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Phase diagram of the dipolar Ising ferromagnet on a kagome lattice
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We study the field-temperature phase diagram of the two-dimensional dipolar Ising ferromagnet on a kagome
lattice with a specific ratio between the exchange and dipolar constants, δ = 1. Using the stochastic cutoff O(N )
Monte Carlo method, we calculated order parameters for stripe and bubble phases and other thermodynamical
quantities. We find two kinds of stripe phases at low fields, where the arrangement of the branch spins
neighboring the stripe frame varies, and two bubble phases at high fields, in which three-spin domains (bubbles)
form a regular triangular lattice but the triangular array of bubbles changes on the kagome lattice. We also find
that with increasing field, a disordered phase exists between the stripe and bubble phases and between the two
bubble phases. We discuss the details of the features of these phases and phase transitions.
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I. INTRODUCTION

Magnetic thin films have attracted much attention because
of applications for high-density magnetic recording [1,2]. In
such systems the competition between short-range exchange
and long-range dipolar interactions with the influence of other
interactions causes rich magnetic structures. For example,
with magnetocrystalline anisotropies, various stripe patterns
appear, and spin-reorientation (SR) transitions take place
[3–7], and with Dzyaloshinskii-Moriya interactions, helical
structures and skyrmions are formed [8].

In ferromagnetic films, a characteristic phenomenon has
often been observed experimentally with increasing external
magnetic field. A stripe phase at low fields changes to a
phase called the “bubble phase” before a transition to a ferro-
magnetic phase at high fields. In the bubble phase, magnetic
domains are arranged almost periodically, forming a triangu-
lar lattice [9–11].

The properties of the stripe and bubble phases have
also been theoretically studied by magnetostatic approaches
[9,10], coarse-grained effective free-energy approaches such
as Ginzburg-Landau theory [12–14], and lattice models
[14,15]. In the magnetostatic approaches, the magnetostatic
energies were compared between the structures of a parallel-
stripe array and cylindrical domains, and a field-thickness
phase diagram without a thermal effect was studied [9,10].
In the effective free-energy approaches, the phase boundaries
between the stripe and bubble phases and between the bubble
and uniform (ferromagnetic) phases were investigated. A first-
order transition was suggested for the former [12,14], while a
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Berezinskii-Kosterliz-Thouless (BKT)-like transition [16,17]
was pointed out for the latter [12], in which a bubble melting
transition, i.e., dislocation unbounding, occurs in a manner
similar to two-dimensional (2D) melting transitions [18–20].
These coarse-grained approaches can treat large systems, but
they were based on the mean-field theory, and the thermal
fluctuation effect was insufficiently treated. In addition, peri-
odic structures were assumed for the stripe and bubble phases,
and the stabilities of the two phases were compared.

On the other hand, in the lattice model approaches using
2D dipolar Ising and Heisenberg ferromagnets, which treat
the thermal fluctuation effect precisely using Monte Carlo
(MC) methods, such periodic structures are spontaneously
formed without the assumption of the periodicity. However,
it is difficult to simulate models with large sizes. Because of
the long-range nature of the dipolar interaction, O(N2) (N is
the total number of spins) computational time, namely, a high
computational cost, is required. Stripe phases and SR transi-
tions have been investigated in several parameters of the 2D
dipolar Ising [21–34] and Heisenberg [35–50] ferromagnets,
but studies on the stripe-bubble and bubble-ferromagnetic
transitions are limited [14,15]. In these studies on square
lattices, the intermediate phase located between (anharmonic)
stripe and saturated ferromagnetic phases was named the bub-
ble phase, in which domains were observed. However, the
formation of any lattice structure of the domains was not
studied and is unclear. A first-order transition was indicated
between the stripe and bubble phases, and BKT-like melting
behavior was suggested between the bubble and saturated
ferromagnetic phases [15].

In the present paper, we investigate the properties of the
stripe and bubble phases and phase transitions in the 2D
dipolar Ising ferromagnet on a kagome lattice. Kagome lat-
tice systems have been intensively studied in relation to spin
liquids. Geometrical frustration arises in antiferromagnetic
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interactions in these systems and also arises in ferromagnetic
interactions with local anisotropies such as spin ice, in which
the constraint of an icelike rule causes macroscopic degen-
eracy [51]. Recently, kagome dipolar spin-ice systems were
artificially prepared, and whether or not the dipolar interac-
tion, i.e., long-range interaction, influences the local spin state
is a topic of study [52,53]. The kagome-lattice pure dipolar
Heisenberg model was also investigated, and ferromagnetic
orders by planer spins at zero field were shown [54,55].

