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Three-dimensional electroelastic modeling of the nucleation and propagation
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A three-dimensional version of the electroelastic model allowing the description of spin-crossover (SCO)
materials taking into account for the volume change at the transition between the LS and the HS spin states
is developed. The investigations are realized on a rectangular parallelepiped lattice with cubic symmetry.
The SCO units are modeled by two-states fictitious spins coupled by springs whose equilibrium distances
depend on the spin states. We implemented massive parallel simulations using CUDA (Compute Unified
Device Architecture) programming where the spin states are updated using the Monte Carlo METROPOLIS

algorithm, while the mechanical relaxation (lattice position) is performed by molecular dynamics. In this
work, we investigated (i) the case of the thermal spin transition showing the macroscopic deformation of
the parallelepiped accompanying the propagation of single domains and (ii) the isothermal relaxation of the
photoinduced metastable HS fraction at low temperature. In both cases, the interplay between the electronic
and the structural aspects of these transformations is analyzed and discussed in relation with the model
parameters.
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I. INTRODUCTION

Spin-crossover solids (SCO) [1–5] have an electronic
configuration ranging between 3d4 and 3d7 (chromium, man-
ganese, iron, and cobalt) with an octahedral symmetry and
are surrounded by nitrogen atoms. They are fascinating proto-
types of inorganic molecular complexes, extensively studied
for their bistability at a molecular scale, which is an essential
physical property for applications in the field of switch-
able molecular solids such as high density memory devices,
numerical displays, or actuators [6–8]. In the case of Fe(II)-
based SCO materials (which is the most studied in literature)
with 3d6 configuration, the central transition-metal ion expe-
riences a ligand field energy which lifts the degeneracy of
the 5 d-orbitals of Fe(II) and splits them into three weakly
bonding t2g and two antibonding eg orbitals. Depending on
the strength of this ligand field, noted here �, and the in-
tensity of the interaction between neighboring molecules, a
competition between two spin states, namely, the diamagnetic
low-spin (LS, t6

2ge0
g, S = 0) state and the paramagnetic high-

spin (HS, t4
2ge2

g, S = 2) state does emerge. Thus the central
metal ion is in the LS (HS) state when the value of � is
much stronger (weaker) than the electrons pairing energy and
the transition becomes thermally accessible when � ∼ kBT ,
where T is the temperature. Locally, the spin transition from
LS to HS is accompanied with the volume expansion of
the molecular coordination sphere (around 30%) [9] which
could be interpreted by the electrons redistribution between
t2g and eg orbitals during the spin transition of the metal
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ion, leading to the increase of the Fe-N bond lengths from
∼2.0 Å in the LS state to ∼2.2 Å in the HS state [3,10].
Although these local volume expansions are occurring at
several points in the lattice, the global volume expansion of
the whole network is only ∼3%–5% [11], this latter value
is small compared to the volume expansion of the molecu-
lar coordination sphere. Indeed, a large part of the volume
expansion is absorbed by the molecular structure of the lat-
tice through ligand rotations and changes in the molecular
packing. The spin transition can then be achieved when the
pairing energy and the ligand field energy � are equivalent
[12], and it can be controlled by many external parameters
such as: temperature variation [13], external pressure [14–16],
magnetic fields [17], or a light radiation (via the LIESST
effect, standing for light induced excited spin state trapping;
which is trapping at low temperature of HS metastable state by
light) [18–20]. The LS-HS transition brings multiple changes
in properties, such as magnetic, structural, optical, and vibra-
tional changes at the transition. The state of the system can
be characterized by the so-called HS fraction nHS, which is
the fraction of molecules in the HS state at a given set of
parameters, mainly temperature, pressure. The behavior of
nHS brings information about the cooperativity of the sys-
tem.

In the case of the thermally induced spin transitions, the
literature reports a huge variety of spin transitions, depending
on the intensity of the elastic interactions between molecules:
a continuous gradual transition—corresponding to a Boltz-
mann population of two degenerate states—arises in weakly
cooperative materials [21], while an abrupt transition or a
first-order transition accompanied by hysteresis can be seen
in strong cooperative systems [22].
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The desire to understand cooperativity (its influence and
its role in the transition) has led to the development of various
theoretical models trying to explain the origin of the hysteresis
phenomenon in SCO materials: mean-field approaches using
phenomenological interaction parameters acting similarly for
all molecules [3,23,24] or Ising-like approaches in which
the interaction was written under a form of an exchange
term [25–27]. These models, although simple, were able to
catch essential aspects of the spin transition, reproducing the
conditions of existence of the gradual and first-order SCO
transitions. Nevertheless, these descriptions are qualitative
and are not adapted to give details on the reasons of the true
physical origin of the SCO phenomenon. A new class of elas-
tic models was developped, where the interactions between
the spin state of the molecule and the lattice were intro-
duced, taking into account the lattice volume change at the
transition: the mechanoelastic [28–30], anharmonic [31,32]
or electroelastic models [33,34]. These “new models” were
capable to explicate the experimental spatiotemporal behav-
iors of the SCO transition, observed by optical microscopy
on single crystals [35,36]: the transition begins from a corner
or edge of the crystal and expands over the entirety of the
material with a well-defined HS/LS interface whose shape
and orientation rely on the structural aspects of the crystal
in the HS and LS phases. In these models, the molecules
are modeled as ponctual sites interacting via springs with
elastic constants depending on the spin states of the connected
spins.

Numerical simulations have been performed on two-
dimensional (2D) systems [28,33,37–41], but fewer for
three-dimensional (3D) [42–49]. In this paper, we perform
massive parallel simulations of an electroelastic model in 3D
using conventional Monte Carlo algorithm for the evolution of
electronic (spin) and a molecular dynamics algorithm for the
structural (lattice parameter) degrees of freedom. For our nu-
merical implementation, we use the Compute Unified Device
Architecture (CUDA), released by Nvidia for their graphics
accelerator boards, in order to improve the computation time
of the simulations and increase the system size of the studied
lattices.

In this paper, we investigate the thermal properties of the
electroelastic 3D lattice, the macroscopic nucleation, growth,
and propagation of the front transformation during the spin
thermal transition in a 3D parallelipedic shaped system. Sev-
eral interesting physical properties are studied throughout this
work. Thus we first analyze the dependence of the width and
the shape of the thermal hysteresis of the HS fraction on
the strength of the nearest-neighbor (1n) elastic constant, and
then perform a meticulous analysis on the dependence of this
quantity along the three directions (1,0,0), (0,1,0), and (0,0,1)
of the lattice. Next, we study the nucleation, growth and prop-
agation mechanisms along the thermal transition as well as
along the relaxation at low-temperature of the metastable HS
state.

This manuscript is organized as follows: in Sec. II,
we present the 3D electroelastic model used and the
simulation method; Sec. III, present the results ob-
tained from these simulations, and in Sec. IV, we con-
clude and outline some possible developments of this
work.

