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Flux roughening in spin ice with mixed ±J interactions
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Spin ice presents a typical example of a classical spin liquid, where conserved magnetic fluxes emerge from
microscopic spin degrees of freedom. In this paper, we investigate the effect of perturbation by magnetic charge
disorder in two-dimensional spin ice. To this aim, we develop a cluster update algorithm which enables fast
relaxation of magnetic charges. The efficient Monte Carlo calculation reveals a drastic change of the spin
structure factor as doping magnetic charges: the pinch point, characterizing the spin ice, is gradually replaced
by a diffusive peak. We derive an analytical relation connecting the flux fluctuation and the spin structure factor,
and we explain the evolution of the diffusive peak in terms of the roughening of magnetic fluxes.
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I. INTRODUCTION

Recently, quantum and classical spin liquids have attracted
considerable attention due to their exotic properties and po-
tential application to information devices [1–3]. The unusual
properties of spin liquids are attributed to the nonlocal nature
of these systems: global objects, such as fluxes and vortices,
emerge from microscopic spin degrees of freedom [4–7].
They act as a main carrier of energy and information to pro-
duce many unusual features of the system [8–24].

Spin ice gives a typical example of a classical spin liquid,
which now has a long history of intensive research [25]. In
spin ice, spins satisfy a strict local constraint of the 2-in 2-
out ice rule, which can be mapped to a global magnetic flux
under a Gauss’s law. This flux picture provides a systematic
description of many aspects of spin ice, such as the origin of
singularity in the magnetic structure factor known as a pinch
point [26,27]. Moreover, one can associate a winding number
with the flux itself and make a topological classification of
degenerate ground states. The notion of flux is also useful to
the computational and memory device application of artificial
spin ice [28–30].

Given these crucial roles of the magnetic fluxes, its re-
sponse to external perturbation is of natural interest. In
general, the information stored in nonlocal objects is robust
against local perturbations. On one hand, this robustness is
favorable for the purpose of, e.g., memory storage, since the
stored information is hard to dissipate. On the other hand,
the robustness results in difficulty in manipulation, since one
usually uses local probes to control information. These con-
flicting aspects require us to sophisticate our knowledge: it is
crucial to classify the response of magnetic fluxes according
to the types of external perturbations.

One remarkable case study in this direction is the in-
troduction of nonmagnetic impurities or spin vacancies
[31–37]. Vacancies unexpectedly introduce emergent dipoles
in spin ice as a result of fractionalization, which serve as

effective low-energy degrees of freedom, leading to a topo-
logical glassy state [34]. In this paper, we examine another
possibility of perturbation by magnetic charge disorder in-
duced by ferromagnetic interactions. This setting may be
relevant to the application of spin ice to memory devices for
computation, since the induced magnetic charges may be used
as elemental bits, storing binary information as the sign of
charges. The system with mixed interaction signs may also
be relevant in considering a class of pyrochlore oxides, such
as iridates [38–49], where the interaction between rare-earth
moments are in a subtle competition between ferromagnetic
and antiferromagnetic [38].

In this paper, we consider the two-dimensional spin-
ice model, i.e., the nearest-neighbor antiferromagnetic Ising
model on a checkerboard lattice with a certain fraction of
ferromagnetic plaquettes. The magnetic charges induced on
ferromagnetic plaquettes cause a severe difficulty of slow re-
laxation. To overcome this problem, we develop an algorithm,
which we name the zero-energy cluster (ZEC) update. This
algorithm enables us to explore the gradual destruction of
spin ice by the induced magnetic charges. We find that the
collapse of spin ice is characterized by the evolution of the
magnetic structure factor: the iconic pinch point of spin ice is
replaced by a diffusive peak. We derive an analytical relation
between the magnetic flux fluctuation and the structure factor
at a special wave number, and we find that a flux roughening
causes this instability of spin ice.

