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Ultracold atoms and molecules trapped in optical lattices are expected to serve as simulators of strongly
correlated systems and topological states of matter. A fascinating example is to realize the Kitaev quantum spin
liquid by using ultracold polar molecules. However, although experimental implementation of the Kitaev-type
interaction was proposed, the stability of the Kitaev quantum spin liquid has not been fully investigated thus far.
Here we study a quantum spin model with long-range angle-dependent Kitaev-type interactions proposed for the
polar molecules, by the pseudofermion functional renormalization group method. We reveal that the ground state
is magnetically ordered in both ferromagnetic and antiferromagnetic models regardless of the spatial anisotropy
of the interactions, while the isotropic case is most frustrated and closest to the realization of the Kitaev quantum
spin liquid. Furthermore, by introducing a cutoff in the interaction range, we clarify how the Kitaev quantum
spin liquid is destroyed by the long-range interactions. The results urge us to reconsider the feasibility of the
Kitaev quantum spin liquid in ultracold polar molecules.
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I. INTRODUCTION

The Kitaev model [1] provides us with a rare example
of exact quantum spin liquid states [2–5], in more than one
dimension. The model has bond-dependent anisotropic in-
teractions on a honeycomb lattice, whose strong frustration
results in a quantum spin liquid state with extremely short-
range spin correlations [6]. In this quantum spin liquid state,
which we call the Kitaev quantum spin liquid, the spins are
fractionalized into itinerant Majorana fermions and localized
Z2 gauge fluxes. This provides a good playground for the
Majorana fermions, which have been explored for many years
in particle physics [7]. Careful comparison between experi-
mental data and theoretical results has accumulated evidence
of such exotic quasiparticle excitations [8,9]. These fractional
excitations are expected to be utilized for topological quantum
computation, and have been attracting great interest from a
wide range of fields, including not only condensed matter
physics but also quantum information [1,10].

The search for candidate materials for the Kitaev model
has been actively conducted since its realization mechanism
was proposed for strongly correlated electron systems [11].
A number of candidates, called Kitaev materials, have been
revealed by the intensive search from both experimen-
tal and theoretical perspectives [8,9,12–15], for example,
Na2IrO3 [16–25], α-Li2IrO3 [18,25], and α-RuCl3 [25–29].
However, due to competing magnetic interactions that in-
evitably appear in the solid state realizations, such as the
Heisenberg exchange interaction, almost all the candidates
undergo a phase transition to a magnetically ordered phase
at low temperatures. Hence, it is still a challenging task to
materialize the pristine Kitaev spin liquid.

*k.fukui@aion.t.u-tokyo.ac.jp

A different realization of the Kitaev spin liquid has been
proposed in ultracold polar molecules trapped in optical lat-
tices. Ultracold atoms and molecules are known to provide
a platform for studying strongly correlated systems [30–33].
Among them, ultracold polar molecules, such as KRb [34] and
LiCs [35,36], trapped in optical lattices have been expected
to serve as good simulators of quantum magnets [37,38]. In
particular, experimentally accessible implementation of var-
ious spin lattice models with arbitrary spin lengths S � 1/2
was theoretically proposed by using microwave dressed states
of molecules [39]. In this context, a possible realization of
the Kitaev-type interaction was also proposed [39,40]. In
this proposal, the bond-dependent anisotropic interactions are
mimicked by angle-dependent dipole interactions between
molecules. However, the interactions are long ranged with
a spatial decay of r−3, where r is the distance between the
molecules, it is left as an open question whether the Ki-
taev quantum spin liquid can survive against such long-range
interactions.

In this paper we present our numerical results on the
ground state of a spin model with long-range dipolar inter-
actions proposed in the previous studies, which we call the
dipolar Kitaev model, by using the pseudofermion functional
renormalization group (PFFRG) method. The PFFRG is a
powerful numerical method which is capable of dealing with
a wide range of the spin models even in the presence of
strong frustration and long-range interactions [41,42]. Cal-
culating the spin susceptibility by the PFFRG, we clarify
that the frustration of the dipolar Kitaev model is much
weaker than that of the original Kitaev model, and the ground
state is always magnetically ordered regardless of the spatial
anisotropy of the interactions in both ferromagnetic (FM)
and antiferromagnetic (AFM) cases. We also unravel how
the Kitaev quantum spin liquid becomes unstable against
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the long-range interactions while changing the range of the
interactions.

The structure of this paper is as follows. In Sec. II we
introduce the dipolar Kitaev model. In Sec. III we briefly
review the PFFRG method and present the conditions of our
numerical calculations. We present our results on the dipo-
lar Kitaev model for the FM and AFM cases in Secs. IV A
and IV B, respectively. In addition, we analyze the effect of
anisotropy in the interactions in Sec. IV C and the effect of
long-range interactions in Sec. IV D. In Sec. V we discuss our
results. Finally, we summarize our main findings in Sec. VI.

