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Electric and magnetic properties of higher-spin Kondo-Heisenberg models at strong coupling
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We study higher-spin (S � 1) generalization of the one-dimensional Kondo-Heisenberg model, in which the
local spin-S moments of the Kondo-lattice model interact with each other via the antiferromagnetic Heisenberg
interaction (JH), by analytical and numerical methods. The strong-coupling (i.e., large Kondo coupling) expan-
sion maps out an insulating phase at half-filling whose magnetic correlation depends on the parity of 2S as well as
a ferromagnetic metallic phase which dominates the strong-coupling region at generic fillings. Then, we carried
out the density-matrix renormalization-group simulations for S = 1 to closely investigate the phase structure at
large but finite Kondo coupling. At half-filling, the Kondo coupling and JH do not compete and the insulating
spin-gapless phase is stable, while the competition of the two leads to a stepwise collapse of the strong-coupling
ferromagnetism via an intervening dimerized insulating phase with power-law spin correlation at quarter-filling.
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I. INTRODUCTION

Heavy-fermion systems are typical examples of the
strongly correlated electron systems [1,2], where the inter-
action among electrons plays crucial roles. In heavy-fermion
systems, the interaction among electrons results in quasi-
particles with large effective mass, and realizes a variety
of ground states depending on materials. One of the stan-
dard minimal theoretical models of heavy-fermion system
is the Kondo-lattice (KL) model (see, e.g., Refs. [3,4], for
reviews), in which tight-binding electrons interact with lo-
calized spins through the exchange interaction. Historically,
the Kondo-lattice model is derived from the Kondo model,
where a single magnetic impurity exists in conduction elec-
tron system. In the ground state of the Kondo model, the
conduction electron strongly couples to the impurity, thereby
screening its magnetic moment by forming the spin-singlet
state (the Kondo singlet) [5]. On the other hand, when there
are many magnetic impurities, the competition between the
long-range spin-spin interaction mediated by the conduction
electrons [the Ruderman-Kittel-Kasuya-Yoshida (RKKY) in-
teraction [6–8]] and the Kondo screening is expected. The
resulting global phase structure is summarized in the cele-
brated Doniach phase diagram [9]. The minimal lattice model
that allows us to study the competition between the Kondo
screening and the formation of magnetic order is the Kondo-
lattice model whose Hamiltonian is given by [9]

ĤKL = −t
∑
i,α

(c†
i,αci+1,α + H.c.) + JK

∑
i

�si · �Si

=: Ĥe + ĤK. (1)

In Eq. (1), ci,α (c†
i,α) denotes the annihilation (creation) op-

erator of the conduction electron with spin α =↑,↓ at site
i. The first term Ĥe is the kinetic energy (the hopping term)
of the conduction electron, while the second describes the

exchange interaction between the spin �si = c†
i,α[�σ ]αβci,β/2

of the conduction electron (the symbols �σ denote the Pauli
matrices and the summation over repeated indices is implied)
and the localized spin �Si (spin S) at the same site, which is
known as the Kondo coupling. Since the localized spins �Si in
the Kondo-lattice model (1) originate from the spin degree of
freedom of d or f electrons, the case S = 1

2 has been mainly
studied [3,10]. It has been also proposed that the model (1)
itself can be quantum simulated in a well-controlled manner
using alkaline-earth-like fermionic cold atoms (e.g., 171Yb)
loaded on optical lattices [11,12].

Recently, the possibility that the S = 1 Kondo-lattice
model with a uniaxial anisotropy under a transverse magnetic
field can describe the coexistence of ferromagnetism and su-
perconductivity in materials like URhGe has been pointed
out [13,14]. This motivates us to study the Kondo-lattice
model with spin S larger than 1

2 and broaden the range of ma-
terials to which the Kondo-lattice model can apply.1 Another
interesting aspect of considering the higher-spin (S) gener-
alization is that, in one dimension, the magnetically ordered
region of the Doniach phase diagram may exhibit intrinsically
different properties depending on, e.g., the parity of 2S.

On top of considering higher-spin cases, we shall in-
corporate below the direct interaction between the adjacent
localized spins. Here, by “direct” we mean that the spin-
spin interaction is not mediated by the conduction electrons.
In order to incorporate these two generalizations to the
Kondo-lattice model, we consider the following spin-S

1If S = 1 or higher, the ground-state multiplet of the corresponding
f ion must be four-degenerate by spin-orbit coupling. This degener-
acy will be lifted under the crystalline field, so the realization of the
magnitude S = 1 has the delicate problem.
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Kondo-Heisenberg (KH) Hamiltonian [15–17]:

ĤKH = −t
∑
i,α

(c†
i,αci+1,α + H.c.) + JK

∑
i

s̃i · S̃i

+ JH

∑
i

�Si · �Si+1

=: Ĥe + ĤK + ĤH. (2)

The first two terms Ĥe and ĤK are common to the two models
ĤKL (1) and ĤKH (2). The last term ĤH (JH > 0) is the direct
antiferromagnetic interaction between the adjacent localized
spins mentioned above. Physically, this interaction corre-
sponds to the superexchange interaction among f electrons
which would arise when small hopping of the f electrons is
taken into account.

In the case S = 1
2 and 0 < n < 1 of the KL model (1),

the electron motion favors ferromagnetism when JK is suf-
ficiently large [18,19]. One of the important effects of the
JH term is to suppress this ferromagnetic ground state and
stabilize the paramagnetic one [20]. Another interesting effect
is that moderate JH term can open the spin gap even away
from half-filling 0 < n < 1 [21]. The KH model (2) with the
localized spin 1

2 has been studied in the context of, e.g., the
uranium-based heavy-fermion superconductors [22], the pair
density wave in superconducting state of La2−xBaxCuO4 [21],
and the topological Kondo insulators [23–25]. The model
ĤKH with S = 1

2 is also used as a simplest model that may
describe the interplay between two different orders in a certain
class of organic compounds [e.g., (Per)2Pt(mnt)2] in which the
systems consist of partially filled metallic part and half-filled
insulating one [26–28].

Yet another motivation to study the KH model ĤKH is
related to the physics of open quantum systems. Instead of
viewing it as a generalization of the Kondo-lattice model (1),
we can think of the KH model (2) as the spin-S Heisenberg
chain (ĤH) coupled to the environment (Ĥe) of the conduction
electrons through the Kondo coupling. In fact, the ground
state of the spin-S Heisenberg chain is known to be deeply
connected to topology [29,30] and is quite interesting in its
own right. For example, the gapped ground state of the S =
1 Heisenberg chain is one of the typical examples of the
symmetry-protected topological (SPT) phases [31,32], which
can be used as the resource states of the measurement-based
quantum computation [33]. This motivates us to study the
effects of coupling nontrivial (topological) many-body states
hosted in the localized spin system to a gapless environ-
ment (i.e., the conduction electrons). The investigation of
the robustness of the SPT states against perturbation from
the environment through the KH model (2) would be a very
important theme also from the quantum-computational point
of view and will be discussed elsewhere. As the first step
toward the understanding of the physics of the genralized KH
model (2), we study in this paper its phase structure in the
region of strong Kondo coupling where we can determine the
ground-state properties accurately (sometimes rigorously).

The organization of the rest of the paper is as follows. In
Sec. II, we derive the low-energy effective Hamiltonian in the
strong-coupling region (i.e., JK � t, JH) both at half-filling
and away from half-filling, which gives an important insight

into the structure of the phase diagram. In particular, we will
show that, in the strong-coupling region, the ferromagnetic
phase is generically stabilized (except at half-filling) through
a mechanism similar to the double-exchange interaction and
that this tendency competes with antiferromagnetism stabi-
lized by the direct antiferromagnetic interaction JH.

In Sec. III, in order to investigate this competition between
the ferromagnetism and the JH-induced antiferromagnetism,
we carry out numerical density-matrix renormalization-group
(DMRG) simulations [34–36] combined with the sine-square-
deformation (SSD) technique [37–39] for the special case of
S = 1 to find that the competition indeed stabilizes a new
dimerized (i.e., bond-centered) phase with power-law spin
correlation and a finite charge gap. We summarize the main
results in Sec. IV, and some technical details including the
proof of ferromagnetism are presented in the Appendixes.

II. STRONG-COUPLING EFFECTIVE HAMILTONIAN

In this section, we carry out the perturbation theory from
the strong-coupling limit (JK → ∞) to derive the low-energy
effective Hamiltonian that enables us to map out the strong-
coupling phases. Since ĤKH can commute with the total
electron number Ne = ∑

i,α c†
i,αci,α = ∑

i ni, the electron den-
sity n = Ne/L (with L being the system size) of the conduction
electrons is a conserved quantum number to be fixed. More-
over, since the particle-hole transformation ci,α ↔ c†

i,α maps
the KH model at filling n onto the same model at filling
2 − n as in the KL model [3], we can safely restrict ourselves
to n � 1 without the loss of generality. Another important
conserved quantum number is T z

tot = ∑
i T z

i = ∑
i(s

z
i + Sz

i ).
Throughout this paper, we reserve the notation �Ti to denote
the composite spin on each site:

�Ti := �si + �Si. (3)

To be specific, unless otherwise stated, we set S = 1 in what
follows, although the generalization to arbitrary S is straight-
forward. Some of the generalizations are discussed in the
Appendixes.

