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Curvilinear spin-wave dynamics beyond the thin-shell approximation:
Magnetic nanotubes as a case study
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Surface curvature of magnetic systems can lead to many static and dynamic effects which are not present in
flat systems of the same material. These emergent magnetochiral effects can lead to frequency nonreciprocity
of spin waves, which has been shown to be a bulk effect of dipolar origin and is related to a curvature-induced
symmetry breaking in the magnetic volume charges. So far, such effects have been investigated theoretically
mostly for thin shells, where the spatial profiles of the spin waves can be assumed to be homogeneous along the
thickness. Here, using a finite-element dynamic-matrix approach, we investigate the transition of the spin-wave
spectrum from thin to thick curvilinear shells, at the example of magnetic nanotubes in the vortex state. With
increasing thickness, we observe the appearance of higher-order radial modes which are strongly hybridized
and resemble the perpendicular-standing spin waves (PSSWs) in flat films. Along with an increasing dispersion
asymmetry, we uncover the curvature-induced nonreciprocity of the mode profiles. This is explained in a very
simple, general picture for thick curvilinear shells, considering the inhomogeneity of the emergent geometric
volume charges along the thickness of the shell. Such curvature-induced mode-profile asymmetry also leads to
nonreciprocal hybridization, which can facilitate unidirectional spin-wave propagation. With that, we also show
how curvature allows for nonlinear three-wave splitting of a higher-order radial mode into secondary modes
which can also propagate unidirectionally. We believe that our study provides a significant contribution to the
understanding of the spin-wave dynamics in curvilinear magnetic systems, and also advertises these for novel
magnonic applications.
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I. INTRODUCTION

In recent years, three-dimensional architectures have be-
come the focus of interest in several research areas such as
ferromagnets and superconductors. One of the most promising
explored effects is related to the bending of the samples into
curved shells, with the bending radius comparable to the char-
acteristic length scales of the studied system, dependent on the
underlying order parameter and interactions. As shown in var-
ious theoretical papers, in ferromagnetic systems, the surface
curvature of the samples can lead to emergent anisotropies
[1–4] as well as emergent magnetochiral interactions [1,2,5–
8]. This, for example, can result in curvature-induced stabi-
lization of skyrmions and merons on Gaussian and paraboloid
bumps [9,10], pinning of domain walls [11–13], localiza-
tion of magnon modes in curved magnetic nanowires [14],
a magnon band structure for nanowires with periodically de-
formed shape [4], or an asymmetric spin-wave dispersion
in magnetic nanotubes [15,16]. Many effects have been re-
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ported that can lead to nonreciprocal spin-wave propagation
in ferromagnetic samples. These are all related to some kind
of a symmetry breaking as, for example, in the case of the
Dzyaloshinskii-Moriya interaction (DMI) [17,18] where the
symmetry is inheritably broken by the asymmetric nature of
the interaction itself. In the case of the dipolar interaction,
the nonreciprocal spin-wave propagation is induced by the
symmetry breaking in the magnetic volume pseudocharges,
as shown in many exciting works [15,19–28]. In order for
this magneto-dipolar symmetry breaking to happen (in me-
dia with homogeneous material parameters), the spin-wave
propagation direction and the magnetic equilibrium magneti-
zation have to satisfy a certain geometry. Loosely speaking,
the system formed by the wave vector of the spin wave k
and the magnetic equilibrium state m0 within the cross sec-
tion perpendicular to the propagation direction has to exhibit
some sense of chirality. This is the case, for example, for
the magnetostatic surface spin waves in antiferromagnetically
coupled bilayers [23–26,28], when the propagation direc-
tion is perpendicular to the magnetization in the layers [see
Fig. 1(a)], or the spin waves propagating along Bloch walls
in thin magnetic media with perpendicular-to-plane magnetic
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FIG. 1. (a),(b) Sketch of antiferromagnetically coupled bilayers
and that of a Bloch wall, together with the spin-wave propagation
direction. (c) Sketch of a curved magnetic shell magnetized along
one of the principal curvature axes and of the spin waves excited
with a spin-wave source, propagating perpendicular to the ground
magnetic state (m0). The counterpropagating waves have different
wavelengths. The λex is the characteristic magnetic length. (d) Com-
parison of the dispersion relation for spin waves in flat and curved
magnetic thin films. The curvature-induced magnetochiral effects
result in an asymmetric dispersion. (e) Sketch of a curved magnetic
film with thickness larger than λex and the same excitation geometry
as in (c). Similar to flat thick films, the modes will be confined along
the thickness, thus forming PSSW modes. Due to the curvature, the
counterpropagating modes will have nonreciprocal mode profiles.
This will result in a complex spin-wave dispersion, with strong
asymmetry and avoided level crossings due to mode hybridization.
(f) An exemplary dispersion for thick magnetic tubes.

anisotropy [29,30]; see Fig. 1(b). In both cases, the system of
m0 and k exhibit a handedness and the spin-wave propagation
is nonreciprocal due to dynamic dipolar fields. In this simple
picture, it should be clear that for the spin waves along Néel
walls in thin easy-plane ferromagnets, such nonreciprocity
does not take place [31].

We note that the above-mentioned symmetry breaking can
be formulated in a more exact and general manner using
the toroidal moment τ = ∑

i ri × si, which is the sum of the
individual cross products of the magnetic spins. Namely, if the
wave vector has a nonzero projection on the toroidal moment,
τ · k �= 0, nonreciprocal spin-wave propagation is allowed by
symmetry considerations since the symmetry operations will
transform both quantities the same way [7,32–36]. Of course,
the underlying interactions will then play an important role for
the actual appearance of the nonreciprocal spin-wave propa-
gation.

In curvilinear magnetism, magnetochiral symmetry break-
ing of dipolar origin can be introduced by the surface
curvature of a magnetic shell, as shown in Fig. 1(d). As has

been reported before for thin magnetic nanotubes [15,16],
bending a shell along the magnetization direction m0 will
lead to dispersion asymmetry for the spin waves with a wave-
vector component perpendicular to m0, as shown in Fig. 1(d).
This concept of curvature-induced magneto-dipolar symmetry
breaking has been generalized theoretically by Sheka et al.
[8], where the authors discuss the important role of the emer-
gent geometric contribution to the magnetic volume charges,
highlighting that this is clearly a bulk effect. However, up to
now, curvilinear magnetism has been described theoretically
only for thin shells within the framework of continuum theory
where the magnetization (statics and dynamics) are assumed
to be homogeneous along the thickness of the curved shells.
This approximation is valid as long as the thickness does not
exceed the order of magnitude of the exchange length λex of
the material.

In this paper, we show that the spin-wave spectrum changes
quite drastically when transitioning to thick shells [Fig. 1(e)],
for which the magnetic oscillations can be inhomogeneous
along the thickness. Our calculations are carried out for
the example of vortex-state nanotubes of increasing thick-
ness, for which we calculate the spin-wave dispersion and
mode profiles using our recently developed finite-element
dynamic-matrix approach for propagating spin waves [37].
Many of the observed phenomena and the related discussion,
however, also hold for general thick magnetic shells. Note
that we discuss shells which are extrusions along the nor-
mal direction of a curved surface, such that the curvature
along the thickness of the shell is well defined and iden-
tical with the local curvature of each extruded surface. We
show that naturally, with increasing thickness, the spin-wave
spectrum becomes much denser and we observe the appear-
ance of strongly hybridized higher-order radial modes which
resemble the perpendicular-standing spin waves (PSSWs)
in flat films or general curved shells [Fig. 1(e)]. However,
in addition to an increase in the curvature-induced disper-
sion asymmetry [sketched in Figs. 1(e) and 1(f)], we also
find a curvature-induced nonreciprocity of the mode pro-
files along the thickness. In a simple picture, we explain
this by the inhomogeneity of the emergent geometric vol-
ume charges along the thickness of the shell. We discuss
that this curvature-induced mode-profile asymmetry naturally
leads to nonreciprocal dipole-dipole hybridization, which,
in return, can be exploited to facilitate unidirectional spin-
wave propagation. For spin waves under resonant (linear)
excitation, we show how this can be used to construct a
magnonic diode using a single magnetic nanotube. Finally,
we also discuss the influence of shell curvature on nonlinear
spin-wave interaction in thick shells, where, in particular, we
show that magneto-dipolar symmetry breaking in nanotubes
allows for three-wave splitting of higher-order radial modes
into azimuthal modes which can also propagate unidirection-
ally.