II. MODEL

Following the previous studies [39,40], we introduce a
model for implementation of the Kitaev-type interaction in
ultracold polar molecules trapped in an optical honeycomb
lattice, which we call the dipolar Kitaev model. The Hamil-
tonian is given by

H =
∑
i< j

Hi j

=
∑
i< j

−1

3r3
i j

{
Jx

[
1 − 2 cos

(
2�i j − 4π

3

)]
Sx

i Sx
j

+ Jy

[
1 − 2 cos

(
2�i j − 2π

3

)]
Sy

i Sy
j

+ Jz[1 − 2 cos(2�i j )]S
z
i Sz

j

}
, (1)

where ri j = |ri j | is the distance between sites i and j on a
honeycomb lattice (we set the length of the nearest-neighbor
bond as unity), and �i j is the angle of the direction from i
to j, as shown in Fig. 1(a); Jμ is the coupling constant and
Sμ

i represents the μ component of the S = 1/2 quantum spin
at site i (μ = x, y, and z). Although only the isotropic FM
case where Jx = Jy = Jz > 0 was considered in the previous
studies [39,40], we extend the model to anisotropic cases
where Jμ are not equivalent including the AFM case, as the
interactions are expected to be controlled in a wide range by
microwave irradiation [40].

The model in Eq. (1) has interactions depending on the
angle between two spins. This is a generalization of the
bond-dependent nearest-neighbor couplings in the original
Kitaev model [1] to the long-range dipolar form, as explained
below. For a nearest-neighbor bond, say a blue bond in
Fig. 1(a), rik = 1 and �ik = − 5π

6 , and hence, Hi j in Eq. (1)
becomes Hik = −JxSx

i Sx
k . In a similar manner we obtain

Hik′ = −JySy
i Sy

k′ and Hik′′ = −JzS
z
i Sz

k′′ on the green and red
bond with �ik′ = −π

6 and �ik′′ = π
2 , respectively. Therefore,

the interactions between nearest-neighbor spins are the same
with those in the Kitaev model [1]. On the other hand, for
a third-neighbor bond, for example, between the sites i and
l in Fig. 1(a), which is parallel to the nearest-neighbor blue
bond, ril = 2 and �il = π

6 , and therefore, Hi j in Eq. (1)
becomes Hil = − Jx

8 Sx
i Sx

l . In a similar manner we obtain

Hil ′ = − Jy

8 Sy
i Sy

l ′ and Hil ′′ = − Jz

8 Sz
i Sz

l ′′ for third-neighbor bonds
between i and l ′, and i and l ′′, respectively, in Fig. 1(a). These
have the same bond-dependent form as the nearest-neighbor
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FIG. 1. (a) Schematic figure for the dipolar Kitaev model in
Eq. (1). The blue, green, and red bonds represent the nearest-
neighbor couplings Jx , Jy, and Jz, respectively. The lower right arrows
indicate spin axes. (b) and (c) Spin configurations in the ferromag-
netic (FM) and zigzag antiferromagnetic (AFM) states, which are
realized in the FM and AFM dipolar Kitaev models, respectively.
The spin directions depend on Jx , Jy, and Jz; the cases with Jz > Jx

and Jy are shown.

ones besides the coefficient of 1/8 from the decay factor 1/r3
i j

similar to the conventional dipolar interaction. Meanwhile, for
a second-neighbor bond, for instance, between the sites i and
j in Fig. 1(a), ri j = √

3 and �i j = π
3 , and hence we obtain

Hi j = − 1
9
√

3
[2JxSx

i Sx
j − JySy

i Sy
j + 2JzS

z
i Sz

j]. Thus, in general,
all the diagonal components of two-spin interactions appear
with amplitudes and signs depending on the angle between the
two spins. Note that these interactions for the second-neighbor
bonds are different from those discussed in the previous stud-
ies [43,44].

III. METHOD

We study the ground state of the dipolar Kitaev model
in Eq. (1) by using the PFFRG method. The PFFRG
is a powerful numerical method for quantum spin sys-
tems [41,42], which has been successfully applied to a number
of two-dimensional (2D) and three-dimensional (3D) models
for frustrated quantum magnets with Heisenberg interac-
tions [41,42], XXZ interactions [45,46], Kitaev-like interac-
tions [43,47–49], and nondiagonal interactions [50,51]. Fur-
thermore, the extensions to systems with S > 1/2 [46,52,53]
or SU(N) [54–56] quantum spins were proposed. It was also
applied to the dipolar Heisenberg model with long-range in-
teractions [57,58].

In the PFFRG method for the S = 1/2 systems, the spin
operator is written in terms of auxiliary fermions [59], called
pseudofermions, as

Sμ
i = 1

2

∑
a,a′

f †
ia′σ

μ

a′,a fia, (2)
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where fia ( f †
ia) is an annihilation (creation) operator of the

pseudofermion at site i with spin a ∈ {↑,↓}, and σμ is the
μ component of the Pauli matrices (we set the reduced
Planck constant h̄ as unity). As this spin-fermion mapping en-
larges the Hilbert space, a pure-imaginary chemical potential
μ = − iπ

2β
, where β is inverse temperature, is often intro-

duced to restrict the Hilbert space to the local half-filled
subspace with

∑
a f †

ia fia = 1 [60]. In the present study, how-
ever, we do not need such a prescription since we focus on
the zero-temperature limit (β → ∞) where the local con-
straint is fulfilled automatically. By using Eq. (2), the bilinear
spin Hamiltonian in Eq. (1) is rewritten into a quartic one
in terms of the pseudofermions. In the following we adopt
the fermionic one-particle irreducible FRG [61–65] for the
quartic fermionic Hamiltonian.