FIG. 1. Schematic view of the 3D elastic network within an ele-
mentary simulation cell for a test site represented in red, connected to
its neighbors by springs represented in grey for the nearest neighbors
(1n), in blue for the next-nearest neighbors (2n), and in green for
the next-next-nearest neighbors (3n). The 1n neighbors are located
along the edges of the cube, the 2n neighbors are located along the
diagonals of the faces and the 3n neighbors are located along the long
diagonals of the elementary cell.

II. NUMERICAL MODEL

A. 3D electroelastic model

As explained briefly in the introduction, we consider the
electroelastic model in its 3D version which couples the elec-
tronic and the elastic properties of a SCO lattice. The model
is based on the description of the HS and LS states of the ith
SCO molecule of the lattice by a two-states fictitious spin Si,
with respective values Si = +1 and Si = −1 for HS and LS
states, respectively. Each molecule is linked to its neighbors
by an elastic spring, as depicted in Fig. 1, whose equilibrium
distance depends on the spins of the neighbors. Thus we
obtain an elastic network in which the nodes are made of
spins and the intermolecular distances depend on these spin
states by considering cubic unit cells in HS and LS phases.
The equilibrium distance between two neighboring HS sites
is naturally taken greater than that between two LS sites.

The total effective Hamiltonian of the system is given by

H =
∑

i

(� − kBT ln g)Si + Helast. (1)

The first term in (1) corresponds to the electronic con-
tribution, where � the ligand field energy gap, g = gHS/gLS

is the degeneracy ratio between the HS and LS states, T is
the temperature, and kB is the Boltzmann constant. The term
−kBT ln g is an entropic contribution originating from the
difference of electronic and vibrational properties of HS and
LS states. The temperature-dependence appearing in (1) lies in
the fact that our system of two-state particles is characterized
by eigenvalues S = ±1 with different associated degenera-
cies g±. It is quite easy to demonstrate that an Ising-like
Hamiltonian with and exchange interaction J and a field h
with spins S = +1 and −1 having different degeneracies g+
and g−, is isomorphic with the usual Ising Hamiltonian with
nondegenerate states having the same exchange interaction
and a temperature-dependent field h − kT ln(g+/g−). A sim-
ple demonstration of this point by calculating the Boltzmann
probability associated with a general configuration of spin
states is given in [26] [Eqs. (A1) to (A3) of the Appendix].
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TABLE I. Values of the nearest-neighbor equilibrium lattice parameters and elastic constants used in the simulations.

Distances (nm) Elastic constants (K nm−2)

1n distances RHH
0 = 1.20 RHL

0 = 1.10 RLL
0 = 1.00 A1n = 3 × 103

diagonal faces
√

2RHH
0 ≈ 1.70

√
2RHL

0 ≈ 1.56
√

2RLL
0 ≈ 1.41 B2n = 0.3A1n

diagonal of the cube
√

3RHH
0 ≈ 2.08

√
3RHL

0 ≈ 1.91
√

3RLL
0 ≈ 1.73 C3n = 0.3A1n

The second term Helast in (1) corresponds to the elastic
contribution of the lattice, which is written here as

Helast = V1n(|�r|) + V2n(|�r|) + V3n(|�r|)
= A1n

∑

(i, j)

(ri j − R0(Si, S j ))
2+B2n

∑

(i,k)

(rik − R′
0(Si, Sk ))2

+ C3n

∑

(i,p)

(rip − R′′
0 (Si, Sp))2 (2)

Where 1n, 2n, and 3n denote the first-, second-, and third-
nearest neighbors. Therefore, the elastic constants connecting
a specific site (represented with a red sphere in Fig. 1) to
its neighbors are given by: A1n for nearest neighbors (1n)
located along the three axes of the elementary simulation cell
of the lattice (represented with grey spheres in Fig. 1), B2n

for next-nearest neighbors (2n) located along the diagonals of
the faces of the cell (represented with blue spheres in Fig. 1),
and C3n for next-next-nearest neighbors (3n) located along
the diagonals of the cell (represented with green spheres in
Fig. 1).

The Euclidean distances are denoted to ri j (respectively rik

and rip) between the 1n sites i and j (respectively between
2n sites i and k, and 3n sites i and p). The equilibrium
bond lengths between two 1n sites is R0(Si, S j ) [respectively
R′

0(Si, Sk ) and R′′
0 (Si, Sp)]. We denote by RHH

0 , RLL
0 , RHL

0
(RLH

0 ), the equilibrium distances between 1n HS-HS, LS-LS,
and HS-LS configurations. Thus we have R0(+1,+1) = RHH

0 ,
R0(−1,−1) = RLL

0 , and R0(+1,−1) = R0(−1,+1) = RHL
0 .

Table I summarizes the values of the equilibrium lattice pa-
rameters, and elastic constants used in the simulations. For
simplicity in this study, we assume that RHL

0 = (RHH
0 +RLL

0 )
2 , and

we choose B2n = C3n for the second and third neighbors.
The second- and third-nearest neighbors have been con-

sidered specifically to avoid shearing inside the lattice, and
to ensure its stability. Moreover, the choice of B2n = C3n =
0.3A1n has been done to be consistent with previous works
at 2D with elastic model [50], and thus enabling an easier
comparison between results from different analysed systems,
but with the same electroelastic model. In fact, even a very
small value of 2n and 3n interactions are enough to realize the
lattice stability even with open boundary conditions. However,
increasing these elastic constants more than the values of the
1n elastic constants leads to other types of behaviors in the
nucleation of the HS fraction. This part is interesting and
deserves to be studied for its own as a separate work.

The simulations, and the results presented in this pa-
per, have been performed using, as far as possible, realistic
parameter values [51]: � = 450 K and g = 150 leading
to the equilibrium transition temperature of the Ising-like
model Teq = �

kB ln g ≈ 90 K. According to the used values of

elastic constants, the bulk modulus, E , is roughly evaluated as
A1n/R0, leading to a value of 5 GPa, which is in fair agreement
with those reported in literature [52].

B. Simulation method

We consider a 3D parallelipedic lattice of size (Nx × Ny ×
Nz ) = (96 × 32 × 32) with 98 304 spins, and free boundary
conditions in order to consider for the macroscopic lattice de-
formation arising from local volume expansions/contractions
resulting from the spin flips. The resolution of this model is
based on an adaptation of code written in CUDA, developped
for a similar 2D electroelastic model by our team [53]. This
implementation takes advantage of the performance of Nvidia
computing cores integrated in graphics accelerator boards:
thanks to them, we can significantly improve the size of our
simulation cells, without too much compromise with the com-
putation time. When the code is executed, CUDA generates a
grid of threads that are organized in a three-dimensional hier-
archy. Each grid is organized into an array of thread blocks,
where each one can contain up to 1024 threads and thread
block size should be a multiple of 32 due to the multiprocessor
of the cards wich can create, manage, schedule, and execute
threads in groups of 32 parallel threads called warps. For
each chosen simulation size of the system, the thread block
size has to be well defined for a better efficiency. Thus very
small block sizes, e.g., 32 threads per block, may limit perfor-
mance due to occupancy, whereas very large block sizes for
example 1024 threads per block, may also limit performance.
The graphics accelerator boards used is a Nvidia RTX A5000
based on the Ampere architecture with 8192 cores, 24 GB
GDDR6 memory available, a single precision performance up
to 27.8 TFLOPS, and the CUDA driver version installed is
11.4.

