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The quasiharmonic approximation (QHA) is the simplest nontrivial approximation for interacting phonons
under constant pressure, bringing the effects of anharmonicity into temperature-dependent observables. Nonethe-
less, the QHA is often implemented with additional approximations due to the complexity of computing phonons
under arbitrary strains, and the generalized QHA, which employs constant stress boundary conditions, has
not been completely developed. Here we formulate the generalized QHA, providing a practical algorithm for
computing the strain state and other observables as a function of temperature and true stress. We circumvent the
complexity of computing phonons under arbitrary strains by employing irreducible second-order displacement
derivatives of the Born-Oppenheimer potential and their strain dependence, which are efficiently and precisely
computed using the lone irreducible derivative approach. We formulate two complementary strain parametriza-
tions: a discretized strain grid interpolation and a Taylor series expansion in symmetrized strain. We illustrate
our approach by evaluating the temperature and pressure dependence of select elastic constants and the thermal
expansion in thoria (ThO,) using density functional theory with three exchange-correlation functionals. The
QHA results are compared to our measurements of the elastic constant tensor using time-domain Brillouin
scattering and inelastic neutron scattering. Our irreducible derivative approach simplifies the implementation

of the generalized QHA, which will facilitate reproducible, data-driven applications.

DOI: 10.1103/PhysRevB.106.014314

I. INTRODUCTION

Computing vibrational observables of insulating crystals
requires the solution of an interacting phonon problem, which
is highly nontrivial to solve in general. The simplest approach
is to ignore all anharmonic terms in the Born-Oppenheimer
potential, known as the harmonic approximation, whereby
the partition function can be analytically written in terms
of the phonon frequencies. However, the harmonic approx-
imation does not capture many basic phenomena, such as
thermal expansion, finite thermal conductivity, etc., and more
sophisticated approximations are required. Perhaps the next
simplest approach, specific to the case of constant pressure, is
the well-known quasiharmonic approximation (QHA) [1-6],
whereby the anharmonicity is only accounted for via the strain
dependence of the phonons and the elastic energy. The QHA is
simple in that one still evaluates a quadratic partition function
in the canonical ensemble, but the QHA partition function is
explicitly a function of strain. The resulting Helmholtz free
energy as a function of temperature and volume can then be
Legendre transformed to the Gibbs free energy as a function
of temperature and pressure, yielding observables that are
measured under the usual experimental conditions. The QHA
is a simple theory which gives a baseline description of the
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thermodynamics of an anharmonic crystal, and it is important
to be able to implement the theory efficiently, accurately,
and with a minimal amount of information. Furthermore, it
is important to be able to execute the QHA under the most
general conditions of constant stress, as opposed to the case
of constant pressure. To achieve these goals, we implement
the generalized QHA purely using space group irreducible
derivatives.

In practice, an infinite crystal is approximated by a finite
crystal, whereby a homomorphism is constructed between the
infinite translation group and a finite translation group, and the
latter can be characterized by all translations within some su-
percell. The degrees of freedom of the finite crystal will be the
lattice strains and the nuclear displacements, where the latter
are defined relative to the minimum energy configuration at
a given strain. The only inputs needed for the QHA are the
Born-Oppenheimer potential for zero nuclear displacement as
a function of strain (i.e., elastic energy) and the second nuclear
displacement derivatives of the Born-Oppenheimer potential
(i.e., the dynamical matrix) as a function of strain. Given
that the numerically exact strain dependence of the elastic
energy and the dynamical matrix can only be evaluated at
discrete values of strain, some parametrization is needed in
order to transform from the Helmholtz ensemble to the Gibbs

©2022 American Physical Society
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ensemble. There are two natural strain parametrizations: a
Taylor series as a function of strain truncated at a given order,
or values on a discrete grid of strains which are then interpo-
lated. Both parametrizations may be applied to the Helmholtz
free energy or to its components (i.e., the elastic energy and
the dynamical matrices). Both the Taylor series and grid
interpolations can be found in the literature, in addition to
others, and we review some representative papers from this
perspective. A key goal of our paper will be to implement both
approaches from the perspective of space group irreducible
derivatives.

We begin by reviewing papers based on the parametriza-
tion of the elastic energy. A very common approach is to
fit the elastic energy to an equation of state [7—14]. While
the equation-of-state approach is very popular, it has very
clear disadvantages. Most importantly, the equation-of-state
approach typically does not yield numerically exact descrip-
tions of specific aspects of the elastic energy, unlike the Taylor
series or the grid interpolation approach. The equation-of-
state approach appears to be relevant only due to historical
reasons, given that first-principles approaches were still com-
putationally challenging at the level of a primitive unit cell
many decades ago when equations of state were first applied
in this context. Alternatively, several studies computed the
elastic energy on a grid of strains and interpolated [15,16]. The
advantage of the grid interpolation approach is that the elastic
energy is numerically exact at the grid points, though nothing
is guaranteed between the grid points. So long as a sufficiently
dense grid is precisely computed, the parametrization will
faithfully describe the true function. A final approach would
be to use a Taylor series expansion, which consists of both the
linear and nonlinear elastic constants. The advantage of the
Taylor series approach is that the elastic energy is numerically
exact up to some order in strain, so long as the derivatives are
faithfully computed. While nonlinear elastic constants have
been computed from first principles [17-21] and have been
invoked in the early QHA literature [2,22], we are not aware
of their use in modern QHA calculations.

The computation of the dynamical matrix as a function of
strain is far more computationally expensive than the compu-
tation of the elastic energy. Whether using a Taylor series or a
grid interpolation, it is important to address a common short-
coming in the literature. Some studies interpolate or expand
purely in terms of the phonon frequencies, which can be prob-
lematic given that phonon modes cannot always be uniquely
distinguished as a function of strain, though approaches have
been developed to mitigate this problem [10,13]. A robust ap-
proach is to parametrize the elements of the dynamical matrix
as a function of strain, and preferably only the irreducible
components, as executed in our approach. In terms of the
grid interpolation approach, many studies evaluate the free
energy on a grid of strains and interpolate [5,11,12,15,16],
which involves splining a scalar function at each temperature
as opposed to splining the dynamical matrix as a function
of strain one time. In terms of Taylor series expanding in
strain, the original idea of Gruneisen amounts to expanding
the phonon frequencies to first order, encapsulated by the
well-known mode-resolved Gruneisen parameters [1,3,23].
The Taylor series in terms of phonon frequencies can naturally
be extended to higher order for greater accuracy, and recent

work has computed the frequencies up to second order in
strain [13]. Our Taylor series approach expands the dynamical
matrix instead of the phonon frequencies, and the latter can be
exactly recovered as a subset of our result.

Another approach for parametrizing strain dependence
would be to use a combination of a strain grid and Tay-
lor series [24,25]. In crystals where the point symmetry
allows more than one degree of freedom in the lattice vec-
tors (i.e., multiple identity strains), one must parametrize a
multidimensional strain space, which can be computation-
ally demanding. These situations naturally invite a combined
strain grid and Taylor series approach. One begins by de-
termining the lattice parameters as a function of volume by
minimizing the Born-Oppenheimer potential at each volume
on a grid, defining a one-dimensional strain path through
the multidimensional strain space. Subsequently, one can
perform a Taylor series about each grid point along this one-
dimensional path, fully parametrizing the multidimensional
strain space to some desired resolution. Solely constructing
the one-dimensional strain path already exactly recovers the
classical zero-temperature strain at arbitrary pressures, mak-
ing it a useful approximation in general, and this approach
has been explored in several studies [24,26], and goes under
the name of the statically constrained QHA. Additionally, the
leading-order Taylor series about the one-dimensional path
has been explored [25].

Due to the complexity of fully implementing the general-
ized QHA (see Sec. III A for a precise definition), additional
approximations have been introduced in the literature, such as
the quasistatic approximation (QSA) [27]. The QSA evaluates
the strain as a function of temperature using the QHA, but
then computes the elastic constants at a given temperature by
evaluating the relevant strain derivatives of the elastic energy
at the strain prescribed by the QHA, as opposed to evaluating
the strain derivatives of the free energy at that strain. The QSA
removes the need for computing the phonons as a function of
the strains that do not transform like the identity representa-
tion of the point group, greatly reducing the computational
requirements for high-symmetry crystals. The validity of the
QSA has been shown to be insufficient in particular cases
[16,28], where QSA results are sometimes denoted as “cold
curves,” and therefore the QSA should be avoided if possible.

The material system being investigated in our study is
thoria (ThO,), an actinide-bearing crystal that has garnered
interest as a next-generation nuclear fuel for power generation
[29]. The ground-state crystal structure of thoria is the fluorite
structure, which has space group Fm3m (225). A number of
studies have used ab initio methods to predict finite temper-
ature properties of thoria [30-36]; however, there are limited
experimental data available for comparison. While there have
been multiple studies on thermal expansion [37—40], there are
only two studies that measured the elastic constants of thoria
at room temperature [41,42].

In this paper, we present the generalized QHA, allowing
for the evaluation of vibrational observables under condi-
tions of constant temperature and true stress, while treating
anharmonicity at the same level as the standard QHA. The
generalized QHA is formulated purely in terms of space group
irreducible derivatives, allowing the theory to be executed
at a minimal computational cost. We execute the general-
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ized QHA using density functional theory (DFT) with three
different exchange-correlation functionals, yielding the tem-
perature and pressure dependence of the elastic constant
tensor and the thermal expansion. Various experimental mea-
surements are also performed in our study. The thermal
expansion is measured using a combination of x-ray diffrac-
tion and elastic neutron scattering; phonon frequencies are
measured by inelastic neutron scattering at temperatures of
5, 300, and 750 K; time-domain Brillouin scattering is used to
measure the elastic constants at temperatures between 77 and
350 K; and the temperature dependence of the shear strain
elastic constant is measured by inelastic neutron scattering.