The PFFRG is performed by the fermionic FRG flow
equations for the self-energy and two-particle vertex func-
tion. We employ one-loop truncation in a fully self-consistent
form [66], in which the fermionic FRG flow equations for the
self-energy � and the two-particle vertex function � are given
by [62–65]

d
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∑
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]
, (4)

respectively, where 	 is the energy cutoff scale in the renor-
malization group method. Here x = (ω, i, a) denotes a set of
the Matsubara frequency ω, the lattice site i, and the spin index
a, for which the summation

∑
x is taken as

∫ ∞
−∞

dω
2π

∑
i

∑
a,

since the Matsubara frequency is a continuous variable in
the zero-temperature limit. In Eq. (3), S	 is the single-scale
propagator regularized by the cutoff scale 	, which is defined
by the bare propagator G	

0 and the full propagator G	 as

S	
x;x′ = −

[
G	 d (G	

0 )−1

d	
G	

]
x;x′

, (5)

with

G	
0,x;x′ = 2πδ(ω − ω′)δi,i′δa,a′

�(|ω| − 	)

iω
, (6)

G	
x;x′ = −

∫ β

0
dτdτ ′ ei(ωτ−ω′τ ′ )〈Tτ fia(τ ) f †

i′a′ (τ ′)〉	, (7)

where 〈Tτ · · · 〉	 means the expectation value of the
imaginary-time-ordered operators fia(τ ) = eτH fiae−τH and
f †
i′a′ (τ ′) = eτ ′H f †

i′a′e−τ ′H with the cutoff energy scale 	. Here
δ(x) is the delta function, and �(x) is the Heaviside function,
which works as the cutoff function for the FRG to project out
all the modes for |ω| < 	.

G	 and G	
0 are related with �	 as

G	
x;x′ =

[(
G	

0

)−1 − �	
]−1

x;x′
. (8)

Meanwhile, L	 in Eq. (4) is defined as

L	
x1,x2;x′

1,x
′
2
= d

d	

(
G	

x1;x′
1
G	

x2;x′
2

)
. (9)

We properly handle ambiguity arising from the derivatives of
the Heaviside function in Eqs. (5) and (9) [67].

In the following we study magnetic instabilities in the para-
magnetic state where all the lattice sites are equivalent. In the
present system the pseudofermions are localized at each site
due to the lack of the bilinear kinetic energy term. Using this
locality and the energy conservation law, we can parametrize
the self-energy, the full propagator, and the single-scale prop-
agator as [42,68]

O	
x′;x = 2πδ(ω − ω′)δi,i′δa,a′O	(ω), (10)

for O = �, G, and S , where

G	(ω) = �(|ω| − 	)

iω − �	(ω)
, S	(ω) = − δ(|ω| − 	)

iω − �	(ω)
. (11)

Meanwhile, under the locality of the pseudofermions, the two-
particle vertex function depends only on two site indices as

�	
x′

1,x
′
2;x1,x2
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1a′
1, ω

′
2a′
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′
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1; ω1a1, ω2a2)δi′2,i1δi′1,i2 , (12)

which can be parametrized by using

�	
i1i2 (ω′

1a′
1, ω

′
2a′

2; ω1a1, ω2a2)

= 2πδ(ω′
1 + ω′

2 − ω1 − ω2)

×
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(s, t, u)σμ
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1,a1

σ
μ

a′
2,a2

+�d,	
i1i2

(s, t, u)δa′
1,a1δa′

2,a2

}
, (13)

with

s = ω′
1 + ω′

2, t = ω′
1 − ω1, u = ω′

1 − ω2. (14)

Here s, t , and u correspond to the transfer energies in the
particle-particle, direct particle-hole, and crossed particle-
hole scattering channels, respectively [64,68]. In Eq. (13),
�

μ,	
i1i2

(s, t, u) represents the renormalized dynamical coupling
between the μ component of the pseudofermion spins, while
�d,	

i1i2
(s, t, u) represents the density-density coupling between

pseudofermions which is generated through the renormaliza-
tion process. Note that the parametrization in Eq. (13) is
applicable to the diagonal interactions with anisotropy like
those in the Kitaev model; more general expression for nondi-
agonal interactions is found in Ref. [51].
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The fully parametrized flow equations are obtained by sub-
stituting Eqs. (11), (12), and (13) into Eqs. (3) and (4) [42,68–
73]. To solve the integro-differential equations in Eqs. (3)
and (4), we start from the initial conditions given by

�	→∞(ω) = 0, (15)

�x,	→∞
i1i2

(s, t, u) = −Jx

3r3
i1i2

[
1 − 2 cos

(
2�i1i2 − 4π

3

)]
, (16)