We implement two different approches to solve Hamilto-
nian (1): one for the evolution of electronic (spins) degrees
of freedom, and another one for the structural aspects by per-
forming respectively a Monte Carlo METROPOLIS simulation
(MC) on spin states combined with a simulation of molecular
dynamics (MD) to relax mechanically the lattice positions.

1. Monte Carlo Metropolis algorithm and simulations
methodology

First of all, we initialize the elastic network by setting up
the initial positions of the sites and their initial desired spin
values (for example all spins S = +1 and all distances ri j =
RHH

0 ), and then we let the lattice relax mechanically to reach
its equilibrium if necessary.

Afterwards, we use a parallelized MC algorithm over the
spin states (S = −1 and +1) to realize their thermal switch-
ing. Thus there is no true magnetic (exchange) interactions
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in the model where the spins interact through the elastic
lattice (i.e., the springs). Thus each spin site represents a
spin-crossover molecule whose degrees of freedom are de-
fined by its spin value ±1 and its coordinates (x, y, z) in
the lattice. The entire spin network is divided into sublat-
tices which are then mapped onto thread blocks, where each
of the sublattice/block contains (16 × 4 × 4) = 265 threads,
representing 256 molecules, that are also called sites or nodes
through the paper. Overall, this forms a three-dimensional
grid of (6 × 8 × 8) = 384 thread blocks. These blocks are
contiguous, as the sites inside each block: we subdivide the
spin lattice into multiple blocks in order to improve the com-
putational time. We update the entire spin lattice in a parallel
way at a frozen lattice configuration. In other words, we do
not update the spins until we finish testing all the sites, this
implies that whatever is the order in which we test the site
and whether the blocks are contiguous or not, it does not
change the result. Our GPU can perform operations on up to
8192 threads simultaneously. Indeed, the GPU is built on an
array of Streaming Multiprocessors (64 in our case), where
each Streaming Multiprocessors has a total of 128 cores and
performs operations on only one thread block at a time. In
addition, the order in which thread blocks are scheduled on
the Streaming Multiprocessors, is decided by the hardware
at runtime. Indeed, in CUDA each block of threads is sched-
uled (independently from the others) on any of the available
multiprocessors within the GPU, in any order, concurrently or
sequentially, so that the program can be executed on the max-
imum number of multiprocessors. The spin flip procedure is
done by the usual Monte Carlo technique based on METROPO-
LIS transition probabilities. This METROPOLIS procedure is
performed with random numbers obtained by a pseudorandom
numbers’ algorithm of high statistical quality, thanks to the
library cuRand integrated in CUDA. To summarize, we select
8 192 sites i among the Nx × Ny × Nz sites of the lattice,
with spin values {Si} = ±{1}i and position vectors {−→ri }, and
new spin value {Si new} = −{Si} are set without changing the
lattice positions. Each spin change is accepted or rejected by
the usual MC METROPOLIS criterion. We store {Si new} in a
different vector and we repeat the procedure for the next 8192
sites until all the 98 304 sites of the entire spin lattice are
inspected for the spin change. Next, we relax mechanically
the whole lattice through a molecular dynamics algorithm
described below. Thus, in the procedure all lattice positions
are updated 300 times at fixed spin configuration. We define
this as the unit time of Monte Carlo procedure (MCS). We
would like to highlight that this numerical procedure is not
a cluster algorithm, like the Swendsen-Wang one [54]. It is
interesting to mention that we could test 8192 noncontiguous
spins, update them and relax the system mechanically, then
test the next 8192 spins and so on. However, this method
significantly slows down the simulation due to conflicts in ac-
cessing memory. This is why we test all spins before updating
and relaxing.

2. Molecular dynamics algorithm

After all spins update, the elastic lattice is relaxed in a
deterministic way to reach the stable mechanical state in a
parallel way: each computing core calculates the gradient

of potential energy of each site of equation (1), in order to
determine the force vector, �F = −�∇Helast, acting on every
molecule or site. The obtained force field over the whole
system is then normalized with the larger norm of the gra-
dient, and the lowest energy configuration is searched by
relaxing the system in overdamped dynamics with a time step
dt2 = 0.001 (and setting the value of the discretization step
for the finite differences at 10−5). This is the principle of the
well-known steepest descent algorithm, useful to find the local
minimum of the elastic energy landscape. The new positions
of the molecules are recalculated using this new force field
with a strong damping to avoid oscillations. This procedure
is repeated 300 times, the aim being to reach the equilibrium
state, which can be monitored with the time dependence of the
total elastic energy of the system, which reaches a minimum
averaged value.

We consider that every molecule has a damped oscillatory-
type motion. The system of coupled differential equations for
all molecules is m d2−→ri

dt2 = −→
Fi − μ d−→ri

dt , where −→ri is the Carte-
sian site position vector of site i and m is the mass of the
particle, μ is the damping factor. In the case of overdamped
dynamics, this equation becomes d−→ri

dt = 1
μ

−→
Fi , where

−→
Fi is the

total force acting on site i. If one considers only next-nearest
elastic constants, the time scale of the dynamics is then ∼ μ

A1n
.

The dynamics is stopped when the force on each node ap-
proaches zero. As a general observation, the MC time, given
in Monte Carlo steps, is purely artificial and is hard to con-
nect with any real dynamics or real experimental timescale.
Molecular dynamics (MD) time is connected with the elastic
constants and the damping constant, however, one can easily
modify the time step (dt2 = 0.001) or the number of MD
iterations (here 300) performed between the selection of two
successive spins for the MC process. A low number of MD
iterations means that the lattice is not completely relaxed after
each spin update, which makes the MD and MC processes
competing. In the present MD simulations, we have chosen
for practical reasons and also for the sake of simplicity, to
well relax the lattice (300 MD iterations) after each MC spin
update, and therefore the MD and MC dynamics are well sep-
arated. In other words, the lattice dynamics is assumed to be
faster than the spin state relaxation. Indeed, usually the lattice
relaxation is in the picosecond timescale, while the spin-state
relaxation, that is the relaxation of the HS and LS states of
the molecule, is in the range of the micro to nanoseconds as
it has been observed in old Mossbauer experiments [55–57]
in noncooperative spin-crossover materials where the fluctua-
tions of the spin state of the molecule falls in the timescale of
the Mossbauer technique (10−8 s) leading to widen the spectra
when the frequency of the HS to LS fluctuation crosses that of
the observation technique.