We believe that this work provides a considerable con-
tribution to the fundamental understanding of magnetization
dynamics in curvilinear shells, advancing theoretical consid-
erations and understanding beyond the thin-shell approxima-
tion. Moreover, the emerging dynamic effects could be of
interest for modern magnonic applications, such as spin-wave
diodes or nonlinear magnonic circuits.
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FIG. 2. (a) Sketch of a thin-shell magnetic nanotube with R =
65 nm radius and T = 10 nm mantel thickness in a vortex magnetic
state, stabilized by an azimuthal field. The propagation direction of
spin waves is along the length of the nanotube, namely, the z direc-
tion. (b) To study the effect of the shell thickness on the spin-wave
dispersion, the average radius (R = 65 nm) of the tube is kept fixed
and the inner and outer radii are varied. For thin shells, the mode
profiles are translationally invariant along the thickness of the tube.
(c) Exemplary mode profiles, starting with the homogeneous mode
(m = 0) up to m = ±4, with m the azimuthal mode index.

It is important to note that very recently, in an independent
research, Gallardo et al. [38] also reported on the spin-wave
dispersion in thick nanotubes. In their work, the authors simi-
larly observe the emergence of higher-order radial modes, but,
subsequently, focused more on a quantitative analysis of the
dispersion asymmetry.

II. METHODOLOGY

In this section, we introduce the studied system, which is
a magnetic nanotube with a fixed average radius and varying
shell thickness, and introduce how we numerically calculate
the spin-wave normal modes.

A. Studied magnetic system

For our study of curvilinear spin-wave dynamics in thick
magnetic shells, we select the case of magnetic nanotubes
in the flux-closure/vortex state, m0 = eϕ [see Fig. 2(a)], for
which a curvature-induced spin-wave dispersion asymmetry
was predicted by Otálora et al. in 2016 and which (in the
case of thin shells) has been studied extensively in the liter-
ature [15,16,39,40]. For the case of thin-shell tubes, where
the thickness of the nanotube mantel is of the order of the
magnetic exchange length λex, the spatial profiles of the
spin waves propagating along such tubes are proportional to
exp[i(kz + mϕ)]. The modes are characterized by their wave
vector k along the axis of the tube (here, the z axis) and
an integer index m, which can take positive and negative
values and counts the number of oscillation periods in the
azimuthal (ϕ) direction. Again, due to the strong influence
of the exchange interaction, the mode profiles can be taken
as homogeneous along the radial direction. Naturally, when
increasing the nanotube thickness, we will need a further
mode index to characterize the radial mode profiles.

As examples, in Fig. 2(b), we show the lateral mode pro-
files of the spin-wave modes in a nanotube with 65 nm average
radius and 10 nm mantel thickness at k = 0 up to azimuthal
index m = ±4. It is important to note that in the vortex
state, the modes with opposite azimuthal index ±m form
degenerate doublets, ωm(k) = ω−m(k) [15,16,39,40], while
curvature-induced dispersion asymmetry appears in the z di-
rection, i.e., ωm(k) �= ωm(−k). This is, indeed, in line with the
simple chirality consideration made in Sec. I.

We consider typical material parameters of the com-
mon soft magnetic alloy Ni80Fe20 (permalloy). In particular,
we assert a saturation magnetization of μ0MS = 1 T, an
exchange-stiffness constant of Aex = 13 pJ/m, and a reduced
gyromagnetic ratio of γ /2π = 28 GHz/T. For nanotubes with
a finite length, the vortex state (which is necessary for dipole-
induced dispersion asymmetry) naturally appears for tubes
with large enough average radius R and aspect ratio R/L,
with L the length of the tube [41]. For quasi-infinite tubes,
however, the vortex state is unstable due to the cost in ex-
change energy provided by the curling of the magnetization
along the azimuthal direction. The exchange field arising from
this curling can be compensated by a magneto-crystalline
easy-plane anisotropy or by the application of an external
magnetic field [40,42]. For simplicity, we investigate the case
of zero magneto-crystalline anisotropy, K = 0, and stabilize
the vortex state using an external field in the ϕ direction of
Bϕ = 80 mT. In order to disentangle thickness effects from
spurious changes in curvature when changing the dimensions
of the nanotube, in this study, we keep the average radius R =
(r1 + r2)/2 of the tube (and, therefore, the average curvature
radius) constant at R = 65 nm and vary only the thickness T
of the shell [see Fig. 2(c)] in a range between 10 and 90 nm. In
terms of the average curvature radius R and the shell thickness
T , the critical external field to stabilize a vortex state is given
by

Bϕ,crit = μ0Msλ
2
ex

T R
ln

(
2R + T

2R − T

)
, (1)

which, at constant average radius, increases monotonically
with the shell thickness [43]. However, for the given thick-
ness range and material parameters, this critical field remains
below 10 mT.

B. Calculation of spin-wave normal modes

Even though, for thin vortex-state tubes and for thick
nanowires in the axial state (magnetized along the z direction),
the spin-wave spectrum has already been described theoreti-
cally, an analytical consideration of the spin-wave spectrum
in thick vortex-state nanotubes is extremely challenging.
Although the vortex ground state exhibits a cylindrical
symmetry, neither the exchange-only approximation nor
the dipolar-only approximation would reduce the linearized
Landau-Lifshitz equation of motion of the magnetization to a
Bessel form.

Here, instead, we calculate the spin-wave normal modes
in thick vortex-state nanotubes numerically using our re-
cently developed finite-element dynamic-matrix approach for
propagating spin waves in waveguides with an arbitrarily
shaped cross section [37], which is implemented in the
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open-source micromagnetic-modeling package TETRAX [44].
In this method, the linearized equation of motion of the
(unitless) dynamic magnetization δm(r, t ) is converted to an
eigenvalue problem which is solved for general propagating
spin waves of the form

δm(r, t ) ∝ ην,k (x, y)eikze−iων (k)t , (2)

with ν being some mode index, ην,k the (complex-valued)
lateral mode profiles, k the wave vector along the z direction,
and ων (k) the corresponding dispersion. The problem is sim-
plified by projecting the equation of motion into a single cross
section of the tube and calculating only for the lateral mode
profiles ην,k and corresponding frequencies ων (k) for each
wave vector k. A quick review of the principal equations in
this method is found in Appendix A. For a complete descrip-
tion, we would like to refer the reader to Ref. [37].