II. MODEL

We consider the nearest-neighbor Ising model on a
checkerboard lattice of NP ≡ N×N plaquettes (squares
with diagonals) with periodic boundary conditions. Ising
spins σ j = ±1 are placed on all Nsite ≡ 2NP lattice points
[Fig. 1(a)]. If we consider plaquette-dependent interactions,
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FIG. 1. (a) The lattice geometry is shown for N = 8. A checker-
board lattice is placed on the x-y plane, with the origin at the
left-bottom plaquette. The space between neighboring plaquettes is
set to be 1: The plaquettes are located at Rp = ( jx, jy ), and the
spins are located at r j = ( jx, jy + 1

2 ) and ( jx + 1
2 , jy ) with integers

0 � jx, jy � N − 1. One of the ground states of Hamiltonian (1)
is shown here. The red (blue) circles represent σ j = +1 (−1). The
light (dark) gray plaquettes have antiferromagnetic (ferromagnetic)
interactions: Jp = +1 (−1). The plaquettes are classified into two
sublattices, A and B. (b) Arrow representation for the spin config-
uration in a dashed box in panel (a). Right-directed (left-directed)
arrows are depicted in red (blue). The numbers at the bottom show
W x

jx = (the number of →) - (the number of ←) on a line separating
two plaquette columns at x = jx and jx + 1. On both sides of the
central column, W x

jx changes by 4, due to the ferromagnetic plaquette
supporting a charge Qp = 4. (c) Examples of bonds drawn in the
ZEC update. (d) Example of a closed region separated by bonds in
the ZEC update.

the Hamiltonian reads

H =
∑
〈i, j〉

Ji jσiσ j = 1

2

∑
p

JpQ2
p + Const. (1)

On each plaquette p, we have introduced a magnetic charge
Qp ≡ ηp

∑
i∈p σi. The sign factor ηp takes +1 (−1) on the

sublattice A (B) of plaquette p [Fig. 1(a)], which is essential
to make Qp a conserved charge.

If Jp > 0, Hamiltonian (1) immediately results in the ice
rule Qp = 0 at the ground state, which leaves macroscopic
degeneracy [50,51]. In this work, we choose Jp randomly
according to the binary distribution P(Jp):

Jp =
{−J P(−J ) = pF,

J P(+J ) = 1 − pF.
(2)

pF denotes a fraction of ferromagnetic plaquettes: pF = 0 (1)
corresponds to the checkerboard spin ice (pure ferromagnetic
Ising model).

The ferromagnetic plaquettes induce finite magnetic
charges at low temperatures. At least for a small number of
ferromagnetic plaquettes, the ground state keeps macroscopic
degeneracy, satisfying a modified ice rule: Qp = 0 (±4) for
antiferromagnetic (ferromagnetic) plaquettes. A convenient
illustrative method to describe this modified ice rule is the
arrow representation: replace a spin σ j = +1 (−1) with an
arrow pointing from the plaquette of A (B) sublattice to B (A)
sublattice [Fig. 1(b)]. In this expression, each ground state
corresponds to a configuration of a six-vertex model with
all-in/all-out vertices of ferromagnetic plaquettes. This ex-
pression is also suitable for the formulation of the columnar
transfer matrix to calculate the observables at the ground state.

Another advantage of the arrow representation is that we
can visualize a conserved magnetic flux [Fig. 1(b)]. To see
this, let us draw a line parallel to the y axis between two ad-
jacent columns of plaquettes. We define W x

jx as the difference
between the number of right-directed arrows and that of left-
directed arrows on the line. The magnetic flux is conserved in
a sense that W x

jx does not depend on the position of the line
as long as Qp = 0 is satisfied. More precisely, the magnetic
charge Qp serves as a source of the flux: When a finite charge
Qp exists, the value of W x

jx changes by Qp. In this sense, W x
jx

deserves the name of “magnetic flux.” We will come back
to a formal definition of magnetic flux and its relation to an
observable quantity later.