The rest of the paper is organized as follows. Section II
formulates crystal vibrations at constant temperature under a
general state of Biot strain or true stress. Section III presents
the generalized quasiharmonic methodology, in addition to
the implementation using space group irreducible derivatives.
Section IV documents the experimental methods used, and
Sec. V documents the details of the DFT calculations. Sec-
tion VI presents our QHA and experimental results, and
Sec. VII presents our conclusions.

II. GENERALIZED FORMALISM
FOR CRYSTAL VIBRATIONS

A. Crystal vibrations under constant temperature and strain

We begin by considering a crystal, consisting of a periodic
array of nuclei and a corresponding number of electrons. The
Born-Oppenheimer (BO) potential is obtained by solving for
the ground-state energy of the many-electron Hamiltonian as
a function of the nuclear positions. A phononic many-body
problem is defined by the mass of the nuclei and the BO
potential, and the resulting Hamiltonian may then be used
to evaluate vibrational observables classically or quantum
mechanically. The BO potential presumes that the electrons
are at zero temperature, which will be a good approxima-
tion for insulators with electronic band gaps that far exceed
kT . However, even when studying metals, the contribution
from finite temperature electrons to lattice observables (e.g.,
thermal expansion) is often negligible [16,43,44]. Of course,
there will be systems where the finite temperature electronic
contributions will be important, such as certain systems with
charge density waves, and in such cases a theory beyond the
Born-Oppenheimer approximation must be employed. A more
general approach replaces the BO potential with an effec-
tive potential obtained by solving the electronic many-body
problem at a finite electronic temperature as a function of the
nuclear positions [45-48]. Such a potential can be immedi-
ately incorporated within our theoretical framework and the
generalized QHA (see Sec. III), though here we restrict our
discussion to the more usual case of the BO potential for
simplicity.

The crystal structure is defined by three primitive lattice
vectors, which we store as a row stacked 3 x 3 matrix a,
and basis atom positions defined by vectors A;, where i =
1,...,n, and n, is the number of atoms in the primitive unit
cell. The reciprocal lattice vectors are then defined as a row
stacked matrix b = 27 (&~1T. The crystal structure will be
invariant to some space group, which will yield one or more

variable degrees of freedom when defining 4 and A;. The
degrees of freedom within & and A; are then determined by
minimizing over the BO potential, and the result is the classi-
cal lattice parameters and classical basis atom positions at zero
temperature and stress, denoted by 4, and A, ;, respectively.

The strained lattice vectors are encoded by the function
a(e), where € is a vector of the six independent strain ampli-
tudes (see Sec. II B). The classical basis atom positions will
be functions of strain A;(e), and the positions are determined
by minimizing the BO potential with respect to the degrees
of freedom within the space group of the strained lattice (see
Appendix B for a mathematical definition). For strains that
transform like the identity representation of the point group
(i.e., identity strains), the space group will be unchanged,
while for nonidentity strains the space group will be lowered
and there may be additional degrees of freedom within the
basis atoms A;(e€). The atomic displacements uf{ ) are defined
relative to the nuclear positions generated by a(e) and A;(e),
where q € R? is the lattice coordinate of a Cartesian recipro-
cal lattice point Q(€) = qf)(e) within the first Brillouin zone,
and j labels either a two tuple of an atom in the primitive
unit cell and its displacement vector or an irreducible rep-
resentation of the little group of q and an integer labeling
the instance if the irreducible representation is repeated. It
should be emphasized that A;(e) are reference points from
which ufl’ ) are defined, and should not be confused with the
expectation value of q = 0 displacements, which determine
the average crystal structure at finite temperature and strain €
(see Appendix B for further discussion).

We now define a function V(e, u) which yields the BO
potential energy, and the independent variables are € and u,
where u is a vector of all displacements {uf{ )}. The nuclei are
now treated quantum mechanically, with the potential energy
being V (€, u). The generalized Helmholtz free energy F (T, €)
of the crystal can now be formally constructed by exactly
evaluating the quantum partition function.

B. Strain measures and representations

The strain measure parametrizes the nonrotational compo-
nent of the deformation of the lattice vectors, and there are an
infinite number of strain measures [49,50]. The Lagrangian
strain measure is commonly used in the context of nonlinear
elastic constants [17-21], and it is appealing given that the
conjugate stress (i.e., the second Piola-Kirchhoff stress) is
inherently symmetric and it is straightforward to change the
reference lattice. However, the Lagrangian strain is less conve-
nient when parametrizing the dynamical matrix and the elastic
energy as a function of strain, and instead it is preferable to
use the Biot strain, which is straightforward to symmetrize
and generates a linear change in the lattice vectors. The chain
rule can be used to convert from Biot strain derivatives to
Lagrangian strain derivatives when desired. Therefore, we use
Biot strain to parametrize the strain dependence of V(e, u) and
use Lagrangian strain when changing the reference lattice.

A general transformation of the lattice vectors 4, to a new
set of lattice vectors 4 is given by

a=4a,FT, (1
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where F is an invertible matrix referred to as the deformation
matrix. In general, F may describe stretches and rotations of
the lattice, as evidenced by the polar decomposition theorem

F = VR =RU, )

where V and U are unique, positive-definite, symmetric
matrices referred to as the left and right stretch matrices,
respectively, and R is a unique orthogonal matrix referred to
as the rotation matrix. Given that the rotation does not deform
the lattice, it is desirable to only parametrize some function of
the stretch matrices. One possibility is the right stretch matrix
itself, which can be recast as U=1+ €, where

1
€] 7€6 €5

€ |, 3

1 1
565 564 €3

1
2€6 €2

N>
Il
D= =

which is referred to as the Biot strain [49]. As mentioned
previously, another common choice of strain measure is the
Lagrangian strain, defined as

I=1EFF-1)=10"-1)=e+1& )
We utilize the Lagrangian strain as an intermediate step in
the process of constructing true stress and elastic constants
at finite strains.

It is natural to encode a symmetric matrix in terms of the
independent components, which is relevant given that ¢, 7,
and the true stress are all symmetric. For example, the state
of strain € in terms of the six independent components can be

encoded by a vector
€= [e1, €, €3, €4, €5, &]7, %)

where the ordering is consistent with Voigt notation. Each
strain amplitude €; can be obtained by projecting the Biot
strain € along the corresponding basis vector A; as

6= ) ®)
tr (X,)\.,)
where Xi is areal 3 x 3 matrix which is a linear combination
of the Gell-Mann matrices (see the Supplemental Material
[51], Sec. SIV, for definitions). The Biot strain can be then
written in terms of its components as & = ), eiii. A corre-
sponding vector n will be used for the Lagrangian strain.
Strain can be symmetrized according to the irreducible
representations of the point group of the space group using
standard group theoretical techniques, which is necessary for
constructing relevant selection rules. For the case of the Oy,
point group, symmetrization of strain yields A, ® E, ® T,
and the resulting symmetrized basis vectors are

Aa, = 5 R+ X5+ Xy), )

gy = (1 = %), ®)

Apy = 2Qhs =% =1y, ©)

’:T;; =hXe, Ap=Rhy, Ap =A1s, (10)

where the superscript on the irreducible representation label
indicates a given row of a multidimensional irreducible repre-
sentation.

Given that the energy is invariant to a rotation of the lattice,
only symmetric deformations of the lattice must be considered
during parametrization. Therefore, we define the symmetri-
cally deformed lattice as a function of the Biot strain as

ae)=a,d0+¢, R=1. (11)

The key task is then to parametrize the dynamical matrix and
the elastic energy as a function of €. In order to construct
Lagrangian strain derivatives from Biot strain derivatives, the
following partial derivatives are needed:

an; 1 .21 A
he = 8ij + 5tr(x,.) Zk:ektr(x,»(xkx,- +X;40), (12
3271,- 1 2021 A~ ~ & A
= —tr(X) T awR Rk + X A0). 13
de0ex 2r( 1) ik + X)) (13)

In the case of a cubic crystal where there are only finite Ay,
strains with amplitude €4, , Eq. (12) simplifies to

an; 3 .
i _ Sij(l + £6A] ) Oy, point group. (14)
Bej 3 ¢

Change in reference lattice

In the preceding, the deformation matrix and correspond-
ing strain are defined with respect to a single reference lattice
a,. However, it is necessary to change from one reference
lattice to another when constructing the true stress and true
elastic constants, and it is most convenient to work with
the Lagrangian strain. We proceed by defining deformations
relative to two lattices, 4; and &), as parametrized by the
Lagrangian strains 5, and »,, respectively. The Lagrangian
strain 5, in terms of a is written using Eqgs. (1) and (4),

@) = z(a'a@; )T - 1), (15)
and the deformed lattice & as a function of the Lagrangian
strain 1, and the rotation R is given by

a(n,, R) = &,/2, + IRT. (16)

The relation between the two strains is achieved using func-
tion composition:

@, R) =1 "o 29, +1) (4 'a)" - 1). (17

which is independent of the rotation R. Equation (17) can
then be used to construct partial derivatives from one strain
measure to another as

N
ana,
In order to construct the true stress at a lattice a(e), the
reference lattice must be changed from &, to the current lattice
a(e). The Lagrangian strain constructed from the reference
lattice a(e€) is denoted as n (opposite to the naming conven-
tion of Wallace [52]). Taking n, =», 5, = n, 4; = 4,, and
&, = a(e) and substituting into Eq. (18) results in

o

a
1,

)lr(Rar'ak; (a0 "a)").  (18)

=tr(d

i

=) edd+ord+e), R=1, (19
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which will be used in Eq. (24) when constructing the
true stress. In the case of a cubic crystal, Eq. (19)
simplifies to

ani 3\
a_n = Sij(l + \/T_GAU{> , Oy, point group. 20)
n.
=i

C. Crystal vibrations under constant
temperature and true stress

Section IT A introduced the many-phonon problem un-
der conditions of constant strain. However, experiment is
normally conducted under conditions of constant stress.
Therefore, we need a formalism that can construct observ-
ables at some prescribed stress. For the simpler case of
constant pressure, it is natural to Legendre transform the usual
Helmbholtz free energy to the Gibbs free energy. Generalizing
the Legendre transform to the case of a general state of true
stress is cumbersome given that it requires the use of true
strain [49,50]. Therefore, we invert the true stress equation in
order to obtain the Biot strain as a function of temperature and
true stress, allowing for the study of a given phase.