We focus on the effect of defects of a kagome lattice on
magnetic structure. A kagome lattice is obtained by removing
1/4 of the sites forming a triangular lattice with a spacing
of 2a from a triangular lattice with lattice constant a. Pe-
riodic defects exist. We study whether or not defects affect
the properties of stripes and bubble phases in a dipolar Ising
ferromagnet, which is our motivation for this study.

According to the studies using the effective energy ap-
proaches, we define an order parameter for bubble phases to
detect a lattice on which magnetic domains are arranged. We
estimate several order parameters using a MC method and
study the field-temperature phase diagram with a specific ratio
between the exchange and dipolar constants, δ = 1.

To overcome the difficulty of the O(N2) computational
time required for conventional MC algorithms, we use the
stochastic cutoff (SCO) O(N ) MC method [56] to reduce the
computational cost. We show two stripe phases at low fields
and two bubble phases at high fields and present a disordered
phase between the stripe and bubble phases, between the two
bubble phases, and above the higher-field bubble phase. We
also discuss the phase transitions associated with these phases.
The argument about the previously suggested BKT-like melt-
ing behavior is beyond the scope of the present work because
it is a delicate issue which requires huge computations to
obtain a convincing result.

The rest of this paper is organized as follows. In Sec. II,
the model and method are presented. In Sec. III, the results
and discussion are given. After an overview of the field-
temperature phase diagram in Sec. III A, the features of the
bubble phases and stripe phases are discussed in Secs. III B
and III C, respectively. The properties of the phase transitions
are studied in Sec. III D. Section IV is devoted to the summary.

II. MODEL AND METHOD

We consider an Ising spin system on a kagome lattice in
the xy plane (Fig. 1). The position of the ith spin in units of
the lattice constant is given as(

μi + 1

2
δ1, (νi mod 2),

√
3

2
νi

)
, (1)

where δm,n is the Kronecker delta and μi is integer
if νi mod 4 = 1 or 3, odd if νi mod 4 = 0, and even if
νi mod 4 = 2. The Hamiltonian of the system consists of the
nearest-neighbor ferromagnetic Ising interaction, dipolar in-
teraction, and Zeeman term:

H = −δ
∑
〈i, j〉

σiσ j +
∑
i< j

σiσ j

r3
i j

− H
∑

i

σi. (2)

Here, σi is σi = 1 (up spin) or −1 (down spin), perpendicular
to the xy plane; δ(> 0) is the ratio between the exchange and

FIG. 1. Structure of the kagome lattice.

dipolar constants; ri j is the distance between the ith and jth
spins; and H is the magnetic field parallel to the Ising spins.
In this paper, we study the case of δ = 1.

As mentioned in the Introduction, O(N2) simulation time
is required in conventional MC methods, and we use the SCO
O(N ) MC method [56] with the modification shown in the
Appendix.

To estimate the H dependences of the order parameters at
a given temperature T , a simulated annealing is performed
starting from a random spin configuration at each H , i.e.,
gradual lowering of the temperature to the given T . For the
T dependences of the order parameters at a given H , the
temperature is lowered from a high temperature, except in
the study of the hysteresis properties with respect to tem-
perature in Figs. 13 and 14. For the hysteresis properties, in
the heating process the temperature is increased starting from
a configuration in the lower-temperature phase (bubble A or
B), while in the cooling process the temperature is lowered
staring from a configuration in the higher-temperature phase
(disordered). At each T and H , 400 000 MC steps are used
for the measurement of the order parameters after 100 000
MC steps for the equilibration, and the average of each order
parameter is taken over 12 and 48 independent simulations for
the H and T dependences, respectively.

To treat large systems and exclude the effect of edges, we
tile replicas of the original system of N = L2 = 96×96 sites
with periodic boundary conditions [31,32] as follows. We tile
2001×2001 replicas. We consider all interactions for a total
of 96×96×2001×2001 sites in an area of (2001L)2 under the
condition of the same spin configuration in each replica. By
introducing replicas, we treat the dipolar interaction of spin
pairs at a long distance such as 1000L. Throughout this paper,
we use kB = 1.