It is worth mentioning that using 0 K molecular dynam-
ics simulation may lead the lattice subsystem to fall into a
metastable state. However, since we allow spin state fluc-
tuations in the MC process which affect the lattice energy,
because of spin-distortion interaction, it is always possible to
leave these metastable states in a reasonable finite time, except
when the simulations are done at very low temperature, which
exponentially increases the lifetime of the metastable states.
Although, this type of dynamics is also used by other authors
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FIG. 2. Thermal dependence of the HS fraction nHS for differ-
ent values of elastic constants A1n with error bars representing the
standard deviation on the average nHS for each temperature for the
simulation cell size (96 × 32 × 32). Remark: each presented point
has an error bar; however, the latter are visible only near the HS-LS
transition, above and below the size of the error bars is smaller than
the size of the points.

when treating 2D and 3D mechanoelastic systems [29]. Never-
theless, performing finite temperature Verlet or Nose-Hoover
algorithms would allow to have the same temperature for
the spin and lattice subsystems, but it would lengthen the
computational time simulations.

3. Measurements and calculations

The numerical simulations on temperature are done, thanks
to the previous two algorithms, by using a defined amount
of MCS as a waiting time to reach the stationary states at
each temperature: the number of MCS depends of the simula-
tion parameters and is defined empirically (typically NMCS

therm =
[100, 500], depending of the elastic constant value A1n). The
temperature sweep rate is taken to 1 K every NMCS

therm steps.
Then, over the next 50 MCS, statistics are made to determine
average physical values, like the HS fraction nHS(T ), the mean
distance between molecules, etc. Each averaged measurement
is carried out after performing three independent runs to
ensure that the different configurations used for means are sta-
tistically independent, so as to obtain uncorrelated equilibrium
states.

For example with an elastic constant value A1n = 3000, for
each temperature step the simulation takes about 5 min 30 sec
for a number NMCS

therm = 500 with CUDA: the time needed to
perform a thermal cycling of Fig. 2 is about 22 hours for the
A1n = 3000 case. For comparison, in sequential (on a desktop
computer with Intel Core i5-10500 at 3.10 GHz with 27.953
MFLOPS and 32 GB of memory), for the same parameters,
it would take about 1 hour and 35 min for each temperature
step, and then about 16 days for the same thermal cycle in
the A1n = 3000 case. Thanks to our parallel computing with
CUDA, here we enhance the calculation time by a factor 17.

The HDF5 library [58] is used for writing into files the spin
state, the position and other configuration’s information in
order to store, manage and do postprocessing on them easily.

FIG. 3. Hysteresis width �T as a function of the square of the
elastic constant values A1n above the critical threshold AC

1n showing
a linear behavior. We take the values of A1n � 100 K nm−2, which
are more easily measurable. In blue, we plot a linear regression with
95% confidence bounds.

III. RESULTS

A. Thermal spin transition

The thermal properties of the electroelastic 3D lattice is
monitored by the HS fraction nHS = (1+〈Si〉)

2 as a function of T .
Figure 2 represents the thermal hysteresis loop of our 98 304
spins for various elastic constant values A1n. We observe that
in the absence of any kind of interactions (A1n = 0 = B2n =
C3n), the thermal transition is smooth and gradual, and no
hysteresis is detected. For low elastic constant values A1n,
the hysteresis is also undetectable. When the magnitude of
elastic interactions is larger than a critical value, AC

1n = 250,
a hysteresis does appear: its shape and width depend on these
interactions, becoming larger and more abrupt for more im-
portant values of A1n. This expected behavior is similar to the
experimental situations where compounds with strong inter-
actions between the SCO complexes show wider hysteresis.
We also notice that larger values of A1n involve a squarer
thermal hysteresis loop as observed in other 2D and 3D studies
[43,59].

The width of the hysteresis �T is defined as a tempera-
ture interval between the heating Tup and the cooling Tdown

branches. These temperatures are defined as equilibrium tem-
peratures at nHS = 1

2 , and so �T = Tup − Tdown. As can be
seen in Fig. 3 where we plot the hysteresis width �T as
a function of elastic constant values A1n above the critical
threshold AC

1n, we realize that the dependence of �T follows
a power law almost parabolic. We plot a nonlinear regression
with a power law �T = f (A2

1n) where a 95% confidence is
found. Of course, this dependence does not take into account
others physical parameters of the system (different sizes of the
simulation cell, elastic constants of the B2n and C3n neighbors,
lattice misfit between HS and LS, etc.) whose slope may
depend, which should be considered in a more detailed study
to verify whether this power law exponent β ≈ 2 can fall in a
universality class at 3D or not.

Since we have a 3D lattice, we want to study the effect
of the shape anisotropy of the system by analyzing the nHS
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FIG. 4. Mean nHS fraction as a function of T for each of the Ni

planes of spins, perpendicular to the (Oi) direction, with i = {x, y, z}.
Remark the cascade effect along (Ox) direction and the simultaneous
transitions of all planes along (Oy) and (Oz) directions.

fraction for each plane of spins along the three directions of
space. For instance in the (Ox) direction, we have sliced the
simulation cell in perpendicular planes (yOz) at each spin
node along the (Ox) direction, and we calculated the mean
nHS fraction in each of the 96 planes. Figure 4 shows the
hysteresis loop as a function of T for each of the Ni planes
of spins, perpendicular to the (Oi) direction, with i = {x, y, z}.
We observe that there is a privileged direction for the propa-
gation of the spin transition inside the system along the (Ox)
direction, that is the elongated direction of the simulation cell.
As a matter of fact, in that direction, we can see a cascade
effect of the perpendicular spin planes that flip during the
heating or the cooling branches of the loop at the approach
of the transition temperature Teq ≈ 90 K, whereas there is

FIG. 5. Elastic variations of the lattice Vrelat as a function of elec-
tronic variations nHS during hysteresis loop presented for the case of
the cooling branch for A1n = 3000 for illustration. The same results
are found for the heating branch, or for others elastic constant values.
(Insert) The two considered variations Vrelat and nHS as a function
of T .

no cascade effect in the (Oy) and (Oz) directions where the
spin transition takes place simultaneously in all perpendicular
planes. The difference between the transition temperature,
between the transformation along (Ox) and both (Oy) and
(Oz) directions is mainly attributed to bulk transformation for
(Ox) and transitions on lattice surfaces for (Oy) and (Oz).