�
y,	→∞
i1i2

(s, t, u) = −Jy

3r3
i1i2

[
1 − 2 cos

(
2�i1i2 − 2π

3

)]
, (17)

�z,	→∞
i1i2

(s, t, u) = −Jz

3r3
i1i2

[1 − 2 cos (2�i1i2 )], (18)

�d,	→∞
i1i2

(s, t, u) = 0. (19)

After solving the FRG flow equations, we calculate ob-
servables of the original spin systems from the obtained
self-energy and vertex function. In the following calculations,
to detect magnetic instabilities, we compute the diagonal com-
ponents of the spin susceptibility as

χ
μμ,	
i j =

∫ ∞

0
dτ 〈Tτ Sμ

i (τ )Sμ
j (0)〉	

= −
∫ ∞

−∞

dω

4π
G	(ω)2δi, j −

∫ ∞

−∞

dωdω′

8π2
G	(ω)2G	(ω′)2

[
2�

μ,	
i j (ω + ω′, 0, ω − ω′) −

{
�

μ,	
ii (ω + ω′, ω − ω′, 0)

−
∑
ν �=μ

�ν,	
ii (ω + ω′, ω − ω′, 0) + �d,	

ii (ω + ω′, ω − ω′, 0)

}
δi, j

]
,

(20)

using the self-energy and vertex function with the cutoff scale
	 obtained from the renormalization group calculation. When
the system shows an instability toward a magnetically or-
dered state, one can detect it from the 	 dependence of the
spin susceptibility; it is signaled by the divergence of the
Fourier transform χμμ,	(k) at momentum k corresponding
to the ordering vector, where χμμ,	(k) = 1

N

∑
i, j χ

μμ,	
i j eik·ri j

with the number of sites N . We call this critical value of
	 the critical cutoff scale 	c. In practice, however, due to
the finite system size and the finite frequency grid, the 	

dependence of χμμ,	(k) shows a kink or cusp instead of
the divergence. Hence, we use such an anomaly to detect
the magnetic instability and estimate 	c. On the other hand,
when χμμ,	(k) changes smoothly at all k down to 	 → 0,
the system does not undergo any instability, suggesting the
realization of a quantum spin liquid state in the ground
state.

In the following numerical calculations we use the log-
arithmic frequency grid with 64 positive frequency points
between 10−4 and 250. We also generate the logarithmic 	

grid starting from 	max = 500 to 	min � 10−2 by multiplying
a factor of 0.95. In the calculations we neglect two-particle
vertex functions between two sites further apart than L = 20
lattice, which corresponds to a finite-size cluster containing
N = 631 lattice sites. We show the dependences of χ zz,	(k)
on the number of ω and 	 grids in Appendix A and on the
system size L in Appendix B. Furthermore, we present the
finite-size scaling of χ zz,	(k) to estimate 	c in the thermody-
namic limit of L → ∞, and conclude that the typical error of
	c calculated for L = 20 is roughly 10% in Appendix B.

IV. RESULT

A. Ferromagnetic case

First, we study the ground state of the dipolar Kitaev model
in Eq. (1) for the FM case with Jx � 0, Jy � 0, and Jz � 0.

Assuming Jx = Jy, we parametrize the anisotropy as

Jx = Jy = α, Jz = 3 − 2α, (21)

where 0 � α � 1.5; the energy scale is chosen so that Jx +
Jy + Jz = 3. The isotropic case of Jx = Jy = Jz corresponds
to α = 1.

Figure 2 shows the 	 dependences of χ zz,	(kmax) and
χ xx,	(kmax) = χ yy,	(kmax), where kmax represents the wave
vector at which the susceptibility takes a maximum in the
reciprocal space, for three values of α: (a) α = 0.2 (Jz =
2.6 > Jx = Jy = 0.2), (b) α = 1.0 (Jx = Jy = Jz = 1.0), and
(c) α = 1.4 (Jx = Jy = 1.4 > Jz = 0.2). For all the cases we
find that the susceptibility shows a maximum at kmax = 0 as
shown in Fig. 3, indicating that FM spin fluctuations are dom-
inant. χ zz,	(k) is always larger (smaller) than χ xx,	(k) for
0 � α < 1.0 (1.0 < α � 1.5), while χ xx,	(k) = χ yy,	(k) =
χ zz,	(k) for the isotropic case of α = 1.0. As shown in Fig. 2,
χ zz,	(kmax = 0) and χ xx,	(kmax = 0) show sharp peaks or
cusps at some value of 	, as indicated by the black arrows
in the figures. These indicate magnetic instabilities toward
the FM ordered state. Similar instabilities are found for other
values of α; see Sec. IV C. Thus, we conclude that the ground
state of the FM dipolar Kitaev model is in the FM ordered
phase regardless of the value of α. A schematic figure for the
FM ordered state is shown in Fig. 1(b). The values of the criti-
cal cutoff scale 	c depend on α, and takes a minimum around
the isotropic case of α = 1.0, as discussed in Sec. IV C.