III. RESULTS AND DISCUSSION

A. Phase diagram

First, we give an overview of the structure of the phase
diagram obtained in this study. The field-temperature (H-T )
phase diagram is shown in Fig. 2. We find two bubble phases
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FIG. 2. H -T phase diagram of the system. The solid circles
show the first-order transition points obtained by analyzing the en-
ergy histogram or thermal hysteresis property. The solid squares are
transition points estimated by the heat capacity analysis. The open
squares are transition points estimated by the H dependences of the
order parameters. The error bars indicate the hysteresis widths.

at high fields. We call the bubble phases at lower and higher
fields bubble phases A and B, respectively. Figures 3(a) and
3(b) show the magnetic structures in the space-filling config-
uration in bubble phases A and B, respectively. In both bubble
phases, three nearest-neighbor down spins form a domain, i.e.,
bubble, and bubbles form a regular triangular lattice, but the
triangular array of bubbles is different, and the distance r be-
tween the nearest-neighbor bubbles changes. In bubble phase
A, the distance is r = 2

√
3, while in bubble phase B, r = 4. In

bubble phase B the distance is larger, and the bubble density
is lower, which increases the magnetization and reduces the
Zeeman energy.

We also find two phases at low fields whose magnetic
structure has a stripe frame of down spins with a one-stripe
width [Figs. 4(a) and 4(b)]. We call these phases at lower and
higher fields stripe phases A and B, respectively. In the two
phases, the location of the down spins neighboring the stripe
frame [blue circles in Figs. 4(c) and 4(d)] is different. We
call these neighboring spins “branch spins.” In the magnetic
structure in stripe phase A illustrated in Fig. 4(a), the branch
spins do not form a lattice and align randomly [Fig. 4(c)]. In

FIG. 3. Snapshots of the magnetic structure at T = 0.05 in the
space-filling configuration (a) in bubble phase A at H = 1.6 and
(b) in bubble phase B at H = 2.3. A 16×8

√
3 region is dis-

played. Blue solid and red open circles denote down and up spins,
respectively.

FIG. 4. Snapshots of the magnetic structure at T = 0.05 in the
space-filling configuration (a) in stripe phase A at H = 0.2 and (b) in
stripe phase B at H = 0.6. Snapshots of the magnetic structure of
“branch spins”(c) in stripe phase A and (d) in stripe phase B. A
16×8

√
3 region is displayed. Blue solid and red open circles denote

down and up spins, respectively. It should be noted that the branch
spins in stripe phase B form a triangular lattice.

stripe phase B, however, the branch spins form a triangular
lattice [Fig. 4(d)].

B. Bubble phases

We introduce several types of order parameters to study
the phase transitions in the system. To investigate bubble
phases A and B, we analyze the Fourier component of the
spin configuration,

ϕ̄k =
〈∣∣∣∣∣ 1

N

∑
i

σie
k·xi

∣∣∣∣∣
〉
, (3)

where 〈· · · 〉 denotes the thermal average.

FIG. 5. ϕ̄k at T = 0.05 at (a) H = 1.6 and (b) H = 2.3.
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In Figs. 5(a) and 5(b), we illustrate |ϕ̄k| at H = 1.6 and
H = 2.3, respectively, at T = 0.05. The smallest reciprocal
lattice vectors for the triangular lattice of bubbles in bubble
phase A are k1 = ( 2π

3 , 0) and k′
1 = (−π

3 ,
√

3π
3 ), and those in

bubble phase B are k2 = (0, π√
3

) and k′
2 = ( π

2 ,−
√

3π
6 ). We

find that linear combinations of k1 and k′
1 and those of k2

and k′
2 correspond to the high-intensity parts (black spots) in

Figs. 5(a) and 5(b), respectively. Hence, we define the order
parameters for bubble phase A as

ϕ1 =
〈∣∣∣∣∣ 9

4N

∑
j

σ je
i 2π

3 x j

∣∣∣∣∣
〉

(4)

and

ϕ′
1 =

〈∣∣∣∣∣ 9

4N

∑
j

σ je
i(− π

3 x j+
√

3π
3 y j )

∣∣∣∣∣
〉

(5)

and those for bubble phase B as

ϕ2 =
〈∣∣∣∣∣ 6√

5N

∑
j

σ je
i π√

3
y j

∣∣∣∣∣
〉

(6)

and

ϕ′
2 =

〈∣∣∣∣∣ 6√
5N

∑
j

σ je
i( π

2 x j−
√

3π
6 y j )

∣∣∣∣∣
〉
. (7)

Here, the prefactors 9
4 and 6√

5
are normalization constants.

