as-
sume we are not at half filling). Note that gnH and gnV coupling
constants have to be real by TRS and/or by mirror/rotation
symmetries. The interchain interactions gnX may, on the other
hand, be complex due to the absence of C4 symmetry, but note
that due to the xz and yz mirror symmetries that exchange
B/F and L/R labels, respectively, while keeping the other two
fixed, we must have g1X = g2X , and we will therefore label
them simply as uX and J ( j)

X below.
For simplicity, we will assume that the spin fluctuations are

isotropic, J (x)
nA = J (y)

nA = J (z)
nA = JnA (n = 0, 1, 2, 3, A = H,V ).

In that case we obtain the following RG equations (see Figs. 3
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J1V J1V

J3V

= J1V

= J1V J3V

J2V = J2V J1V

x4
J2V

J1V

x2
J3V

x2

J3V

J1V J1V J2V J2V J3V J3V

J1V u1V J1V u1V J2V u2V J3V u3V

x2 x2 x2 x2
J1X J1X J2X J2X J1X u1X J2X u2X

x2 x2

J3V

J3V

x2

u2V J1V

x2 
J2V

u1V

x2
J2V

x2

J2V

J3V

u3V

x2

J1X u2X u2X J1X u1X J2X

J3V J1V J3V

J1V

x2
J2V

J3V

x2

J1V u3VJ3V u1V
J2V

x2

J3V

J3V

x2

J2V

J3V

u1V

x2
J2V

u3V

x2

J1X J1V= u1X J2V u2X J1X u1H J2X u2H

J1V J1X J2V J2X J1X J1H J2X J2H

x2 x2 x2 x2

J2X J1V= u2X J2V u1X J2X u1H J1X u2H

J1V J2X J2V J1X J2X J1H J1X J2H

x2 x2 x2 x2

x2 x2 x2 x2

x2 x2

J2V u1V

x2 

J2X J1X J1X J2X J2X u1X

x2 x2

x2 x2

u1V J3Vu3V J1V

u1V J1X u2V J2X u1X J1H u2X J2H

u1V J2X u2V J1X u2X J1H u1X J2H

FIG. 4. Diagrammatic representation of RG equations for spin-
spin interactions JnA. Note the corrections coming from the terms
involving density-density unA.

and 4),

u̇1V = − u2
2V + u2

3V − 3J2
2V + 3J2

3V − 2|uX |2 − 6|JX |2 (4.4)

u̇2V = − 2u2
2V − 6J1V J2V + 6u3V J3V

+ 6u2V J1V − 2|uX |2 − 6|JX |2 (4.5)

u̇3V = 4u1V u3V − 2u2V u3V + 6u3V J1V + 6u2V J3V + 6J1V J3V

(4.6)

J̇1V = 2
(−u2V J2V + u3V J3V + 2J2

1V + J2
2V + J2

3V

)
− 4Re[u∗

X JX ] + 4|JX |2 (4.7)

J̇2V = 2
(
u3V J3V − u2V J1V − J2

2V + J1V J2V − 2J2
3V

)
− 4Re[u∗

X JX ] + 4|JX |2 (4.8)

J̇3V = 2(2u1V J3V + u3V J1V + u3V J2V )

+ 2(J1V J3V − 3J2V J3V ) (4.9)

u̇X = − (u1V + u2V )uX − u∗
X (u1H + u2H )

− 3(J1V + J2V )JX − 3J∗
X (J1H + J2H ) (4.10)

J̇X = − (u1V + u2V )JX − uX (J1V + J2V )

− u∗
X (J1H + J2H ) − (u1H + u2H )J∗

X

+ 2(J1V + J2V )JX + 2J∗
X (J1H + J2H ), (4.11)

with a similar set of equations for gnH ; the dot indicates a
derivative with respect to the RG time t = log �

E where �

is the high-energy cutoff and E is the energy scale above
which the high-energy modes have been integrated out in
the RG flow. The details of the RG, including equations for
nonisotropic spin fluctuations, can be found in Appendix B.
Here we assumed for simplicity that the DOS’s of H and V
chains are equal. If the DOS’s are different we can recover
the same equations by rescaling the coupling constants as
g̃V = νV gV , g̃H = νH gH and g̃X = √

νV νH gX , so that the form
of the equations is the same. For simplicity, we will keep
assuming that the DOS’s are equal, i.e., the noninteracting
part of the Hamiltonian is C4 symmetric. We also henceforth
set the umklapp processes g3A to zero, as those generally lead
to instabilities in 1D and we are interested in the Luttinger
regime in the absence of interchain interactions gX . As men-
tioned above, this is justified on physical grounds as we do not
expect both sets of chains to be exactly at half filling.