We begin by formulating the true stress as a function of
temperature and strain € [49,53] as

S(T. e R) = 1%L fr$(r. oof, @1
|a(e)]

where F' = R(1 + &) and the ith component of the second
Piola-Kirchhoff stress is

8€j
e i

1 AF (T, €)
Z il iy

Yi(T,e) =
(1.0 |4, | de;

(22)

€

Hereafter we specialize to the case of R = 1, given that the
orientation of the crystal will normally be fixed. Equation (21)
can be projected onto the ith component, or the chain rule can
be used to generate the equivalent expression, yielding

64T, €) = tr(L;6(T, €, 1)) (23)
1 oF (T dei| 0
- _ Z (T, €)| €| Im (24)
|a(e)| m de; ¢ M| 81_ .
3*F (T, €)

aAlg(Tva(GAly)) = 8€A aT

Given that various observables are encoded as a function
of pressure or volume in a cubic crystal, it is useful to convert
to these variables. The A, strain can be written as a function
of the volumetric strain as

ea(€) = V3((1+¢,)7 — 1), (32)

Having constructed the true stress as a function of temperature
and e, a strain map can be formally constructed via the inverse

of Eq. (24) as
€T,o0), where 6(T,é(T,0)) =o0. (25)

The lattice vectors (T, o) at a given temperature and true
stress are then given by

A(T,0) =4, (i + Z X.&(T, a)). (26)

Given the importance of é(T, o), it is useful to define the
thermal strain tensor, analogous to the definition of Wallace
[23], as

_0&(T,0)

i(T,0) = , 27
a;(T, o) 3T 27
which can be rewritten via the chain rule as
&;(T, 06i(T,
(T, o)=Y 2al ) 960, © (28)
da; |, 0T «T.0)

J
Results for cubic crystals

For the case of cubic crystals under constant pressure, the
only nonzero stress and strain components will be Aj,, and
Eq. (24) can be simplified using Egs. (14) and (20), resulting
in

1 IF(T. €)
- 2
18,/ (1 + \/%'EA,g) dea,,

A (T’ G(EA,g)) =

€(ea,)
(29)

The strain map &(7', 6(04,,)) can be obtained to leading order
in o4, at an arbitrary temperature by evaluating the strain
derivative of Eq. (29) at &, (T, 0) and inverting, which gives

gAls'(T’ U(GAIA’))
18,1 (1 + 52,,(T,0))°
Caya,, (T, 0)

where C;;(T, o) is defined in Eq. (45). The A, element of the
thermal strain tensor, defined in Eq. (27), can be explicitly
evaluated as

= gAlg(Tv 0) + O‘A]g +---, (30)

—1
2UA1 gAl (T, O'(UAI )
Carr (T, 0(04,,)) — <1+—>> . 31
&T.0(0u,,) ( V3 V3

(

and the volumetric strain can be written as a function of the
volume as

Vo

where V, = |a,|. The nonzero components of stress under
constant pressure in the standard and symmetrized basis, re-
spectively, are given as

V)= % (33)

1(P) = 02(P) = 03(P) = =P, 04, (P) = —v/3P. (34)
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Using Eqgs. (32) and (33), the usual coefficient of volumetric
thermal expansion as a function of temperature and pressure
can be constructed as

1 dV(T,P)
V(T,P) oT

3an,, (T, 6(P))

T V34, (T, o(P)
(35)

o, (T, P) =

and the coefficient of linear thermal expansion (CLTE) is
given by

1 0a(T,P) oy, (T, 0(P))
a(T,P) T  /3+&,(T,o(P))

where a(T, P) is the cubic lattice parameter as a function of
temperature and pressure.

The preceding equations are all exact relations, and here
we introduce the small strain approximation (SSA), which
can be useful for constructing approximate equations which
circumvent a numerical inversion of the strain map, Eq. (25).
The essence of the SSA was introduced in the original work
of Gruneisen [1], and this idea can be used to approximate
arbitrary observables in terms of the exact free energy. The
leading-order SSA expression for €4,, can be obtained by
Taylor series expanding Eq. (29) to leading order in €4,, about
zero and inverting, yielding

& (T.0(0n,) =

where the superscript 1 denotes that the stress is expanded to
first order in strain, and

a(T,P) = (36)

—F(T)
F(T)— ZF(T)

|60|O’A]g (37)

2
F(T) = AF (T, €) BTy = °F(T, €)

(38)
dea, .o Beilg

=0
Evaluating Eq. (37) within the generalized QHA recovers the
usual Gruneisen relation (see Sec. IIT A).

D. Elastic constants at constant temperature and true stress

There are two types of experimentally relevant elastic con-
stants under isothermal or adiabatic conditions [23,52,54]:
Bygys(T, o) is the leading-order expansion coefficient of
the true stress with respect to strain and Sug,s(T, o) is the
coefficient which determines the dynamics of elastic wave
propagation; where greek subscripts label Cartesian indices
(i.e., x, y, 2). Both Byg,s(T, 0) and Sup,5(T, 0) depend on
Cupys(T, o), which is the curvature of the Helmholtz free
energy with respect to 5, where n is defined relative to
A(T, o), divided by the current volume |a(7, o)|. Given that
Cupys(T, o) has full Voigt symmetry, we can construct

CZJ(T U) aﬂytS(T 0) (39)

where i = v(w, 8) and j = v(y, §), and v(«, B) is the func-
tion which maps two Cartesian indices to the corresponding
Voigt notation index. The coefficients B,g, s can be obtained

as (see Ref. [52], Eq. 2.36)
Bogys(T,0) =Copys(T,0) + 5 (Uu(a 1885 + Ou(e.5)8py

+ 0u(g,y)0as + Ou(p.6)0ay — 20u(a,p)dys)-

Similarly, the coefficients S,g,5 can be obtained as (see
Ref. [52], Eq. 2.24)

Capys(T, 0) + 80y 04(8.,5)- 41

Elastic wave propagation is then determined by the acoustic
matrix (similar to the case in Ref. [23]), defined as

|a(7, o)
QP

otﬂyS (T 0')

AT, 0) = > 0,058yusp(T.0),  (42)

yé

where Q is a Cartesian reciprocal lattice point. The velocities
of elastic wave propagation are determined by finding the
eigenvalues of the acoustic matrix

mug(T, 0’ [YQ(T, 0)) = AQ(T, 0)|Yo(T, @),  (43)

where m is the total mass in the primitive unit cell, vl is the
velocity, and i is the band index which can be categorized
according to irreducible representations of the little group
of Q.

The only nontrivial task is to compute C;;(T, o), and
then Copy5(T, 0), Bapys(T, o), and Sup,s(T, 0) are immedi-
ately known. In the preceding discussion, all equations apply
equally to isothermal and adiabatic conditions, and we now
construct G;;(T, o) in both cases. Beginning with C}JS-O(T, 0),
the chain rule is used to obtain

) de; 0
G0 = s )IZ(ZM Lo) ok 2

p_— O1m 91

+Zsk(T» o)
%

where the partial derivatives may be obtained from Eqgs. (12)
and (18), and

8 €k )3Tlm 377;1 (44)

ANmdn, ) 9, 82]_ ’

32F (T,
Cii(T,0) = IFT, & (45)
aéiaéj «T.0)
and
dF (T
si(T.oy= LT O (46)
€; «(T,0)

For C a“h(T 0), the same equation holds, though Cad‘(T o) and
aldl(T o) must be used, and the former is given by [22]

. T
CMU(T, o) =Ci(T, —_—
o 1) =G O T T T o)
3*F (T, €) 3*F (T, €) @)
0€6,0T  |¢r.q) 0€;0T E(TJ)’
where the heat capacity is given by
3*F (T, €)
T,e)=—-T—F5—, 48
o(T, €) 7 (48)
and a similar derivation for s yields
adi
(T, ) = 5T, 0) + ———
=D T T )
AF (T, €) I*F (T, €) 49)
T |yqre) 0€60T  |ez.q
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Results for cubic crystals

For the special case of cubic crystals under constant pres-
sure, a variety of useful relations can be derived. Equation (44)
reduces to
Cij(T, a(P))

18,/(1 + Jz€a, (T, 0(P)))

Cio(T, o(P)) =

tr()A»,'):j + iji)» (50)
where we used

Oen ! < ! >3t G +4A), 61
= €Ay, T(AiAj jAi)s
anidn; V3 T

23

which can be derived from Eqgs. (13) and (14). Equation (50)
can be expanded to leading order in P at an arbitrary temper-
ature T as