We are also interested in elastic variations of the lattice.
For that, we compute the volume of the simulation cell as
a function of T , and then we calculate the relative volume
change, Vrelat = V (T )−VLS

VHS−VLS
, where VLS and VLS are respectively

the volume of the simulation cell when all spins are in the
LS or HS state. To compare the changes of electronic nHS

and elastic Vrelat order parameters, in the Fig. 5, we repre-
sent Vrelat(T ) vs nHS(T ) for the case of the cooling branch
for A1n = 3000. The two variations align perfectly, meaning
that there is a good correlation between the behavior of the
electronic and the mechanical properties during the thermal
transition. We show in insert the two variations as a function
of T for information. The same results are found for the
heating branch, or for others elastic constant values, when
hysteresis appears in the system. As a note, this result relates
to the lifetime of the metastable states around the thermal
hysteresis and the interplay between the dynamics of the spin
and lattice degrees of freedom. Indeed, according to the sim-
ulation procedure in which the system is sufficiently relaxed
mechanically (300 runs), after each spin flip, the volume fol-
lows adiabatically the behavior of the HS fraction, as shown
in Fig. 5, where Vrelat and nHS are superimposed. Conversely
however, if we perform the simulations with less molecular
dynamics runs (for example, 10 instead of the previous 300,
to exaggerate the effect) after each spin flip, then the lattice
relaxation will interfere with that of the spin network and the
thermal responses of Vrelat and nHS will be different with wider
thermal hysteresis, see the Fig. S1 of Ref. [60].
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FIG. 6. Snapshot showing the spatiotemporal configurations of
the lattice during the cooling branch at nHS = 0.55 and T = 92 K for
A1n = 50. Yellow (blue) spheres represent HS (LS) sites.

Furthermore, as illustrated in Fig. S2 of Ref. [60], we
notice that the thermal evolution of the averaged 1n, 2n, and
3n distances of the neighboring pairs throughout the lattice
follows the same trend as the thermal dependence of the
HS fraction nHS. Moreover, we note that the extrema values
of these averaged distances are consistent with the nearest-
neighbor equilibrium lattice parameters defined in Table I.

B. Spatiotemporal aspects of the nucleation, growth, and
propagation of the spin states

The thermal dependence of the order parameters, nHS and
〈r〉, allow to distinguish gradual transition from first-order,
but don’t bring any information about the spatial mechanism
on the organization of the spin states along the transition.
Here, we aim to investigate these aspects for the case of the
thermally induced SCO transition, as well as the special case
of low-temperature relaxation of metastable HS states.

1. Along the thermal transition

Figure 6 displays the spatial organization of the spin states
for nHS = 0.55, for a value of A1n below the critical value
(here A1n = 50), showing a random switch of the spin inside
the simulation cell, in agreement with the weak cooperative
character of the elastic interactions, compared to ligand field
energy. Whereas value A1n = 3000 above the critical value
lead to the formation of clusters in the lattice configuration
as depicted in Fig. 7. In the latter, the propagation of the spin
transition inside the system corresponds to multiple domains
of flipped spins that start independently from all corners and
grow toward the center of the lattice.

We are interested in the lattice strain during the thermal
procedure focusing on the study of the displacement field
of lattice spins of the spatial configurations Figs. 6 and 7.
As we have done previously for 2D systems [33,51], we
denote by −→u (i, j, k) the displacement field associated with
the spin coordinates (i, j, k), whose expression is defined by
the following equation: −→u (−→r ) = −→u (i, j, k) = −→r (i, j, k) −−→r0 (i, j, k), where −→r (i, j, k) and −→r0 (i, j, k) are respectively
the final and initial positions of the spin vectors (i, j, k) in
the lattice. We take the positions of the LS state as ref-
erence initial positions: −→r0 (i, j, k) = (i RLL

0 , j RLL
0 , k RLL

0 ).
Elements of the strain tensor εαβ ({α, β} = {x, y, z}), given by:

FIG. 7. Selected snapshots showing the spatiotemporal configu-
rations of the lattice during the cooling branch at various nHS values:
0.87 (a), 0.57 (b), and 0.21 (c) for A1n = 3000. Yellow (blue) spheres
represent HS (LS) sites. Remark the macroscopic domain character
of the HS → LS transformation.

εαβ = 1
2 ( ∂uα

∂β
+ ∂uβ

∂α
), bring information about the mechanical

effects induced by the growth areas. Here, the derivatives
of the various components of the displacement field are
calculated within the approximation of continuous medium,
for example, ∂ux

∂x = ux (i+1, j,k)−ux (i, j,k)
RLL

0
, ∂uy

∂y = uy (i, j+1,k)−uy (i, j,k)
RLL

0
,

∂uz

∂z = uz (i, j,k+1)−uz (i, j,k)
RLL

0
. Others derivatives ∂ux

∂y , ∂uz

∂y , etc. bring-
ing information about deviatoric strain are calculated in the
same way. In particular, the divergence of the displacement
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FIG. 8. Snapshots showing the spatial distribution of the diver-
gence of the displacement field along the cooling branch of the
thermal SCO transition, corresponding to snapshots of Fig. 7.

field, the expression of which is
−→∇ · �u(�r) = εxx(�r) + εyy(�r) +

εzz(�r), that is the trace of the strain tensor which describes
the local relative volume expansion and gives information
about mechanical effects inside the simulation cell, allows to
highlight the elastic character of the LS-HS interface during
the transition.

Figure S3 of Ref. [60] and Fig. 8 show the spatial dis-
tribution of the divergence of the displacement field during
hysteresis loop corresponding to snapshots of spins configu-
rations of Figs. 6 and 7. Since the reference state is that of
LS, this leads to a map of the divergence going from zero (in
the LS state—bluish in the figures) to positive values (in the
HS state—reddish in the figures). We realize that for A1n =
50, below the critical value of elastic constant, the strain is
randomly distributed in the simulation cell, as depicted in
Fig. S4 of Ref. [60] illustrating different sectional views,
wheres for A1n = 3000, above the critical value, the most
important changes occur in the interface regions as can be
seen thanks to the sectional views of Fig. 9. A correlation is of

course observed between the divergence of the displacement
field (dilation of the system) and the spins configurations.
Furthermore, the interface shape is almost straight and per-
pendicular to the simulation cell border. In contrast, Figs. 9(b)
and 9(c) clearly indicate that, contrary to the corresponding
electronic interface of Figs. 7(b) and7(c), the divergence field
diffuses far from both sides of the interface, demonstrating
the long-range character of the transformations operating in
the simulated material.