A. Half-filling (n = 1)

1. Strong-coupling ground state

At half-filling n = 1, the number of conduction electrons
Ne equals to the number of the sites L. In the strong-coupling
limit JK → ∞, where we can ignore the other two terms Ĥe
and ĤH, we can find the ground state of ĤK by minimizing
the Kondo coupling JK�si · �Si site by site; the ground state has
no doubly occupied or vacant sites, and at each site the spin
1
2 from a conduction electron and the localized spin-1 form a
doublet:

|⇑〉i :=
√

2

3

∣∣∣∣↓1
〉

i

−
√

1

3

∣∣∣∣↑0
〉

i

,

|⇓〉i :=
√

2

3

∣∣∣∣ ↑
−1

〉
i

−
√

1

3

∣∣∣∣↓0
〉

i

.

(4)

On the right-hand sides of (4), we have introduced the sym-
bols |α

Sz〉i to denote the tensor-product state |α〉i,c-electron ⊗
|Sz〉i,local spin with |α〉 being one of the four electronic
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(i) (ii)

(iii-a)

(iii-b)

FIG. 1. A process of second-order perturbation of hopping term.
(i) One of neighboring sites in the nonperturbed ground state. Thick
arrow in an oval descibes a Kondo doublet in the strong-coupling
limit. (ii) Shows a possible first-order process. This picture describes
the state after an electron with up-spin hops from the left site to the
right one. This state is not included in vastly degenerated ground
states. (iii) Second-order process. We can take two possible ways to
back to the eigenspace which is spanned by nonperturbed ground
states.

states |emp〉 = |0〉, |↑〉 = c†
i,↑|0〉, |↓〉 = c†

i,↓|0〉, and |↑↓〉 =
c†

i,↑c†
i,↓|0〉, and Sz = ±1, 0. From now on, we call this effec-

tive spin- 1
2 state as the Kondo doublet. In addition, as the

Kondo doublets at the individual sites do not interact with
each other in this limit, the ground state of the entire system
is 2L-fold degenerate; all the possible tensor products of these
local Kondo doublet states ⊗i|A〉i (A =⇑,⇓) span the basis of
the huge ground-state eigenspace Hhf in the strong-coupling
limit.

2. Perturbation theory from strong-coupling limit

Now, we consider the parameter region where the Kondo
coupling is finite but still much larger than the other two terms,
i.e., where the hopping term and the Heisenberg term can be
viewed as the small perturbation.

(i) Second-order perturbation in the hopping t . At half-
filling, the first-order perturbation of the hopping term is
prohibited because the application of the hopping to the un-
perturbed ground state always gives rise to the states with
exactly one pair of a doubly occupied and a vacant (“emp”)
sites which is out of the ground-state subspace:⎧⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎨⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎩

c†
i+1,↑ci,↑ |⇑〉i ⊗ |⇑〉i+1 = −

√
2

3

∣∣∣∣emp

0

〉
i

⊗
∣∣∣∣↑↓

1

〉
i+1

,

c†
i+1,↑ci,↑ |⇑〉i ⊗ |⇓〉i+1 = 1

3

∣∣∣∣emp

0

〉
i

⊗
∣∣∣∣↑↓

0

〉
i+1

,

c†
i+1,↑ci,↑ |⇓〉i ⊗ |⇑〉i+1 = 2

3

∣∣∣∣emp

−1

〉
i

⊗
∣∣∣∣↑↓

1

〉
i+1

,

c†
i+1,↑ci,↑ |⇓〉i ⊗ |⇓〉i+1 = −

√
2

3

∣∣∣∣emp

−1

〉
i

⊗
∣∣∣∣↑↓

0

〉
i+1

.

(5)

Here, the sign of the right-hand side comes from the definition
of the doubly occupied state |↑↓〉i = c†

i,↑c†
i,↓ |emp〉i. There-

fore, we need to go to the second-order perturbation in the
hopping t to find the effective interaction among the Kondo
doublets.

As is illustrated in Fig. 1, the second-order process con-
sists of (i) hopping from i to i + 1 (from i + 1 to i) that
excites ĤK to the intermediate state with exactly one pair of
a doubly occupied and a vacant site, and (ii) hopping from
i + 1 to i (from i to i + 1). Therefore, the second-order pro-
cesses induce the following transitions among the four states
(|⇑⇑〉 |⇑⇓〉 |⇓⇑〉 |⇓⇓〉) of the neighboring Kondo doublets
(i, i + 1):

Pg.s.

( ∑
α=↑,↓

c†
i,αci+1,α + H.c.

)

× 1

Eg.s. − ĤK

(∑
α

c†
i+1,αci,α + H.c.

)
Pg.s.

= − t2

9JK

⎛⎜⎝4 0 0 0
0 5 −1 0
0 −1 5 0
0 0 0 4

⎞⎟⎠, (6)

where Eg.s. = −JKL is the ground-state energy of ĤK and Pg.s.
is the projector onto the ground-state subspace. In deriving
the above, we have used the fact that we can substitute the
denominator Eg.s. − ĤK on the left-hand side with the constant
−2JK because any allowed intermediate states have exactly
one pair of a doubly occupied and a vacant site each of which
contributes the energy cost JK. Similar effective interactions
arise from any neighboring doublet pairs (i, i + 1), and we
finally obtain the following effective antiferromagnetic spin
exchange among the Kondo doublets:∑

i

(
2t2

9JK

�Di · �Di+1 − t2

2JK

)
. (7)

Here, �Di denotes the spin- 1
2 operator for the Kondo doublet at

site i.
(ii) First-order perturbation in the Heisenberg interaction

JH. On top of the second-order kinetic exchange, there is the
contribution from the Heisenberg term ĤH. As the Heisenberg
interaction JH does not change the electronic state, it can
generate first-order processes within the half-filled ground-
state subspace Hhf. In the basis (4) spanning Hhf, the matrix
elements of the localized spin-1 operators �Si are

〈⇑|i Sz
i |⇑〉i = 2/3 = 4/3 〈⇑|i Dz

i |⇑〉i ,

〈⇑|i Sz
i |⇓〉i = 〈⇓|i Sz

i |⇑〉i = 0, (8)

〈⇓|i Sz
i |⇓〉i = −2/3 = 4/3 〈⇓|i Dz

i |⇓〉i ,

〈⇑|i S+
i |⇑〉i = 〈⇓|i S+

i |⇓〉i = 0,

〈⇑|i S+
i |⇓〉i = −4/3, (9)

〈⇓|i S+
i |⇑〉i = 0,

which means that the localized spin �Si projected onto Hhf is

given by �Si
Hhf−−→ (4/3) �Di [see Eq. (A8) for the expression for

general S]. Therefore, the first-order degenerate perturbation
of the Heisenberg term ĤH gives the following effective an-
tiferromagnetic spin exchange among the neighboring Kondo
doublets:

JH

∑
i

�Si · �Si+1
Hhf−−→ 16

9
JH

∑
i

�Di · �Di+1. (10)
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Combining Eqs. (7) and (10), we obtain the following spin-
1
2 antiferromagnetic Heisenberg model for the Kondo doublets
as the strong-coupling effective Hamiltonian at half-filling
n = 1:

H (n=1)
eff =

(
2t2

9JK
+ 16

9
JH

) L∑
i=1

�Di · �Di+1 + E0 (11)

[with the constant E0 given by −(t2/2JK + JK)L]. There-
fore, the ground state of the half-filled KH model in the
strong-coupling region exhibits the quasi-long-range antifer-
romagnetic order with gapless spinon excitations (a spin
Luttinger liquid) [40]. Moreover, as adding an electron or
changing the electron configuration in the ground state costs
a finite energy (∼JK), the ground state is expected to be insu-
lating. Hence, we conclude that the ground state of strongly
coupled spin-1 KH chain at half-filling is an insulator with
power-law antiferromagnetic spin-spin correlation regardless
of the value of JH(� JK) [40]. This is in stark contrast to
the spin-gapped insulating ground state (the Kondo insulator)
found in the S = 1

2 KL model [41,42].
In general, the spin sector of spin-S half-filled KH chain

is described effectively by the antiferromagnetic spin-(S − 1
2 )

Heinseberg model for the partially screened moments (see
Appendix A for the details):

H (n=1)
eff =

{
4t2

(2S + 1)2(S + 1)JK
+
(

2(S + 1)

2S + 1

)2

JH

}
×
∑

i

�Si· �Si+1, (12)

where �Si is the effective spin-(S− 1
2 ) operator which replaces

the doublet �Di in the case of S = 1. The ground state of
the above effective Hamiltonian depends on the value of
S [29,30]; when 2S is even, the insulating ground state has
gapless spin excitations, while the ground state is fully gapped
(i.e., both the charge and spin gaps are finite) when 2S is
odd. This conclusion is consistent with that of a field-theory
argument [43,44]. In Sec. III A, we will numerically check this
prediction for S = 1 by increasing JH up to ∼JK while keeping
JK � t .

B. Other filling (n < 1)

Now, let us consider the filling less than half-filling, i.e.,
Ne < L. In this case, the strong-coupling ground state is
(LCNe × 2Ne × 3L−Ne )-fold degenerate. This degree of degen-
eracy includes the value 2L at half-filling as a spacial case
Ne = L. Unlike at half-filling, there exist some sites without
conduction electrons (since n < 1, doubly occupied sites are
not allowed in the strong-coupling ground state), and electrons
can move even in the limit JK → ∞. As we will see, this
difference dramatically changes the magnetism.