We also study the magnetization of the system to charac-
terize the regions of the ordered phases,

mz =
〈

1

N

N∑
i

σi

〉
, (8)

and the sum of the Ising and dipolar interaction energies,

E =
〈

1

N

(
−δ

∑
〈i, j〉

σiσ j +
∑
i< j

σiσ j

r3
i j

)〉
. (9)

We plot the H dependences at T = 0.05 of ϕ1 and ϕ′
1 in

Fig. 6(a) and of ϕ2 and ϕ′
2 in Fig. 6(b). We find that bubble

phase A appears at 1.1 � H � 1.9 and bubble phase B ap-
pears at 2.2 � H � 2.5. In these field regions, plateaus of mz

and E appear in Figs. 7 and 8, respectively, which indicates
that the configurations in Figs. 3(a) and 3(b) are maintained.
(Above H = 3, mz monotonically increases and is saturated at
H � 4.0.)

We find that at 0.34 � H � 0.65, ϕ1 and ϕ′
1 appear but are

much less than 1 and are accompanied by a plateau of mz, and
at H � 0.65, ϕ2 and ϕ′

2 appear with a large fluctuation. We
consider the reasons for these observations in the next section.

C. Stripe phases

Stripe phases of Ising dipolar systems have been studied
mainly on a square lattice. There the numbers of horizon-
tal (nh) and vertical (nv) bonds between nearest-neighbor
antialigned spins are calculated, and the order parameter is
defined as the difference between nh and nv , which indicates
(π/2)-rotational symmetry breaking [21,25].

FIG. 6. H dependences at T = 0.05 of (a) ϕ1 and ϕ′
1 and (b) ϕ2

and ϕ′
2.

In the case of the kagome lattice, we should investi-
gate (π/3)-rotational symmetry breaking to detect the stripe
phases. There are three bond angles from the x axis concern-
ing nearest-neighbor antialigned spin pairs, i.e., 0, π

3 , and 2π
3 .

We define the order parameter

O123 = 2
|n1 + n2ω + n3ω

2|
|n1 + n2 + n3| . (10)

FIG. 7. H dependence of mz at T = 0.05.
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FIG. 8. H dependence of E at T = 0.05.

Here, ω = e
2π i

3 , which satisfies 1 + ω + ω2 = 0, and n1, n2,
and n3 are the numbers of bonds of nearest-neighbor an-
tialigned spins with bond angles of 0, π

3 , and 2π
3 , respectively.

The prefactor 2 is a normalization constant.
We present the H dependence of O123 in Fig. 9. We find that

at H � 0.65, O123 reaches almost full saturation, and a stripe
phase or stripe phases are identified in this region. The period
of the stripes is 2

√
3 [Figs. 4(a) and 4(b)], the horizontal

stripes are detected by ϕ2, and the diagonal stripes parallel
to the direction of (1,

√
3) are detected by ϕ′

2. Therefore, finite
values of ϕ2 and ϕ′

2 with fluctuation in Fig. 6 are ascribed to
the formation of these stripes.

We find in Figs. 7 and 8 a plateaulike region of mz and
E at 0.34 � H � 0.65, at which ϕ1 and ϕ′

1 have finite values
(<0.5) in Fig. 6. This plateaulike region suggests that the
structure of Fig. 4(b) is stable against the magnetic field. We
notice that the branch spins in stripe phase B form a triangular
lattice with lattice constant 2

√
3, which is the same as that of

the triangular bubble lattice in bubble phase A. The triangular
lattice of the branch spins causes finite values of ϕ1 and
ϕ′

1, which is evidence of the realization of stripe phase B at
0.34 � H � 0.65.