B. Antiferromagnetic case

Then, let us move on to the AFM case with Jx � 0, Jy � 0,
and Jz � 0. In a similar manner to the FM case, we assume
Jx = Jy and parametrize the anisotropy as

Jx = Jy = −α, Jz = −(3 − 2α), (22)

where 0 � α � 1.5; the energy scale is chosen so that
Jx + Jy + Jz = −3. Figure 4 shows the 	 dependences of
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FIG. 2. Spin susceptibilities χ zz,	(kmax) and χ xx,	(kmax) as func-
tions of the cutoff scale 	 for the FM dipolar Kitaev model with
(a) α = 0.2, (b) α = 1.0, and (c) α = 1.4. kmax is the wave vector at
which the susceptibility becomes maximum in the reciprocal space;
in this FM case, kmax is always located at kmax = 0; see Fig. 3. The
black arrows indicate the critical cutoff scale 	c.

χ zz,	(kmax) and χ xx,	(kmax), for three values of α: (a) α = 0.2
(Jz = −2.6 < Jx = Jy = −0.2), (b) α = 1.0 (Jx = Jy = Jz =
−1.0), and (c) α = 1.4 (Jx = Jy = −1.4 < Jz = −0.2). Note
that the relation χ xx,	(kx, ky) = χ yy,	(−kx, ky) holds in the
AFM case. For all α, we find that χ zz,	(k) and χ xx,	(k) show
maxima at kmax = (0,± 2π

3 ) and (± π√
3
,±π

3 ), respectively, as
shown in Fig. 5. Similar to the FM case, we find anomalies
at some value of 	, which in this case indicates magnetic

FIG. 3. Contour plots of χ zz,	(k) (left) and χ xx,	(k) (right) at
	 = 	c in the reciprocal space of k = (kx, ky ) for the FM dipolar
Kitaev model with (a) α = 0.2, (b) α = 1.0, and (c) α = 1.4. The
inner black hexagon indicates the first Brillouin zone, while the outer
one indicates the zone including up to the third Brillouin zones.

instabilities toward the zigzag AFM ordered state character-
ized by the peaks at kmax. The spin configuration in this state is
shown in Fig. 1(c). Thus, we conclude that the ground state of
the AFM dipolar Kitaev model is in the zigzag AFM ordered
phase regardless of α. As in the FM case, the values of 	c

depend on α, and takes a minimum around the isotropic case
of α = 1.0; we will discuss this behavior in Sec. IV C.

Let us discuss why the zigzag state is preferred in the
ground state in the AFM case, instead of a simple collinear
Néel state. The spin configuration in the zigzag state has
energy gain from all second- and third-neighbor bonds, in ad-
dition to one of the nearest-neighbor bonds; see Fig. 1(c) and
the forms of the interactions discussed in Sec. II. In contrast,
the Néel AFM state does not have energy gain from the sec-
ond neighbors where the spins are ferromagnetically aligned,
although it gains energy from the nearest and third neighbors
similar to the zigzag case. Thus, this simple consideration
implies that the Kitaev-type second-neighbor interactions play
an important role for the formation of the zigzag AFM order
rather than the Néel one. However, we will show that to sta-
bilize the zigzag AFM long-range order, the second-neighbor
interactions are not sufficient and that further-neighbor ones
are necessary in Sec. IV D.
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FIG. 4. Spin susceptibilities χ zz,	(kmax) and χ xx,	(kmax) as func-
tions of 	 for the AFM dipolar Kitaev model with (a) α = 0.2,
(b) α = 1.0, and (c) α = 1.4. In this AFM case, kmax is always
located at (0,± 2π

3 ) and (± π√
3
, ± π

3 ) for χ zz,	(k) and χ xx,	(k), re-
spectively; see Fig. 5. The notations are common to those in Fig. 2.

C. α dependence of �c

As shown in Secs. IV A and IV B, the ground states for the
FM and AFM dipolar Kitaev models are the FM and zigzag
AFM ordered states, respectively. We obtain the same conclu-
sions for other values of α as well as for several parameters
in the fully anisotropic cases where all Jμ are inequivalent.
Figure 6 summarizes the α dependences of 	c for both FM
and AFM cases. We find that 	c becomes smallest for the
isotropic cases at α = 1.0 for both FM and AFM cases; it

FIG. 5. Contour plots of χ zz,	c (k) and χ xx,	c (k) for the AFM
dipolar Kitaev model with (a) α = 0.2, (b) α = 1.0, and (c) α = 1.4.
The notations are common to those in Fig. 3.

increases almost linearly while both decreasing and increasing
α. We note that 	c for AFM case is lower than that for FM
case for all α. The results indicate that the dipolar Kitaev
model does not realize a quantum spin liquid state for all α,
while the minimum at α = 1.0 suggests that the isotropic case

0.0
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0.00 0.25 0.50 0.75 1.00 1.25 1.50

c

FM
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c
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FIG. 6. α dependences of 	c and 	MF
c for the FM and AFM

dipolar Kitaev models. 	MF
c is common to both FM and AFM cases.
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FIG. 7. Spin susceptibility χ zz,	(kmax) of the isotropic FM dipo-
lar Kitaev systems (α = 1) for several values of the cutoff in the
interaction range, Lint . The black arrows indicate 	c. See the text
and Fig. 8 for the values of kmax.

is closest to its realization. In other words, the frustration of
the dipolar Kitaev model becomes strongest for the isotropic
coupling constants Jx = Jy = Jz in both FM and AFM cases,
where the system is closest to the realization of quantum spin
liquid.