CS(T, a(P)) =C5(T 0)+P< €y (T, 0)
v IR Caa, (T, 0)
Cija, (T, 0)
— (V34 &, (T,0)) L~
(\/— + eAlg( )) CAlgAlg(T, 0)
1 P ~ A
5 (LA + AjA; )) -, (52)
where
3F(T, €
Cija (T, 0) = Licila D} , (53)
0€;0€;0€q,, “T.0)

where we used the leading-order expression of Eq. (30). Using
Egs. (29), (32), and (34), the bulk modulus, defined as the
negative volume times the derivative of the pressure with
respect to the volume, can be written as

Bio(T, P) = 3C;°, (T, 6(P)) + P. (54)

The SSA (see Sec. I1C) for Cl.ijs."(T, o(P)) can be evalu-
ated using the third-order Taylor series expansion of F (T, €)
in strain and evaluating Eq. (50), yielding C;‘;O(z)(T, a(P)).
Retaining all terms yields a long equation, and therefore we
only retain a subset of terms such that when the SSA is
evaluated within the generalized QHA, the classical limit will
exactly recover the leading-order expansion of the classical
generalized QHA given in Eq. (90), yielding

C1P*(T, o (P))
1 —F(T)
" lal ( B F o = ZFm)
° V3

x (Fy(T) — fFum)) (Fm ED
ltr( ): A )) (53)
where
_ 82F(T’ G) . . agF(T3 €)
Fi(T) = e, ) Fij(T) = dei€jden,, | o 0

and the superscript * denotes that this SSA was not uniformly
truncated. Evaluating Eq. (55) within the generalized QHA

can be seen as a generalization of the approximate expression
for the bulk modulus in Ref. [3] (see Sec. IIT A for further
discussion).

In this study, elastic wave propagation is evaluated along
the Q directions (1,0,0) and (3,1,1) for a cubic crystal. The
point group of an arbitrary Q along the (1,0,0) direction is
C4y, and the squares of the velocities are given as

A Cn
Uio.0(T> o) = AT, o)l ==, (57)

0 1 R C44
U007 0 = vi00(T, 0 = [A(T, )| ==, (58)
while for an arbitrary Q along the (3,1,1) direction, the point
group is the order-two group and the resulting squares of the
velocities are

, O
v (T 0) = |(2 )|(10C11+C12+13C44:|:J) (59)
[a(T, o)
VG175 0) = == (Cn = Ca+9Cu),  (60)

where

J? =16C,1(4C); — C1z 4 9Cus) + 73(C12)?
+ 162C12Cay + 153(Cis)?, (61)

where the temperature and stress dependence of C;;(T', o) has
been suppressed for all velocity equations for brevity.

III. GENERALIZED QUASIHARMONIC APPROXIMATION
A. Formulation of the generalized QHA

The Born-Oppenheimer potential V(e,u) can be con-
structed as a function of the Biot strains € and the nuclear
displacements u (see Secs. Il A and II B for detailed defini-
tions). The generalized QHA retains full strain dependence
of V(e, u) while truncating the displacement dependence at
second order, exactly evaluates F' (7', €) within this truncation,
and evaluates observables at constant temperature and true
stress (see Secs. II C and II D). The only approximation within
the generalized QHA is V(e, u) ~ V(€ u), where

Vo€, u) = V(e, 0) + % ZD”(e)u(’) u’,  (62)
ijq
where V (e, 0) is the elastic energy, N is the number of ¢ points

in the first Brillouin zone, and Dflj (€) is the dynamical matrix
at a strain € defined as

y 92 V(e,
Dil(e) = (i)(‘ :)) (63)
8uq Buq w0

The generalized Helmholtz free energy F (7, €) of the crystal
can now be evaluated within the generalized QHA, where
V(e, u) = Vi (€, u). Given that V, (€, u) is quadratic in dis-
placements, the free energy F,,(T, €) per unit cell can be
evaluated in closed form at a given temperature 7" and strain €
as [53] (see Appendix B for additional discussion)

Fu(T, €) =V(e,0) + F,(T, €), (64)
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f
Fy(T, €)= NZ( ")“2‘(6) kBTln(l—i—nqg)), (65)

ql

where kp is the Boltzmann constant, ng (7, €)=
[exp(fiwge(€)/kpT ) — 117! is the Bose-Einstein distribution
(the arguments of nge are suppressed throughout), and the
phonon frequencies wqc(€) are obtained by solving the
generalized eigenvalue problem

Dy(€)[¥qe(€)) = Moy, (€)|vrge(€)), (66)

where ¢ is the band index and M is the mass matrix.

The main task of the generalized QHA is then to obtain
€(T, o) by inverting Eq. (24), which requires the first deriva-
tive of the free energy, given as

oF,, (T, 0 oF,(T,
an(T'5 €) _ V(G)Jr ( 6)7 67
d€; J€; de;
where
oF, (T €) h dwqe(€)
= — 68
€; NX}( > 861 ( )

h 1
ql

where y; q¢ is the generalized Gruneisen parameter

_ d ln(wqe(G))

de; (70)

Viqe(€) =

€

Within some strain parametrization, Eq. (67) is substituted
into Eq. (24) in order to evaluate é(7T, o). The strain deriva-
tives of the frequencies used to evaluate Eq. (68) are naturally
obtained by Fourier-interpolating the strain derivatives of the
dynamical matrices and using eigenvalue perturbation theory
(see Ref. [51], Sec. SII).

The second derivatives of the Helmholtz free energy are
needed when constructing observables such as the thermal ex-
pansion and the elastic constants (see Secs. II C and 11 D), and
we enumerate the second derivatives within the generalized
QHA. The second strain derivative is given as

PFu(T,€)  3°V(e,0) 3°F(T,€) 71
86[8€j o 86,’6j aE,‘an
where
32F, (T, €)

86,-86]-
B 92 wqe(€) 1
- Z( de0e; ( Pae 2)

_ h(”ql + l)nqé awq((e) awq[(f) (72)

kBT 86,‘ Bej

8%( €)

J

>hwqg(e)

1
=N > ((% qt(€)V).qe(€) —
qt

1
x <nql + 5) — Teqe(T, G)Vi,qz(é))/j,qe(é)), (73)

where cq is the modal heat capacity, defined as

202, (€)

cqe(T, €) = nge(nge + 1). (74)

— et
kgT?
The cross derivative between temperature and strain is

given as

O Fy (T, €) l h? Pog(e) —_ 1)awqg(e)
de;0T ThpT? ettt de;
(75)
—1
=~ 2 Viae(©cqe(T. €). (76)
ql

Finally, we have the second derivative with respect to temper-
ature, given as

82th(T, €) 1
—a = — — ng(T, G). (77)
oT NT qu

Results for cubic crystals

For the case of a cubic crystal within the generalized QHA,
all of the formal quantities defined in Secs. II C and II D can be
obtained by substituting F (T, €) — F;,(T, €). The Aj, stress
as a function of temperature and Aj, strain from Eq. (29)
yields

1
(T, €(en,)) = ————
| |(1 + IGAIS)
y <8V(e, 0) dF,(T, €) )
36A]g eea,) 3€A1g G(GA]g)

(78)

The strain map €4, )(T 0 (0y,,)) defined in Eq. (37), which
is obtained from a small strain approximation, evaluates to

|a|oa,, — F{)(T)
~(1) -
W (T.0(0a,)) = VY + F(T)— ZF/T) "
0 V30
where
' OF(T. ~ 0°V(e, 0
F(T)= % , V= # > B0
EAlg =0 86A]g =0

and F,(T) is defined correspondingly. Converting to volumet-
ric strain using Eq. (32), we obtain

~(1) _ _Fo/ (T)

€, (T,0)= Y FT) FIATY’ (81)
where the prime denotes the volumetric strain derivative at
zero strain, analogous to Eq. (80). If F,(T) is neglected
in Eq. (81), the usual Gruneisen equation is recovered (see
Eq. (20) in Ref. [3]).

A small strain approximation for the bulk modulus can
be evaluated by substituting C;i]:%le(T, a(P)), defined in
Eq. (55), into Eq. (54). To compare with previous literature,
we convert to volumetric strain derivatives using Eq. (32),
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yielding
1

|a,]

VH/ _"_ Fo///(T)

B, (T, P) = (V” +F/(T) - F, (T)<1

Equation (82) can be seen as the finite pressure generalization
of Eq. (37) in Ref. [3], and equality is obtained by setting
P = 0 and neglecting F,’(T') and F,”(T') in the third term of
Eq. (82).

B. The classical limit of the generalized QHA

It is useful to document the generalized QHA in the case of
classical mechanics, which will yield the same results as the
quantum case for sufficiently high temperatures. The classical
Helmholtz free energy is

ksT
FSU(T. €) = V(€. 0) + kT 2(€) — 3nksT In (BT) (83)

where

1
Qe =+ > In(wg(€)). (84)
qt

In order to obtain é(7', o) from Eqgs. (24) and (25) within the
classical generalized QHA, we evaluate

cl
oF;, (T, €) _ V(e 0) iy Tasz(e)’

85
de de B de (85)

where

aQ(e) 1
=Yy 86
7 N%}y,qe (86)

is the negative of the g-averaged generalized Gruneisen pa-
rameter. To connect with previous literature, it is also useful
to define the mode averaged generalized Gruneisen parameter,
1 0Q(e)

3na 86,’

yi(e) = — 87)

Results for cubic crystals

For the case of a cubic crystal under constant pressure, the
A, component of the classical true stress as a function of the
A\, strain and temperature is given as

- 1
UAlg (T’ €(GAIIJ)) = ~ 1 2
|ao|(1 + 7§6A1g)
« ( 0V (¢e, 0) ks T 092(€) )
e, een,,) d€n,, e(ea,)
(83)

The classical strain map &4, (T, 0(P)) can be written to
second order in temperature and pressure by Taylor se-
ries expanding Eq. (88) to second order in the Aj, strain,
solving for the A, strain, and Taylor series expanding
the result to second order in temperature and pressure,

- V// + F;)”(T)

1 " /" " 2
)) +P(1 3OV F(T) +6(V" + F(T)) + 3F0(T)).