III. METHOD

We study the low-temperature property of Hamiltonian (1)
by the Monte Carlo method. In the simulation of spin-ice-
type models, the loop update algorithm is usually available to
accelerate relaxation at low temperatures [52–54], and similar
algorithms are also applied to dimer models [55,56], vertex
models [57], and loop models [58]. These update methods,
however, do not work for the relaxation of magnetic charges.
The basic idea of the loop update is to find a tensionless
loop by Brownian motion, which premises the ice rule and is
effective only in the spin-ice manifold. A variant of the loop
update was also proposed to transfer a charge along a string
connecting positive and negative charges [59]. However, this
algorithm is also ineffective for the present purpose, since
the stable charge values of ferromagnetic plaquettes are well
separated, Qp = ±4. With this charge transfer algorithm, we
need to transfer �Q = 8 by finding four strings connecting
a charge pair, which inevitably make the program code ex-
tremely cumbersome.

Considering these difficulties in the string-based algo-
rithms, we turn our attention to a cluster rather than a string
and propose the ZEC update as introduced below. The basic
idea of the ZEC update is to find a cluster of spins flippable
without any energy cost. By repeating cluster flips that contain
different sets of magnetic charges, one can relax charges effi-
ciently. The protocol of the ZEC update is simply summarized
as follows:

(i) Draw a bond on each plaquette if the interactions across
the bond sum up to zero [Fig. 1(c)].
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(ii) Choose a closed region surrounded by the bonds and
flip all the spins inside the boundary [Fig. 1(d)].

In step (i), we must select the bonds on only one of the two
sublattices of the dual square lattice; otherwise, the detailed
balance condition is violated. For details of this point and
for practical information, such as the procedure to identify
the boundaries, see the Supplemental Material [60]. A similar
cluster construction based on the dual-lattice formulation has
been proposed for different models [58,61–63]. In the follow-
ing, we use the ZEC update in parallel with the single spin
update based on the heat bath algorithm and the loop update.

IV. BENCHMARK

To justify our algorithm, we show the comparison with the
exact transfer matrix calculation for a small system of 20×10
plaquettes with a periodic array of ferromagnetic plaquettes
[inset of Fig. 2(a)]. Figure 2(a) shows the charge correla-
tion on ferromagnetic plaquettes [〈QpQp′ 〉] for three different
methods: transfer matrix (red), the Monte Carlo method with
the ZEC update (blue), and the Monte Carlo method without
the ZEC update (green). The conventional algorithm leads to
substantial deviation even for this size of small cluster. With
the ZEC update, the difference from the exact result is within
the error bar of Monte Carlo sampling. We have made com-
parisons for a variety of periodic charge patterns and found
that the ZEC update gives accurate results up to pF � 0.2.
The ZEC update is still useful above this upper bound to
some extent. Yet certain local arrangements of ferromagnetic
plaquettes interrupt the performance of this algorithm. For this
problem, see the Supplemental Material [60].

To demonstrate the efficiency of the ZEC update for fast
relaxation, we compute the spin and charge autocorrela-
tion functions defined as �(t ) ≡ |[ 1

Nsite

∑
i〈σi(0)σi(t )〉]| and

�Q(t ) ≡ |[ 1
NF

∑
p∈�F

〈Qp(0)Qp(t )〉]|, respectively, with t be-
ing the Monte Carlo steps after the equilibration. Here, 〈· · · 〉
and [· · · ] denote the thermal average and the random average
over the configurations of ferromagnetic plaquettes, respec-
tively. Note that the charge correlation is defined for the
ferromagnetic plaquettes. Figures 2(b) and 2(c) show �(t )
and �Q(t ) calculated for NP = 104 and pF = 0.1 and 0.2 at
T/J = 10−2, with and without the ZEC update. Figure 2(b)
clearly shows that the ZEC update improves the spin relax-
ation considerably. With only single and loop updates, �(t )
stays ∼0.4 (0.6) for pF = 0.1 (0.2) after a long time. With
the ZEC update, �(t ) quickly falls off to the correct value
near ∼0. This tendency is clearer in the charge relaxation,
as shown in Fig. 2(c). Without the ZEC update, the charge
autocorrelation does not show the slightest sign of relaxation
and keeps the value ∼1. This persistence of magnetic charge
is quickly improved by the introduction of the ZEC update.