In Fig. 6 we also plot a mean-field estimate of 	c, 	MF
c =

2
π
|�CW|, where �CW is the Curie-Weiss temperature and the

factor of 2
π

comes from the approximate relation between 	

and temperature T , 	 � 2
π

T [74,75]. Here �CW is obtained as
�CW = − 1

4

∑
j Ji j , where Ji j is the coefficient of Sz

i Sz
j (Sx

i Sx
j

or Sy
i Sy

j ) in Eq. (1) for 0 � α � 1.0 (1.0 � α � 1.5), and the
summation

∑
j is taken for the cluster used in the PFFRG

calculations with the central site i. We find that 	MF
c shows

similar α dependence to 	c: it depends linearly with respect
to α and becomes smallest at α = 1.0. The values of 	MF

c
are about 1.6 (2.1) times larger than 	c for the FM (AFM)
case. The results suggest that while 	MF

c describes the over-
all behavior of 	c, the magnetic instability is suppressed by
quantum fluctuations beyond the mean-field approximation.

D. Effect of long-range dipolar interactions

Since the Kitaev model, which has nearest-neighbor inter-
actions only, is known to give a quantum spin liquid ground
state [1], our results indicate that the long-range dipolar in-
teractions hamper its realization and cause the instabilities
toward magnetic orderings. To elucidate the effect of the
long-range interactions, here we vary the range of the inter-
actions by introducing a cutoff length Lint for the model in
Eq. (1); namely, we take the summation of i and j in Eq. (1)
only within the range of ‖ri j‖b � Lint, where ‖ri j‖b is the
bond distance between sites i and j on the honeycomb lattice
(for instance, ‖ri j‖b = 2 for second-neighbor sites). Then, the
model with Lint = 1 is equivalent to the original Kitaev model,
while that with Lint → ∞ corresponds to the dipolar Kitaev
model in Eq. (1). In the following we study the ground state
while changing Lint for the isotropic case of α = 1.0 in the
FM model.

zz
,

(k
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 k
y)

)

zz
,

(k
 =

 (
k x

, 0
))

kx

L

ky

L

FIG. 8. Contour plots of χ zz,	(k) for the isotropic FM dipo-
lar Kitaev model with (a) Lint = 1, (b) Lint = 2, (c) Lint = 3, and
(d) Lint = 4. (e) and (f) Profiles of (a)–(d) at ky = 0 and kx = 0,
respectively. The data for Lint = 1 and 2 in (a), (b), (e), and (f) are
at the minimum cutoff scale 	min, while those for Lint = 3 and 4 in
(c), (d), (e), and (f) are at the critical cutoff scale 	c.

Figure 7 shows the 	 dependences of χ zz,	(kmax) while
changing Lint from 1 to 20. We find that χ zz,	(kmax) shows
no apparent anomaly down to the smallest 	 when Lint = 1
and 2, whereas it shows a peak or kink for larger Lint at
	c indicated by the black arrows in Fig. 7. Although the
locations of 	c are subtle for Lint = 3 and 4, we also carefully
examine the system size dependence of the local susceptibility
to identify 	c, following the previous studies [76,77]; the
details are described in Appendix C. Thus, our PFFRG results
indicate that (i) the Kitaev quantum spin liquid is obtained
at Lint = 1 consistent with the exact solution, (ii) it appears
to survive for Lint = 2, but (iii) it is replaced by the ordered
state for Lint � 3. In other words, our results indicate that
the third-neighbor interactions are sufficient to kill the Kitaev
quantum spin liquid.

We show the k dependence of χ zz,	(k) for Lint = 1, 2, 3,
and 4 in Fig. 8. The data for Lint = 1 and 2 are obtained at
the smallest value of 	 = 	min, while those for Lint = 3 and
4 are at 	 = 	c. When Lint = 1 for which the system corre-
sponds to the original Kitaev model, χ zz,	(k) is proportional
to cos ky + const. as shown in Figs. 8(a) and 8(f), while it does
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FIG. 9. Lint dependences of 	c and 	MF
c for the isotropic FM

dipolar Kitaev model.

not depend on kx as shown in Fig. 8(e), reflecting the fact that
the spin correlations are nonzero only for nearest-neighbor
spins [6]. While increasing Lint, the broad peak of the cosine
curve at k = (0, 0) shrinks in both kx and ky directions and
grows into a sharp peak with strong intensity as shown in
Figs. 8(b)–8(f), corresponding to the FM ordering. Note that
when Lint is small, χ zz,	(k) shows peaks at kmax = (kx �=
0, ky = 0); the peaks approach k = 0 while increasing Lint,
and kmax becomes zero for Lint � 12.