3(V"+ F)(T))+2F)(T)
(82)

[
yielding

€a, (T, a(P))

L R AP .
_p TR Kigo (290 V) V3,
2 V2 V3 v
+PT—‘/§].<.B|2"’| S+ Q —2“/5—2))
V2 3y
32 4 -~ o
P22|.—v3'<7§ —v)+---, (89)

where V, Q, and €2 are constants defined corresponding to
Eq. (80). Equation (89) is encoded by four A, strain deriva-
tives and can be seen as a finite pressure generalization of
Egs. (32) and (33) in Ref. [3], though Eq. (32) must be used
to convert between A1, and volumetric strains to obtain equiv-
alence. Similarly, the classical elastic constants can be written
to first order in temperature and pressure using Eq. (52) as

C(T, o(P))

Vi gk < Sy s’zvi,->
|4, | |\ V3Y V
1 . o Vi Vi
P =tr(AA; + A A; L /32 <o, (90
+(2r( i +AL) + 5 «/_V>+ (90)
where
3%V(e, 0
NGO
36,‘86j =0
. 3%V(e, 0
p, = 20 1)
aeAlgae,-aej —0
and where
3%2Q2(e)
Q= . 92)
aEian =0

Equation (90) is encoded by five strain derivatives evaluated
at zero strain. Inserting Eq. (90) into Eq. (54), the classical
bulk modulus to leading order in temperature and pressure is

obtained as
1V
Pll— ——=
(1- %)
kg < Q QV)
+T— Q2+ ——— |+
34, NEIERY

Equation (93) can be seen as a finite pressure generalization
of the classical limit of Eq. (37) in Ref. [3], though Eq. (32)

].)
Bio(T, P) = m +

93)
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must be used to convert between A, and volumetric strains to
obtain equivalence.

C. Parametrization of strain dependence
within the generalized QHA

Within the generalized QHA, the elastic energy V(e, 0)
and the dynamical matrix must be parametrized as a function
of strain in order to evaluate these expressions. As empha-
sized in the Introduction, there are two natural approaches for
parametrizing the strain dependence: evaluation of a Taylor
series expansion in strain or evaluation on a grid of strains
which are then interpolated. Evaluation on a grid of strains re-
quires a choice for the density of the strain grid points, which
will set the balance of precision and efficiency. Furthermore,
some interpolation scheme will be needed to obtain values at
arbitrary strains. The other approach would be a Taylor series
in strain, whereby V,, is expanded as

3?V(e, 0)
=1(0,0 Toeoe, | €
Von(€, w) =V(0,0) + & ,X,: d€;d¢; ezoe K
33V(e, 0)
Te Z 36186186’( €= 06 e
1
; @,,0)
+ oy 2D Oy
ijq
aDy
—Z (6) (t) (/)E +---, (99
ijkq =0

where the expansion may be truncated at A'th order, with
N counting the combined number of strain and displacement
derivatives in a given term. For NV = 2, we recover the usual
harmonic approximation, while a truncation at order A/ > 3
yields a nontrivial QHA. In our paper, we execute derivatives
for N' < 4, and our expansion is written purely in terms of
space group irreducible derivatives (see Ref. [51], Sec. SVII,
for explicit equations).

Generalized QHA using irreducible derivatives

The irreducible approach to the generalized QHA requires
the computation of the elastic energy and the irreducible
second-order displacement derivatives (i.e., the irreducible
components of the dynamical matrix) [55,56] as a function of
strain, which can be accomplished using a strain grid interpo-
lation or a Taylor series. For the strain grid interpolation, the
elastic energy V(e, 0) and the irreducible second-order dis-
placement derivatives {dg(‘l’" (e)}, where «, o’ label irreducible
representations of the little group of q, are computed at each
strain grid point €. For a Taylor series, the elastic energy is
encoded by the irreducible strain derivatives of V(e, 0) up to
order NV, denoted as {dg, ... pr-} Where B; labels an irreducible
representation of strain, and the strain dependence of the ir-
reducible second-order displacement derivatives is encoded
using up to (N — 2)th-order strain derivatives of {dgg/(e)},
denoted by {dgg};l ..... ., - Inpractice, the infinite crystal is ap-
proximated by a finite crystal, characterized by all translations
within a symmetric supercell Ssz (ie., supercells which are
invariant to the point group) [56]. All irreducible derivatives

within SBZ must then be computed, either with perturbative
or finite displacement techniques, and then interpolated to the
infinite crystal.

In our work, we use the lone irreducible derivative (LID)
approach [56] to compute all irreducible second-order dis-
placement derivatives of the Born-Oppenheimer potential
within Spz, and LID executes all calculations in supercells that
have the smallest multiplicity allowed by group theory. For the
face-centered-cubic lattice, where 4, = % (J 1), two classes

of SBZ are used in our study: nl (.e., unlform supercells) and
nSC = n(j — Zi), where 7 is a positive integer, 1isthe 3 x 3
identity matrix, and J is a 3 x 3 matrix with each element
being 1. It should be noted that S¢ yields the conventional
cubic supercell. Uniform supercells have multiplicity »n°, and
the LID approach can extract all irreducible derivatives from
supercells with multiplicity less than or equal to n, in contrast
to single-supercell approaches which require n* [57]. Simi-
larly, supercells of the class nS¢ have multiplicity 4n°, and
the LID approach can extract all irreducible derivatives from
supercells with multiplicity less than or equal to 2n. Given
the scaling of DFT calculations with system size, the LID
approach results in a massive reduction in computational cost.
Further reductions in cost can be realized by using the bundled
irreducible derivative approach [56], but this was not pursued
in the present study.

IV. EXPERIMENTAL METHODS

Thoria (ThO,) single crystals were grown using the
hydrothermal synthesis technique [58] (see Ref. [59] for ad-
ditional details). Crystallographic orientations were identified
from the crystal morphology and the angle between faces. A
resulting thoria crystal was characterized using x-ray diffrac-
tion (XRD), which was performed at room temperature using
a Rigaku XtalLab Mini equipped with Mo Ko radiation (A =
0.71073 A). A full diffraction data set was collected using
¢ = 0°,120°, and 240°, with 26 from —60° to 120° with a 1°
step. Crystal Clear software was used for data integration and
the structure was solved by direct methods using Shelxtl-97
[60] and refined by least-squares techniques; a final R1 of
0.0378 was obtained for the crystal structure. Further charac-
terization was performed using p©-Raman measurements and
time-of-flight secondary ion mass spectrometry to ensure the
crystal quality (see the Supplemental Material in Ref. [61]),
resulting in crystals of equivalent quality to previous growths
[58].

Time-of-flight inelastic neutron scattering (INS) mea-
surements were performed using the Hybrid Spectrometer
(HYSPEC) at the Spallation Neutron Source at Oak Ridge
National Laboratory, with an incoming energy of 17 meV. The
ThO, sample used for INS in the present study was also used
in our previously reported measurements [61]. The transverse
acoustic mode along the I'" to X, direction scatters strongly
near the I" point (2, 2, 0), in units of 27 /a, which allows for
the extraction of the speed of sound and the Cy4 values as a
function of temperature. The observed INS is analyzed as a
function of energy for fixed values of Q, where the peak of
the scattering function yields a value of energy E. The peak
fitting is repeated for several observable Q values (2,2, ¢),
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in units of 2w /a, and the resulting dispersion is fit to the
equation £ = /ivr¢ to determine vy, the speed of sound of the
transverse acoustic mode. Given vy, we calculate Cyy = pv%,
where p is the material density measured by INS.

Time-domain Brillouin scattering (TDBS) [62,63] was
used to generate picosecond-duration coherent acoustic
phonons that propagate in the depth normal to the sample
surface by irradiating the sample with ultrashort pump laser
pulses. Two thoria crystals were utilized for TDBS measure-
ments: one with an exposed (1,0,0) plane and another with
a (3,1,1) plane. The (1,0,0) and (3,1,1) surfaces of the thoria
crystals were coated with an approximately 7-nm-thick gold
film to ensure strong optical absorption of the pump laser
beam. Generation of coherent acoustic phonons was accom-
plished via thermoelastic expansion of the gold film following
absorption of the pump laser pulse energy. A time-delayed
probe laser pulse was used to detect changes in optical re-
flectivity of the gold film induced by the propagating acoustic
phonon modes via photoelastic coupling. The ultrasonic ve-
locity of the coherent phonon modes v was calculated from
the frequency of the measured time-resolved reflectivity f
changes using the relation [64—66]

A
©2n’
where A is the optical wavelength of the probe laser beam,
and n is the real part of the refractive index of thoria. The
frequency of the coherent acoustic mode was determined
by fitting a Gaussian function to the peaks in the Fourier
spectrum of the time-domain signal (see Ref. [51], Sec. SI).
The longitudinal acoustic mode with velocity vf‘l‘,o_o) was de-
tected along the (1,0,0) direction, while the quasilongitudinal
and fast transverse acoustic modes, with velocities véflql)

v 95)

and vé”l.l), respectively, were detected along the (3,1,1) ori-
entation. For the (1,0,0) thoria crystal, TDBS signals were
acquired between 77 and 350 K by placing the samples in a
temperature-controlled, liquid-nitrogen-cooled cryostat. The
TDBS measurements on the (3,1,1) thoria crystal are only
reported for 7 = 77 K.