We also remark on the characteristic relaxation process
in the ZEC update algorithm. In the insets of Figs. 2(b)
and 2(c), we show the logarithmic plots of − ln �(t ) and
− ln �Q(t ), respectively. Towards the equilibrium values, they
show nearly linear behavior; i.e., the relaxation process can
be fitted by a stretched exponential, ∼ exp[−(t/τ )β], with β

being dependent on the value of pF. The stretched exponential
relaxation is often discussed in glasses and highly frustrated
systems [64,65], where a complex hierarchy of energy scales

FIG. 2. (a) Comparisons of the charge correlation [〈QpQp′ 〉] on
ferromagnetic plaquettes p and p′ between the exact transfer matrix
method and the Monte Carlo simulation with and without the ZEC
update, for the periodic array of ferromagnetic plaquettes embedded
in the checkerboard lattice of 20×10 plaquettes, as shown in the
inset. (b) �(t ) and (c) �Q(t ) for pF = 0.1 and 0.2 with and without
the ZEC update. The insets show (b) − ln �(t ) and (c) − ln �Q(t ).

is suspected. The cluster sizes flipped through the ZEC update
also make a complex distribution, which may underlie this
nontrivial relaxation dynamics.

V. STRUCTURE FACTOR

We now investigate the physical properties of the system
using the ZEC update algorithm. As a physical observable,
we focus on the spin structure factor S(q) = [〈σ−qσq〉], where
σq ≡ 1√

Nsite

∑
j σ jeiq·r j . Figure 3 shows S(q) obtained by the

Monte Carlo simulation for Np = 104 for different fractions
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FIG. 3. The magnetic structure factor S(q) calculated by Monte Carlo simulation for NP = 104 for (a) pF = 0, (b) pF = 0.1, and (c) pF = 0.2.

of ferromagnetic plaquettes at the temperature T/J = 10−2.
At pF = 0, all the plaquettes are antiferromagnetic, and the
system forms a perfect spin ice at zero temperature. Reflecting
the spin-ice formation, S(q) exhibits a singularity at q = qp ≡
(π, π ) and equivalent wave numbers [Fig. 3(a)]. This is the
pinch point, an iconic character of spin ice, reflecting the
divergence-free nature of magnetic fluxes [26,27].

As the number of ferromagnetic plaquettes increases, the
ice rule is gradually modified. As shown in Fig. 3(b), the pinch
point quickly blurs and is replaced by a ridgelike structure,
which is reminiscent of the neutron scattering images for
several spin-ice candidate materials [66–69]. As the fraction
of ferromagnetic plaquettes is further increased [Fig. 3(c)],
even a broad peak develops at qp where the pinch point was
originally placed. In general, the destruction of the pinch point
reflects the instability of spin ice, and the structural change
of S(q) around qp is used to classify the type of instability
[59,69–73]. However, to our knowledge, the growth of a peak
at qp has rarely been reported either in theories or in exper-
iments on classical spin ice, with a possible exception in a
three-dimensional quantum spin-ice candidate system [74].

VI. MAGNETIC FLUXES

Actually, the value of S(qp) carries important information
on the nonlocal property of the system as discussed below.
This wave number, qp = (π, π ), has already drawn attention
as the place of the singular pinch point. However, here we
would like to focus on the value of S(qp) itself. Indeed, even
after the spin ice is destroyed and the singularity is washed
away, S(qp) stores important information on the global fluxes
of the system. This relation also gives a precious example
in which nonlocal character of the system can be accessed
through local observables [75,76].