In deriving the effective Hamiltonian, we first note that the
Kondo doublets carry the spin degrees of freedom in contrast
to the case of spin- 1

2 KL model [3], where the spin degrees of
freedom are quenched at the sites occupied by the conduction
electrons by forming the Kondo singlets. For these reasons,
at n < 1, the electron motion contributes to the magnetism
already at the first order in t . The first-order effective Hamil-

tonian reads as

H (n<1)
eff = −t

∑
i

{
d̂†

i+1d̂i f (S=1)
i→i+1( �Di·�Si+1) n̂d,i(1 − n̂d,i+1)

+ d̂†
i d̂i+1 f (S=1)

i+1→i(�Si· �Di+1) (1 − n̂d,i )n̂d,i+1
}
, (13)

where n̂d,i (= 0, 1) denotes the number of the Kondo doublets
at site i, which are created (annihilated) by the fermionic
operator d̂†

i (d̂i), and the effective spin-dependent hopping
amplitudes of the doublets are given by

f (S=1)
i→i+1( �Di·�Si+1) = (2/3) �Di · �Si+1 + 1/3,

f (S=1)
i+1→i(�Si· �Di+1) = (2/3)�Si · �Di+1 + 1/3 (14)

[see Eq. (B7) for the expression for general S]. The deriva-
tion of the above equation (13) and the generalization to the
arbitrary spin S (� 1) are given in Appendix B.

The amplitude of the doublet hopping d̂†
i±1d̂i in the Hamil-

tonian (13) takes its maximal value (−2t/3) when a doublet
(D = 1

2 ) and the localized spin (S = 1) on the adjacent site
are coupled ferromagnetically, which suggests a ferromag-
netic ground state similar to that of the double-exchange
model [45–48]. In fact, as is discussed in Appendix C, ex-
ploiting the nonpositivity and the indecomposability of the
effective Hamiltonian (13), we can rigorously show that the
ground state of the effective Hamiltonian (13) is unique (up
to trivial degeneracy associated with the rotational symme-
try) and ferromagnetic with the maximal total spin Stot =
L − Ne/2 for 1 � Ne � L − 1. Hence, the ground state of
the spin-1 KL model in the strong-coupling region is ferro-
magnetic for generic filling 0 < n < 1 (and for 1 < n < 2
by the particle-hole symmetry) (in fact, the statement can be
generalized to arbitrary S � 1 in which the maximal total
spin is Stot = LS − Ne/2; see Appendix C). This is consis-
tent with the recent numerical observation for the spin-1
KL model [13,14]. The ferromagnetic phase in the large-
JK region is reminiscent of the situation in the spin- 1

2 KL
model [18,19,49,50], but the way how the hopping of con-
duction electrons causes ferromagnetism is different from
each other; the mechanism of ferromagnetic ground state of
spin-1 KL model (1) rather resembles the double-exchange
interaction first order in t , while, in the latter case, the fer-
romagnetism occurs through the second-order (∝t2) effective
interactions [19]. The ferromagnetic-metal phase found in the
strong-coupling region persists down to JK → 0 at least in the
low-density (n → 0) limit as in the S = 1

2 case [51]. In fact, it
is straightforward to generalize the proof in Ref. [18] to S � 1
to show that the ground state of the single-electron spin-S KL
model is ferromagnetic.

Now let us consider the effects of the Heisenberg term ĤH.
By the same argument as that leading to (10), we see that

the projection �̃Si of the localized spin �Si onto the ground-state
subspace is given by

�̃Si =
{�Si when site i is unoccupied,

(4/3) �Di when site i is occupied.
(15)

Then, the first-order perturbation in JH results in the following
antiferromagnetic spin-spin exchange on the adjacent spins
(either S = 1 or 1

2 depending on how the individual sites are
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occupied by the conduction electrons):

JH

∑
i

�̃Si · �̃Si+1. (16)

Therefore, in the strong-coupling region of the KH model
(JH > 0), the ferromagnetic order found above for the KL
model may be destabilized by the antiferromagnetic interac-
tion generated by the Heisenberg term JH. A rough estimate
of the critical value of JH may be obtained by comparing
the spin-dependent hopping amplitude (14) and the projected
Heisenberg interaction (16): Jc

H/t ∼ 1
2 . A more precise calcu-

lation for the two-site system shows that the ferromagnetic
ground state ends at JH/t = 1

6 .
Note that the effects of the Heisenberg term ĤH are very

different for n = 1 (half-filling) and n < 1; in the former, ĤH

stabilizes the antiferromagnetic correlation in the insulating
phase, while it competes with the hopping-assisted (double-
exchange) ferromagnetism in the latter. We will closely
investigate this competition in the next section.

III. NUMERICAL RESULTS FOR KONDO-
HEISENBERG MODEL

In this section, we report the numerical results for a particu-
lar case of the spin-1 localized moments. To obtain the ground
state of the S = 1 KH model (2), we carried out density-
matrix renormalization-group (DMRG) simulations using an
open source library ITENSOR [52] for the DMRG algorithm.
In addition, in some DMRG simulations, we adopted the sine-
square-deformed Hamiltonian [37,38] in order to reduce the
effects of the open boundary condition, in which the DMRG
algorithm works better [34,35]. Specifically, we simulated the
following Hamiltonian instead of the original one (2):

HKH,SSD = −t
i=L−1∑
i=1,α

f1(i)(c†
i,αci,α + H.c.)−μ

i=L∑
i=1,α

f0(i)c†
i,αci,α

+ JK

i=L∑
i=1

f0(i)�si · �Si + JH

i=L−1∑
i=1

f1(i)�Si · �Si+1,

(17a)

where the deformation functions are given by

fl (i) = sin2

[
π

L

(
i + l − 1

2

)]
(l = 0, 1) (17b)

and l = 0 (l = 1) is used for the onsite (on-bond) operators.
With the sine-square deformation (SSD) [53], the vicinity of
the center of a finite system well approximates the bulk of
the infinite system. In our simulations, we considered finite
systems of the sizes L � 100 under open boundary condition,
and set the block sizes m � 720. In all the cases, we found
that the truncation errors were less than ∼10−7. Throughout
this section, we set t = 1 as the unit of energy.

A. Half-filling

In Sec. II A, we have studied the ground state in the strong-
coupling limit (JK � t, JH), where the perturbation theory
in t and JH predicts that the ground state is insulating; the

FIG. 2. Correlation functions (log-log plots) of (a) the total spin
〈 �Ti · �Tj〉 := 〈(�si + �Si ) · (�s j + �Sj )〉 and (b) the S = 1 localized spins
〈�Si · �Sj〉 in the ground state of the uniform (i.e., without SSD) spin-1
KH model (2) at half-filling. Both are calculated at the fixed JK/t =
10.0 for varying JH/t . For comparison, the spin-spin correlation
functions of the S = 1

2 , 1 Heisenberg models are also plotted (dashed
curves). The zoom-up of the short-range part is shown in the insets
which clearly indicate the antiferromagnetic nature of the correlation.

low-energy physics is described, when S = 1, by the spin-
1
2 Heisenberg model (11), which indicates the power-law
antiferromagnetic spin-spin correlation. To check this for in-
creasing JH (0 � JH � JK), we numerically investigate in this
section the ground-state spin-spin correlation at half-filling.
Specifically, we fixed JK/t = 10, and increased JH/t from the
Kondo-lattice limit (JH = 0) up to JH ∼ JK to calculate the
spin correlation between distant sites for each JH/t . In doing
so, we used the uniform (i.e., undeformed) Hamiltonian (2).
The results for the correlation functions of (a) the composite
spins 〈 �Ti· �Tj〉 [ �Ti is defined in (3)] and (b) the localized spins
〈�Si·�S j〉, as well as those for the spin-1 and - 1

2 Heisenberg
models, are plotted in Fig. 2.

From the numerical results, we can first read off that the
composite-spin correlation function 〈 �Ti· �Tj〉 essentially coin-
cides with the ordinary spin-spin correlation of the spin- 1

2
Heisenberg chain (shown by the dashed line), up to fairly
large JH/t [see Fig. 2(a)]. As the system is insulating and
in the strong-coupling region, this quasi-long-range antiferro-
magnetic correlation is not attributed to the RKKY interaction
which requires metallicity and is valid in the weak-coupling
regime. Rather, this implies that the strong-coupling picture
discussed in Sec. II A remains valid even for large JH(∼ JK),
suggesting that the Kondo doublets, which are well-defined
when JK � t, JH, are rather robust against the interaction (JH)
among the localized spins.

We can also confirm this persistence of the Kondo doublets
by the results shown in Fig. 2(b). According to the strong-
coupling argument in Sec. II A, the correlation function of the
localized S = 1 spins in the KH model (2) should behave like
that of the spin- 1

2 Heisenberg chain (11):

〈�Si·�S j〉KH
Hhf−−→ (4/3)2〈 �Di· �Dj〉Heisenberg. (18)

In fact, the plots in Fig. 2(b) clearly show that the localized-
spin correlation function 〈�Si·�S j〉KH and the spin-spin corre-
lation function of the spin- 1

2 Heisenberg chain (dashed line)
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FIG. 3. The nearest-neighbor spin-spin correlation (a) 〈 �Ti · �Ti+1〉
and (b) 〈�Si · �Si+1〉 in the ground state of strongly coupled spin-1 KH
model at quarter-filling. 〈 �Ti · �Ti+1〉 and 〈�Si · �Si+1〉 are calculated for
fixed JK/t = 5.0 and L = 100.

behave similarly2 even when JH is fairly large; the correla-
tion function 〈�Si·�S j〉KH exhibits behavior essentially different
from the short-range (i.e., exponentially decaying) correlation
in the spin-1 Heisenberg chain which describes the physics
of the localized spins when JK = 0. All these suggest that
the exchange interaction JH does not really interfere with the
antiferromagnetism stabilized by the motion of the conduction
electrons, and that the Kondo-doublet physics dominates a
wide range of the parameter space (i.e., 0 � JH � JK) at half-
filling.

