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Divergence of magnetic susceptibility in the SU(N) Nagaoka-Thouless ferromagnet
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Using finite-temperature strong-coupling expansions for the SU(N) Hubbard model, we calculate the thermo-
dynamic properties of the model in the infinite-U limit for arbitrary density 0 � ρ � 1 and all N . We express
the ferromagnetic susceptibility of the model as a Curie term plus �χ , an excess susceptibility above the Curie
behavior. We show that, on a bipartite lattice, graph by graph the contributions to �χ are non-negative in the
limit that the hole density δ = 1 − ρ goes to zero. By summing the contributions from all graphs consisting of
closed loops we find that the low-hole-density ferromagnetic susceptibility diverges exponentially as exp �/T
as T → 0 in two and higher dimensions. This demonstrates that the Nagaoka-Thouless ferromagnetic state
exists as a thermodynamic state of matter at low enough density of holes and sufficiently low temperatures. The
constant � scales with the SU(N) parameter N as 1/N implying that ferromagnetism is gradually weakened with
increasing N as the characteristic temperature scale for ferromagnetic order goes down.

DOI: 10.1103/PhysRevB.106.014424

Introduction. The Hubbard model [1–3] is a central model
for describing the behavior of electrons in solid state systems
and has had a huge impact in our understanding of condensed
matter physics [4–6]. Strong correlations, arising from the on-
site repulsion in the Hubbard model, can be used to understand
many basic solid state phenomena including metal-insulator
transitions, antiferromagnetism, superconductivity, spin liq-
uids, and itinerant ferromagnetism.

Nagaoka-Thouless ferromagnetism is a classic problem in
itinerant magnetism [7]. Nagaoka [8] and Thouless [9] in-
dependently showed that when the Hubbard repulsion U is
large enough, a single hole introduced into a system with one
particle per site can polarize the entire system. There have
been several variational, analytical, and numerical studies
[10–20] of Nagaoka-Thouless ferromagnetism, especially in
the ground state of the system. Several studies have shown
that a fully polarized ferromagnetic state is no longer the
ground state even for two holes [15–17] and can be regarded
as two ferromagnetic polarons combining into an overall spin
singlet. Variational and numerical studies [10–13] have shown
that unsaturated ferromagnetism can persist up to substantial
deviation from half filling (δ = 0.49), while other studies [18]
have raised the possibility of phase separation into hole-rich
and antiferromagnetic regions at a finite concentration of
holes.

At finite temperatures, rigorous mathematical arguments
have been made to show that magnetization in a field ex-
ceeds the pure paramagnetic value [21,22] implying some
degree of ferromagnetism, and dynamical mean-field theory
(DMFT) [23] was used to obtain a phase diagram in the
density-temperature plane. While we are not aware of any
rigorous study of the critical U below which the Nagaoka fer-
romagnetism disappears, a high-temperature expansion study
[24] showed that the spin structure factor at low hole con-

centrations jumps from the vicinity of the antiferromagnetic
wave vector for larger J/t to q = 0 at J/t = 0.1 implying the
onset of ferromagnetic correlations in the system at least for
U/t � 40.

The cold atomic gases in optical lattices provide a new
motivation for study of the Hubbard model [25–30]. In these
systems, it is possible to build an ensemble that is well de-
scribed by the Hubbard model and where the microscopic
parameters such as U and t can be controlled and a priori
well understood. Furthermore, cold atomic gases allow one to
change the number of fermion species from 2 to a larger N and
thus study the Hubbard model with SU(N) symmetry [31–36]
for different values of N .

Finite-temperature strong-coupling expansion is a natural
way to address the magnetic behavior of the Hubbard model
at finite temperatures, at various hole densities, in the thermo-
dynamic limit [37–39]. These expansions can be developed
in the grand canonical ensemble at fixed fugacity ζ = exp βμ

in powers of βt , w = exp −βU , and 1/βU . After changing
variables from fugacity to particle density ρ, one can obtain
temperature-dependent thermodynamic properties at various
densities. For U of the order of or larger than the bandwidth
they allow one to relate the thermodynamics of the Hubbard
model at low temperatures to a generalized Heisenberg or t-J
model [40–43]. The expansions simplify in the limit U → ∞,
in which case many terms can be set to zero and can be used
to study the problem of Nagaoka-Thouless ferromagnetism.