The resulting RG flow is shown in Fig. 5 (see caption and
below for bare coupling constant values). As claimed, with
the chosen values of the bare coupling constants the quan-
tities (gnV − gnH )/(gnV + gnH ) flow to zero while gnV + gnH

diverges, implying that gnV = gnH at the fixed point at infinity,
i.e., there is an emergent C4 symmetry. This is true for a rela-
tively wide range of the bare coupling constants, assuming no
instabilities in the absence of interchain interactions gX (there
are also other fixed trajectories we observed along which
gnV = 0 or gnH = 0). This result matches the conjectured
RG flow proposed for the related two-channel Kondo lattice
[28]—the two initially different couplings become equal un-
der the RG flow.

A. Vertex flow equations

Though we find an emergent C4 symmetry of the inter-
actions, we also need to show that triplet superconductivity
belonging to the Eu irrep is the leading instability. To show
that, we introduce test vertices

�
(μ)
LR (σμiσ y)αβd†

p,L,αd†
p,R,β + H.c.

�
(μ)
BF (σμiσ y)αβc†

p,B,αc†
p,F,β + H.c.

�
(μ)
RL (σμiσ y)αβd†

p,R,αd†
p,L,β + H.c.

�
(μ)
FB (σμiσ y)αβc†

p,F,αc†
p,B,β + H.c. (4.12)
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FIG. 5. RG flow as a function of the RG time t = log �

E for the following values of the bare coupling constants: u2H = 0.2, J2H = 0.01,
u2V = 0.5, J2V = 0.02, uX = 0.001, and JX = 0.0003. Panels (a) and (b) show the flow of the density-density and spin-fluctuation mediated
interactions, respectively; the intrachain coupling constants all flow to negative values while the interchain couplings uX and JX flow to positive
values. Panel (c) shows the flow of the differences of intrachain coupling between V and H chains, (d) shows the same differences normalized
by the sums. Note that the latter flow to zero at the instability, indicating an emergent C4 symmetry. Panels (e) and (f) show the effective
interactions Us± in the singlet and UtV and UtH in the triplet pairing channels, respectively [see Eqs. (4.15–4.16)], with negative/positive values
corresponding to attraction/repulsion. We thus find that the triplet channel wins under the RG flow with the given bare coupling constants.
Note that while UtV and UtH are unequal at the beginning of the flow, their difference vanishes asymptotically at the critical RG scale as follows
from Eq. (4.15).

and study their RG flow, including the competition between
the singlet and the triplet channels. The relevant diagrams are
shown in Fig. 6. Note that due to anticommutation relations,
we have the PHS relations

�
(0)
LR = �

(0)
RL = �

(0)
H

�
(0)
BF = �

(0)
FB = �

(0)
V

�
( j)
LR = −�

( j)
RL = �

( j)
H

�
( j)
BF = −�

( j)
FB = �

(0)
V , (4.13)

FIG. 6. Diagrammatic representation of the SC vertex flow equa-
tions. The spin sum evaluation is presented in Appendix B.

where j = x, y, z correspond to the triplet components and
μ = 0 is the singlet component of the gap functions. The RG
flow equations of the vertices �

(μ)
H and �

(μ)
V are as follows

[38]:

�̇
(0)
H = − (u1H + u2H − 3J1H − 3J2H )�(0)

H

− 2(uX − 3JX )�(0)
V

�̇
(0)
V = − (u1V + u2V − 3J1V − 3J2V )�(0)

V

− 2(u∗
X − 3J∗

X )�(0)
H

�̇
( j)
H = − (u1H − u2H + J1H − J2H )�( j)

H

�̇
( j)
V = − (u1V − u2V + J1V − J2V )�( j)

V . (4.14)

The relevant spin sums are shown in Appendix B. Importantly,
the H and V triplet components are decoupled (thanks to the
cancellation due to the mirror symmetries of the D2h point
group). As a result, if the C4 symmetry emerges at the RG
fixed point, the triplet H and V channels become degenerate,
meaning that they belong to a 2D irrep.