B. Away from half-filling

In the last section, we have seen that the inclusion of
antiferromagnetic JH does not essentially affect the insulating
ground state with gapless antiferromagnetic spinon excita-
tions at half-filling found in the strong-coupling limit. Away
from half-filling (i.e., 0 < n < 1), on the other hand, the sit-
uation is very different. In fact, the strong-coupling argument
tells us that the electron hopping tends to stabilize the ferro-
magnetic ground state which may be eventually destabilized
by the antiferromagnetic interaction (16). In this section, we
consider various ground-state phases resulting from the com-
petition between the kinetic-energy-driven ferromagnetism
and the JH-induced antiferromagnetism. Specifically, we fix
JK large, i.e., JK/t = 5.0 and numerically investigate the sta-
bility of the ferromagnetic order found in the KL-model limit
JH = 0 against the antiferromagnetic interaction JH. As long
as we know from the preliminary calculations, the quarter-
filling case n = 1

2 seems most interesting, and we mainly
focus on the case with n = 1

2 in this subsection unless oth-
erwise stated.

1. Magnetic properties

To investigate how the magnetic properties change as the
direct antiferromagnetic interaction JH is increased, we calcu-
lated the correlation function of the total spin �Ti(= �si + �Si ) at
each site as the probe. First, we show in Figs. 3(a) and 3(b)

2Almost parallel shifts of the four curves in Fig. 2(b) suggest that
〈�Si·�Sj〉 and 〈 �Di· �Dj〉 differ only by numerical factors.

FIG. 4. (a) Spin-spin correlation 〈 �Ti · �Tj〉 and (b) the ground-state
magnetization process of the quarter-filled spin-1 KH model in the
dimerized phase: (JK/t, JH/t ) = (5.0, 0.1). The correlation function
seems to decay as | 〈 �Ti · �Tj〉 | ∼ |i − j|−1. In obtaining (b), the SSD
Hamiltonian (17a) was used.

the nearest-neighbor spin-spin correlation functions 〈 �Ti · �Ti+1〉
[Fig. 3(a)] and 〈�Si · �Si+1〉 [Fig. 3(b)] between neighboring sites
for various JH/t at a fixed Kondo coupling JK/t = 5.0.

It can be seen from Fig. 3(a) that for sufficiently weak JH,
i.e., 0 � JH/t � 0.053, the value of the neighboring spin cor-
relation 〈 �Ti · �Ti+1〉 is site (i) independent and takes a positive
constant value (i.e., ferromagnetic) regardless of the value of
JH, while for JH/t � 0.054, it is alternating between two val-
ues. A similar behavior was observed for the localized spins
as well [see Fig. 3(b)]. The period-2 behavior in the bond-
centered operators 〈 �Ti · �Ti+1〉 and 〈�Si · �Si+1〉 suggests that the
localized spins are dimerized for JH/t � 0.054.

If we further increase JH, the clear period-2 behavior disap-
pears at around JH/t ∼ 0.45 and both 〈 �Ti · �Ti+1〉 and 〈�Si · �Si+1〉
become negatively constant, which means that, when JH/t �
0.45, the dimerized phase is taken over by a new phase
in which short-range antiferromagnetic correlation develops
[see Figs. 9(a)–9(d)]. This is consistent with that the sys-
tem asymptotically approach the spin-1 Heisenberg model,
which exhibits short-range antiferromagnetic correlation, if
we increase JH to a large value with JK/t fixed. In contrast
to the naive expectation based on the energetic argument in
Sec. II B, the ferromagnetic phase yields first to the dimerized
one at much smaller value of JH before the antiferromagnetic
tendency due to JH finally wins.

Despite the usual lore that the spin dimerization is ac-
companied by a finite spin gap, the intermediate “dimerized”
phase found above in fact has quasi-long-range antiferromag-
netic correlation, i.e., the correlation function 〈�Si · �S j〉 exhibits
power-law decay [see Fig. 4(a)], indicating a vanishing spin
gap.3 To check whether the spin gap vanishes, we calculated
the magnetization 〈M〉 = ∑

i T z
i /L with increasing external

3Although in critical isotropic spin systems, the spin-spin cor-
relation function is generically expected to behaves like (ln |i −
j|)1/2/|i − j| [40] except at the fine-tuned points, we did not find
such logarithmic corrections in our simulations. We do not know
whether this absence of the logarithmic correction is explained by
some effective long-range spin-spin interactions generated by the
electron motion or not.
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FIG. 5. The same correlation functions as in Fig. 3 for S = 1
2 .

Again JK/t = 5.0 was used. Note that no alternating (period-2) be-
havior is observed for S = 1

2 .

magnetic field h (in the z direction). To this end, we used
the SSD Hamiltonian (17a) with the (deformed) Zeeman
term −h

∑
i f0(i)(Sz

i + sz
i ) added. The results are shown in

Fig. 4(b). The linear increase of the magnetization 〈M〉 ∝ h
(h � 1) strongly suggests that the spin gap indeed vanishes in
the dimerized phase.

All these properties of the dimerized phase may be best
understood in the strong-coupling limit in which the system
is described only in terms of spin 1

2 (the Kondo doublets �Di)
and the unscreened localized spin 1 (�Si) [see Eq. (13)]. Let us
consider the situation where JH is much larger than t and we
can neglect the the order-t perturbation (13). Depending on
the configurations, 〈 �Ti · �Ti+1〉 is given by

〈 �Ti · �Ti+1〉 =

⎧⎪⎪⎨⎪⎪⎩
〈�Si · �Si+1〉 when (Ti, Ti+1) = (1, 1),
〈�Si · �Di+1〉 when (Ti, Ti+1) = (1, 1/2),
〈 �Di · �Si+1〉 when (Ti, Ti+1) = (1/2, 1),
〈 �Di · �Di+1〉 when (Ti, Ti+1) = (1/2, 1/2).

(19)
Similarly, for the (projected) localized spins [see Eq. (15)], we
have

〈�̃Si · �̃Si+1〉

=

⎧⎪⎪⎨⎪⎪⎩
〈�Si · �Si+1〉 when (Ti, Ti+1) = (1, 1),
(4/3) 〈�Si · �Di+1〉 when (Ti, Ti+1) = (1, 1/2),
(4/3) 〈 �Di · �Si+1〉 when (Ti, Ti+1) = (1/2, 1),
(16/9) 〈 �Di · �Di+1〉 when (Ti, Ti+1) = (1/2, 1/2).

(20)

The value 〈 �Ti · �Ti+1〉 = 1
2 means that neighboring S = 1

2 and
S = 1 form spin- 3

2 pairs for, e.g., JH = 0.054 [see Fig. 6(b)].

The expected value 〈�̃Si · �̃Si+1〉 = 2
3 is consistent with the

numerical results in Fig. 3(b). On the other hand, the
value 〈 �Ti · �Ti+1〉 = −1 allows the two possibilities (Ti, Ti+1) =
(1, 1) and ( 1

2 , 1) [or (1, 1
2 )]. However, looking at the value

〈�Si · �Si+1〉 ≈ − 4
3 [see Fig. 3(b)], we may conclude that the

second realizes for, e.g., JH/t � 0.1 and that the spin pairs
( 1

2 , 1) form doublets [Fig. 6(c)].
From these observations, the following picture emerges.

First we note that this dimerized state is in fact insulating
as will be shown in the next subsection, which allows us to
treat the spin 1

2 and 1 (there are equal numbers of them at
quarter-filling) as immobile. The numerical results indicate

BBB AAA

(a)

(b)

(c)

(d)

BBB AAA

electron

FIG. 6. Schematic pictures illustrating how magnetic property
changes as JH/t increases. (a) Ferromagnetic phase, (b) dimerized
phase for small JH in which spin 3

2 (i.e., local ferromagnetic corre-
lation between T = 1

2 and T = 1) are formed on A-B bonds (red
ovals), (c) dimerized phase for larger JH where doublets develop on
B-A bonds (blue ovals), and (d) metallic phase with short-range an-
tiferromagnetic correlation. Note that there is no transition between
(b) and (c).

that these spin 1
2 and 1 alternate in the insulating dimerized

phase. For small values of JH/t (� 0.054), local ferromag-
netic correlation still remains and magnetism is described by
the preformed quartets on the A-B bonds [see the red ovals in
Fig. 6(b)]. The weak fluctuations among these quartets may
be captured by the spin- 3

2 Heisenberg chain which eventually
leads to a gapless collective singlet ground state. For larger
values of JH/t (� 0.1), on top of the ferromagnetic correlation
on the A-B bonds, short-range antiferromagnetic correlation
develops on the B-A bonds, and doublets are formed on these
bonds [see the blue ovals in Fig. 6(c)]. Note that, in con-
trast to the usual spin-singlet dimerization, these two different
kinds of correlations do not interfere with each other, and the
state shown in Fig. 6(b) smoothly crosses over to Fig. 6(c).
Again, the fluctuations among these doublets may be taken
into account by the spin- 1

2 Heisenberg chain, which exhibits
power-law antiferromagnetic correlation. A remark is in order
here about the nature of “antiferromagnetic” correlation. As
the effective “spin” 1

2 are formed on dimers, the π -oscillating
correlation in the effective model translates to the period-
4 oscillation in the original model. In fact, we numerically
observed such power-law decaying period-4 behavior in the
spin-spin correlation 〈 �Ti · �Tj〉 at JH/t = 0.1.

A similar “gapless dimerized phase” has also been found
recently in the quarter-filled Kondo lattice model (S = 1

2 ,
JH = 0) at small Kondo coupling JK/t = 0.6 [54]. However,
we would like to stress here that the above dimerized phase
found in the strong-coupling region does not exist in the
S = 1

2 KH model at quarter-filling. In fact, as is seen in
Figs. 5(a) and 5(b), a similar intermediate spin-dimerized state
is absent in the S = 1

2 case, and instead there seems to be
a jump at JH/t ∼ 0.1 in both 〈 �Ti · �Ti+1〉 and 〈�Si · �Si+1〉 from
a positive value to a negative one. This sudden suppression
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of ferromagnetism by JH in the S = 1
2 case is consistent with

the analytic argument in Ref. [20]. Therefore, the existence
of this intermediate gapless dimerized phase is one of the
unique properties of the S = 1 KH model at quarter-filling.
In Fig. 6, we illustrate how the ferromagnetic order is lost via
the dimerized phase as we increase the interaction JH among
the localized spins.