We find that the exchange interaction energy, i.e., the first
term of E , is constant for H � 1.8 (Fig. 10), including the
regions of stripe phases A and B and bubble phase A. The con-

FIG. 9. H dependence of O123 at T = 0.05.

FIG. 10. H dependences of the exchange and dipolar interaction
energies at T = 0.05.

stant exchange interaction energy is easily confirmed between
the two stripe phases, and it is also confirmed between stripe
phase B and bubble phase A by considering the transforma-
tions between Figs. 11(a) and 11(b) and between Figs. 11(b)
and 11(c). It is interesting to note that in the field region of the
disordered phase between stripe phase B and bubble phase A,
the exchange interaction energy is unchanged, although disor-
dered spin configurations such as that in Fig. 12 at H = 0.9
and T = 0.05 appear.

In the two stripe phases, because the exchange energy asso-
ciated with branch spins is zero and thus the exchange energy
originates only from the stripe part, the spin configuration of
the branch spins is considered to be located on the triangular
lattice with a lattice constant of 2

√
3 only by the dipolar

interaction and the magnetic field.

D. Phase transitions

We investigate the properties of phase transitions. In
Fig. 13, ϕ2 and ϕ′

2 in a heating and cooling process at H = 2.3
are shown. We find thermal hysteresis loops of ϕ2 and ϕ′

2,
which indicates the existence of metastable states between
bubble phase B and the disordered phase. Therefore, the tran-
sition associated with these hysteresis loops is identified as a
first-order transition. We adopt the middle point (temperature)
of the loops as the first-order transition point and plot this
point with a red circle in the phase diagram in Fig. 2, in
which the error bar coincides with the loop width. In the same
manner, first-order transition points between bubble phase B

FIG. 11. Configurations with the same exchange interaction en-
ergy. The difference in the configuration between (a) and (b) is spins
1 and 2, and that between (b) and (c) is spins 3, 4, 5, and 6.
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FIG. 12. Snapshot of the spin configuration at H = 0.9 and
T = 0.05.

and the disordered phase are plotted with red circles on the
phase diagram.

In Fig. 14, ϕ1 and ϕ′
1 in a heating and cooling process

at H = 1.6 are presented. We find a very small hysteresis
loops, but it is difficult to judge whether the transition is first
order. Next, we perform an energy histogram analysis. If the
phase transition is first order, the histogram should have two
peaks around the transition temperature. We find double peaks
around T = 0.226 in Fig. 15 and judge this point to be a
first-order transition point between bubble phase A and the
disordered phase. In the same manner, the first-order transition
point at H = 1.4 is determined. These first-order transition
points are plotted by red circles between bubble phase A and
the disordered phase on the phase diagram.

We find points around phase boundaries at which neither
hysteresis loops nor double peaks of the energy histogram
have been observed within the accuracy of the present work
and study the heat capacity per spin for several such points,

C = 1

N

〈
E2

t

〉 − 〈Et 〉2

kBT 2
, (11)

FIG. 13. ϕ2 and ϕ′
2 in the heating and cooling process at H = 2.3.

Hysteresis loops of ϕ2 and ϕ′
2 are observed.

FIG. 14. ϕ1 and ϕ′
1 in the heating and cooling process at H = 1.6.

where Et is the total energy of the system. In Figs. 16(a)
and 16(b), we give the temperature dependence of the heat
capacity at H = 0.0, 0.2, 0.4, and 0.6 for 0.12 < T < 0.2 and
at H = 0.4 and 0.6 for 0.07 < T < 0.12, respectively. The
peaks of C in Fig. 16(a) show the transition points between
stripe phase A and the disordered phase, while the peaks of
C at H = 0.4 and 0.6 in Fig. 16(b) give the transition points
between stripe phases A and B. These points are plotted with
solid squares on the phase diagram.

We also analyze the temperature dependence of C at H =
1.2 and 1.8 between bubble phase A and the disordered phase
and find peaks. These points are also plotted with solid squares
on the phase diagram. Considering the first-order transition
points (red circles) at H = 1.4 and 1.6, these transitions are of
weak first order.