The effective pairing triplet interactions are simply

UtA = u1A − u2A + J1A − J2A, (4.15)

with A = H,V . The effective singlet interactions are found
by diagonalizing the matrix equation for the flow of �

(0)
H and
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�
(0)
V , with

Us± = 1
2

(
UsV H ±

√
U 2

sV H + 16|uX − 3JX |2), (4.16)

where

UsV H = u1H + u1V + u2H + u2V − 3J1H

− 3J1V − 3J2H − 3J2V . (4.17)

Based on the flow equations, we then see that the triplet pair-
ing is favored over the singlet pairing either for large negative
exchange u2A interactions or for large negative (i.e., ferromag-
netic) spin fluctuations J1A. However, the former is ruled out
by our requirement that the interactions are marginal in the
absence of interchain interactions gX , while in the latter we
find not to give rise to an emergent C4 symmetry. Instead, we
find that the desired solution is obtained for a larger positive
u2A and a smaller but sizable positive (i.e., anti-ferromagnetic)
J2A, with an even smaller uX and an even smaller JX .

As a concrete case we take the bare coupling constants
to be u2H = 0.2, J2H = 0.01, u2V = 0.5, J2V = 0.02, uX =
0.001, and JX = 0.0003 and the rest zero. With these bare
coupling constants the leading SC channel is indeed triplet
and, moreover, UtV and UtH become equal as they diverge at
the critical RG scale as can be verified from Eq. (4.15) and
Fig. 6 (more precisely their difference vanishes asymptoti-
cally). This implies that the leading triplet SC channel belongs
to a 2D Eu irrep of D4h, as desired. Although the initial
intrachain spin fluctuations are positive, i.e., antiferromag-
netic, observe that under the RG flow they change sign and
become ferromagnetic, which promotes the triplet instability.
This may be consistent with the experimental observation
of a nearby AFM instability in the presence of pressure
[17,34–36]. We also note that although JX , which remains
positive under the RG flow, is the smallest term, it is crucial for
triplet SC since if it is set to zero we obtain a singlet instability.

V. ORIGIN OF THE CHIRAL SC STATE
AND THE ROLE OF SOC

Having established that the C4 symmetry emerges at the
fixed trajectory of the RG flow along with a triplet super-
conducting order belonging to the 2D Eu irrep of D4h, there
remains the question of the relative phase between the two gap
functions �H and �V forming the two components of the ir-
rep, since at the level of the one-loop RG flow (or equivalently
the linearized gap equation) any linear combination of the two
is equivalent. The degeneracy is lifted by the fourth-order term
in the free energy

F (4) = βφ�2
V (�∗

H )2 + c.c. = 2βφ|�V |2|�H |2 cos 2φ. (5.1)

If βφ is positive, the free energy is minimized by φ = ±π/2
leading to a TRS-breaking chiral order, whereas if βφ is neg-
ative the free energy is minimized by φ = 0, π , leading to
a TRS-preserving phase (see, e.g., Refs. [39,40]; additional
terms may instead favor a nematic combination but we assume
that is not the case as this is not seen in experiment).