The first few terms of the expansion suffice to give an accu-
rate numerical description of the thermodynamic properties of
the model at temperatures larger than the hopping parameter
t . As shown previously for the SU(2) t-J model [24,44,45],
series extrapolation methods allow one to go to much lower
temperatures. However, a numerical extrapolation is difficult
to control reliably down to T = 0. Here, we are interested
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in the entire temperature range 0 < T < ∞. We show that,
close to half filling, i.e., in the limit δ = 1 − ρ going to zero,
the thermodynamic uniform magnetic susceptibility can be
computed all the way to T → 0 by summing over the loop
graphs in each order of perturbation theory. This calculation
provides a lower bound for the susceptibility and leads to a
function which diverges exponentially to infinity as exp �/T
as the temperature goes to zero. This shows that, for large
enough U , the Nagaoka-Thouless ferromagnetic behavior is a
thermodynamic phenomenon at low density of holes and low
enough temperatures. These results are true for any N > 1 of
the SU(N) models [19] and in any dimension greater than 1.
However, the constant � scales as 1/N ; that is, the tempera-
ture scale for the transition goes down as N increases. For the
SU(2) case, our results are in agreement with DMFT results,
which also found that the transition temperature goes to zero
as δ → 0 [23].

Model and methods. The SU(N) Hubbard model is defined
by a Hamiltonian H = H0 + V , where the unperturbed Hamil-
tonian H0 is an on-site term:

H0 = U
∑

i

ni(ni − 1)

2
− μ

∑
i

ni − h
∑

i

(
n1i − ni

N

)
, (1)

where ni is the total number operator for particles on site i and
μ is the chemical potential. The last term h is a spin-polarizing
field that lowers the energy when the particle is in the first spin
state n1i = 1, raises it for all other states, and has an overall
zero trace. The perturbation V is the hopping term:

V = −t
∑
〈i, j〉

N∑
α=1

(C†
i,αCj,α + H.c.), (2)

where the sum 〈i, j〉 runs over nearest-neighbor pairs of sites
of a lattice and the sum over α runs over the N species of
fermions. The total number of fermions of each species is a
constant of motion. Thus both the chemical potential and field
terms commute with the rest of the Hamiltonian.

Using the formalism of thermodynamic perturbation the-
ory [37,38], the logarithm of the grand partition function, per
site, can be expended as

ln Z = ln z +
∞∑

r=1

∫ β

0
dτ1

∫ τ1

0
dτ2 · · ·

∫ τr−1

0
dτr

× 〈Ṽ (τ1) · · · Ṽ (τr )〉N , (3)

where z is the single-site partition function, Ṽ = eτH0Ve−τH0 ,
and

〈X 〉 = Tre−βH0 X/Tre−βH0 . (4)

In each order, the terms in the expansion can be expressed
in terms of various graphs on the lattice as

ln Z = ln z +
∑

G

LG z−Ns (βt )NbXG. (5)

In the expression, the graph G has Ns sites and Nb bonds. LG is
the lattice constant of the graph defined as the extensive part
of the graph count, per lattice site. The weight factor XG is the
reduced contribution of the graph obtained from an evaluation

of the traces which depends on βt , βU , fugacity ζ , field h,
and N .

In the U → ∞ limit, no double occupancy is allowed, and
the weight factor for a graph with Ns sites reduces to

XG =
Ns−1∑
n=1

xG
n ζ n. (6)

Here, xG
n is a polynomial in the SU(N) parameter N of order

n. The weights for all graphs to eighth order are given in
Supplementary Materials [46].

From the partition function, the particle density (per site)
can be obtained via the relation ρ = ζ ∂

∂ζ
ln Z. Thermody-

namic quantities such as the internal energy per site, e, and
entropy per site, s, are obtained using the relations

e = −
(

∂

∂β
ln Z

)
ζ

(7)

and

s = −β

(
∂

∂β
ln Z

)
ζ

− ρ ln ζ + ln Z. (8)

The ferromagnetic susceptibility per site is defined by the
second derivative of ln Z with respect to the spin-polarizing
field h. It is given by

χ = 1

β

∂2

∂h2
ln Z. (9)

The field term in the Hamiltonian is defined solely for cal-
culating the susceptibility. Otherwise, we will restrict all
calculations to h = 0.