In our previous study on a square lattice [34], the transition
between the stripe and disordered phases at low H was second
order. Here, to investigate the possibility of a second-order
transition, we calculate the Binder cumulant U4 of O123 at low
fields,

U4 = 1 −
〈
O4

123

〉
3
〈
O2

123

〉 . (12)

In Fig. 17, the Binder cumulants at H = 0 for different system
sizes are plotted. We find no crossing of these cumulants and

FIG. 15. Energy histograms at H = 1.6 at T = 0.2265, 0.226,
and 0.2255.
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FIG. 16. Temperature dependence of heat capacity at (a)
H = 0.0, 0.2, 0.4, and 0.6 for 0.12 < T < 0.2 and at (b) H = 0.4
and H = 0.6 for 0.07 < T < 0.12.

observe the same tendency at solid squares at H = 0.2 and 0.4
on the phase diagram, and we judge that the phase transition
between stripe phase A and the disordered phase is not second
order.

We show the phase boundaries at T = 0.05 by open
squares in the phase diagram based on the H dependences of
the order parameters (Figs. 6, 7, and 9). In the same manner,
the other open squares are plotted using the H dependences of
the order parameters at T = 0.1 and T = 0.15. We find that
a disordered phase exists between stripe phase B (or A) and

FIG. 17. Temperature dependence of the Binder cumulant at
H = 0.

bubble phase A, between bubble phases A and B, and above
bubble phase B, and the phase boundaries at low temperatures
extend to higher temperatures in the T direction.

IV. DISCUSSION AND SUMMARY

Studies on bubble formation using lattice models were
limited to square lattices, as mentioned in the Introduction.
They showed a stripe phase (phases) at low fields and a bubble
phase at high fields. The stripe phase did not have branch
spins, and bubbles did not show a lattice structure, namely,
structure with no apparent symmetry. However, the kagome-
lattice dipolar Ising ferromagnet in this study presented two
bubble phases with high symmetry, i.e., a triangular lat-
tice. Furthermore, branch spins neighboring the stripe frame
change the symmetry with the field. Higher symmetry, i.e., a
triangular lattice of branch spins, is realized at higher fields.
This is also a unique feature of the kagome-lattice dipolar
Ising ferromagnet. The two bubble phases are robust against
the variation of the external magnetic field. In each bubble
phase, the configuration, magnetization, and total energy ex-
cept the Zeeman term remain. The origin of these unique
features may be attributed to the defect effect, and the sym-
metry of the bubble phase may reflect that of the defect. Our
study suggests that the defect can stabilize bubbles and the
symmetry of the defects may determine those of bubbles and
branch spins in dipolar Ising ferromagnets.

A limited number of 2D Ising ferromagnets have been re-
ported, such as BaFe2(PO4)2 [57] and CrI3 [58], in which the
out-of-plane magnetization shows an order-disorder transition
on a honeycomb lattice. If the dipolar interaction is relatively
strong compared with the exchange interaction, the dipolar
interaction becomes important. The effect of the dipolar inter-
action on a honeycomb-lattice Ising ferromagnet was studied
using a Monte Carlo method [31], which suggested properties
similar to those of dipolar square-lattice Ising ferromagnets.
On the other hand, kagome-lattice Ising ferromagnets have
not been reported yet. Considering recent developments in
experimental techniques for making artificial lattices such
as artificial kagome dipolar spin ice, realized by connected
Co nanomagnets [52,53], kagome Ising ferromagnets might
not be imaginary systems in the future. Regardless of this
realization, the defect effect in this study will be useful for
insights into how to control magnetic structures in systems
with competition between short- and long-range interactions.

We summarize the present study below. We investigated
the two-dimensional dipolar Ising ferromagnet on a kagome
lattice with a specific ratio between the exchange and dipolar
constants, δ = 1. We calculated the order parameters for bub-
bles and stripes and other thermodynamic quantities using the
stochastic cutoff O(N ) Monte Carlo method and analyzed the
field-temperature phase diagram.

We found two stripe phases at low fields, where the
stripe frame has a one-stripe width. In the lower-field stripe
phase (stripe phase A), the branch spins, defined as reversed
spins neighboring the stripe frame, align randomly, while
in the higher-field stripe phase (stripe phase B), the branch
spins form a triangular lattice, which shows a magnetization
plateau. In stripe phase A, the magnetization changes with
increasing the field, but the exchange interaction energy is
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constant in both stripe phases A and B, where the dipolar in-
teraction is essential in the formation of the magnetic structure
of the branch spins.