The Feynman diagrams that contribute to this term must
contain the two vertices �BF and two vertices �

†
LR (or vice

versa) connected by fermion propagators. This is not possible
unless the propagator can change a fermion from a horizontal

FIG. 7. The fourth-order diagrams that lift the degeneracy of the
Eu irrep gap functions (two more diagrams are obtained by exchang-
ing B and F ). Note that the diagrams are only allowed when SOC is
present, allowing V -chain electrons to change into H -chain electrons
and vice versa, giving rise to the off-diagonal Green’s functions. For
fermions close to the Fermi surface, the conversion can only happen
around the four corners where the Fermi surfaces (without SOC)
intersect. The kinematics are constrained such that if a B electron in
the diagram is converted into an L electron, the electron with opposite
momentum is converted from an F electron into an R electron, as
indicated in the subplots below.

chain to one on the vertical chain. One possible way this
can happen is through the interchain interactions, but one
can check that for a triplet order parameter the resulting cor-
rections vanish due to out of plane mirror symmetries. The
only other possible way is through SOC: Observe that the
symmetry-allowed SOC in Eq. (2.2) couples precisely ura-
nium and tellurium electrons living on horizontal and vertical
chains, respectively. The corresponding Green’s function is,
to leading order in SOC,

G(iω, p) = (iω − H1(p))−1

=
( 1

iω−εU (p)
α

(iω−εU (p))(iω−εTe(p))

α
(iω−εU (p))(iω−εTe(p))

1
iω−εTe(p)

)
.

(5.2)

Projecting the Green’s function onto the A, A′ = L, R, B, F
patches, we find that the off-diagonal terms are thus given by
[41]

GAA′ (iω, p) = GA′A(iω, p) = α

(iω − εA(p))(iω − εA′ (p))
.

(5.3)

The resulting fourth-order diagram shown in Fig. 7 corre-
sponds to a free-energy term proportional to

βφ = 8T
∑
n,p

G2
BL(iω, p)G2

FR(−iω,−p)

=
∑
n,p

8T α4(
ω2 + ε2

B(p)
)2(

ω2 + ε2
L(p)

)2

≈ α4π2

240T 5

1

|vF,U ||vF,Te| , (5.4)

where we took εB(p) = −εF (−p) ≈ vF,Te py and εR(p) =
−εL(−p) ≈ vF,U px; the momentum integral is done before
the Matsubara sum. The factor of eight accounts for the spin

014502-7



DANIEL SHAFFER AND DMITRY V. CHICHINADZE PHYSICAL REVIEW B 106, 014502 (2022)

summation and the fact that there are four contributing dia-
grams allowed by kinematics. Note that the SOC contributes
significantly only around the four points where the quasi-1D
Fermi surfaces intersect. The main point, however, is that βφ

is positive, so that a chiral TRS-breaking order parameter is
favored.

Note that the calculation of the fourth-order term above
does not depend at all on the form of the interactions and
so applies quite generally regardless of the specific pairing
mechanism. In particular, our result is not incompatible with
the previously proposed phenomenological explanation of the
chirality of the order parameter via coupling to ferromagnetic
fluctuations proposed in Refs. [9,14].

VI. DISCUSSION

In this work we have shown that the observed chiral triplet
superconductivity in UTe2 can be explained by a combination
of an accidental C4 symmetry (composed with a PHS) at
the level of the noninteracting Hamiltonian together with a
resulting emergent C4 symmetry of the interactions. Under
the RG flow, a triplet SC order belonging to a 2D Eu irrep
is established, and the chiral combination is selected when
SOC is included. When the C4 symmetry is broken, the two
components of the Eu irrep descend to a B2u + iB3u chiral
combination of irreps of D2h, in agreement with experimental
data [9,14].

The quasi-1D nature of the model plays a key role, al-
lowing for a possibility that sans coupling between U and
Te chains the system would be in a Luttinger liquid regime,
with only marginal interactions in the RG flow. The interchain
interactions then tilt the system toward the superconducting
instability with an emergent C4 symmetry. One possible di-
rection for a future study is to attempt a bosonized version
of the calculation, since each 1D chain can then in principle
be studied exactly [21–23,25,26,42–44]. Additionally, antifer-
romagnetism has been observed in samples under pressure
[17,34–36], which may also be studied using the RG equa-
tions presented here and which may compete or be intertwined
with the triplet superconducting state. In particular, the 1D
chains may enter the Luther-Emery liquid phase in the limit of
zero interchain interactions [45], resulting in an AFM or SDW
instability. Umklapp processes that we ignored here may also
play a significant role.