Single-site partition function and series expansions. In the
limit of U → ∞ the single-site partition function to order h2

becomes z = z0 + h2z1, where

z0 = 1 + Nζ (10)

and

z1 = β2ζ

2

N − 1

N
. (11)

For all calculations other than the susceptibility, we can set
h = 0. In zeroth order the particle density is given by

ρ0 = Nζ

1 + Nζ
. (12)

The zeroth-order susceptibility per site is given by

χ = 2

β

z1

z0
=

(
N − 1

N2

)
βρ. (13)

This is a Curie law as no double occupancy means we have
local moments at all temperatures.

We will define excess susceptibility, over and above the
Curie law, as

χ = C
ρ

T
+ �χ, (14)

with Curie constant C equal to N−1
N2 . Note that in this equa-

tion the density is the full density, not the bare density
obtained in zeroth order. Our goal is to calculate �χ .

014424-2



DIVERGENCE OF MAGNETIC SUSCEPTIBILITY IN THE … PHYSICAL REVIEW B 106, 014424 (2022)

In this paper, we will restrict ourselves to bipartite lat-
tices. All the graphs that contribute to the zero-field partition
function on a bipartite lattice to eighth order together with
their weights for arbitrary N are given in the Supplemental
Material [46].

Near one particle per site, all properties can be expanded
in powers of the hole density δ0, given by

δ0 = 1 − ρ0 = 1

1 + Nζ
= 1

z0
. (15)

For the Nagaoka-Thouless problem, we are interested in the
limit δ = 1 − ρ going to zero. Thus we will keep terms linear
in δ0 and drop all terms proportional to higher powers of δ0.
These terms that are linear in δ0 come from exactly one hole
in each cluster. We should note that this does not mean we are
looking at a single hole in the thermodynamic system. Our
formalism implies that we are studying the limit of low hole
density as similar behavior will be happening independently
all over the system.

In the large-U limit, the weight of a graph XG is a polyno-
mial in ζ of the order of Ns − 1, where Ns is the number of
sites in the cluster. The restriction to the lowest power of δ0

reduces the weight factor for a graph to

XG = xGζ Ns−1. (16)

The coefficients xG, which depend on N and the field h, can
be shown to be always positive. These terms correspond to
graphs which consist of linear segments or closed loops joined
together in a treelike manner. Thus the contributions come
from products of a single hole moving back and forth on a
treelike graph or a single hole moving in closed loops. In both
cases they make a positive contribution (see Supplemental
Material for low-order calculations). We will see that this will
lead us to the result that the contribution to excess suscepti-
bility from every graph is non-negative. This means that even
a partial summation of graphs is a lower bound on the excess
susceptibility.

In this limit, the relation between the full density function
and fugacity becomes

ρ = ρ0 +
∑

G

LG(βt )Nb (Ns − 1 − Nsρ0)
xGζ Ns−1

zNs
0

. (17)

The excess susceptibility is given by

�χ =
∑

G

LG (βt )Nb (C1G − C2G), (18)

where

C1G = 1

β

∂2

∂h2

(
XG

zNs

)
(19)

and

C2G = (Ns − 1 − Nsρ0)
C

T

XG

zNs
. (20)

For tree graphs, with no closed loops (see Fig. 1), the
coefficient xG in zero field is proportional to NNs−1. This
reflects the fact that in the absence of closed loops every
spin can independently be of any species. For these graphs
the contribution to excess susceptibility vanishes identically.
Physically, this is a reflection of the fact that susceptibility of

FIG. 1. Two classes of graphs that contribute to the susceptibility
expansion. (a) Tree graphs, with no closed loops. Every bond must
be doubled in order to have a nonzero trace contribution. In the
single-hole sector, each fermion moves back and forth as the hole
moves around the graph. Every spin can independently be of any
spin species. Such graphs only contribute to the Curie law and do not
contribute to the excess susceptibility at all. (b) Graphs consisting
of closed loops. In the single-hole sector, as the hole traverses the
loop, each spin moves to its neighboring position. In order to have a
nonzero trace contribution, all fermions must be of the same species.
Thus these graphs have a maximum relative contribution to the
excess susceptibility.

independent spins is already contained in the Curie law. Thus
we only need to consider those weights where the power of N
in a graph with Ns sites is less than Ns − 1. In all these terms
at least some of the spins are constrained to be of the same
species. Even the smallest such constraint can be shown to
lead to a positive contribution to the susceptibility.