We also found two bubble phases at high fields. In both
bubble phases, three nearest-neighbor down spins form a
triangular domain, i.e., bubble, and bubbles form a triangu-
lar lattice, but the triangular array of bubbles and distance
between bubbles vary. Interestingly, the exchange energy is
constant not only in the two stripe phases but also in the
lower-field bubble phase (bubble phase A) and intermediate
disordered phase.

We determined the phase boundaries and showed several
properties of the phase transitions. So far, a first-order tran-
sition has been suggested between stripe and bubble phases.
However, a specific lattice structure was assumed in the effec-
tive free-energy approaches, and bubble phases were studied
without defining an order parameter for a lattice structure. In
this paper we defined the bubble phase as a phase with a lat-
tice structure formed by magnetic domains. Consequently, we
discovered that a disordered phase exists between stripe A (B)
and bubble phase A and between the two bubble phases, and
the transitions between the two bubble phases and disordered
phase are first order at high temperatures.
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APPENDIX: SCO ALGORITHM FOR THE ISING
DIPOLAR MODEL

In the original SCO algorithm, the stochastic potential
switching (SPS) procedure [59,60] with O(N ) switching time
is applied to all long-range interactions in the system. In
the case of Ising spins, however, the application of the SCO
method to neighboring spins causes a delay in the relaxation
time, and a tuning of the number of dipolar interactions to
which the SPS procedure is applied is necessary to accel-
erate the relaxation time. In the present study, we tune the
number of dipolar interactions using a Metropolis algorithm

for the dipolar interactions which satisfy |μi − μ j | � 5 and
|νi − ν j | � 5 and the SCO algorithm for the dipolar interac-
tions outside this region.

In the SPS algorithm long-range interaction Vi j is stochas-
tically switched to Ṽi j with a probability Pi j or to V̄i j with
1 − Pi j . The potential Ṽi j can be chosen arbitrarily. Here, Pi j

is written as

Pi j (σi, σ j ) = exp[β(	Vi j (σi, σ j ) − 	V ∗
i j )], (A1)

where

	Vi j (σi, σ j ) = Vi j (σi, σ j ) − Ṽi j (σi, σ j ) (A2)

and 	V ∗
i j is a constant equal to or greater than the maximum

value of 	Vi j . The potential V̄i j is given by

V̄i j (σi, σ j ) = Vi j (σi, σ j ) − β−1 ln[1 − Pi j (σi, σ j )]. (A3)

Here, Ṽi j = 0 is set, and the computational time is reduced
to O(N ) for dipolar spin systems [56]. This procedure works
well for dipolar Heisenberg systems [54,56,61].

However, some modification is useful for dipolar Ising
systems. This improvement is attributed to the discretized spin
state (up or down) of the Ising spin. The dipolar interaction,

Vi j (σi, σ j ) = σiσ j

r3
i j

, (A4)

takes two values, i.e., Vi j (σi, σ j ) = 1
r3

i j
and − 1

r3
i j

for ferro-

magnetic (σi = σ j = ±1) and antiferromagnetic (σi = −σ j =
±1) spins, respectively. Defining 	V ∗

i j = α 1
r3

i j
, in which

α > 1, Pi j (σi, σ j ) = exp( 1−α

r3
i j T

), and exp( −1−α

r3
i j T

) for ferromag-

netic and antiferromagnetic spins, respectively. In the present
study we take α = 1.5.

Because

Pi j (σi = 1, σ j = 1)

Pi j (σi = 1, σ j = −1)
= exp

(
2

r3
i jT

)
, (A5)

Pi j for ferromagnetic spins is much larger than that for antifer-
romagnetic spins for smaller ri j and lower T . The probability
for selecting V̄i j for ferromagnetic spins is much smaller
than that for antiferromagnetic spins. This large difference in
Pi j (σi, σ j ) causes a deviation in the potential switching pattern
and inefficiency in the MC sampling. Therefore, we use a
Metropolis algorithm instead of the SCO algorithm for spin
pairs of the dipolar interaction within a short distance. The
efficiency of this method was previously studied for a dipolar
Ising model on a square lattice in Ref. [34].
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