Information about the shear stresses, which causes the
distortion of the lattice during the spin transition, are given
by the curl of the displacement field

−→∇ × �u(�r). This curl
can be written in term of the rotation vector −→ω by the re-
lation

−→∇ × �u(�r) = 2−→ω . Elements of the rotation tensor ωαβ

are given by the equation ωαβ = 1
2 ( ∂uα

∂β
− ∂uβ

∂α
). This tensor is

skew symmetric: ωαβ = −ωβα , it has only three independent
scalar components defining the rotation vector −→ω , with ωi

(i = {x, y, z}) components signifying the i axis around which
there is a rotation. The components are ωx = 1

2 ( ∂uz

∂y − ∂uy

∂z ),

ωy = 1
2 ( ∂ux

∂z − ∂uz

∂x ) and ωz = 1
2 ( ∂uy

∂x − ∂ux
∂y ). We have calcu-

lated the averages of each of the three component ωi during
the thermal cycle, for A1n = 50 (gradual transition) and for
A1n = 3000 (hysteretic transition) whose respective results are
summarized in Figs. 10(a) and 10(b). We note that for gradual
transition the same kind of thermal evolution for the three
component appears, with weak oscillations around a mean
value (equal to zero for ωx), and almost a symmetric behav-
ior for ωy and ωz relative to x coordinate. This implies that
rotational effects arise specifically around the y and z axes in
the system. In contrast, for A1n = 3000, while similar general
trend is observed for the three components, an hysteresis is
perceptible, but only for ωy and ωz. This hysteresis occurs for
both of them exactly at the same temperatures, that is between
T = 79 and 99 K, which also correspond to the switching
temperatures found in the corresponding thermal behavior of
the HS fraction. For further investigations, we compare the
spatial distribution of the curl of the displacement field with
previous results at A1n = 3000. As can be seen in Figs. S4–
S8 of Ref. [60], we observe different behaviors in the curl of
the displacement field between the heating and the cooling
branches. A correlation between the curl of the displacement
field, the spatial distribution of the divergence (and the elec-
tronic interface) is found for the heating branch, but during
the cooling one, the changes in the curl starts some Kelvins
before the interface propagation (more precisely in the same
interval of temperatures where the distortion of the lattice
occurs during the heating branch, i.e., around the equilibrium
temperature of the heating branch which is Tup ≈ 99 K at
nHS = 1/2 via Fig. 2), which can be then seen as a precursor
phenomena announcing the occurrence of the front propaga-
tion event. More details about this peculiar behavior are given
in Ref. [60].

2. Along the relaxation at low-temperature of the metastable
HS state

We are now interested in the mechanism of relax-
ation of the metastable HS state at low-temperature. Such
a metastable state can be obtained experimentally by
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FIG. 9. Sectional view in the planes (xOz) and (xOy): (a) at Ny (top) and Nz (bottom), and at Ny

2 (top) and Nz
2 (bottom) for (b) and (c), of

the spatial distribution of the divergence of the displacement field corresponding to snapshots of Fig. 8.

photoexcitation (LIESST effect) or by rapid quenching of the
high-temperature stable HS state. Here, the lattice is initially
prepared in the HS state from both electronic (Si = +1, ∀i)
and structural (ri j = RHH

0 ) point of view. This configuration is
naturally metastable at low temperature and, consequently, the
system is expected to relax towards the LS state. We perform
such a relaxation isothermally at T = 1 K to minimize thermal
fluctuations. Through that approach, we want to understand
the effects of the elastic constant values A1n on the nucleation
and growth processes of the LS domains and their propagation
through the present 3D lattice within the present Hamiltonian.

Numerically, we measure nHS every MCS from 0 to 400
MCS. The shape of the relaxation curves of the HS frac-
tion, nHS, of Fig. 11(a), which changes from exponential or
stretched exponential to sigmoidal, indicates, as expected, a
shift from weak cooperative to strong cooperative behavior
when increasing elastic constant values A1n. We have out-
lined the same elastic values of A1n as in Fig. 2, but we
have added more values above the critical threshold A1n =
4000, 5000, 6000, 7000, and 8000. The calculations of the
isothermal relaxation curves are less time-consuming than the
thermal process, that is why we added them here to highlight
the behavior at large A1n values. We can see that the lifetime
of the metastable HS state increases in the beginning of the

relaxation curve for large values of A1n, supporting the fact
that there is an increase in the elastic energy barrier to
overcome for a spin to flip from an HS to LS state. It is
interesting to comment about the sigmoidal shape of the HS
fraction curves in the case of strong cooperative systems
(A1n � 6000). There, two regimes are obtained: the first one
is characterized by a slight decrease of the HS fraction during
the 100 MCS for A1n = 7000, followed by a new regime
where the HS fraction falls down almost linearly on time. By
inspecting the time evolution of the average nearest-neighbor
bond lengths (〈r1n〉), represented in Fig. 11(b), one sees that
during the so-called first regime, which is in fact a stochastic
regime, the lattice is already moving towards the LS structure,
by nucleating small LS domains (here mainly in the corners).
The second regime is then a kind of a flow regime, where
the lattice has overpassed the elastic energy barrier preventing
the relaxation. In this regime, the front interface travels at
almost constant velocity, which results in the linear behav-
ior of the HS with time. For A1n � 1000, corresponding to
weak elastic energy barriers, “exponential-shaped” relaxation
curves, suggest that only the second deterministic regime is
operating. In Figs. 11(c) and 11(d), we have represented the
corresponding time evolution of the 2n, 〈r2n〉, and 3n, 〈r3n〉,
bond lengths for which a similar behavior is observed with
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FIG. 10. Thermal dependence of the three components ωx , ωy,

and ωz of the rotation vector
→
ω during the heating-cooling cycle for

two different values of elastic constants (a) A1n = 50 for gradual
transition and (b) A1n = 3000 for hysteretic transition, where the
presence of a hysteresis in ωy and ωz components is detected. The
two vertical dashed lines indicate T = 79 and 99 K.

the two already defined regimes. In particular, the correlation
between the HS fraction, nHS, and the three nearest-neighbor
bond lengths is more marked with 〈r1n〉 for strong elastic
constant, A1n, values, where a two-step relaxation behavior is
visible during the second regime. Moreover, one can clearly
see that for smaller A1n values (e.g., A1n = 50, 100, and 250),
the 2n and 3n lattice bondlengths, whose elastic constants
(A2n = A3n = 0.3A1n) are weaker than that of 1n sites, relax
faster, following the already discussed deterministic regime.
Besides, in Fig. 12, we draw the variation of the lifetime of
the metastable state τ at nHS = 1/2 as a function of the value
of the elastic constant: a power law can be found. We plot a
nonlinear regression using a logarithmic scale on the x and y
axes, with a power law τ ∼ (A1n)α , with α ≈ 4.41.

Configurations of the lattice, Figs. 13, 14 and Fig. S10
of Ref. [60] during the relaxation process reveal interesting
spatiotemporal aspects of the spin transition: multi-droplet
behavior for weak values of elastic constant values A1n, and
cluster behavior for larger ones, in good agreement with the
previous observation made on the thermal transition.

For weak values of A1n, the weakness of cooperative in-
teractions spreads the domain formation, and therefore the
nucleation of the LS state takes place everywhere in the lattice
with a ramified structure, as can be seen in spatiotemporal
configurations of the lattice in Fig. S10 of Ref. [60].

For large values of A1n, we see that four macroscopic LS
domains located at the corners of the simulation starting from
opposite tips of the lattice grow “independently” as far as
they are far from each other, and advance towards the inner
part of the sample, as represented in the spatiotemporal con-
figurations of Fig. 13. It is consistent that nucleation of LS
phase take place around the four corners of the lattice in a
squared geometry, and spreads over the whole system, from
energetic arguments. The spins in the corner (with only three
nearest-neighbor 1n) and on the edge (with only four nearest
neighbors 1n) are energetically preferable for the nucleation,
which then explains the observations as well as those of the
thermal hysteresis.