In the (1,0,0) direction, the longitudinal velocity yields
C = 4m(vf‘1"0’0))2/a3, where m = mry, + 2mgo and a is the
experimental lattice parameter of the conventional cubic cell.
In the (3,1,1) direction, the quasilongitudinal velocity véﬁ,l)
and the fast transverse velocity Ué], 1) can then be used, along

with vfl‘ 0,0 O construct the other independent elastic con-
stants as

Cip = 5;n7(—225((”éf1,1>)2 + (1))
+214(00 o)) + 137), 96)

Cu = 5;”7(217((1;2*_1,1))2 + (U?afl,l))z)
—198(vf o))" = ), o7

4 N2 2

7 2361(”81,1)) - 1874(”?3,1,1)) (U?afl,u)
4 2 2
‘*‘361(”?51.1)) + 1152((“?1[0,0)) ((Uf‘{,l,l))

+ (U?f,l,l))z) - (vﬁl,o,O))4)' (98)

All of the above quantities depend on the experimentally
chosen temperature and stress, where the temperatures used in
our study range from 7 = 77 K to T = 350 K and the stress
iso=0.

V. COMPUTATION DETAILS

DFT calculations were performed using the projector aug-
mented wave (PAW) method [67,68], as implemented in the
Vienna Ab initio Simulation Package (VASP) [69—72]. Results
were generated using three different exchange-correlation
functionals: the local density approximation (LDA) [73], gen-
eralized gradient approximation (GGA) [74], and strongly
constrained and appropriately normed (SCAN) [75] func-
tional. Following previous conventions (see Ref. [76] for
details), SCAN calculations employ PAW potentials gener-
ated using the Perdew-Burke-Ernzerhof GGA functional [77]
(VASP.5.2 version). In all cases, thorium and soft oxygen
PAW potentials were employed. A plane-wave basis with
a kinetic energy cutoff of 800 eV was used. A I'-centered
k-point mesh of 20 x 20 x 20 was used for the primitive
unit cell, and corresponding mesh densities were used for
supercells. Convergence of phonons and phonon strain deriva-
tives were verified by testing plane-wave cutoff energies up
to 1000 eV and k-point meshes up to 30 x 30 x 30. Strain
and displacement derivatives were computed using the lone
irreducible derivative approach [56] with the central finite dif-
ference method (see Sec. III C for further details). Quadratic
error tails were constructed in order to extrapolate to the
limit of zero amplitude. All atomic displacement ampli-
tudes used for displacement derivative calculations employed
ten equally spaced steps of variable size within the range
0.01-0.2 A. Strain derivatives of phonons used strains of
0.02-0.20 with steps of 0.02. The strain derivatives of the
elastic energy used strains of 0.01-0.1 with steps of 0.01.
When utilizing the strain grid interpolation approach, the
elastic energy and the irreducible second-order displacement
derivatives were evaluated at volumetric strain increments
of 0.01.

When approximating integrals over the Brillouin zone,
phonons were Fourier interpolated [56] to Siz = 101 for all
QHA calculations. For computing the phonon and Gruneisen
density of states (DOS), integrals were performed using the
tetrahedron method [78]. The dielectric tensor and Born
effective charges were calculated from density functional per-
turbation theory [79,80] for LDA and GGA, and finite electric
fields were used for SCAN. The relaxed lattice parameters a,
(i.e., the classical QHA result at T = 0, 0 = 0), the second
strain derivatives of V(e, 0) evaluated at a,, dielectric con-
stants, and Born effective charges (BECs) are presented in
Table I, along with results from the literature.

The longitudinal optical-transverse optical (LO-TO) split-
ting can be incorporated within the LID approach using the
method outlined in Ref. [81] (see Appendix A). When using
the strain grid interpolation, the LO-TO splitting is computed
at each strain value in the interpolation. When evaluating
the Taylor series expansion in strain, the strain derivative of
the LO-TO splitting contribution must also be evaluated (see
Appendix A and Ref. [51], Sec. SV, for explicit equations).
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TABLE 1. Classical QHA results at 7T =0, o0 =0 for the
lattice parameter (A) and the elastic constants (GPa); the dielec-
tric constant and Born effective charges computed using various
exchange-correlation functionals (X-C). Comparisons with previous
publications are provided where available.

X-C a, C11 C12 C44 €® Z;F-h ZZ
LDA 5.531 3838 1296 870 488 541 —-2.70
5.39* -2.69*
SCAN 5592 3759 1166 824 446 562 —2.50
PWI1 5.621 3527 108.1 720 479 539 -=2.70
5.62° 3495 111.4° 70.6°
PBE 5.619¢ 351.2° 106.9° 74.1° 4.83¢ 5.41°¢ -2.71°¢
5.619 351.9¢ 105.4¢ 70.9¢
wC 5.56¢  370.6¢ 119.3¢ 80.7¢
PBEsol 5.55¢ 370.9¢ 118.7¢ 80.8¢ 5.37* —2.68*

“Ref. [32]; °Ref. [34]; °Ref. [33]; URef. [30].

VI. RESULTS AND DISCUSSION

In both the strain grid interpolation and Taylor series
approaches, the irreducible second-order displacement deriva-
tives dgl‘;" will be computed at zero strain (i.e., at a,),
and we begin by presenting them (our notation follows
Ref. [56]). For clarity, we focus our discussion around SBZ =
Sc, though larger supercells will need to be evaluated in order
to determine supercell convergence. Remarkably, we later
demonstrate that S¢ achieves sufficient convergence within
the QHA, such that only a small number of irreducible deriva-
tives are required. The discrete irreducible Brillouin zone
associated with SC can be chosen as gz = {I", X;} [56]. Sym-
metrizing the displacement vectors at the I point according to
the irreducible representations of Oy, yields T1, ® T>g, and we
have explicitly excluded the 7}, acoustic modes which guar-
antees that the acoustic sum rules are satisfied by construction.
For the X, point, the little group is D4, and symmetrizing
yields A, @ By, ® Az, @ E; ® 2E,. The great orthogonality
theorem [55] dictates that there are two irreducible derivatives
at the I" point and seven irreducible derivatives at the X point,
as shown in Table II (see Ref. [51] for irreducible derivatives
in supercells up to 41 in Table SIV). It should be noted that the
space group of ThO, allows a phase convention which yields
purely real irreducible derivatives.

The irreducible second-order displacement derivatives d2®
yield the dynamical matrix in block-diagonal form for the
finite translation group. Subsequently, Fourier interpolation
can be used to interpolate to a denser grid of q points, and
the resulting dynamical matrices can be diagonalized, yielding
the phonons, and allowing for the evaluation of the partition
function. We showcase the phonon dispersion and DOS for
SBZ =41 (see Fig. 1(a), and Ref. [51] for definition of q
points). There is good agreement with experimental measure-
ments [41,61] for all functionals, and SCAN appears to be the
best overall.

For the strain grid interpolation approach to the QHA, the
elastic energy and d2% are simply recomputed at each strain
(see Ref. [51], Table SII), yielding all necessary irreducible
information to solve the QHA equations. For the Taylor series
approach, we compute the first- and second-order irreducible

SR T TS
60 A 1
/; A

2 A

= 404

o g .

3

<

204

‘j‘r‘ W‘ L ‘ "

r X, XK r L, DOS

FIG. 1. The phonons and select Gruneisen parameters computed
at 4, using LDA, GGA, and SCAN. Each case contains a plot
along high-symmetry directions and the DOS (see Ref. [51], Table
SI, for definitions of q). Diamonds are computed using DFT and
corresponding lines are a Fourier interpolation. (a) The phonons are
compared with experimental results (open markers [41] and closed
markers [61]). (b—d) Generalized Gruneisen parameters.

strain derivatives of dg’, denoted dgey and dgg; . in addition
to computing up to fourth-order irreducible strain derivatives
of the elastic energy (i.e., dg,,, dg,p,p,» and dg,p,p,,). The
strain can be decomposed into the symmetrized strains A;, ®
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TABLE II. Irreducible derivatives of V(e, u) which parametrize the QHA for A/ <

3 using SBZ = Sc (see Sec. III C for definition of

notation) evaluated at 4,. (a) Strain derivatives of V(e, 0) in units of eV. (b, ¢) Second displacement derivatives and corresponding strain

derivatives in units of eV /A2

ThO, Irreducible derivatives of V,;, for N <3

(a) Elastic energy irreducible strain derivatives

Derivative LDA GGA SCAN Derivative LDA GGA SCAN

dagi, 170 158 166 d,s, 67.1 67.8 70.8

15, 23.0 19.9 25 darirginy —955 —895 —938

da ik, —108 ~115 ~116 a1y Ty —180 —185 —189

(b) I'-point irreducible displacement and strain derivatives

Derivative LDA GGA SCAN Derivative LDA GGA SCAN
1,,T, T,,T,

dpes 12.42 11.31 12.31 Ay, —63.4 -58.1 —63.4

v 13.58 10.87 12.88 Ay —133.9 ~118.0 —129.9

a2, —29.1 —27.8 —294 d??% —65 —52 —6.8

dy g, 0.0 ~1.7 0.2 d?u?ung -283 ~25.1 —30.4

(c) X.-point irreducible displacement and strain derivatives

Derivative LDA GGA SCAN Derivative LDA GGA SCAN

Ay 208 19.5 210 Ay ~80.3 ~755 ~79.8
X, X. . . . X, X, Ay . . .