Figure 9 summarizes the Lint dependences of 	c and 	MF
c ,

where �CW is calculated as in Sec. IV C within the range of
‖ri j‖b � Lint. We find that 	c becomes nonzero and rapidly
increases for Lint � 3, while it is almost saturated for Lint � 6.
Meanwhile, 	MF

c is nonzero for Lint � 1 and increases rather
gradually. The results indicate that further-neighbor interac-
tions beyond second neighbors drastically reduce the degree
of frustration, which results in the magnetic instability.

V. DISCUSSION

The effect of the long-range interaction on the spin liquid
that we found for the dipolar Kitaev model contrasts with
that for the dipolar Heisenberg model. The dipolar Heisenberg
model is obtained as an implementation of the Heisenberg
model with polar molecules trapped in an optical lattice, and
has long-range Heisenberg-type interactions that are isotropic
in spin space and decay in proportion to r−3 [78–81]. Previ-
ous numerical studies showed that the ground states of the
AFM dipolar Heisenberg models on square and triangular
lattices can be quantum spin liquids, while the models with
nearest-neighbor interactions stabilize long-range magnetic
orders [57,58,82]. Similar conclusions were drawn for the
dipolar XXZ models on the triangular lattice [81]. In stark
contrast, in the dipolar Kitaev model studied in the present
work, the spin liquid state realized by the nearest-neighbor
Kitaev interaction is destabilized by the introduction of the
long-range Kitaev-type interactions, and the ground state is
replaced by a magnetically ordered state.

This difference can be attributed to different origins of the
frustration. In the case of the models with nearest-neighbor

AFM Heisenberg interactions, the frustration is absent on
the square lattice, and it is present but not strong enough to
realize a quantum spin liquid state on the triangular lattice; the
frustration is enhanced by introducing long-range interactions
as they compete with the nearest-neighbor one. In contrast, in
the case of the Kitaev model, the frustration from the bond-
dependent nearest-neighbor interactions is strong enough to
stabilize the quantum spin liquid state with extremely short-
range spin correlations [1,6]. In this case, the introduction
of long-range interactions induce spin correlations between
further neighbors. Our results indicate that the strong frustra-
tion from the nearest-neighbor interaction is relieved by the
long-range interactions and the Kitaev spin liquid is replaced
with magnetically ordered states.

Our results obtained by the PFFRG method conclude
that it is difficult to realize the Kitaev quantum spin liq-
uid by the implementation proposed for the ultracold polar
molecules [39,40]. In the proposed setup, the long-range
interactions inevitably appear because the magnetic interac-
tions are implemented by the dipolar interactions between
molecules. Hence, for the realization of the Kitaev quantum
spin liquid, it is necessary to modify the long-range part of the
interactions so that it does not hamper the spin liquid nature.
Previous studies indicate that the Kitaev quantum spin liquid
is fragile against the second-neighbor Kitaev interaction [44],
while it remains stable for the Heisenberg interactions up
to third-neighboring spins [18,22,83]. Therefore, it may be
possible to realize the Kitaev quantum spin liquid if one could
replace the further-neighbor interactions of the Kitaev type
with the Heisenberg type. In addition, it would be helpful
to suppress the long-range part. Such an implementation in
ultracold polar molecules is left for future studies.

VI. SUMMARY

To summarize, we have studied the ground state of a quan-
tum spin model with long-range angle-dependent Kitaev-type
interactions, which was proposed as an implementation of
the Kitaev model in ultracold polar molecules, by using the
PFFRG method. We clarified that, regardless of the spatial
anisotropy of the interactions, the ground state is magnetically
ordered in both FM and AFM cases: we found magnetic
instabilities toward the FM and zigzag ordered states in the
FM and AFM models, respectively. By calculation of the
anisotropy parameter dependence of the critical cutoff scale,
we concluded that the system is most frustrated and closest to
the realization of the Kitaev quantum spin liquid when the
interaction is isotropic in both cases. Our findings indicate
that the quantum spin liquid ground state arising from the
nearest-neighbor bond-dependent anisotropic interactions in
the Kitaev model is destroyed by the long-range interactions.
By varying the range of the interactions in the FM case, we
elucidated that the Kitaev quantum spin liquid is unstable
even for the third-neighbor interactions. Our results prompt
a reconsideration of the implementation of the Kitaev-type
interaction in polar molecules [39,40] to realize the Kitaev
quantum spin liquid. It would be helpful to suppress the long-
range part or replace it by the Heisenberg type.

014419-8



FEASIBILITY OF KITAEV QUANTUM SPIN LIQUIDS IN … PHYSICAL REVIEW B 106, 014419 (2022)

ACKNOWLEDGMENTS

K.F. thanks Yusuke Kato for constructive suggestions.
Parts of the numerical calculations have been done using
the facilities of the Supercomputer Center, the Institute for
Solid State Physics, the University of Tokyo, the Information
Technology Center, the University of Tokyo, and the Center
for Computational Material Science, Tohoku University. This
work was supported by Japan Society for the Promotion of
Science (JSPS) KAKENHI Grants No. 19H05825 and No.
20H00122. K.F. was supported by the Program for Leading
Graduate Schools (MERIT).