For our case, we only consider exchange, dipolar, and
Zeeman interaction. We employ standard exchange bound-
ary conditions n · m = 0 (with n the normal direction) at
the boundaries of the cross section. The lateral dipolar
potential of the spin waves is calculated using the hy-
brid finite-element/boundary-element method by Fredkin and
Koehler [45], which has recently been extended to solve
the screened Poisson equation of propagating waves [37].
All involved operators and vector fields are discretized us-
ing the finite-element method (FEM) while subdividing the
cross sections of the different nanotubes into triangles. The
characteristic discretization length of the meshes is contin-
uously varied between 3 nm (for the thinnest tube, T =
10 nm) and 6 nm (for the thickest tube, T = 90 nm) in or-
der to optimize computational time. The resulting discretized
sparse linear system is numerically diagonalized using an
iterative Arnoldi-Lánczos method [46,47]. A major benefit
of the propagating-wave dynamic matrix is that it directly
yields the spin-wave dispersion ων (k) and the corresponding
lateral mode profiles ην,k without any additional postprocess-
ing necessary, as is the case for micromagnetic simulations
which rely on a time integration of the nonlinear Landau-
Lifshitz-Gilbert equation of motion. Moreover, by modeling
the different nanotubes only within a single cross section,
the computational cost is drastically reduced, leading to a
computational time for the largest shell thickness of the order
of one hour, which would take several days using standard
time-domain micromagnetic simulations [37]. This allows us
to study the smooth transition of the spin-wave dispersion in
the given thickness range in steps of 2 nm. For each thick-
ness T , the lowest 100 modes/branches were calculated for a
range of 201 wave vectors between kmin = −40 rad/μm and
kmax = +40 rad/μm.

III. RESULTS AND DISCUSSION

A. Thickness dependence of normal-mode
frequencies and profiles

In this section, we investigate the change in the overall
spatial mode profiles and frequencies when increasing the
shell thickness, starting from the well-known thin-shell case.

1. Nonpropagating modes at k = 0: Appearance
of higher-order radial modes

Before presenting the thickness dependence of the full
spin-wave dispersion, as a first step, we restrict ourselves to
the modes at k = 0, which exhibit a homogeneous profile
along the nanotube axis and could be measured using standard
ferromagnetic-resonance (FMR) experiments. In Fig. 3(a), we
show the smooth transition of the oscillations frequencies
f = ω/2π at k = 0 as the thickness of the nanotube shell is
increased from 10 nm to 90 nm. To ease the visualization,
for now, we focus only on the purely radial modes (m =
0), while the azimuthal modes (m �= 0) are only shown in
the background. We see that with increasing shell thickness,
the overall frequencies decrease and additional modes de-
scend into the lower-frequency range. The insets in Fig. 3(a),
which show the corresponding z components of the dynam-
ical magnetization (the real part of the z component of the
complex lateral mode profiles η), reveal that these additional
modes correspond to higher-order radial modes that exhibit
a standing-wave character along the radial (ρ) direction. The
modes for k = 0 are similar to those known from vortex disks,
with well-defined radial and azimuthal mode indices [48–50].
In a general curvilinear shell, these modes correspond to the
perpendicular-standing spin-wave (PSSW) modes of flat mag-
netic films. For very thin shells, however, these modes are
at very high frequencies due to the cost in exchange energy
related to necessarily high wave vectors in the radial/out-
of-plane direction. As for the PSSWs in thin films or the
radial modes in magnetic disks, we denote these modes by an
additional mode index n = 0, 1, 2, . . . and so forth. At k = 0,
this index is identical with the number of nodal lines along the
radial/out-of-plane direction. However, we will soon see that
this association of the radial index with the number of nodal
lines is, in general, not valid for the whole wave-vector space
because modes with different numbers of nodal lines across
the radius will be shown to be strongly hybridized. Moreover,
we will also see that the curvature of the magnetic system can
induce a change in the number of nodal lines for certain wave
vectors k. These effects, however, are not present at k = 0, and
thus we can safely associate n with the number of radial nodal
lines.

Naturally, with increasing shell thickness, the influence of
the dipolar interaction on the spin-wave dynamics, in par-
ticular, on the mode frequencies, becomes more important.
To highlight this, in Fig. 3(b), we change the visualization
and show the same mode frequencies at k = 0 for selected
thicknesses of T = 10, 26, 42, 58, 74, and 90 nm as a function
of the (magnitude of the) azimuthal index |m|. Recall that
the tubes are magnetized in the vortex state m0 = eϕ . As
a result, with increasing |m|, the angular component of the
total spin-wave wave vector, kϕ = m/R, parallel to the equilib-
rium magnetization m0, increases. For tubes with a thin shell
(T = 10 nm), the dependence of the frequency with respect
to the angular wave vector is still quadratic, f (k = 0) ∝ k2

ϕ ,
and, therefore, dominated by the exchange interaction [15].
However, for thicker tubes (T � 40 nm), the dispersion in
the ϕ direction deviates from this behavior and develops
a minimum at small azimuthal wave vectors. In flat films,
this is known as backward-volume-magnetostatic-spin-wave
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FIG. 3. (a) The frequency evolution of the modes at k = 0 with an emphasis on the first three purely radial modes (m = 0) as a function
of the tube thickness. As expected, with increasing thickness, the frequency of the higher-order radial modes decreases. (b) The frequency
evolution of the modes for different tube thicknesses vs the azimuthal mode index. In this case, the propagation is parallel to m0, namely,
in backward-volume-magnetostatic-spin-wave (BVMSW) geometry. With increasing thickness, the BVMSW-like character (negative group
velocity) of the dispersion increases. Modes with a higher azimuthal index are localized closer to the outer mantel. This is attributed to the
exchange interaction. (c)–(e) The line cut of the mode profiles along the nanotube thickness for several thicknesses and three different radial
indices, n = 0, 1, and 2, and m = 0 azimuthal index. Note that the modes are still unpinned; therefore, for a large thickness range, the exchange
boundary conditions are still dominant.

(BVMSW) behavior, where spin waves propagating parallel
to the equilibrium magnetization exhibit negative group ve-
locities at small wave vectors. This dipolar effect increases
with film thickness and originates from a decrease of the
total magnetic energy (and, therefore, spin-wave frequency)
by bringing magnetic surface charges closer to each other
(increasing kϕ) and, therefore, reducing stray fields. To no
surprise, the same frequency-azimuthal-index relation is also
observed in flat vortex-state disks with large enough radius
[51–54].

In parallel, with increasing |m|, we observe a localization
of the spin waves to the outer mantel of the tube [see the insets
in Fig. 3(b)], which can be attributed to savings in exchange
energy and has also been observed before in micrometer-size
disks for very large azimuthal indices [52].

In Figs. 3(c) and 3(d), we show the z components of the
radial mode profiles only for the different radial modes n =
0, 1, 2 and for different thicknesses T across the thickness of
the shell. It is possible to see that even for T = 90 nm, the
modes remain mostly unpinned at the boundaries of the cross
section.

2. Dispersion of propagating modes

After having discussed the thickness evolution of the
modes at k = 0 and having observed the emergence of
higher-order radial modes, we would now like to investi-
gate how the full dispersion ωnm(k) of the different modes
evolves when increasing the shell thickness T . For this, in
Fig. 4, we show the dispersion of all modes, in a given fre-
quency range, for five exemplary thicknesses of T = 10, 30,
46, 66, and 90 nm. For visual clarity, again, we highlight
only the lowest-azimuthal modes m = 0,±1,±2, while all

higher-order azimuthal modes |m| � 3 are drawn with light
gray lines. Recall that modes with the same wave vector
k and radial index n but opposite azimuthal index ±m are
degenerate. As we do not change the symmetry of the system
when increasing the shell thickness T , this degeneracy also re-
mains for thick tubes. However, with increasing thickness, as
expected, the overall mode frequencies decrease and the spec-
trum becomes much denser. As the first-order radial modes
(n = 1) approach the zeroth-order modes (n = 0), we observe
that different radial branches exhibit avoided level crossings
with each other, indicating the fact that they are hybridized.
This is nicely seen, for example, in Fig. 4(c) for a thickness of
T = 46 nm where the mode (n = 0, m = 0) shares an avoided
level crossing with the mode (n = 1, m = 0). As we increase
the thickness further, we see that the quasi-uniform mode
(zero nodal lines across the radius) pinches through all the
other radial branches, leading to an enormous increase in
dispersion asymmetry. It can also be seen that for k < 0, level
repulsion seems to be much larger than for k > 0. To inves-
tigate this hybridization more closely, in the next section, we
will directly analyze the lateral mode profiles. Moreover, we
refer to Appendix E, which shows the transition of the m = 0
modes and how they hybridize, for even more thicknesses.
We also provide a movie showing the continuous transition
of all modes with increasing thickness in steps of 2 nm in the
Supplemental Material [55].