'y 4.90 3.81 4.60 dséa, —48.4 ~42.6 —46.7

Ay 423 38.7 415 A, ~176.1 ~160.0 ~168.1
B, B B, B

Ay 291 1.93 2.53 A", —44.0 —382 —43.0
EUEH EllEl(

iy 12.71 1038 12.05 dgiia, —1113 —98.4 —105.3
E,'E, E,'E,

dy'y —0.9 02 —0.7 dya,, 71.8 63.1 69.5
'E,E, 'E,'E,

dyy 11.77 10.87 12.02 A, -57.1 ~52.5 ~56.3

Ay, -5.9 ~4.0 -47 Ay, 13.7 12.8 14.5
B -337 ~32.4 -324 4y s, 38.8 375 39.1
E E u~u

dy'y "5, —6.2 -73 ~7.4 Ay s, -19.2 —17.1 -20.7
1 1

dy'x s, 57.0 53.8 56.9 Ay, 20.0 18.6 21.2
A A g 1

Ay, -239 —227 —243 Ay "y, —4.38 —3.4 —4.9

Ay, 7.8 8.2 8.1 Ay s, ~225 ~217 ~232

Ay, 44.2 39.3 44.5 a2 e, ~89.3 ~82.8 —89.7

dy" ¥, -95 ~11.1 ~10.0 Al 32.0 28.6 317
u—u B I(EIA

g, 221 ~18.0 —20.6 Ay, 223 19.1 23.0
Eu IEH B M]EM

dy' —8.4 —9.2 -9.2 Ay, -9.3 -85 ~10.3

dXE"XE“ g 23.2 21.2 23.0

E, ® Ty, for Oy, and to 2A1, @ By @ Bog @ E, for Dyy,. Given
our phase conventions for X,, the symmetry lineage for O;, —
D4h ylelds

0 1 1
Alg_>A1g, Eg —)Blg, Eg — Algv

’1“20

1 0 72 1
¢~ By, T, > E,, T,,—~>E,. 99)

For the first-order strain derivatives d®®,, there will be
six allowed terms at the I point and 28 allowed at an X
point (see Table II and Ref. [51], Eqgs. (S28) and (S29)). It

should be noted that there is always one allowed identity
strain derivative for each dgg", and the selection rules are more
involved for nonidentity strains. For the second-order strain
derivatives dgqo‘ﬁ b there will be 17 allowed terms at the I’
point and 88 allowed terms at an X point (see Eqs. (S30)
and (S31) and Table SIII in Ref. [51]). For the elastic energy,
there are 3 dg,g,, 6 dgg,p,, and 11 dg g,p,5 (see Table 1I
and Ref. [51], Table SIII and Eq. (S27)). It should be noted
that not all symmetry-allowed terms will contribute to the
finite temperature properties within the QHA unless there
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is a spontaneously broken symmetry. These 159 irreducible
derivatives completely specify Eq. (94) for N < 4 at a reso-
lution of SBZ = SC, and any observable can now be computed
within the QHA under these assumptions. It is first useful
to evaluate intermediate quantities which appear within the
QHA equations, such as the strain derivatives of the phonon
frequencies and the generalized Gruneisen parameters.

The irreducible derivatives d‘m and dggs are used to com-
pute the generalized Gruneisen parameters Vi q Tor each strain
[see Eq. (70)], and the y; q¢ appear in Egs. (73) and (76). The
Ajg, E;, and 72 Gruneisen parameters evaluated at 4, using
LDA, GGA, and SCAN are shown in Figs. 1(b), 1(c), and 1(d),
respectively, with each corresponding Gruneisen DOS (see
the Supplemental Material [51], Fig. S3, for the other three
cases). While there are some noteworthy differences between
the three DFT functionals, the resulting Gruneisen DOS are
similar overall, consistent with the fact that d};‘g' and dgg/; are
similar among the three functionals. For cubic systems, the
Ay, Gruneisen parameter is proportional to the usual volumet-
ric Gruneisen parameter yq¢, defined using a volumetric strain
derivative [see Eq. (32)], where yqr = ¥a,,.q¢/ /3. There is
a noticeable swapping of two A, Gruneisen bands between
the X, and K points which is caused by phonon bands which
transform like the same irreducible representation and have
an avoided crossing (see Ref. [51], Sec. SII, for a detailed
discussion).

We now discuss the nonidentity Gruneisen parameters,
which use strains that break the symmetry of the point group
of the crystal, and these are not typically presented in the
literature. Nonidentity strains yield nontrivial selection rules
for determining irreducible strain derivatives of the phonons.
In particular, the nonidentity strains in ThO, transform like
multidimensional irreducible representations, and we present
the results of the selection rules in the Supplemental Mate-
rial [51]. The nonidentity Gruneisen parameters must average
to zero in order for the crystal to be stable in the classical
limit. For the case of ThO,, the nonidentity Gruneisen DOS
integrates to zero, as expected [see Figs. 1(c) and 1(d), for ex-
ample]. While the E ; Gruneisen parameter has nonzero values

along the presented high-symmetry path, the Ti, Gruneisen
are zero over a substantial portion of the path, which is re-
quired by group theory (see Ref. [51], Sec. SII).

While the irreducible derivatives dgg" and dgg‘/ are similar
among the three DFT functionals, there are notable differ-
ences in d?q"‘/;] , (see Ref. [51], Table SIII). It should be
emphasized that the differences are not numerical artifacts
(see Ref. [51], Fig. S10). It is useful to examine the second
strain derivative of the phonon frequencies to appreciate the
differences in dggl;l 5, (see Fig. 2). While there are relatively
small differences between the LDA and GGA functionals,
SCAN is notably different. Therefore, the quartic terms com-
puted from the SCAN functional have nontrivial differences.

Having established both the strain grid interpolation and
strain Taylor series parametrizations, we can now evaluate the
QHA. If not stated, it is implied that a given QHA calculation
is evaluated at zero stress. The first task is to establish how
large of a supercell Sg; is needed in order to sufficiently
converge the observables, and we use both the CLTE [see
Eq. (36)] and the identity strain elastic constant ijl‘; a,, [see

1000

— LDA
7501 — GGA
—— SCAN
500 A

(meV)

2501

92

0" hwge
2
/11‘,/

—250+1

—500 - i L i

r X, XK I L, DOS

FIG. 2. The second A, strain derivative of the phonon frequen-

cies evaluated at 4, plotted along high-symmetry directions for LDA,

GGA, and SCAN, in addition to the DOS. Diamonds are computed
using DFT and corresponding lines are a Fourier interpolation.

Eq. (44)] as measures, where the QHA using an A/ < 4 Taylor
series is employed. There is no appreciable difference be-
tween SBZ = Sc, 21, ZSC, 41 up to 7 = 1500 K (see Fig. 3).
Therefore, Sz = Sc is used for all subsequent calculations
of thermal expansion and elastic constants. It should be noted
that the supercell convergence is not as rapid if LO-TO split-
ting is neglected (see Ref. [51], Fig. S9, for a comparison). It
is also possible to separately study the supercell convergence
of the harmonic and anharmonic contributions (see Ref. [51],
Fig. S4).

Having established supercell convergence, we are now in
a position to directly compare the strain grid interpolation
and Taylor series parametrizations of the QHA, and we focus
on the CLTE. Figure 4 shows how the A/ <3 and N < 4
parametrizations reproduce the strain grid interpolation for
the thermal expansion at increasingly high temperatures, re-
spectively. The thermal expansion illustrates that, within the
QHA, the quartic terms have an appreciable influence for
T Z 150 K and terms beyond quartic have an appreciable
influence for T 2 1250 K. Given that we will be comparing
to experiments below 7 = 1500 K, it should be sufficient
to employ A < 4 in all comparisons with experiment. In
addition to comparing the CLTE, it is interesting to compare
the lattice parameter at 7 = 0, which includes zero-point
motion, among the three parametrizations. For the case of
LDA, N < 3, N < 4, and the grid interpolation yield lattice
parameters of 5.5415, 5.5413, and 5.5412 A, respectively,
yielding negligible differences. It is also interesting to explore
the classical limit of the thermal expansion (see Fig. 4, dotted
lines), whereby nqe — kT /(fiwq,) and the zero-point motion
is neglected. The leading-order behavior of the classical ther-
mal expansion is dictated by Eq. (89), which includes terms
for N' = 4. Therefore, the N < 3 and N/ < 4 classical results
have the same T = 0 K intercept, but the slope for A < 3
is an approximation of the exact classical QHA slope due
to €2(0) lacking the quartic contribution. The g-averaged A,
Gruneisen parameter —Q(O) [see Eq. (86)] is 29.7, 32.2, and
29.9 for LDA, GGA, and SCAN, respectively. The values of
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Temperature (K)
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FIG. 3. (a) The coefficient of linear thermal expansion (CLTE)
and (b) identity strain elastic constant ij; ), 882 function of temper-
ature for increasing supercell sizes (i.e., Szz) computed using QHA
(LDA, N < 4). The insets focus on the low-temperature regime. A
Fourier interpolation mesh of 101 was used in all cases.
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FIG. 4. The coefficient of linear thermal expansion as a function
of temperature for the strain grid interpolation and Taylor series
parametrizations of V,;, (using LDA). The classical results are shown
as dotted lines.
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FIG. 5. The lattice parameter and coefficient of linear thermal
expansion computed within QHA (N < 4) using LDA, GGA, and
SCAN (solid lines) in addition to experimental results. (a) The lat-
tice parameter: QHA (solid lines), our XRD (black x) and neutron
scattering measurements (circle), and previous experimental results
[37-39,82,83,84]. (b) The coefficient of linear thermal expansion:
QHA (solid lines) and previous experimental results [37-39].