2. Electrical properties

In the previous subsection, we have investigated the spin
correlation 〈Ti · Ti+1〉 and 〈Si · Si+1〉 and concluded that the
competition between the hopping-induced ferromagnetism
and the direct antiferromagnetic interaction JH leads to two
quantum phase transitions: one at JH/t ≈ 0.054 from the
ferromagnetic phase to the new gapless dimerized phase,
and another at JH/t ≈ 0.45 from the dimerized phase to a
nondimerized one with short-range antiferromagnetic corre-
lation. In this section, we investigate the phase structure and
the quantum phase transition(s) from the viewpoint of the
electrical transport.

To this end, we calculated the charge gap �c for various
JH/t with the Kondo coupling JK/t fixed. In doing so, we first
fixed the chemical potential μ and calculated the bulk electron
density 〈n(μ)〉 by averaging the local density 〈ni〉 around the
center of the system. In Fig. 7, we plot the electron density
〈n(μ)〉 obtained at (JK/t, JH/t ) = (5.0, 0.1) for several sys-
tem sizes L. There is a clear jump in μ only at 〈n〉 = 0.5,
which suggests that a finite charge gap opens at quarter-filling
and that the system is metallic for other densities around
n = 1

2 . This seems consistent with the field-theoretical pre-
diction in Ref. [44] which concludes that a metallic phase
with collinear spin fluctuations (collinear metal) occupies the
region around n = 1

2 (when JH = 0). Also, the size depen-
dence seems to be relatively small. The charge gap �c is
obtained by appropriately extrapolating the width of the jump
to L → ∞ [38].

The value of the charge gap �c at n = 1
2 (quarter-filling)

obtained in this way is shown as a function of JH/t (JK/t =
5.0 is fixed) in Fig. 8. It clearly shows that for 0 � JH � 0.053

FIG. 7. A typical behavior of μ as a function of the electron
density 〈n〉 around n = 1

2 for various system sizes L = 60, 80, 100.
The clear jump at n = 1

2 indicates a finite charge gap at quarter-filling
and the absence of the charge gap for other fillings (around n = 1

2 ).
(JK/t, JH/t ) = (5.0, 0.1) is used.

FIG. 8. Relation between JH/t and the charge gap �c for fixed
JK/t = 5.0. The charge gap is obtained by extrapolating the finite-
size values (which are given by the jump in the n-μ plot; see Fig. 7).
Note that the charge gap �c is finite only in the dimerized phase
(0.054 < JH/t � 0.45).

the ground state is metallic with a vanishing charge gap,
while for JH � 0.054 the ground state is an insulator. More-
over, Fig. 8 shows that, after attaining a maximum at around
JH ∼ 0.07, the charge gap �c decreases monotonically until
it vanishes at around JH/t = 0.45. Combining all these with
the results of the last subsection, we conclude that the region
where the system has a finite charge gap matches that of the
dimerized phase. To put it another way, the two magnetic
quantum phase transitions into and out of the dimerized phase
(at JH/t ≈ 0.054 and JH/t ≈ 0.45), and the metal-insulator
transitions found here occur simultaneously. The final phase
diagram at quarter-filling along JH/t axis is shown in Fig. 9.
Note that the third phase (“AFM”) is determined only by
the order parameter 〈 �Ti · �Ti+1〉 and the charge gap �c, and
the precise characterization, e.g., in the light of the heavy
Luttinger liquid [55] is yet to be done.

The mechanism of this dimerization-induced metal-
insulator transition at quarter-filling is an intriguing question.
One may naively expect that magnetic dimerization somehow
induces the modulation of the hopping amplitude thereby
halving the Brillouin zone and leading to a Mott-insulating
state in the half-filled bonding band [56]. To clarify this point,
we measured the hopping amplitude 〈∑α c†

iαci+1,α + H.c.〉 in
the dimerized phase to find no sign of alternation. Therefore,
this appealing scenario does not seem to work in our situation.

However, once we assume the spin dimerization in the
local moments, a combination of bosonization and a mean-

FM dimerized (gapless) AFM

metal insulator metal

FIG. 9. Phase diagram at quarter-filling (n = 1
2 ) along the JH/t

axis with fixed JK/t = 5.0. The magnetic and electrical properties of
the phases are determined by 〈Ti · Ti+1〉 (〈Si · Si+1〉) and the charge
gap �c. In the dimerized phase, the spin-spin correlation is power-
law decaying with period-4 oscillation.
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field-like argument seems to reasonably explain the opening
of the charge gap at quarter-filling. When the spin correlation
〈�Si · �Si+1〉 exhibits alternation, second-order perturbation in JK

induces the following effective interaction among the conduc-
tion electrons [57]:

(−1)igd(�si · �si+1), (21)

where the coupling constant gd is proportional to the am-
plitude of the spin dimerization. Then, it is straightforward
to treat the above interaction in the framework of bosoniza-
tion [40], and we see that, at n = 1

2 , the charge sector of
the conduction electron acquires the interaction cos(

√
8φρ )

whose scaling dimension is 2/Kρ (with φρ and Kρ , respec-
tively, being the charge boson field and the corresponding
Luttinger-liquid parameter),4 which, when Kρ > 1, opens the
charge gap. Note that the period-2 component of the hopping
amplitude sin(

√
8φρ ) has a zero expectation value consistent

with the above numerical observation. Although this argument
seems reasonable, the spin dimerization and the opening of
the charge gap actually occur hand in hand, and a clear ex-
planation of the mechanism of the magnetic dimerization still
remains to be an important open question.

IV. SUMMARY AND DISCUSSION

In this paper, we investigated the ground-state phases of the
spin-S Kondo-Heisenberg model in one dimension by means
of analytical calculations in the limit of strong Kondo cou-
pling (JK) and the numerical DMRG simulations for S = 1.
The main results are summarized schematically in Fig. 10.
First, we derived the strong-coupling effective Hamiltonian
both for and away from half-filling to obtain the insight into
the global phase structure. At half-filling, the charge gap of the
order of JK opens and the magnetic sector is described solely
by the partially screened local moments [with spin (S− 1

2 )],
whose dynamics is governed by the antiferromagnetic Heisen-
berg model. The resulting physics of the magnetic sector
depends on the parity of 2S; when 2S is odd, the half-filled
ground state is a spin-gapped insulator while when 2S is even,
the system is an insulator with power-law antiferromagnetic
correlation (i.e., a spin Luttinger liquid). As far as the direct
interaction JH is much smaller than JK, the two do not compete
with each other and the only effect of JH is to renormalize
the effective antiferromagnetic interaction among the partially
screened local moments. Away from half-filling, on the other
hand, we can prove that the system (at JH = 0) in strong cou-
pling is generically in the ferromagnetic metallic phase (see
Fig. 10) in which the unscreened moments (spin S) and the
(partially) screened ones [spin (S− 1

2 )] form a collective fer-
romagnetic state. Now this ferromagnetic state is challenged
by the direct antiferromagnetic interaction JH among the local
moments.

4We follow the convention of Ref. [40]. Precisely, we have one
more interaction of the form cos(

√
8φρ ) cos(

√
8φσ ) with the scal-

ing dimension 2 + 2/Kρ > 2. This is irrelevant and we can safely
drop it.

ferromagnetic 
metal

dimerized
insulator

AF metal
ferromagnetic metal

AF-dominant 

insulator

(S=1/2 HAF)

topological Haldane, 
metal

FIG. 10. Schematic phase diagram of the spin-1 Kondo-
Heisenberg model obtained from strong-coupling expansions and
numerical simulations. The parameter regions studied in this paper
are shown by the thick lines. On the line JK = ∞, 0 < n < 1, the
system is rigorously shown to be ferromagnetic metal. On the plane
n = 1 (half-filling), an insulating phase with power-law antiferro-
magnetic spin correlation is stable. At quarter-filling (n = 1

2 ), we
found at least three different phases at JK/t = 5.0: (i) ferromagnetic
metal, (ii) dimerized insulator with power-law period-4 spin correla-
tion, and (iii) metallic phase with antiferromagnetic correlation.

To substantiate these expectations quantitatively for large
but finite JK, we carried out the DMRG simulations combined
with the SSD method for the case of S = 1. At half-filling
(n = 1), the spin-spin correlation indeed exhibits a power-law
antiferromagnetic behavior, which agrees very well with that
of the spin- 1

2 (S− 1
2 = 1

2 here) Heisenberg chain up to fairly
large values of JH (� JK). This implies that the picture of
the insulating phase with correlated Kondo doublets, which
is established in the perturbative regime (i.e., JH � JK), in
fact extends over a wide range of the parameter space (see
“AF-dominant insulator” in Fig. 10). Combining this with
the results of the weak-coupling approach [43,44], we expect
that the AF-dominant insulator persists all the way down
to small JK.