At this point, it already becomes clear that a categorization
of the radial modes by their number of nodal lines across
the radial direction is not suitable, as the number of nodal
lines of a mode can change when varying the wave vector
k. In other words, modes with a well-defined number of ra-
dial nodal lines are not actual normal modes. Instead, the
true normal modes are mixed by dynamic dipolar fields, an
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(a) (b) (c) (d) (e)

FIG. 4. The transition of the dispersion as a function of the tube thickness for five exemplary thicknesses in the vortex state for modes
propagating along the nanotube axis. The evolution of three modes m = 0, ±1, ±2 for each presented thickness is highlighted. With increasing
thickness, the overall asymmetry of the dispersion increases. Already above T = 30 nm, the higher-order radial modes appear in the displayed
frequency range. When branches of modes with the same m but different n are approaching, dipole-dipole hybridization between them takes
place. This will show up in the dispersion in the form of avoided level crossings. Such avoided level crossing are magnified in (c) for m = 0
modes and in (d) for m = ±1 modes.

effect commonly referred to as dipole-dipole hybridization.
This hybridization is quite ubiquitous in spin-wave dynamics
and also appears, for example, for the PSSWs in flat films
[56,57], between the standing-wave modes across the width
of transversally magnetized rectangular waveguides [58], or
between the radial modes in axially magnetized cylindrical
nanowires [59], just to name a few. We will soon see, however,
that in contrast to the previous examples, the dipole-dipole
hybridization in thick vortex-state nanotubes is strongly per-
turbed by the curvature-induced magneto-chirality of the
system.

For completeness, it is important to note that only modes
with the same azimuthal index m are hybridized. In Fig. 4(d),
we can see another example, where only the different ra-
dial modes with m = 1 or m = −1 are hybridized. Loosely
speaking, whether two bare spin-wave modes can hybridize
via dipolar interaction crucially depends on their spatial over-
lap and, thus, on the symmetry of their mode profiles. In
cylindrical systems, azimuthal modes with different indices
m �= m′ belong to different irreducible representations of the
symmetry point group defined by the ground state, and share
zero spatial overlap. Such a hybridization could, however, be
introduced by lowering the continuous rotational symmetry
[60].

As mentioned before, the asymmetry of the dispersion,
i.e., the frequency nonreciprocity of the spin waves in vortex-
state nanotubes, strongly increases with increasing shell
thickness. We note that this increase in asymmetry, 
 f =
f (k) − f (−k), is already predicted by the analytic thin-shell
theory for nanotubes by Otálora et al. [15,16,39,40] (see
Appendix B) due to an increased symmetry breaking in the
radially averaged magnetic volume charges. We will come
back to the role of these volume charges later. Nota bene,
the thin-shell theory does assume homogeneous mode profiles
along the thickness and, of course, cannot take any inhomo-
geneity of the mode profiles along the thickness into account.
In the following, we will see that this inhomogeneity of the
mode profiles along the thickness direction will contribute

to the frequency nonreciprocity. In fact, we will see that the
mode profiles will become nonreciprocal themselves.

B. Curvature-induced nonreciprocity of mode profiles

In this section, we discuss the radial mode profiles, their
change due to the hybridization, and the observed nonre-
ciprocity for different spin-wave branches. We will show that
the mode-profile nonreciprocity originates from the dynamic
dipolar fields created by the magnetic charges, namely, the
appearance of the geometric charge due to the nonzero mean
curvature of the nanotube. Since the geometrical charge is
present for any general curved geometry with nonzero mean
curvature, its effect, namely, the mode-profile nonreciprocity,
is not only present for tubular geometries but for curved sam-
ples in general.

1. Nonreciprocity of radial profiles in tubes

As we have seen in the previous section, increasing the
tube thickness leads to an enhanced asymmetry of the overall
dispersion, compared to the thin-shell tube, and avoided level
crossings appear for multiple branches. These level crossings
between different radial modes of the same azimuthal index
m appear to be qualitatively very different for the opposite
propagation directions (±k). Again, as the degree of dipole-
dipole hybridization between different modes depends on
their spatial overlap, this is a strong hint that the mode profiles
themselves are nonreciprocal. To shed light on this, in Fig. 5,
the first three radial modes with m = 0 azimuthal mode index
for the thickest considered nanotube (T = 90 nm) are shown
together with the lateral mode profiles at selected k values.
Moreover, at k = ±36 rad/μm, we show line cuts of the lat-
eral profiles along the radius (the radial profiles) as insets. To
guide the eye of the reader, in Fig. 5(a), we have added dashed
lines in the avoided level crossings. Starting from the modes
at k = 0, which we have discussed in Sec. III A 1, let us first
analyze the spin waves propagating with positive wave vectors
k > 0. Note that the role of positive/negative wave vectors is
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FIG. 5. (a) Dispersion of the first three radial modes with m = 0 together with the radial modes’ profiles for selected wave vectors. For five
particular modes at k = ±36 rad/μm, the radial mode profile along a cut line is also attached. For positive k values, the evolution of the mode
profiles after avoided level crossings is more or less as expected. However, for negative k values, the quasi-uniform mode disappears and large
avoided level crossings are forming between the branches, indicating a strong interaction between them. (b) The mode profile evolution of the
first two radial branches. As seen on the lower branch, after the avoided level crossing, the uniformlike mode transforms into a mode with a
nodal line along its radial direction. On the higher branch, the mode with a single nodal line will, however, transform into a mode with two
nodal lines for larger negative k values. This process is also indicated by the inset, showing line profiles for three different k values.

reversed when changing the vortex circularity from clockwise
to counterclockwise, or vice versa. The lowest branch close to
k = 0 is the quasi-uniform mode, which already at small wave
vectors hybridizes with the first radial mode. According to
expectations, after the avoided level crossing, the mode profile
of the lowest branch is changed, resembling the mode profile
of the second branch. Thus the quasi-uniform mode will be
higher in frequency after the avoided level crossing. The same
scenario is repeated when the quasi-uniform mode hybridizes
with the mode of the third branch with two radial nodal
lines. As a result, the quasi-uniform mode will have a steep
increase in frequency. Both frequency gaps at the avoided
level crossings are small, suggesting a weak hybridization of
the modes between the branches. Overall, it is possible to see
that up to weak hybridization and other slight modifications,
the structure of the radial mode profiles is preserved. Thus,
for k > 0, and far from any avoided level crossings, it is still
reasonable to talk about the radial modes in terms of their
number of radial nodal lines.