As an illustration, we present specific views of spatiotem-
poral configurations for A1n = 8000 in Fig. 14 with only the
LS spins visible during the transition to emphasize the nu-
cleation and propagation processes: the 1n elastic constant
becomes strong from this value, and to achieve the spin transi-
tion during the relaxation, we need to let almost 4000 MCS at
T = 10 K in lieu of approximately 300 MCS at T = 1 K for
A1n = 7000. From this intensity of nearest-neighbor elastic
constant, the nucleation and propagation process changes and
a single cluster appears in a corner of the simulation cell, that
propagates along the propagation direction, through a unique
interface HS/LS, to reach the other side of the cell. The same
pattern of nucleation at the very beginning of the MCS occurs,
with the spins in the corner and on the edge are energetically
preferable.

We display in Fig. 15(a) the spatial distribution of the
local pressure field of the lattice for A1n = 8000. To lighten
the manuscript, we only show a sectional view in the
plane (xOz) at Ny/2. The local pressure, Pi at site i, is
calculated by the following expression (which is merely
the gradient of the local elastic energy of the lattice at
each site i): Pi = −A1n

∑
j (ri j − R0(Si, S j )) − B2n

∑
k (rik −

R′
0(Si, Sk )) − C3n

∑
p(rip − R′′

0 (Si, Sp)). This physical quan-
tity is interesting because it provides additional information
than the spatial distribution of the divergence of the displace-
ment field. Actually the local pressure may be positive or
negative according to the stress applied on the site: a com-
pressive strain is equivalent to a positive pressure exerted on
the site, while a tensile strain results in a negative pressure.
Figure 15(a) provides detailed information concerning two
important points: (i) the first one concerns the orientation
of the front interface which changes from a tilted shape in
the beginning of the transformation to a straight one around
t = 4151 MCS as a result of the minimization of the total
elastic energy by minimizing the interface length. Second (ii),
we can see that the elastic strain deploys at long distance
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FIG. 11. Time dependence of the HS fraction (a) and average 1n (b), 2n (c), and 3n (d) lattice parameters along the relaxation from HS to
LS of a lattice initially prepared in the HS state at low temperature (T = 1 K), for various elastic constant, A1n, values. Remark the significant
increase of the lifetime of the metastable state with respect to A1n.

from both sides of the electronic HS/LS interface, where we
see that the LS (respectively, HS) phase is experiencing a
negative (respectively, positive) pressure. Overall, these re-

FIG. 12. Variation, in a log-log scale, of the lifetime of the
metastable state τ , evaluated at nHS = 1/2 in Fig. 11 as a function
of A1n, which fits with the linear regression (blue curve) with a slope
α � 4.4, suggesting the power law τ ∼ (A1n)4.4.

sults confirm the long-range nature of the elastic interactions
as a driving force of the front propagation along the HS to
LS relaxation. In Fig. 15(b), we show the distribution of the
pressure in the plane (yOx) at Nz/2 for 4151 MCS: the same
kind of behavior is observed, even if the interface seems to
be more jagged in the y direction. Figure S11 of Ref. [60]
highlight this sawlike pattern through planes (yOz) at various
x direction values, from both sides of the interface, for 4151
MCS. We observe this peculiar blueprint for the distribution of
the pressure around the interface. For views in the LS phase
(between 44 and 39.5 nm) the tensile strain is obvious and
occupies almost all the plane, while for the HS phase (between
39 and 33 nm), the compressive strain is visible, but with a
concentric-serrated shape. It is important to notice that the
latter is an artefact due to the meshing of the representation of
the local pressure in the simulations. Actually, the propagation
of the pressure wave is isotropic along the x propagation
direction as displayed in Fig. S12 and the associated movie
S5 inside [60], where we observe concave-shape in LS phase
and convex one in the HS phase.

We study the energetic properties of this transformation
through the dependence of the density of elastic energy,
〈Eelastic〉, of the lattice with respect to the growing LS frac-
tion, nLS = (1 − nHS) [see Fig. 16(a)] during the relaxation
process. Four distinct regimes are clearly identified. (i) First,
a stationary regime, called here a stochastic regime, takes
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FIG. 13. Snapshots showing the spatiotemporal configurations of the lattice during the relaxation process at T = 1 K from an initial HS
phase for a large 1n elastic constant value A1n = 7000. Yellow (blue) spheres represent HS (LS) sites.

place around nLS = 0, characterized by an important density
of points in this location [see Fig. 16(a)], that lasts for a long
time, ∼3300 MCS, as shown in the corresponding Fig. 16(b).
It is followed by a second regime (ii) where 〈Eelastic〉 rapidly
increases in the interval of nLS values ranging between 0
and 0.2 corresponding to the nucleation of LS phase from
the lattice corner (see Fig. 14). This increase of the elas-
tic energy is caused by the increase of the surface of the
HS/LS interface, Sinterf = πR2/8 (R is the interface radius),
along the growing LS domain size which has the shape of
an eighth-sphere. When the radius of the sphere becomes
equal to the lattice height or width R = Lz, the interface’s
surface goes through a maximum and so the elastic energy. At
this point, the LS fraction can be roughly estimated as equal
to the relative LS volume over the total lattice volume, i.e.,

nLS = 1
8

4
3 πL3

z

L2
z Lx

� 0.25 which is in fair agreement with the value
nLS � 0.2 derived form Fig. 16(a). In the third regime (iii),
〈Eelastic〉 goes through a minimum at nLS = 0.3 corresponding
to the change of the interface shape which adapts to the new
boundary conditions imposed by the lattice borders. When the
interface shape becomes stationary [i.e., straight and paral-
lel to the (yOz) planes], it propagates keeping an invariant
shape, which results in a flat and stationary elastic energy. The
fourth regime (iv) corresponds to the so-called deterministic
regime, during which the total energy decreases and the gain
in the electronic energy largely compensates the elastic energy
barrier [see Fig. 16(b) after the maximum]. Finally a rapid de-
crease of 〈Eelastic〉 occurs for nLS > 0.8, corresponding to the

interface disappearance on the other side of the propagation
axis.

Let us now briefly comment about the time-dependence
of the density of total energy (DTE), given by DTE =
�eff (2nHS − 1) + 〈Eelastic〉. This quantity, displayed in
Fig. 16(b), exhibits all the previous regimes discussed
above. In particular, between 0 and 3 500 MCS the system
is in the stochastic regime and the DTE is almost constant
to DT E = +� because the system occupies the HS state
(nHS ∼ 1 and 〈Eelastic〉 ∼ 0). When the first LS nucleus
appears, the DTE increases due to the appearance of elastic
energy excess, which competes with the electronic energy,
giving rise to a macroscopic energy barrier which peaks
around 3700 MCS, a point which corresponds to the
maximum surface of the HS/LS front interface. Beyond
this point, the DTE quickly decreases, announcing the setting
up of the deterministic/flow regime. Lastly, the DTE reaches
a negative value almost constant to DTE � −�, when all
spins are flipped to the LS state (nHS = 0 and 〈Eelastic〉 ∼ 0).
Another figure is presented in Fig. S13 of Ref. [60], showing
the spatial distribution of the local elastic energy for the
spatiotemporal configurations of the lattice given in Fig. 14,
which confirm that the elastic energy is mainly stored around
the HS/LS interface.