At quarter-filling (n = 1
2 ) where ferromagnetism and anti-

ferromagnetic JH compete with each other, the phase diagram
is much richer (Figs. 9 and 10). The ferromagnetic metal
which is found for rather small JH is destabilized by increasing
JH and yields to a dimerized insulating phase with period-4
power-law spin-spin correlation (labeled as “dimerized insu-
lator” in Fig. 10). The critical value of JH is much smaller than
we expect from the strong-coupling effective Hamiltonian.
We also characterized the magnetic structure in the dimerized
phase by a simple phenomenological argument. If JH is further
increased, we encountered another quantum phase transition
at JH/t ≈ 0.45 where the system becomes metallic again.
It remains open to understand how magnetic dimerization
is stabilized by JH and opens a charge gap. Perhaps direct
simulations for the large-JK effective Hamiltonian (13) might
give an important hint. Also, as already noted in Sec. III B 2,
the third phase with short-range antiferromagnetic correlation
(“AF metal”) is determined only by the behavior of 〈 �Ti · �Ti+1〉
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and the absence of the charge gap, and the full characterization
of it is an important future problem.

In this paper, we have focused on the strong-coupling
phases of the spin-1 KH chain with small JH. On the other
hand, when the spin-1 moments are replaced with spin 1

2 ,
the model at weak coupling Jk � JH is known to possess
coexisting charge-density wave (CDW) and superconducting
orders [21], and, when interchain couplings are turned on,
it even exhibits a topologically nontrivial ground state [58].
These facts hint at a possibility that, in the weak-coupling
region, our spin-1 KH model might have a rich phase struc-
ture. Therefore, it is also an important future problem to study
whether this is the case or not for S > 1

2 .
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APPENDIX A: EFFECTIVE HAMILTONIAN OF SPIN
SECTOR OF SPIN-S KH CHAIN

In this Appendix, we generalize our observation in
Sec. II A that the strong-coupling effective Hamiltonian for
the spin-1 Kondo-lattice model at half-filling is given by the
spin- 1

2 Heisenberg model to the case of localized spin S. As
already mentioned in Sec. II A 2, the low-energy effective
Hamiltonian is the spin-(S− 1

2 ) antiferromagnetic Heisenberg
model.

Basically, we follow the strategy in Sec. II A. The 4(2S +
1) possible states at site i are shown in Table I together with
the Kondo energy and the degeneracy. In the strong-coupling
limit (JK → ∞) at half-filling (i.e, one electron per site ni =
1), the conduction electron and spin-S localized spin at each
site form 2S-fold degenerate Stot = (S − 1

2 ) states, in which
the Kondo energy is given by JK�si · �Si = −JK(S + 1)/2. The
remaining (2S + 2) states with Stot = (S + 1

2 ) have higher
energy JKS/2.

TABLE I. Local states of spin-S KH model. Quantum number of
total spin �Ti = �si + �Si is denoted by T .

Conduction electron T Kondo energy Degeneracy

ni = 0 (|0〉) S 0 2S + 1

ni = 1 S + 1/2 JKS/2 2S + 2

(ci,↑|0〉, ci,↓|0〉) S − 1/2 −JK(S + 1)/2 2S

ni = 2 (ci,↑ci,↓|0〉) S 0 2S + 1

On the other hand, the action of the creation operators is
locally written as

c†
i↑ =

S∑
M=−S

{∣∣∣∣ ↑
M

〉
i

〈
emp
M

∣∣∣∣
i

+
∣∣∣∣↑↓
M

〉
i

〈 ↓
M

∣∣∣∣
i

}
, (A1a)

c†
i↓ =

S∑
M=−S

∣∣∣∣ ↓
M

〉
i

〈
emp
M

∣∣∣∣
i

−
S∑

M=−S

∣∣∣∣↑↓
M

〉
i

〈 ↑
M

∣∣∣∣
i

, (A1b)

where we have introduced the notations | α

M〉i similar to those

used in Sec. II, and the minus sign in the second equa-
tion comes from the definition of doubly occupied state as
|↑↓〉i = c†

i,↑c†
i,↓ |emp〉i. Let us rewrite these operators in the

basis where Stot is diagonal. To this end, we note that the
relevant states are explicitly written as∣∣∣∣S + 1

2
;M + 1

2

〉
i

=
√

S + M + 1

2S + 1

∣∣∣∣ ↑
M

〉
i

+
√

S − M
2S + 1

∣∣∣∣ ↓
M + 1

〉
i

, (A2a)∣∣∣∣S − 1

2
;M + 1

2

〉
i

=
√

S − M
2S + 1

∣∣∣∣ ↑
M

〉
i

−
√

S + M + 1

2S + 1

∣∣∣∣ ↓
M + 1

〉
i

.

(M = −S, . . . , S − 1). (A2b)

By inverting these equations, we can express |↑ / ↓
M 〉i in

terms of |S ± 1
2 ;M + 1

2 〉i. Plugging those expressions into
Eqs. (A1a) and (A1b), and dropping the states with Stot =
S + 1

2 , we obtain the expressions of c†
i,↑/↓ and ci,↑/↓ projected

onto the Stot = S− 1
2 states:

Pdc†
i,↑PS−1/2 = −

S∑
M=−S

√
S + M
2S + 1

∣∣∣∣↑↓
M

〉〈
S − 1

2
;M − 1

2

∣∣∣∣,
Peci,↑PS−1/2 =

S∑
M=−S

√
S − M
2S + 1

∣∣∣∣emp
M

〉〈
S − 1

2
;M + 1

2

∣∣∣∣
(A3a)

and

Pdc†
i,↓PS−1/2 =

√
S − M
2S + 1

∣∣∣∣↑↓
M

〉〈
S − 1

2
;M + 1

2

∣∣∣∣,
(A3b)

Peci,↓PS−1/2 = −
√

S + M
2S + 1

∣∣∣∣emp
M

〉〈
S − 1

2
;M − 1

2

∣∣∣∣,
where PS−1/2 projects the state at site i onto the space
of total spin S − 1

2 , and Pd and Pe, respectively, are the
projectors onto the doubly occupied and empty states. There-
fore, the nearest-neighbor hopping on the two adjacent
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(i) (ii)

(iii-a)

(iii-b)

FIG. 11. Typical second-order processes in t for generic spin S.
(i) A pair of adjacent sites in the unperturbed (t = 0) ground state.
(ii) Electron (↑ here) hopping from the site i to i + 1 generates a
pair of sites in excited states. (iii) Second hopping back to the site i
returns the state to the ground-state subspace. Depending on the spin
of the electron going back, different final states are obtained [(iii-a)
and (iii-b)].

|S − 1
2 〉’s are

P i
dP i+1

e c†
i,↑ci+1,↑P i

S−1/2P i+1
S−1/2

= 1

2S + 1

∑
Mi

∑
Mi+1

√
S + Mi

√
S − Mi+1

×
∣∣∣∣↑↓
Mi

〉∣∣∣∣ emp
Mi+1

〉〈
S − 1

2
;Mi − 1

2

∣∣∣∣〈S − 1

2
;Mi+1 + 1

2

∣∣∣∣,
(A4a)

P i
dP i+1

e c†
i,↓ci+1,↓P i

S−1/2P i+1
S−1/2

= − 1

2S + 1

∑
Mi

∑
Mi+1

√
S − Mi

√
S + Mi+1

×
∣∣∣∣↑↓
Mi

〉∣∣∣∣ emp
Mi+1

〉〈
S − 1

2
;Mi + 1

2

∣∣∣∣〈S − 1

2
;Mi+1 − 1

2

∣∣∣∣.
(A4b)

The expressions for c†
i+1,↑ci,↑ and c†

i+1,↓ci,↓ are obtained
from the above by interchanging i ↔ i + 1. Similarly, we can
write P i

S−1/2P i+1
S−1/2c†

i,↑ci+1,↑P i
eP i+1

d , etc.
Combining all these, we can calculate the matrix elements

of the second-order processes shown in Fig. 11. For example,
the matrix element of the process (i) → (ii) → (iii-a) is

(−t )2

−JK(S + 1)
P i

S−1/2P i+1
S−1/2c†

i,↓ci+1,↓P i
e

× P i+1
d c†

i+1,↑ci,↑P i
S−1/2P i+1

S−1/2

= t2

JK(S + 1)(2S + 1)2
S−

i S
+
i+1, (A5)

where �S are the spin-(S− 1
2 ) operators and we have used

S−
i =

S−1/2∑
M=−(S−1/2)

√
{(S−1/2) + Mi}{(S−1/2) − Mi + 1}

× |S−1/2;Mi − 1〉2〈S−1/2;Mi|2,

etc., in obtaining the final expression. Similarly, the process
(i) → (ii) → (iii-b) gives the diagonal term

t2

JK(S + 1)(2S + 1)2

{
Sz

iS
z
i+1 − 2S + 1

2

(
Sz

i − Sz
i+1

)}
− t2

4JK(S + 1)
. (A6)

If we collect all the possible processes, the terms proportional
to (Sz

i − Sz
i+1) cancel out and we obtain the following effec-

tive Hamiltonian:

Heff = 4t2

(2S + 1)2(S + 1)JK

∑
i

�Si · �Si+1 + const. (A7)

Putting S = 1 in this equation, we recover Eq. (A9) in
Sec. II A. This effective Hamiltonian indicates that the spin-
S Kondo-lattice model with JK > 0 in the strong-coupling
region is an insulator whose spin sector is described by the
spin-(S− 1

2 ) Heisenberg model; according to the Haldane con-
jecture [29,30], the spin correlation is qualitatively different
when S is integer and when S is half-odd integer. If S is
integer, then the spin sector exhibits antiferromagnetic quasi-
long-range order, while the ground state is disordered if S is
half-odd. This is consistent with the prediction [43] based on
field-theory mapping.