This situation changes quite drastically for the opposite
propagation direction, k < 0. We see that at small negative
wave vectors, the radial profile of the zeroth-order mode n =
0 (quasi-uniform) transforms into the one of the first-order
mode n = 1 (one nodal line). At the same time, however, the
mode n = 1 does not transform into a quasi-uniform mode.
Instead, it acquires first one, and then two nodal lines for
even more negative k values and far from this avoided level
crossing. In fact, at k = −36 rad/μm, we have one mode
with one nodal line and two modes with two nodal lines.
We show this apparent disappearance of the uniform pre-
cession for negative k even more closely in Fig. 5(b). Of
course, the situation here is not quite trivial since we observe

two concurrent effects. On one hand, we see that there is
an intrinsic nonreciprocity in the radial mode profiles which
leads to the disappearance of the quasi-uniform mode. On the
other side, this perturbation of the mode profiles allows for
extremely strong coupling and, therefore, leads to very large
avoided level crossings between the modes. It is clear that the
nonreciprocity of the mode profiles has to be a dipolar effect.
In thin vortex-state tubes, exchange interaction is not able to
induce any asymmetry [15] and, qualitatively, this interaction
does not change when increasing the tube thickness. It is also
clear that for k < 0, the usual categorization of radial modes
by their number of nodal lines completely loses its meaning.

We note that the strong influence of the dipolar inter-
action on the mode profiles makes the standard approach
to calculate the unhybridized dipole-exchange spectrum in
thin films unusable. In flat geometries, analytic expres-
sions for the dipole-exchange spectrum can usually be
obtained by first obtaining the exchange mode profiles,
projecting the linearized equation of motion in these pro-
files, and then setting all intermode-coupling terms to zero
[22,27,57,61]. Using numerically obtained exchange pro-
files, in Appendix C, we show that this perturbation theory
fails for thick nanotubes. Furthermore, assuming unperturbed
(exchange) profiles, which are completely reciprocal, the dis-
persion asymmetry is much weaker.

2. Origin of mode-profile nonreciprocity in general
thick curved shells

The origin of the nonreciprocity of the radial modes in
vortex-state nanotubes can be understood in a very simple
picture which is general for the Damon-Eshbach waves (with
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k ⊥ m0) in magnetic shells with finite mean curvature and
with their equilibrium magnetization aligned along a principal
curvature direction. The crucial point here is the interaction
between the magnetic surface charges σ = n · m (with the
outer shell normal n) and the volume charges � = −∇m
which are the sources of the dynamic dipolar fields realizing
a curvature-induced chiral symmetry breaking. Within the
curvilinear frame of reference attached to the geometry of
a curved shell, the volume charges � are not only given by
the spatial derivatives of the magnetization, but also by a
term which is proportional to the mean curvature of the mag-
netic shell. For a (generalized) cylindrical surface of arbitrary
shape, one has

�(r) = −∇m(r) = �int −H(r)mn(r)︸ ︷︷ ︸
�g

. (3)

Here, mn is the normal component of the magnetization and
H(r) = H0/(1 + ζH0) is the local mean curvature of the
shell, H0 is the mean curvature of the central surface, and ζ

is the coordinate along the normal direction (for the central
surface, ζ = 0) [62]. The first term in Eq. (3) is denoted here
as the intrinsic charge �int which arises due to the spatial
variation of the magnetization,

�int = −
(

1

1 + ζH0
∂1m1 + ∂2m2 + ∂ζ mn

)
. (4)

Here, the indices 1 and 2 correspond to coordinates (mag-
netization components) along the cylinder directrix and
generatrix, respectively. The second term in Eq. (3) is the geo-
metric (or extrinsic) charge �g. The concept of this geometric
charge was first introduced by Sheka et al. in Ref. [8], where
the authors discuss the curvature-induced chiral symmetry
breaking in thin shells. In their work, the authors refer to the
first term in Eq. (3) only as the tangential charges, as the mag-
netization is taken to be homogeneous along the thickness and
the intrinsic charges are only given by the covariant deriva-
tives along the surface of the plane. However, as we show
here, this concept can also be used to explain the curvature
effects in thick shells as well. Of course, in the case of thick
shells, one also has to take into account the spatial derivatives
of the magnetization along the thickness. As a result, here we
use the term intrinsic charge.

For comparison, let us quickly review the situation in flat
films for which it is already well known that the dynamic
dipolar fields can lead to a localization of the spin waves
propagating with k ⊥ m0 to either surface of the film, depend-
ing on the propagation direction. In particular, we consider
a trial wave with a homogeneous profile along the thick-
ness, propagating in the positive z direction (k > 0) in a
film magnetized along the positive y direction (m0 = ey). In
Fig. 6(a), we show the corresponding dynamic magnetization
δm = [cos(kz), 0, sin(kz)] at a fixed point in time along the
propagation direction. In Fig. 6(c), we schematically show
the corresponding surface and volume charges (heat maps),
and the field lines of the resulting dipolar fields generated
by such a wave. For flat systems, obviously H = 0, and the
intrinsic charges are synonymous with the volume charges,
� = −k cos(kz). The surface charges are simply given by
σ = ± cos(kz), depending on the surface. As can be seen in

FIG. 6. Sketch of spin waves propagating in the (a) positive as
well as (b) negative k direction. The arrows denote the dynamic
component of the magnetization, which is homogeneous along the
thickness. (c),(d) The volume and surface charge distribution for a
flat thick film, as a result of the spatial dependence of the magneti-
zation dynamics together with the resulting demagnetizing dynamic
fields, according to the propagation directions in (a) and (b). A sign
change in k simply results in a reversal of the magnetic charges.
(e),(f) The magnetic charge distribution for thick curved shells to-
gether with the dynamic dipolar fields. For k > 0, �g = −Hmρ (with
the mean curvature H = 1/ρ) contributes to the regular volume
charge (intrinsic charge), such that the resulting dipolar field is in
line to that for flat films. By changing the propagation direction, the
sum of the intrinsic and geometrical charges will produce a nodal
line, resulting in mode profile asymmetry and the disappearance of
the uniform mode.

Fig. 6(c), at one surface, the dipolar fields generated by the
volume and by the surface charges compensate each other,
whereas at the other surface, they aggregate. As a conse-
quence, a mode with homogeneous profile along the thickness
does not represent an allowed normal mode of the magnetic
system. In reality, to compensate this field asymmetry and
to minimize internal dipolar fields, the true mode will be
localized to one surface of the film and exponentially decay
into the volume. As the propagation direction is reversed
[Figs. 6(b) and 6(d)], only the volume charges change in sign
and a localization to the opposite surface is favored. This
localization to opposite surfaces depending on the propagation
direction can already be exploited to introduce a frequency
nonreciprocity for spin waves in completely flat systems using
different surface anisotropies on either surface [22]. However,
in homogeneous materials, a reversal of the propagation di-
rection will only lead to a mirroring of the mode profile about
the film plane.