APPENDIX A: DEPENDENCE ON ω AND � GRIDS

In this Appendix we discuss the effect of the discretization
of ω and 	 in the PFFRG calculations. Figure 10(a) shows
χ zz,	(kmax) for different ω grids, in the case of the isotropic
FM dipolar Kitaev model (kmax = 0). Here we discretize the
frequency range of 10−4 � ω � 250 logarithmically with Nω

frequency points. The system size and the 	 grids are the
same as in the main text. We find that the data for Nω � 48
show cusps at the same value of 	 in the present resolution.
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FIG. 10. Spin susceptibility χ zz,	(kmax) for the isotropic FM
dipolar Kitaev model as a function of 	 while changing (a) the
number of ω grids and (b) the multiplied factor b to generate the
	 grids.

Therefore, we conclude that Nω = 64 is sufficiently large to
estimate 	c and adopt it for the calculations in the main text.

Meanwhile, Fig. 10(b) shows χ zz,	(kmax) for different 	

grids. Here we discretize 	 starting from 	max = 500 to
	min � 10−2 by multiplying the factor b successively. The
system size and the frequency grids are the same as in the
main text. While χ zz,	(kmax) varies slightly while changing
b, the data for b � 0.94 show cusps at roughly the same
	. Therefore, we adopt b = 0.95 in the calculations in the
main text.

APPENDIX B: SYSTEM SIZE DEPENDENCE AND
FINITE-SIZE SCALING

In this Appendix we discuss the system size dependence
of the susceptibility. Figure 11 shows χ zz,	(kmax) for differ-
ent system sizes, again for the isotropic FM dipolar Kitaev
model (kmax = 0). The results indicate that χ zz,	(kmax) shows
a divergent behavior as increasing the system size L, and
that the value of 	c estimated from the cusplike or peaklike
anomaly gradually becomes larger for larger L. To examine
the behavior in the thermodynamic limit, from the analogy
with the finite-size scaling at finite temperature, we assume
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FIG. 11. Spin susceptibility χ zz,	(kmax) for the isotropic FM
dipolar Kitaev model as a function of 	 for different system sizes.
L is the range of two-particle vertex functions, and N is the corre-
sponding number of sites. (b) An enlarged figure of a part of (a).
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FIG. 12. (a) 	 dependence of the scaled susceptibility
χ zz,	

L (kmax)/L2−η̃ for several values of L and η̃ = 0.7. (b) System
size dependence of 	c estimated from the cusps in Fig. 11(a). The
error bars are given by the 	 grids. The red hatched bar represents
the estimate of 	∞

c from the intersection in (a).

the scaling relation as

χ zz,	
L (kmax)

L2−η̃
= g	

(
	 − 	∞

c

	∞
c

L1/ν̃

)
, (B1)

where χ zz,	
L (kmax) is the susceptibility for the system size L, η̃

and ν̃ are “critical exponents,” g	 is the scaling function, and
	∞

c is the critical cutoff scale in the thermodynamic limit.
We estimate the value of 	∞

c by plotting χ zz,	
L (kmax)/L2−η̃

for different L while changing η̃. We find that the data
for L � 12 show an intersection for η̃ � 0.7; the result for
η̃ = 0.7 is shown in Fig. 12(a). From the intersection we
estimate that 	∞

c is in the range of 0.206 � 	c � 0.216.
Figure 12(b) shows the N dependence of 	c, together with the
estimated range of 	∞

c , indicating that 	c converges slowly
to 	∞

c . In the calculations in the main text, we adopt L = 20
(N = 631), for which 	c is underestimated roughly by 10%.

APPENDIX C: SYSTEM SIZE DEPENDENCE
OF LOCAL SUSCEPTIBILITY

In this Appendix we investigate the system size depen-
dence of the local spin susceptibility χ zz,	

ii in the case of the
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FIG. 13. Local spin susceptibility χ zz,	
ii as a function of 	 for

different system sizes with (a) Lint = 1, (b) Lint = 2, (c) Lint = 3,
and (d) Lint = 4. The black arrows in (c) and (d) indicate the critical
cutoff scale 	c determined in Fig. 7. The insets show the differences
between L = 10 and 20.
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isotropic FM dipolar Kitaev model. It was pointed out that
χ zz,	

ii is useful for detecting magnetic ordering since it shows
a size dependence when the system becomes magnetically
unstable [76,77]. Figure 13 shows χ zz,	

ii for different system
sizes in the cases of Lint = 1, 2, 3, and 4. We find that the
system size dependences for Lint = 1 and 2 are negligibly

small for all 	, while the data for Lint = 3 and 4 show system
size dependences below 	c which are determined from the
anomalies in χ zz,	(kmax) in Fig. 7. These results not only
confirm that our estimates of 	c are correct but also support
our conclusion that the system shows a magnetic instability
for Lint � 3 in Sec. IV D.
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