Within our model we generally neglected the f electrons,
which likely play a role in mediating the superconductivity
via ferromagnetic fluctuations M ∼ f †

α σ z
αβ fβ or via a recently

proposed Hund’s-Kondo mechanism [37]. Our model is not
incompatible with these scenarios as we do not postulate the
origin of the bare couplings, though the RG equations do shed
light on what type of microscopic interactions are compatible
with the chiral triplet state. It may, therefore, be fruitful to
study a more detailed microscopic model of the interactions
within the RG framework presented here.
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APPENDIX A: SOURCES OF C4 SYMMETRY BREAKING
IN THE FREE HAMILTONIAN

There are several possible sources of C4 symmetry break-
ing that we have neglected for simplicity, but two of those can
be accommodated within our model by combining C4 with
further symmetries. First of all, the a and b lattice parameters
for UTe2 differ by a significant amount, around 2/3 [18].
Though this does explicitly break C4 symmetry, for a system
of crossed wires C4 combined with a rescaling along a and b
directions remains a symmetry, as shown in Fig. 8 (note that
this is not the case for a general orthorhombic system and is a
special property of the crossed-wires system; the rescaling can
also be thought of as sliding the wires). As long as the Fermi
momenta of the U and Te wires have the same ratio as a and b,
they also respect this symmetry (see Fig. 8). The ratio of the
Fermi momenta does appear to be close to a/b in ARPES data
in Ref. [18], and as long as it is not too large there remains an
effective C4-like symmetry.

The second source of C4 symmetry breaking that can also
be accommodated in our model is the difference of densities
of states of the U and Te chains. As mentioned in the main
text, the difference can be absorbed into the definitions of
the coupling constants and vertices, which can be rescaled as
g̃V = νV gV , g̃H = νH gH , g̃X = √

νV νH gX , �̃
(μ)
H = √

νH�
(μ)
H ,

and �̃
(μ)
H = √

νV �
(μ)
V . We note incidentally that the difference

in the domains of px and py discussed above similarly appears
in the RG equations as numerical factors that can be absorbed
into the density of states. In either case, there is, therefore,
still an emergent C4-like symmetry in the RG equations, but
in addition to the C4 symmetry it includes a rescaling of the d
and c operators by d → √

νU /νTed and c → √
νTe/νU c. Im-

portantly, this is an exact symmetry of the RG equations and
our results remain valid modulo the rescaling.
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FIG. 9. Spin sums involved in the one-loop diagrams for the RG flow of the coupling constants. Diagrams above contribute to the flow of
the diagrams directly below. α′ and β ′ are internal spin indices to be summed over.

APPENDIX B: DETAILS OF THE RG CALCULATION

In this Appendix we show the details of the RG calculation.
The one-loop diagrams relevant for the RG flows are shown in
Figs. 3 and 4. We need to consider the relevant spin summa-
tions, illustrated in Fig. 9. Here we use σ 0 = δ and J (0) = u,
with μ, ν = 0, x, y, z. For the ladder diagrams we get

J (μ)J (ν)[σ (μ)σ (ν)]αα′[σ (μ)σ (ν)]ββ ′ (B1)

For the crossed ladder diagram we get

J (μ)J (ν)[σ (μ)σ (ν)]αα′ [σ (ν)σ (μ)]ββ ′ . (B2)

For the bubble diagram we get

J (μ)J (ν)Tr[σ (μ)σ (ν)]σ (μ)
αα′ σ

(ν)
ββ ′ (B3)

(this accounts for the usual factor of two, and note that
Tr[σ (μ)σ (ν)] = 2δμν). Finally, for the “penguin” diagram we
have

J (μ)J (ν)[σ (μ)σ (ν)σ (μ)]αα′σ
(ν)
ββ ′ (B4)

with the ν vertex being on the bottom (similarly for the upside
down “penguin” diagram). For completeness, Fig. 10 shows
the spin sums for the one-loop vertex correction.