In curved samples, however, this mirror symmetry is bro-
ken by the geometrical charges �g. Considering our case of a
thick tube in the vortex state (m0 = eϕ), or even only the case
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of a transversally magnetized tube segment, the mean curva-
ture is given by H = 1/ρ. As a result, the volume charges of
a mode which is homogeneous along the thickness are given
by

� = −k cos(kz)︸ ︷︷ ︸
�int

−cos(kz)

ρ︸ ︷︷ ︸
�g

. (5)

Here the components of δm = [cos(kz), 0, sin(kz)] are de-
fined in the curvilinear basis. Clearly, even for a homogeneous
mode profile along the thickness, the curvature of a mag-
netic shell already introduces an inhomogeneity of the volume
charges along the thickness of the shell which, unlike the
intrinsic charge −k cos(kz), is independent of the propagation
direction. In Fig. 6(e), we see that for k > 0, this leads to an
increase of the volume charges at the inner surface of the shell.
However, the overall situation is the same as in a flat film, only
with slight modifications. This is in agreement with the previ-
ous observations we made for the nanotube with T = 90 nm
in Fig. 5(a), where the modes for k > 0, in general, preserved
the same structure as for k = 0. For the opposite propagation
direction, k < 0, the situation is drastically different, as the
geometric and intrinsic charges can now compensate each
other. In the range −1/r1 < k < −1/r2 (with r1 and r2, again,
being inner and outer curvature radius of the shell), this com-
pensation can even lead to a nodal line of the volume charges
at a certain position across the shell thickness, as depicted in
Fig. 6(f). This, in return, can not only lead to the situation
that the dipolar fields from surface and volume charges ag-
gregate everywhere, but it can totally change the landscape
of the dynamic dipolar fields generated by the mode. As a
result, the mode profiles for k < 0 are heavily perturbed by
the inhomogeneous compensation of intrinsic and geometrical
charges. This can even lead in a thick nanotube, as seen in
the previous section, to the transformation of the zeroth-order
mode (or quasi-uniform mode) into a mode with nodal lines.
It is clear that this curvature-induced dipolar nonreciprocity
of the mode profiles is a bulk effect like the nonreciprocity
in magnetically inhomogeneous media [27,63], but unlike the
mode profile asymmetry in the previously mentioned systems
with asymmetric surface anisotropy [22] or systems with in-
terfacial DMI [64], which are surface effects.

We note that the emergence of a geometrical charge in
curvilinear shells is also the origin of the frequency nonre-
ciprocity itself, as already reported for thin-shell nanotubes
[15]. However, in the case of thin shells, an inhomogeneity
(and possible nonreciprocity) of the mode profiles along the
thickness is, of course, suppressed by the influence of the
exchange interaction.

IV. CONSEQUENCES FOR LINEAR AND NONLINEAR
SPIN-WAVE DYNAMICS

Finally, we wish to examine some of the consequences
of the curvature-induced symmetry breaking for the linear
and nonlinear spin-wave dynamics in thick magnetic shells,
demonstrating on thick magnetic nanotubes. As an exam-
ple for the linear spin-wave dynamics, we show how the
curvature-induced mode-profile asymmetry and its conse-
quence, the nonreciprocal dipole-dipole hybridization, can be

FIG. 7. (a) The dispersion of two hybridized branches for the
60-nm-thick nanotube. For particular frequency values, namely,
10.7 GHz and 12 GHz, marked with gray dashed lines, the spin-wave
transport is unidirectional, as further indicated with the close-to-zero
group velocity of the modes for negative wave vectors and large
group velocities for positive wave vectors. The mode profiles at these
frequencies are included as insets, colored by the z component of the
dynamic magnetization. (b) Sketch of a nanotube cross section with
a spin-wave source in the middle. (c), (d) The modes excited with
this source at 10.7 GHz and 12 GHz using profiles η exp(ikz − z/L)
with the attenuation length L = vg/�. Note that the propagation is
decaying fast for negative k values and the profiles are nonreciprocal
along the radius

used to achieve unidirectional spin-wave propagation and,
therefore, construct a magnonic diode. As an outlook for cur-
vature effects on nonlinear magnetization dynamics, finally,
we investigate the effect of the curvature on the three-magnon
splitting of higher-order radial modes in magnetic nanotubes.

A. Unidirectional propagation and diode behavior

Within the previous sections, we have seen that the
curvature-induced nonreciprocity in the radial mode profiles
naturally leads to a nonreciprocal dipole-dipole hybridization
of different radial modes (with the same azimuthal index m).
In particular, modes with k < 0 are hybridized much stronger
than for k > 0, which leads to a significantly larger gap at the
avoided level crossings. Inspired by a recent work of Grassi
et al. [27], who proposed and implemented the same idea
using a magnetic bilayer system, this hybridization asymme-
try can be used to construct a slow-wave-based magnonic
diode, in which spin waves propagate only in one direction.
In our case, the diode behavior is achieved simply by tuning
the thickness of the nanotube. In Fig. 7(a), we see that, for
example, for a thickness of T = 60 nm, the curvature-induced
mode-profile asymmetry produces a large avoided level cross-
ing for k < 0 between two pure radial modes (m = 0), which,
in return, results in a plateau of the dispersion, where the fre-
quency remains nearly constant around 10.7 GHz over a wide
wave-vector range. In this range, the group velocity of the
spin waves, vg = ∂ω/∂k, is close to zero, while, at the same
frequency, the group velocity vg � 0 remains positive for
k > 0. One can observe a similar asymmetry at a frequency
of 12.0 GHz, where, only for k < 0, there is a local minimum
in the dispersion, and thus vg ≈ 0 only for this propagation di-
rection. The principle of the slow-wave-based magnonic diode
now relies on the fact that the group velocity of spin waves
is directly proportional to their attenuation length. In real
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samples, magnetic damping will induce a nonzero linewidth
�ν (k) �= 0 of the modes which leads to an exponential decay
in the propagation direction according to exp[ikz − z/Lν (k)],
where Lν is the attenuation length of the mode, related to
the group velocity by Lν = vg/�ν . As a result, when exciting
spin waves [e.g., using a current-loop microwave antenna; see
Fig. 7(b)] at the center of the nanotube, in these particular
cases, the modes for the negative wave vectors will be strongly
attenuated. To illustrate this, in Figs. 7(c) and 7(d), we show
snapshots of the dynamical magnetization at the excitation
frequencies 10.7 GHz and 12.0 GHz as cutouts in a plane
which contains a radial direction and the axis of the nan-
otube sketched in Fig. 7(b). The snapshots were calculated
taking into account the corresponding lateral mode profiles
ην (k). For the calculations, we approximate the linewidths
of the modes as �ν (k) = αGων (k) with a Gilbert-damping
parameter of αG = 0.01. Furthermore, we neglect that the
modes propagating in opposite directions have, in general,
different dynamic susceptibilities. This, however, only leads
to a scaling of the spin-wave profiles and not to a change in the
attenuation lengths. As can be seen clearly in Figs. 7(c) and
7(d), the spin-wave propagation is nearly unidirectional; the
waves propagating in the −z direction are strongly attenuated,
while, for the other direction, they propagate much further.
Note that here also, the radial profiles of the modes propagat-
ing in opposite directions are vastly different from each other
due to the curvature-induced mode-profile asymmetry.

B. Curvature effects on three-magnon splitting

As an outlook on the nonlinear spin-wave dynamics in
curved magnetic shells, here we qualitatively discuss the
lowest order nonlinear spin-wave interaction—three-magnon
splitting—where one primary spin wave, excited above a
certain power threshold, splits into two secondary waves. In
bulk ferromagnets and films, three-magnon splitting obeys the
conservation of energy and momentum,

ω0 = ω1 + ω2,

k0 = k1 + k2. (6)

In confined magnetic objects, the momentum conservation
rule transforms into specific rules on the mode indices; also,
additional selection rules can appear depending on the ge-
ometry and magnetic state of a structure. For three-magnon
splitting (as well as for the reversed process of three-wave
confluence), selection rules are often quite strong. This hap-
pens because three-magnon interaction relies, typically, on
the asymmetric part of magneto-dipolar interaction, leading
to strong restriction on the mode’s symmetry involved in the
scattering process [54,65]. In particular, this type of spin-
wave scattering has already been examined theoretically and
experimentally in a system very closely related to our vortex-
state nanotubes, namely, in flat magnetic disks in the vortex
state [52–54]. In this system, it was found that radial modes
(m0 = 0) can split into two azimuthal modes with opposite
azimuthal indices, m1 = −m2 (which constitutes the conser-
vation of angular momentum), and different radial indices
(n1 �= n2). This second selection rule of having different radial

profiles follows from the symmetry of the magnetic system
and causes the secondary waves to be separated by a fre-
quency gap (ω1,2 = ω0/2 ± 
ω). Three-magnon splitting of
a radial mode allowed for the experimental observation of
azimuthal modes with unprecedentedly large azimuthal index
m and, in the future, could be advantageous, for example, for
physical reservoir computing, which exploits the nonlinear
interaction between different spin-wave modes.