To clarify the connection between the magnetic fluxes and
S(qp), we write the formal expression of magnetic flux as

W x
jx =

∑
jy

(−1) jx+ jyσ jx+1/2, jy ,

W y
jy

=
∑

jx

(−1) jx+ jyσ jx, jy+1/2. (3)

This expression is equivalent to the intuitive arrow counting
presented in Fig. 1(b). In the expression (3), (−1) jx+ jy is a

sign factor to distinguish A and B sublattices of the plaquettes
[Fig. 1(a)]. This factor is in turn translated into a phase factor
at qp = (π, π ). We obtain σqp

= 1√
Nsite

(
∑

jx W x
jx + ∑

jy
W y

jy
)

up to a constant phase, which leads to the relation

S(qp) = [〈(W x )2〉] = [〈(W y)2〉], (4)

where W x = 1
N

∑
jx W x

jx and W y = 1
N

∑
jy

W y
jy

. This claims
that S(qp) is proportional to the fluctuation of the global mag-
netic fluxes.

In terms of Eq. (4), it is possible to attribute the evolution of
the structure factor to the enhanced fluctuation of the magnetic
fluxes. In the absence of ferromagnetic plaquettes, the flux
value is uniform over the system, and the zero-flux configura-
tions have the largest weight. Finite-flux configurations occur
only occasionally over the Monte Carlo steps. In the presence
of ferromagnetic plaquettes, however, the nature of the flux
fluctuation qualitatively changes: The fluctuation becomes
“spatial” rather than “temporal.” In Fig. 4, we show the snap-
shot of the flux distribution. As is clearly seen here, the flux
(W x

jx,W y
jy

) changes its value at ferromagnetic plaquettes, pro-
ducing a mosaic pattern. The accumulated charges Qp = ±4
on the ferromagnetic plaquettes force the flux value to change
by 4. As the fraction of ferromagnetic plaquettes increases,
the flux distribution shows roughening: This enhanced spatial
fluctuation of the magnetic fluxes is observed as the diffusive
peak of S(q) at q = qp.

FIG. 4. Snapshot of the set of the magnetic fluxes (W x
jx,W y

jy
)

and their sum W x
jx + W y

jy
. In the presence of charges, the flux

varies spatially and its pattern looks like a mosaic exhibiting spatial
roughening.
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VII. SUMMARY AND DISCUSSIONS

In summary, we have studied the effect of perturbation by
magnetic charge disorder in spin ice, by taking the model of
a checkerboard lattice with mixed ±J plaquette interactions.
For the relaxation of magnetic charges, we have developed a
type of cluster update algorithm for the Monte Carlo simu-
lation called ZEC. This numerical innovation enabled us to
explore the gradual collapse of spin ice by increasing ferro-
magnetic plaquettes, which is signaled by the replacement of
the pinch point by a diffusive peak. The evolution of the diffu-
sive peak is attributed to the flux roughening, which is verified
on the basis of a firm relation between the flux fluctuation and
the spin structure factor at qp = (π, π ).

The present study can be extended to many directions.
The collapse of the pinch point structure has been used to
classify the instabilities of spin ice. This theoretical finding
must be useful to interpret future experiments. For exam-
ple, in pyrochlore iridates, keen competition of ferromagnetic
and antiferromagnetic interactions has been actively debated.
While the number of available neutron scattering data is
limited due to the notoriously high neutron absorption rate
of Ir, it is interesting to look for the signature of competing
interactions in S(q) at finite temperatures.

It is also interesting to proceed with our analysis to larger
pF, where we expect that the flux roughening shows further
enhancement. If the density of ferromagnetic plaquettes in-
creases, the system cannot satisfy the modified ice rule any
more and faces severe frustration. There, the appearance of a
complex energy landscape is naturally expected, which may
give rise to a new type of topological glassy state.

From the technical viewpoint, our ZEC update provides a
powerful tool to analyze systems suffering slow relaxation.
For instance, it is important to apply this algorithm to spin
glass models and other types of spin-ice-like systems [77–81],
in which slow relaxation always confronts us. Our algorithm
can be flexibly extended to higher-dimensional systems or to
include different degrees of freedom. We would like to leave
these fascinating problems for future work.
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