It is straightforward to take the Heisenberg term JH into
account. To this end, we follow similar steps to find the pro-
jection of the localized spin onto the ground-state subspace:

P i
S−1/2

�Si P i
S−1/2 = 2(S + 1)

2S + 1
�Si, (A8)

which means that, in the strong-coupling limit, the localized
spin �Si behaves like the effective spin-(S− 1

2 ) �Si except for
the overall normalization factor. From this, one immediately
sees that the Heisenberg term just gives the same Heisenberg
model as before, leading to the total effective Hamiltonian:

H (n=1)
eff =

{
4t2

(2S + 1)2(S + 1)JK
+
(

2(S + 1)

2S + 1

)2

JH

}
×
∑

i

�Si· �Si+1, (A9)

which generalizes Eq. (11).

APPENDIX B: DERIVATION OF EFFECTIVE
HAMILTONIAN (13)

Among the 4(2S + 1) possible onsite states listed in
Table I, the 2S states |n=1, T =S− 1

2 ; T z〉 with a single con-
duction electron, and the (2S + 1)-fold degenerate states
|n=0, T =S; T z〉 without electron are relevant in the strong-
coupling limit (less than half-filling n < 1). As we can
distinguish |n=0, T =S; T z〉 from |n=1, T =S− 1

2 ; T z〉 by the
value of T (S or S− 1

2 ) in the strong-coupling Hilbert space,
we can omit n in specifying the states, and we will abbreviate,
e.g., |n = 0, T = S; T z = M〉i as |S; M〉i from now on. The
low-energy Hilbert space is spanned by the tensor products of
|S;M〉i and |S− 1

2 ;M〉
i
.
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So the action of electron-creation operators on |S;M〉i is

c†
i,↑ =

S∑
M=−S

√
S − M
2S + 1

|S−1/2;M + 1/2〉i 〈S;M|i , (B1a)

c†
i,↓ = −

S∑
M=−S

√
S + M
2S + 1

|S−1/2;M − 1/2〉i 〈S;M|i . (B1b)

Therefore, the action of hopping operators of the conduction electron on |S;Mi〉 ⊗ |S − 1/2;Mi±1〉i±1 is

−tc†
i,↑ci±1,↑ = − t

2S + 1

S∑
Mi=−S

S−1/2∑
Mi±1=−(S−1/2)

√
S − Mi

√
S − Mi±1 + 1/2

× |S−1/2;Mi + 1/2〉i ⊗ |S;Mi±1 − 1/2〉i±1(〈S;Mi|i ⊗ 〈S−1/2;Mi±1|i±1), (B2a)

−tc†
i,↓ci±1,↓ = − t

2S + 1

S∑
Mi=−S

S−1/2∑
Mi±1=−(S−1/2)

√
S + Mi

√
S + Mi±1 + 1/2

× |S−1/2;Mi − 1/2〉i ⊗ |S;Mi±1 + 1/2〉i±1(〈S;Mi|i ⊗ 〈S−1/2;Mi±1|i±1). (B2b)

If we introduce the exchange operator Xi, j as

Xi, j |ψ〉i ⊗ |ϕ〉 j = |ϕ〉i ⊗ |ψ〉 j , (B3)

then (B2a) and (B2b) can be rewritten in the following form:

−tc†
i,↑ci±1,↑ = − t

2S + 1
Xi,i±1

{
S∑

Mi=−S

S−1/2∑
Mi±1=−(S−1/2)

√
S − Mi

√
S − Mi±1 + 1/2

× |S;Mi±1 − 1/2〉i ⊗ |S−1/2;Mi + 1/2〉i±1(〈S;Mi|i ⊗ 〈S−1/2;Mi±1|i±1)

}
, (B4a)

−tc†
i,↓ci±1,↓ = − t

2S + 1
Xi,i±1

{
S∑

Mi=−S

S−1/2∑
Mi±1=−(S−1/2)

√
S + Mi

√
S + Mi±1 + 1/2

× |S;Mi±1 + 1/2〉i ⊗ |S−1/2;Mi − 1/2〉i±1(〈S;Mi|i ⊗ 〈S−1/2;Mi±1|i±1)

}
. (B4b)

If one changes the basis from |S;Mi〉 ⊗ |S− 1
2 ;Mi±1 + 1

2 〉 to the one in which the total spin J (= 1
2 , . . . , 2S− 1

2 ) is diagonal:

|S;Mi〉 ⊗ |S−1/2;Mi±1〉 =
2S−1/2∑
J=1/2

(〈J;Mi + Mi+1|S;Mi〉 ⊗ |S−1/2;Mi±1〉)|J;M = Mi + Mi+1〉,

the above can be further recast as

−t
(
c†

i,↑ci+1,↑ + c†
i,↓ci+1,↓

) = −tXi,i+1P i
SP i+1

S− 1
2

[
1

2S + 1

2S−1∑
k=0

(−1)k (2S − k)Pi+1→i(2S − k − 1/2)

]
P i

SP i+1
S− 1

2
, (B5a)

−t
(
c†

i+1,↑ci,↑ + c†
i+1,↓ci,↓

) = −tXi,i+1P i
S− 1

2
P i+1

S

[
1

2S + 1

2S−1∑
k=0

(−1)k (2S − k)Pi→i+1(2S − k − 1/2)

]
P i

S− 1
2
P i+1

S . (B5b)

This is the generalization of the so-called double-exchange
Hamiltonian [48,59] to the case of antiferromagnetic JK. Here
we have defined another operator Pi→i+1(J ) [Pi+1→i(J )] that
projects the states of a pair of spins S− 1

2 at site i [site (i + 1)]
and S at site (i + 1) (site i) onto the subspace with the total

spin J:

P(J ) =
J∑

M=−J

|J;M〉 〈J;M| . (B6)
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In both expressions (B5a) and (B5b) of the electron hopping,
the projection operator onto J = 2S − 1

2 = S + (S − 1
2 ) (i.e.,

the maximal value of �Si+�Si+1 or �Si+ �Si+1) has the largest
coefficient suggesting that the ferromagnetic state optimizes
the kinetic energy of the conduction electrons as in the ferro-
magnetic Kondo-lattice model.

It is not difficult to write the quantity
1/(2S+1)

∑2S−1
k=0 (−1)k (2S−k)Pi→i+1(2S−k−1/2) as a

polynomial f (S)( �Si·�Si+1) of �Si·�Si+1. The explicit forms of
f (S)(X ) are given by

f (1/2)(X ) = 1/2,

f (1)(X ) = 2

3
X + 1

3
,

f (3/2)(X ) = 3

8
X + 1

4
X 2 − 3

8
,

f (2)(X ) = −1

3
X + 7

45
X 2 + 2

45
X 3 − 4

5
,

f (5/2)(X ) = 1

6

{
−305

72
X − 79

144
X 2 + 7

36
X 3 + 1

36
X 4 − 85

48

}
.

(B7)

The polynomial for 1/(2S+1)
∑2S−1

k=0 (−1)k (2S−k)Pi+1→i

(2S − k − 1/2) is given simply by f (S)(�Si· �Si+1). Setting S =
1 in Eqs. (B5a) and (B5b) and expressing Xi,i+1 and P with d̂i

and n̂d
i reproduce the results (13) and (14) in Sec. II B.

APPENDIX C: RIGOROUS PROOF OF THE
FERROMAGNETIC GROUND STATE

FOR EFFECTIVE HAMILTONIAN (13)

In this Appendix, starting from the strong-coupling effec-
tive Hamiltonian (13), we derive the ferromagnetic ground
state of spin-1 Kondo-lattice model (i.e., JH = 0) with filling
0 � n � 1. As we can follow almost the same steps to gen-
eralize the statement to the arbitrary spin S, we describe the
proof only for S = 1 for simplicity.

For this purpose, let H (l ) be the Hamiltonian (13) of l-site
system:

H (l ) = − t
l−1∑
i=1

{
d̂†

i+1d̂i f (S=1)
i→i+1( �Di·�Si+1) n̂d,i(1 − n̂d,i+1)

+ d̂†
i d̂i+1 f (S=1)

i+1→i(�Si· �Di+1) (1 − n̂d,i )n̂d,i+1
}
,

which is block diagonal in the number of doublets Nd(l ) =∑l
i=1 nd,i (which is equal to the number of conduction elec-

trons) and the total Sz
tot(l ) = ∑l

i=1 T z
i :

H (l ) =
⊕

Nd(l ),Sz
tot (l )

H (l )
Nd(l ),Sz

tot (l ). (C1)

The first step is to prove that (A) for 1 � Nd(L) � L − 1
(L: the system size), the matrix representation of H (L)

Nd(L),Sz
tot (L)

is nonpositive and indecomposable in the standard basis:5{∣∣T z
1 , . . . , T z

L

〉 = ⊗i

∣∣T z
i

〉 } (
T z

i = ±1/2, 0,±1
)
. (C2)

Note that when T z
i = ± 1

2 , an electron exists at site i forming
a Kondo doublet (|⇑〉i or |⇓〉i), while there is no electron if
T z

i = 0,±1. Then, we can use the Perron-Frobenius theorem
(see, e.g., Ref. [60] for a physicist-friendly exposition of the
theorem and its applications) to show that the ground state
within each sector is unique and that the ground-state “wave
function” in this basis is strictly positive. The second step is
to show that (B) the above unique ground state has a nonzero
overlap with the state of maximal total spin: Stot = L − Nd/2,
which means that the unique ground state is indeed ferromag-
netic.