At the other extreme are those terms where zero-field xG

scales linearly with N . This implies that every spin in the
graph must be of the same species to contribute to a nonzero
trace. An example is a graph consisting of a single closed
loop (see Fig. 1). It must have this behavior. As a hole
traverses around the loop, every fermion in the loop moves
to its neighboring position and hence must be of the same
species as its neighbor to contribute to the trace. These graphs
contribute maximally to the excess susceptibility. It can be
shown that for a single loop of length l the zero-field weight
factor is

XG = 2l

l!
N ζ l−1. (21)

The excess susceptibility contribution from this graph can be
shown to be

C

T

(βt )l

l!
2l (l − 1)(l − 2)N

ζ l−1

zl
0

. (22)

Expressing this in terms of ρ0 gives

C

T

(βt )l

l!
2l (l − 1)(l − 2)

ρ l−1
0 δ0

NNs−2
. (23)

It is well known that for large l , the number of polygons of
even length l embedded in a bipartite lattice scale as [47]

pl = Aμl
p la−3, (24)

where the constant μp called the connectivity constant is
known approximately for most lattices [48]. Ignoring the
weak dependence on the exponent a which will only affect
the prefactor, the contributions of polygons can be summed to
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obtain an excess susceptibility of

�χ ∝ N2 δ0

ρ0

C

T
exp

�

T
, (25)

with � = tρ0μp

N . Ignoring the slowly varying prefactor, this
shows that the excess susceptibility diverges exponentially as
T → 0. We believe the primary role of the additional terms
not included in this summation is to decorate these graphs and
renormalize the bare density ρ0 to the full density ρ.

This result provides a lower bound to the magnetic suscep-
tibility and implies that the Nagaoka-Thouless ferromagnet
is a thermodynamic phase of matter for low hole density
and low enough temperatures. The characteristic temperature
scale at which the susceptibility becomes exponentially large
is inversely proportional to the SU(N) parameter N . Thus
the tendency for ferromagnetism gradually weakens with in-
crease in N . These results are in agreement with the earlier
dynamical mean-field theory results for the SU(2) case in that
the ferromagnetic phase boundary was found to go to zero
temperature as the hole density goes to zero [23]. They are
also in agreement with mathematical arguments that show the
existence of finite magnetization in a field that exceeds the
paramagnetic value at any temperature [22].

The extension of these results to finite U/t and finite hole
doping can be done numerically as was done for the SU(2)
t-J models some time ago [24,44,45,49]. Those studies show
that at small enough J/t and close to half filling the peak in
the magnetic susceptibility shifts to q = 0. However, from a

small number of terms in the expansion it is more difficult to
rigorously establish the divergence of the susceptibility.

Discussion and conclusions. In this paper we have used
finite-temperature strong-coupling expansions for the Hub-
bard model to revisit the problem of Nagaoka-Thouless
ferromagnetism at large U and small hole doping near one
particle per site. We have shown that the ferromagnetic sus-
ceptibility of the system diverges exponentially as exp �/T
as T → 0. Thus at sufficiently low temperatures, the system
must turn ferromagnetic.

While the Hubbard model is an approximate model for
solid state systems, it can be a well-characterized and accurate
model in cold atomic gases in optical lattices. Furthermore,
in these systems, the Hubbard parameters can be tuned by
lasers, the number of fermion species can be made larger
than 2, and the system can have SU(N) symmetry. We have
shown that Nagaoka-Thouless ferromagnetism is present for
all N and is only weakened gradually with increase in N .
Fundamentally, this ferromagnetism arises from the fact that
as a hole traverses a closed loop, a nonzero trace arises only
if all the spins belong to the same species. This combined
with the positive trace on loops of bipartite lattices implies
an exponentially divergent susceptibility as T → 0.

We hope our work will stimulate further experimental
search for Nagaoka-Thouless ferromagnetism and measure-
ments of the temperature dependence of the susceptibility at
low hole densities in solid state and cold atom systems.
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