When one looks at the propagation front of Fig. 14 for
A1n = 8000, we would like to consider the spread of the
elastic interface profiles. To do this, we calculate the Eu-
clidean distance between two successive spins 〈d〉 along the
propagation direction (Ox), by averages in (Oy) and (Oz)
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FIG. 14. Specific views of the snapshots showing the spatiotemporal configurations of the lattice during the relaxation process at T = 10 K
from an initial HS phase for a large value A1n = 8000, with only the LS spins visible during the transition. Yellow (blue) spheres represent HS
(LS) sites.

directions: we draw different MCS values correlated to the
established propagation front in the simulation cell, as can be
seen in Fig. 17(a). Since in this case the propagation takes
place from one corner with a unique interface HS/LS, we
have to deal with one front coming from one side of the
propagation axis, reaching the other side of the simulation
cell. As we can see, the speed of propagation is constant,
and a “cruising speed” is reached. The elastic interface is
spatially wide, and cover a width of approximatively 20 nm.
When approaching the interface, the LS region undergoes to
compressive stress, while moving away the interface, the HS
region goes through an expandable stress. To highlight this
behavior, we have shown in Fig. 18 the spatial distribution of
the local elastic energy field during the relaxation process in
the plane (xOz) at Ny/2: one can simply visualize the broad
width of the elastic interface confirming the assessment. This
result is in agreement with experimental optical microscopy
data of SCO single crystal [61]. Furthermore, this tends to
imply that the shape of the HS/LS interface can adjust itself to
the geometry of the system in order to reduce the total energy
of the lattice. We compare these results with the spread of the
electronic interface profiles for the same parameters, as shown
in Fig. 17(b). Due to the propagation process, the same kind
of behavior is observed with one front coming from one side
of the propagation axis to the other. The electronic interface is
spatially sharper and covers a width of approximately 8 nm,
while the elastic interface is significantly broader (several tens

on nanometers) extending from both sides of the electronic
interface.

IV. CONCLUSIONS

In this paper, we studied the thermal properties of the
electroelastic 3D lattice, the macroscopic nucleation, growth,
and propagation (NGP) of the front transformation during the
spin transition in a 3D parallelepipedic shaped system.

We examined the shape of the thermal hysteresis of the
HS fraction through the variation of the magnitude of the
nearest-neighbor (1n) elastic constant, and we realized that
above a critical threshold value of the 1n elastic constant,
hysteresis arose out from elastic interactions. We analysed
the dependence of the width of this thermal hysteresis win-
dow according to the 1n elastic constant value, and a power
law emerged with an exponent approximately equal to 2. We
performed an analysis on the dependence of the thermal HS
fraction along the three directions (1,0,0), (0,1,0), and (0,0,1)
of the lattice, and we pointed out a cascade effect along the
extended direction of the simulation cell. A good correlation
between the elastic variations of the lattice and the electronic
variations of the spins during the hysteresis loop in thermal
process has been displayed.

We investigated the NGP mechanisms along the thermal
transition and similar tendencies as those observed in 2D
lattices are found: above a critical value of the 1n elastic
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FIG. 15. Sectional view in different planes showing the spatial distribution of the local pressure field of the lattice during the relaxation
process at T = 10 K from an initial HS phase for a large value A1n = 8000.

constant, the spin transition changed from random switch-
ing of the spin states to collective macroscopic domains
starting from the corners of the simulation cell and propa-
gating toward the inner part. We calculated the divergence
of the displacement field, representing the relative volume
expansion/contraction of the simulation cell, and a good
agreement has been found between the spatiotemporal con-
figurations of the spins and the divergence field during all the
thermal transition. The interface shape was identified as being
straight and perpendicular to the border of the cell thanks to
that field.

We also computed the curl of the displacement field,
accounting for the deviatoric strain in the lattice: during
the heating branch a good correlation has been found with
the spatiotemporal configurations, however there was a de-
lay of some degrees for the appearance of the distorsion
during the cooling branch compared to the propagation of
the interface in spatiotemporal configurations (the distor-
tion appeared before the interface in configurations). This
phenomenon suggested a memory effect during the cooling
branch relative to the heating branch happening in the first
place.
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FIG. 16. Total elastic energy of the lattice in (a), and density of
total energy (DTE) of the lattice in (b), during the relaxation process
at T = 10 K from an initial HS phase for a large value A1n = 8000.
These results correspond to the spatiotemporal configurations of the
lattice in Fig. 14; (a) LS fraction dependence of the elastic energy
density showing a nonmonotonous behavior along the relaxation
process. See text for more explanations. (b) Time dependence of the
DTE. (Insert) Zoom around the energy barrier of the DTE curve.

We also investigated the NGP mechanisms over the re-
laxation process at low-temperature of the metastable HS
state: the time dependence of the relaxation curves of the HS
fraction confirmed the shift from weak cooperative to strong
cooperative behavior when the 1n elastic constant increase.
Moreover, for strong interactions the spatiotemporal configu-
rations indicated that nucleation of LS phase take place around
the corners of the lattice (on the edge and in the corner),
spreading over the whole system toward the center of the
simulation cell.

All of these results provided an overview of the 3D behav-
ior of spin transition materials modeled by a electroelastic 3D
lattice.

Among the possible developments of the present work, we
quote: (i) the interesting extension to anisotropic elastic lat-
tices by considering different A1n values in three directions of
space, which would be more consistent with the experimental
reality of the materials studied in laboratory and (ii) the study
of the lattice’s shape effects by changing the simulation cell,
or by considering different symmetry of the elementary cell is
also an important objective of these 3D simulations. We could
investigate under isotropic, or uniaxial, pressure to determine
the effects on thermal transition and propagation dynamics of
the HS/LS interface.

FIG. 17. Elastic and electronic interface profiles along the prop-
agation direction (Ox) by averages in (Oy) and (Oz) directions.
Some different MCS values correlated to the established propagation
front of Fig. 14 have been shown. The arrows represent the prop-
agation direction, as visual indicators; (a) Elastic interface profiles
corresponding to the Euclidean distance between two successive
spins. The dashed lines represent the equilibrium 1n distances RHH

0 =
1.20 nm and RLL

0 = 1.00 nm. (b) Electronic interface profiles.

FIG. 18. Sectional view in the plane (xOz) at Ny/2 showing
the spatial distribution of the local elastic energy field during the
relaxation process at T = 10 K from an initial HS phase for a large
value A1n = 8000.
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