The proposition (A) is proven by the mathematical induc-
tion in the system size L. Let us start from the simplest case
L = 2. In this case, it suffices to consider only Nd(2) = 1
since H (L=2)

Nd,Sz is trivially zero for Nd(2) = 0 and 2(= L). When
Nd(2) = 1, there are 12 states [6 spin states for each of the two
possible configurations of S = 1

2 (electron) and S = 1 (hole)]:

Sz
tot(2) =3/2 : |T z

1 , T z
2 〉 = |1, 1/2〉 , |1/2, 1〉 ,

Sz
tot(2) =1/2 :

|T z
1 , T z

2 〉 =|1/2, 0〉, | − 1/2, 1〉, |0, 1/2〉, |1,−1/2〉,
Sz

tot(2) = − 1/2 :

|T z
1 , T z

2 〉 =| − 1/2, 0〉, |1/2,−1〉, |0,−1/2〉, | − 1, 1/2〉,
Sz

tot(2) = − 3/2 : |T z
1 , T z

2 〉 = | − 1,−1/2〉, | − 1/2,−1〉.
The matrix representation of the effective Hamiltonian in
the above basis can be obtained readily from Eqs. (B2a)
and (B2b). For instance, the block Hamiltonian for Sz

tot(2) = 3
2

and Sz
tot(2) = 1

2 are respectively given by

H (2)
1,3/2 = − t

3

(
0 2
2 0

)
(C3)

and

H (2)
1,1/2 = − t

3

⎛⎜⎜⎝
0 0 1

√
2

0 0
√

2 0
1

√
2 0 0√

2 0 0 0

⎞⎟⎟⎠ (C4)

(the others are H (2)
1,−1/2 = H (2)

1,1/2 and H (2)
1,−3/2 = H (2)

1,3/2).
Clearly, all the off-diagonal elements of these matrices are
nonpositive.

The connectivity of these matrices can be represented by
the connected graph shown in Fig. 12, in which the vertices
represent the basis states and the edges correspond to nonzero
matrix elements among them. It is easy to see that for any
pair of vertices (i.e., basis states) we can go from one to the
other by following the edges (i.e., nonzero matrix elements);
a matrix is said to be indecomposable if the corresponding
graph is connected (as in Fig. 12). Thus, we establish that the

5We do not need to specify the local doublet (i.e., electron) number
nd

i since T z
i = ±1/2 (0, ±1) already imply nd

i = 1 (0).
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1 2

1 4

2 3

)b()a(

FIG. 12. Oriented graphs representing the block Hamiltonians
(a) H (2)

1,3/2 [Eq. (C3)] and (b) H (2)
1,1/2 [Eq. (C4)]. The numbers on

the vertices denote the matrix indices, and the arrows running from
the vertex j to i mean that the (i, j) elements are nonzero. As the
Hamiltonian is represented by Hermitian matrices, all the arrows are
bidirectional.

block Hamiltonians are nonpositive and indecomposable for
L = 2.

Next, suppose that the statement (A) holds for all the
system sizes l up to L, that is, all the block Hamiltonians
{H (l )

Nd(l ),Sz
tot (l )} [2 � l � L, 2 � Nd(l ) � l − 1] are nonpositive

and indecomposable in the basis (C2) to prove the statement
for the system size L + 1. Consider the block H (L+1)

Nd,S
z
tot

of the
system with size L + 1. According to the five possible values
of T z

L+1 (= 1, 0,−1, 1
2 ,− 1

2 ), we can decompose the subspace
with (Nd, Sz ) into five different sectors, and the hopping be-
tween the sites L and L + 1 connects these five sectors with
each other. From the explicit expressions (B2a) and (B2b) of
the hopping term (see also Fig. 13), we see that the Hamilto-
nian H (L+1)

Nd,S
z
tot

takes the following block structure:

H (L+1)
Nd,S

z
tot

=

⎛⎜⎜⎜⎝
M1 0 0 ∗ 0
0 M2 0 ∗ ∗
0 0 M3 0 ∗
∗ ∗ 0 M4 0
0 ∗ ∗ 0 M5

⎞⎟⎟⎟⎠, (C5)

where the diagonal blocks M1, M2, M3, M4, and M5, re-
spectively, are H (L)

Nd,S
z
tot−1, H (L)

Nd,S
z
tot

, H (L)
Nd,S

z
tot+1, H (L)

Nd−1,Sz
tot− 1

2

, and

H (L)
Nd−1,Sz

tot+ 1
2

, and the asterisk (∗) denotes nonpositive matrices

determined by (B2a) and (B2b). Since Mi (i = 1, . . . , 5) are

(1)

(2)

(2)’

(3)

(4)

(5)

FIG. 13. Projected hopping (B2a) and (B2b) between the sites L
and L + 1 connects the five different sectors (1)–(5) with each other
[(1)–(5) correspond, respectively, to the blocks M1–M5 in Eq. (C5)].
Note that the hopping Hamiltonian of the size-L sub-system within
each sector is indecomposable by the assumption of the induction.

connected graph

FIG. 14. Diagrammatic representation of the connectivity struc-
ture of the matrix H (L+1)

Nd,Sz in Eq. (C5). The solid squares and the lines
connecting them denote certain connected graphs (representing the
diagonal blocks in H (L+1)

Nd,Sz ) and the nonzero (nonpositive) matrices
“∗” in (C5), respectively.

all nonpositive and indecomposable by the assumption, it is
obvious from the corresponding graph Fig. 14 that the entire
matrix H (L+1)

Nd,S
z
tot

itself is indecomposable, too.
A remark is in order about the exceptional cases with

Nd = 1 (one electron in the system) and L (one hole in the
system). In these cases, either (M1, M2, M3) (when Nd = L)
or (M4, M5) (when Nd = 1) are identically zero and we cannot
use the indecomposability of these matrices to prove that of
H (L+1)

Nd,Sz . In fact, we can treat these cases without relying on
the mathematical induction. First, we note that, in the case
of a single electron or hole, we can move it to an arbitrary
position by the repeated action of the hopping operators (the
spin configuration is modified, too). Then, we use processes in
which the electron or hole moves to a certain site and comes
back to the starting point to create the spin flips of the form
T +

i T −
j , which connect between any two different spin states

in the same (Nd, Sz ) sector. This completes the proof of the
statement (A). Then, by the Perron-Frobenius theorem, there
exists a unique lowest-energy state |ψ0; Nd, Sz

tot〉 in each of the
(Nd, Sz ) sectors:

H (L)
Nd,S

z
tot

∣∣ψ0; Nd, Sz
tot

〉 = Eg.s.
(
Nd, Sz

tot

)∣∣ψ0; Nd, Sz
tot

〉
. (C6)

To prove the statement (B) that the unique ground state
found above indeed has the maximal total spin,

Stot = Smax = (L − Nd) + (1/2)Nd = L − Nd/2,

we first apply the Perron-Frobenius theorem to the squared
total spin: (

∑L
i

�Ti )2 = Stot(Stot + 1). As the local spin opera-
tor �si + �Si projected onto the ground-state subspace is of the
following block-diagonal form:

�Ti = �Si(S = 1) ⊕ �Di(S = 1/2),

the projected total spin
∑

i
�Ti is block diagonal with respect

to the positions of the holes (i.e., spin S) and Sz
tot, and so is

its square.6 Within each block, (
∑L

i
�Ti )2 is just a squared total

spin of a mixed-spin system (with a given fixed sequence of
spin S and S− 1

2 ):(
L∑
i

�Ti

)2

=
∑
i, j

1

2
(T +

i T −
j + T −

i T +
j ) +

∑
i, j

T z
i T z

j , (C7)

6For each Sz
tot value, there are L!/[Nd!(L − Nd)!] sectors according

to different sequences of spin S and (S − 1
2 ).
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in which �Ti is either spin-1 �Si (hole) or spin- 1
2

�Di (electron).
Then, it is clear that the squared total spin (C7) within each
sector is non-negative and indecomposable [in the standard
basis (C2)], which allows us to apply the Perron-Frobenius
theorem once again to show that the maximum eigenvalue of
(
∑L

i
�Ti )2 is unique. The corresponding eigenstate is a super-

position of all the basis states allowed for the (given) hole
configuration and Sz

tot with all-positive coefficients. Since in
this Sz

tot sector, Stot can take any values in the range Sz
tot �

Stot � Smax(= LS − Ne/2), the unique maximal eigenvalue is
Smax(Smax + 1).

Due to the peculiar property (guaranteed by the Perron-
Frobenius theorem) of the unique lowest-energy state
|ψ0; Nd, Sz

tot〉, its overlap with the above Stot = Smax state is
nonzero, i.e., P (Smax)|ψ0; Nd, Sz

tot〉 �= 0 with P (Smax) being
the projector onto the space with Stot = Smax.7 Then, the SU(2)

7Since there are L!/[Nd!(L − Nd)!] different Stot = Smax states in
the full Sz

tot sector, P (Smax) is a direct sum of the projectors onto the
individual Stot = Smax states:

P (Smax) = ⊕h∈hole config.Ph(Smax).

symmetry of the Hamiltonian implies that the Stot = Smax state
P (Smax)|ψ0; Nd, Sz

tot〉 is another ground state of H (L)
Nd,S

z
tot

:

H (L)
Nd,S

z
tot
P (Smax)

∣∣ψ0; Nd, Sz
tot

〉
= Eg.s.(Nd, Sz

tot )P (Smax)
∣∣ψ0; Nd, Sz

tot

〉
. (C8)

The uniqueness of the ground state in the (full) Sz
tot sector

allows the only possibility

P (Smax)
∣∣ψ0; Nd, Sz

tot

〉 ∝ ∣∣ψ0; Nd, Sz
tot

〉
,

i.e., the ground state |ψ0; Nd, Sz
tot〉 itself is ferromagnetic Stot =

Smax for any values of Sz
tot. In particular, the above statement

for Sz
tot = 0 (or 1

2 ) means that the absolute ground state (i.e.,
the lowest-energy state in the entire Hilbert space) is unique
[up to the trivial degeneracy associated with the SU(2) sym-
metry] and ferromagnetic. It is evident that we can readily
generalize the above argument to arbitrary S � 1 by using
Eqs. (B5a) and (B5b) instead of (13).
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