Using these, we find the following RG flow equations for
the coupling constants within the H chain (see Figs. 3 and 4):

FIG. 10. Spin sums involved in the one-loop diagrams for the
RG flow of the particle-particle vertices. The diagram on the left
contributes to the flow of the diagram on the right. α′ and β ′ are
internal spin indices to be summed over

u̇1H = − u2
2H + u2

3H − |J2H |2 + |J3H |2 − |u1X |2 − |u2X |2 − |J1X |2 − |J2X |2

u̇2H = − 2u2
2H − 2J1H · J2H + 2u3H

∑
j

J ( j)
3H + 2u2H

∑
j

J ( j)
1H − 2Re[u∗

1X u2X + J∗
1X · J2X ]

u̇3H = 4u1H u3H − 2u2H u3H + 2J1H · J3H + 2u3H

∑
j

J ( j)
1H + 2u2H

∑
j

J ( j)
3H

J̇ (x)
1H = 2

(
u3H J (x)

3H − u2H J (x)
2H + 2J (y)

1H J (z)
1H + J (y)

2H J (z)
2H + J (y)

3H J (z)
3H

) − 2Re
[
u∗

1X J (x)
1X + u∗

2X J (x)
2X − J (y)∗

1X J (z)
1X − J (y)∗

2X J (z)
2X

]
J̇ (x)

2H = 2
(−u2H J (x)

1H − J (x)2
2H + J (y)

2H J (z)
1H + J (y)

1H J (z)
2H

) + 2J (x)
3H

(
u3H − J (y)

3H − J (z)
3H

) + 2J (x)
2H

(
J (x)

1H − J (y)
1H − J (z)

1H

)
− 2Re

[
u∗

1X J (x)
2X + u∗

2X J (x)
1X − J (y)∗

1X J (z)
2X − J (y)∗

2X J (z)
1X

]
J̇ (x)

3H = 2
(
2u1H J (x)

3H + u3H J (x)
1H + J (y)

1H J (z)
3H + J (y)

3H J (z)
1H − J (x)

2H J (x)
3H

) + 2J (x)
2H

(
u3H − J (y)

3H − J (z)
3H

) + 2J (x)
3H

(
J (x)

1H − J (y)
1H − J (z)

1H

)
(B5)

The flow equations for J (y) and J (z) are obtained by cyclic permutation from the J (x) equations. The coupling constants within
the V chain have the same flow equations with H replaced by V . Observe that even if at the bare level u = 0, they are generated
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by the J’s and so have to be included in the analysis even if we are mostly interested in the spin fluctuations. Observe also that
the flows for the umklapp couplings are not affected by the interchain interactions. The interchain coupling constants flow as
follows:

u̇1X = − u1vu1X − u2V u2X − u∗
1X u1H − u∗

2X u2H − J1V · J1X − J2V · J2X − J∗
1X · J1H − J∗

2X · J2H

u̇2X = − u1V u2X − u2V u1X − u∗
2X u1H − u∗

1X u2H − J1V · J2X − J2V · J1X − J∗
2X · J1H − J∗

1X · J2H

J̇ (x)
1X = − u1V J (x)

1X − u1X J (x)
1V − u2V J (x)

2X − u2X J (x)
2V − u∗

1X J (x)
1H − u1H J (x)∗

1X − u∗
2X J (x)

2H − u2H J (x)∗
2X

+ J (y)
1V J (z)

1X + J (y)
2V J (z)

2X + J (y)∗
1X J (z)

1H + J (y)∗
2X J (z)

2H + J (z)
1V J (y)

1X + J (z)
2V J (y)

2X + J (z)∗
1X J (y)

1H + J (z)∗
2X J (y)

2H

J̇ (x)
2X = − u1V J (x)

2X − u2X J (x)
1V − u2V J (x)

1X − u1X J (x)
2V − u∗

2X J (x)
1H − u1H J (x)∗

2X − u∗
1X J (x)

2H − u2H J (x)∗
1X

+ J (y)
1V J (z)

2X + J (y)
2V J (z)

1X + J (y)∗
2X J (z)

1H + J (y)∗
1X J (z)

2H + J (z)
1V J (y)

2X + J (z)
2V J (y)

1X + J (z)∗
2X J (y)

1H + J (z)∗
1X J (y)

2H . (B6)

Notice that the equations are clearly symmetric under the exchange of H and V , implying that there may be fixed trajectories for
which gH and gV are equal. Assuming isotropic spin fluctuations then leads to Eq. (4.4).
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