In vortex-state magnetic nanotubes, similar nonlinear dy-
namics is possible. Naturally, rotational symmetry manifests
itself in the conservation of angular momentum or, in other
words, of the azimuthal index, m0 = m1 + m2, which is the
same as in the vortex-state dots. In addition, translational
symmetry in the z direction results in the wave-vector con-
servation rule k0 = k1 + k2. To understand other possible
selection rules, one needs to look at the properties of the
effective spin-wave tensor N̂k . Within the framework of vecto-
rial Hamiltonian formalism for spin-wave dynamics [54,66],
the three-magnon part of the spin-wave Hamiltonian, which
governs three-wave processes, is given by

H(3) = −ωM

2S

∫
|η|2m0 · N̂k · ηdρ, (7)

where S is the nanotube cross-section area. Since η⊥m0,
only off-diagonal components of the operator N̂k could re-
sult in three-wave coupling. The exchange operator N̂(ex)

k =
−λ2

ex(∇2
2D − k2)Î (written here in Cartesian coordinates) is

modified only by an additive diagonal term compared to the
dot case. Thus, the exchange part of three-magnon interaction
efficiency possesses the same rules as in the case of vortex
dots, in particular, in the case of splitting of radial modes, it is
nonzero only if the split modes are different in their radial
profiles. As shown above, in nanotubes, this difference ap-
pears due to the curvature-induced nonreciprocity for modes
belonging to the same spin-wave branch (same radial index
n) and is large, which results in relaxing of the selection rule
n1 �= n2 in comparison to the vortex-state disks.

The dipolar interaction, described by a magnetostatic
Green’s function Ĝk , N̂k · η = ∫

Ĝk (ρ, ρ′) · η(ρ′)dρ′, in con-
trast, is more modified compared to the disk case. In addition
to the off-diagonal component Gρϕ , the Gzϕ component
becomes nonzero and, thus, relevant for three-magnon in-
teraction (see the full expression for the Green’s function
in Appendix D). The selection rule of different radial pro-
files of split modes, which takes place in vortex dots, comes
from the property Gk1,m,αβ = −Gk2,−m,αβ . For the splitting
of spin-wave modes having k = 0 (and thus, k1 = −k2), the
ρϕ component still possesses this symmetry and, thus, only
curvature-induced nonreciprocity of spin-wave profiles results
in the nonzero contribution to three-magnon interaction with
secondary modes of the same branch. The component Gzϕ

possesses different symmetry relations and the selection rule
n1 �= n2 is relaxed by the asymmetry of the dipolar interaction
itself. The relative contribution of one or another off-diagonal
term depends on the azimuthal and radial indices and wave
numbers of the interacting modes, as well as on the geometry.
For the case of splitting of propagating waves (k0 �= 0), a
difference in the radial profiles of the secondary modes is
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FIG. 8. (a) A possible channel for the three-magnon splitting.
The directly excited mode profile (at k = 0) as well as the split mode
profiles are included as insets and again shown magnified in (b).

not required for both dipolar contributions, which is quite
natural since the modes become nondegenerate by their wave
numbers.

Less strict rules for three-magnon splitting facilitate its
applications in nanotubes. Since secondary waves can belong
to the same, lowest spectral branch, a directly excited (pri-
mary) wave could have a lower radial index and frequency
compared to vortex-state disks and rings of the same ra-
dius, and, thus, are easier to be excited in an experiment.
A viable application of three-magnon splitting is the excita-
tion of high-m azimuthal modes, which, to a certain extent,
can bear topologically protected information [67]. Another
practically interesting case, which benefits from both the non-
reciprocal mode hybridization and enriched possibilities for
three-magnon scattering, is sketched in Fig. 8. As an example,
in a tube with T = 90 nm mantel thickness, we schematically
show the three-magnon splitting of a radial mode which is
homogeneous along the nanotube axis (m = k = 0), as seen in
Fig. 8(a). The mode is excited at a microwave frequency fRF,
which is a little bit larger than the mode resonance frequency.
This is done in order to parametrically excite the desired
secondary modes at fRF/2. As known from flat disks in the
vortex state, this slightly off-resonant excitation of the primary
mode can still lead to an efficient triggering of three-magnon
splitting. By choosing the direct excitation frequency fRF, it is
possible to have, for one of the potential secondary waves,
like in the previous section, vanishing group velocity [see
Fig. 7(a)]. Nota bene, many other splitting channels (e.g.,
modes with different azimuthal numbers) for this particular
excitation frequency might be allowed and the splitting chan-
nel discussed here is not necessarily the one with the lowest
power threshold, i.e., not necessarily the channel which is
triggered first when increasing the excitation power. Deter-
mining the channel with the lowest threshold, however, would
require a quantitative analysis of the three-magnon-splitting
coefficients (analogous to, e.g., Ref. [54]) and would go far
beyond the scope of this work.

V. CONCLUSIONS

In conclusion, we have investigated the spin-wave disper-
sion for thick shells using the specific example of vortex-
state magnetic nanotubes by micromagnetic simulations. We
show that the dispersion changes quite drastically when

transitioning to thick shells. The simulations confirm the ex-
istence of perpendicular-standing spin waves similar to those
known from flat thick films, and the curvature-induced dis-
persion asymmetry. However, with careful analysis of the
mode profiles of the different spin-wave branches, we re-
veal an additional asymmetry in the mode profiles along the
thickness of the shell, leading nonreciprocity of all spin-wave
mode profiles, including higher-order ones such as PSSWs.
The origin of the mode-profile asymmetry can be explained
within the concept of magnetic pseudocharges, namely, it
is caused by the inhomogeneity of the extrinsic geometrical
charge along the thickness of the shell. The consequence of
this asymmetry is the nonreciprocal hybridization of modes
with the same azimuthal mode number, which in turn leads
to asymmetric plateaus in the dispersion. The existence of
these plateaus can be exploited, for example, to facilitate uni-
directional spin-wave transport. In addition, we show that the
mode-profile asymmetry will also have consequences for the
nonlinear spin-wave dynamics. For instance, it will lead to the
opening of additional splitting channels for the three-magnon
scattering and allow for the splitting into modes propagating
effectively in one direction only.

We believe that these results emphasize that thick curved
magnetic shells are not only promising spin-wave conduits for
magnonic applications because of their rich spin-wave disper-
sion, but also due to the consequences of the shell curvature
on the nonlinear spin-wave dynamics. This can be important,
for example, for physical reservoir computing relying on the
nonlinear scattering processes between different spin-wave
modes.
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APPENDIX A: DYNAMIC-MATRIX APPROACH FOR
PROPAGATING SPIN WAVES

Here, we briefly review the principal equations for the
finite-element dynamic-matrix approach used to calculate the
spin-wave mode profiles and frequencies in this paper. A
detailed description is found in Ref. [37]. Within a dynamic-
matrix approach for propagating spin waves, the linearized
Landau-Lifshitz equation for propagating spin waves in the
vicinity of some (here, unitary) equilibrium magnetization
field m0(r), which, for propagating waves

δm(r, t ) ∝ ην,k (x, y)eikze−iων (k)t (A1)

takes the form

ων (k)

ωM
ηνk = im0 × �̂kηνk with m0 ⊥ηνk, (A2)
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is solved numerically as an eigenvalue problem for the fre-
quencies ων (k) and the lateral mode profiles ηνk . Here, ωM =
μ0γ Ms is a characteristic frequency, with γ the gyromagnetic
ratio and Ms the saturation magnetization of the material.
Furthermore, ν is some lateral mode index. The plane-wave
Hamiltonian operator �̂k is given by

�̂k = h0Î + e−ikzN̂eikz, (A3)

with N̂ the magnetic tensor, a Hermitian operator describing
the magnetic self-interactions,

N̂ = N̂(exc) + N̂(dip) + N̂(uni) + · · · , (A4)

and h0 = m0 · (hext − N̂m0) the projection of the static ef-
fective magnetic field onto the equilibrium direction. For a
description of the individual terms in N̂, see, for example,
Ref. [37]. To implement the orthogonality constraint m0 ⊥ηνk ,
the eigenvalue problem given by Eq. (A2) is transformed to
the vector bundle locally orthogonal to the equilibrium di-
rection m0(r) using a suitable transformation. The eigenvalue
problem then takes the form

ων (k)

ωM
η̃νk = D̂k η̃νk, (A5)

with D̂k being the wave-vector-dependent dynamic matrix
which acts on the mode profiles η̃νk defined in the local
frame of reference. To solve the infinite system given by
Eq. (A5), the dynamic matrix is discretized within the cross
section of the nanotubes using a finite-element method and
then diagonalized numerically for each k using an iterative
Arnoldi-Lánczos method [46,47]. To account for dynamic
dipolar fields (the dipolar tensor N̂(dip)), the lateral dipolar
potential of the spin-wave modes is calculated using the
Fredkin-Koehler method [45], which has been extended to
propagating waves in Ref. [37].

APPENDIX B: THICKNESS DEPENDENCE OF
DISPERSION ASSUMING HOMOGENEOUS

RADIAL PROFILES

This appendix contains Fig. 9, presenting the thickness
dependence of the spin-wave dispersion in vortex-state nan-
otubes assuming homogeneous mode radial profiles.

APPENDIX C: APPROXIMATION OF NONHYBRIDIZED
SPECTRUM

Here we show how the standard perturbation approach
typically used to acquire the dipole-exchange spectrum of spin
waves in different geometries must fail for thick nanotubes
due to the strong influence of the dipolar interaction on the
mode profiles. For this, we follow Ref. [58] and we first cal-
culate the exchange-mode spatial profiles sn′mk of the system
by excluding dipolar fields in our dynamic matrix approach.
Note that the exchange modes have well-defined radial nodal
lines n′ for all k. Then, we construct basis vectors for these

FIG. 9. Spin-wave dispersion for vortex-state nanotubes with in-
creasing thickness, calculated according to the thin-shell theory by
Otálora et al. [15] (dashed lines) using the same material parameters
and average radius R = 65 nm as in the main text. Note that the thin-
shell theory is not valid for thicknesses of more than approximately
10 nm, but already shows that the dispersion asymmetry increases
with thickness only assuming homogeneous mode profiles along the
thickness. Although, for k > 0, it still gives a good approximation
of the quasihomogeneous mode, homogeneous radial profiles alone
are not able to explain the large frequency nonreciprocity, as seen
in comparison with the true dipole-exchange normal modes (solid
lines).

profiles,

g(1)
n′mk = 1√

N (1)
n′mk

(
sn′mk · e1

0

)
,

g(2)
n′mk = 1√

N (2)
n′mk

(
0

sn′mk · e2

)
, (C1)

with e1,2(r) the basis vectors in the subspace locally orthog-
onal to the equilibrium magnetization m0, and N (i)

n′mk are
suitable normalization factors [58]. This separation allows
for a possible change in the mode ellipticity due to dynamic
dipolar fields. Finally, we calculate the zeroth-order-perturbed
dispersion including dynamic dipolar fields as

ω
(0)
n′m(k) = 1

2

(
C(11)

n′mk + C(22)
n′mk

)

+
√

C(12)
n′mkC

(21)
n′mk −

[
i

2

(
C(11)

n′mk − C(22)
n′mk

)]2

, (C2)

with

C(i j)
n′mk =

∫
dA′(g(i)

n′mk

)∗ · D̂k · g( j)
n′mk, (C3)

where D̂k is the wave-vector-dependent dynamic matrix in-
cluding dipolar fields. See Ref. [58] for details of this
methodology.

Finally, in Fig. 10, we show the resulting dispersion of
the perturbed exchange modes with azimuthal index m = 0
and radial index n′ = 0, 1, 2, 3 in comparison with the true
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(a) (d)

(b)

(c)

FIG. 10. Thickness dependence of true dipole-exchange dis-
persion, compared with dispersion of perturbed exchange modes
(numerically calculated exchange profiles; see text).

dipole-exchange modes with radial index n obtained by di-
rectly diagonalizing the full dynamic matrix. For the lowest
thickness [Fig. 10(a)], the mode profiles are not disturbed by
the dipolar interaction and both methods give good agreement.
Note that calculating the dispersion using this perturbation
analysis gives an approximation for the unhybridized disper-
sion, as seen in Fig. 10(c). At k = 0, even for the largest
thickness T = 90 nm, the exchange modes still give a good
approximation for the mode frequencies and profiles [as seen
in the inset of Fig. 10(d)]. However, for k �= 0, the differ-
ence between the perturbed and the normal-mode dispersion
increases drastically with increasing thickness. In particu-
lar, the true dipole-exchange dispersion is considerable more
asymmetric, which shows that the curvature-induced mode-
profile nonreciprocity plays a significant role in the dispersion
asymmetry.

(a) (b) (c) (d)

FIG. 11. Extension of Fig. 4, with additional panels which show the intermediate transitions between the spin-wave dispersions for single
thicknesses shown in the panels of Fig. 4, only for the m = 0 modes.

APPENDIX D: MAGNETOSTATIC GREEN’S FUNCTION IN
NANOTUBE GEOMETRY

Here we present an expression for the magneto-
static Green’s function in cylindrical coordinates (ρ, ϕ, z)
accounting for a nonzero wave number k in the z direction
(which makes the difference in comparison to the circular flat
disk case [68]). In a general case, the Green’s function is given
by [69]

Gαβ (r, r′) = 1

4π

∂2

∂xα∂x′
β

1

|r − r′| . (D1)

Using an expansion of the kernel |r − r′|−1 in cylindrical
coordinates (see Eq. (8.197) in [70]) and making a Fourier
transform along the z axis, we get the Green’s function for a
spin wave with wave vector k = kez:

Ĝk (ρ, ρ′) = 1

2π

∞∑
m=−∞

Ĝk,m(ρ, ρ ′)eim(ϕ−ϕ′ ), (D2)

with

Ĝk,m(ρ, ρ ′) =
⎛
⎝ −∂2

ρρ ′ −(im/ρ ′)∂ρ −ik∂ρ

(im/ρ)∂ρ ′ m2/(ρρ ′) −mk/ρ

ik∂ρ ′ −mk/ρ ′ k2

⎞
⎠

× Im(|k|ρ<)Km(|k|ρ>). (D3)

Here, ∂ρ ≡ ∂/∂ρ, ∂ρ ′ ≡ ∂/∂ρ ′, Im and Km are modified Bessel
functions, and ρ< = min[ρ, ρ ′], ρ> = max[ρ, ρ ′].

APPENDIX E: THICKNESS DEPENDENCE OF NORMAL
MODES FOR MORE THICKNESSES

Here, we present Fig. 11, which is an extension of Fig. 4,
showing the thickness dependence of the m = 0 modes in
vortex-state nanotubes for intermediate thicknesses.
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