€(0) are —127.7, —164.5, and —169.1 for LDA, GGA, and
SCAN, respectively. The values of V(0) and V(0) are given in
Table II.

‘We now proceed to present our results for thermal expan-
sion and compare to experiments. We begin by analyzing the
lattice constant as a function of temperature [see Fig. 5(a)].
Most of the experimental results (points and dotted line) are
in relatively good agreement, with the exception of the data
from Wachtman et al. [37], which are mainly offset to higher
lattice parameters by a constant. The dotted line in Fig. 5(a) is
a quadratic fit to various experimental results, parametrized
by Taylor [39]. Our x-ray diffraction result on the sample
at T =300 K is in good agreement with the experimental
consensus. The neutron scattering results from HYSPEC also
contain elastic scattering, including four Bragg peaks, which
have been measured from 7 = 300 K to 7 = 1200 K. The
instrument is not optimized to measure elastic scattering to
high precision and the lattice parameter results are not as
precise as conventional XRD or other comparable methods.
However, the errors may not depend strongly on tempera-
ture, and therefore we shift all lattice parameters extracted
from neutron scattering by a constant (i.e., +0.883 pm) such
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that the results for 7 = 300 K match our XRD results. This
brings the neutron scattering lattice parameter results into
agreement with previously reported values. The QHA results
within LDA, GGA, and SCAN (solid lines) demonstrate that
SCAN has the best agreement with experiment, and the largest
difference over the plotted temperature range is only approxi-
mately half of a percent. As might be expected, the LDA result
consistently underpredicts the lattice parameter, while GGA
overpredicts.

We now compare our QHA CLTE results to previous
experiments [see Fig. 5(b)]. The experimental results are
all within reasonable agreement, and the discontinuity in
Taylor’s parametrization is due to there being three temper-
ature regimes where the fit is performed. Within the QHA,
LDA agrees best with experimental results, SCAN predicts
a slightly larger expansion, and GGA predicts the largest
thermal expansion. However, the QHA is a truncation of the
vibrational Hamiltonian, and therefore the functional with the
best QHA computed observables as compared with experi-
ment might not be delivering the most accurate solution as
compared to the exact solution of the many-phonon prob-
lem. Going beyond the QHA, which implies solving a V
that includes third- and higher-order displacements derivatives
which are not present in V,;,, could be expected to have an
opposing effect on the temperature dependence of the thermal
expansion with a similar magnitude [3]. In the ionic insulators
MgO and NaCl, including third- and fourth-order displace-
ment derivatives and using the self-consistent phonon method
decreases the CLTE as compared to the QHA [85]. Therefore,
it seems likely that LDA may not yield the best CLTE when
a higher level of theory is used. The nonlinear behavior of
the CLTE above 7' = 1000 K for GGA and SCAN has been
seen in numerous QHA calculations of ionic insulators in the
literature, such as MgO [8], Al,O3 [13], and MgSiO; [24].
Our LDA QHA results are similar to previous publications
using LDA [30,32], though there are some differences (see
Ref. [51]). For convenience, the T =0 K and 7T = 300 K
results from theory and experiment are compiled in Table III.

Having computed &(7', 0), the phonon dispersion can now
be evaluated at an arbitrary temperature within the QHA. The
phonons computed with SCAN using Sz; = 41 within the
N < 4 Taylor series are shown for temperatures of T = 5 K,
T =300K,and T = 750 K (see Fig. 6, solid lines and points).
The differences in our predicted values between 7' = 5 K and
T = 300 K are extremely small, given the small change in the
lattice parameter over this temperature range [see Fig. 5(a)].
Alternatively, the differences between 7 =300 K and T =
750 K are non-negligible, with a change as large as 1.5 meV,
which is expected given the larger change in the lattice pa-
rameter. We also present INS measurements at the respective
temperatures (open circles). The general trend of the INS
results is a softening of the phonons with increasing tempera-
ture, consistent with the QHA, but the resolution of INS makes
it challenging to quantitatively assess the performance of the
QHA results.

We now consider the elastic constants [Eq. (44)] at zero
temperature, which have two zero-point contributions: one
from the zero-point identity strain and the other directly from
the strain derivative of the zero-point free energy. It is useful to
illustrate the magnitude of these zero-point contributions, and

TABLE III. The QHA calculated lattice parameter in units of A
and elastic constants in units of GPa, in addition to experimental
values and previous calculations at 7 =0 K and at 7 = 300 K.
Superscript “iso” denotes isothermal elastic constant.

Method (0 K) a c cy cyl
LDA 5541 3763 127.6 85.0
5496 3900 12500 93%i%
PBEsol 553 373340 11464 8340
GGA 5632 3453 106.3 70.2
SCAN 5603 3673 1143 79.7
Method (300 K)
LDA 5549 368.7 125.0 82.4
5503 385740 122.5%0 904t
PBEsol 5.545%  368.8%F 112340 807
GGA 5642 3361 102.9 672
SCAN 5611 3585 111.1 763
Expt. 56000 377 14600 ggei
56620 367° 106¢ 79.7¢
5.597"
XRD 5.5989

aRef. [32]; PRef. [82]; “Ref. [41]; YRef. [37]; °Ref. [42]; Ref. [83].

we take Cj; computed at 7 = 0 using SCAN as an example.
The classical value of Cj; can be obtained using results from
Tables I and II as 4(da, ., + 2dEgEg)/(3a3) = 375.8 GPa,
where a3 /4 is the classical volume of the primitive unit cell at
T = 0. The zero-point identity strain, which is the strain de-
fined relative to the classical lattice at zero temperature due to
quantum fluctuations, has a value of éAlg(O, 0) =3.25 x 1073,
The zero-point identity strain renormalizes the volume to
ag(l + &4, (0, 0)/\/§)3 /4, activates higher-order terms from
Tables II and SIII [51], and changes the reference frame
according to Egs. (14) and (20), resulting in the following

80
— 601 op Jo LE) &5 JQ% ol
% % & -
= $ o
— 40 =1

ou % .
. — 5K

S s 0 300K

2090 - 750 K i

0 ‘ i ‘

T X, X! K r Ly

FIG. 6. The phonons computed within the QHA (N < 4) using
SCAN (lines) and inelastic neutron scattering measurements (open
circles) at T =5, 300, 750 K along high-symmetry directions. The
same color scheme is used for QHA and INS.
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addition to the classical elastic constant,
4
3a3(1 + €a,,/v/3
1

2
+ E(dA,xAlgA,gA,g + szgEgAlgAlx)EAlg)a

1gf1gitlg ghgtlg lg
)<(dA Moty T 2dEE ) €A

(100)

and shifts Cy; to 370.5 GPa. The contribution from the second-
order derivative of the zero-point free energy with respect to
€1 will result in

32wqe(€)

h
Na3(1+es,/V/3) %; de?

evaluating to —3.3 GPa, and finally yielding a Cj; of
367.2 GPa, which is 0.1 GPa lower than the value reported in
Table III due to the precision in which the irreducible deriva-
tives are reported in Table II. Thus we see that zero-point
motion introduces a 1.4% decrease in C; due to the zero-point
identity strain and a further 0.9% due to the second strain
derivative of the vibrational free energy. It should be noted that
the quasistatic approximation to the QHA only retains the first
contribution (see Ref. [51], Sec. SIII, for further comparison).

The temperature-dependent elastic constants can now be
presented in either the symmetrized or the standard basis, and
we opt for the latter. We compute the adiabatic and isother-
mal Cy;, Ci, and Cyy using LDA, GGA, and SCAN within
QHA for N < 4 [see Figs. 7(a), 7(b), and 7(c), respectively].
In all cases, LDA, SCAN, and GGA produce successively
smaller elastic constants. The different DFT functionals pro-
duce some notable differences in the temperature dependence
of the elastic constants, which is to be expected given some
of the appreciable differences in the quartic terms (recall
the discussion surrounding Fig. 2). For example, Cy4 within
SCAN decreases notably faster than within LDA and GGA
(see Ref. [51], Sec. SIII, for a discussion). At high tempera-
tures, the softening predicted by the QHA is rather dramatic,
which should be treated with caution given the simplicity
of the QHA. For example, we previously argued that going
beyond the QHA might decrease the predicted value of the
thermal expansion, which would then diminish the predicted
softening of the elastic constants.

We now compare to our experimental measurements of the
elastic constants. The TDBS results correspond to adiabatic
conditions and use the temperature-dependent experimental
volume from the fit in Ref. [39]. For the lowest tempera-
ture probed in TDBS, T = 77 K, the QHA dictates that the
anharmonicity only has a minimal effect, demonstrating that
the SCAN functional overwhelmingly has the best agreement
with experiment in the harmonic regime. The largest dif-
ference in the 7 = 77 K experiment and SCAN functional
results is —1.7% for Cyy, while both LDA and GGA have
nontrivial errors. Considering the temperature dependence of
TDBS for Cj;, the SCAN functional has the best agreement
in terms of the absolute value, but decreases too quickly with
temperature. For the INS measurements of Cyy, the results are
roughly between the SCAN and LDA results. As discussed
previously, using a theory which is more sophisticated than
the QHA may diminish the predicted softening, which would
bring the SCAN results closer to experiment.

; (101)

gAlg

L L L L L

—— Adiabatic
---- Isothermal

2254 0 100 200 300 400 N

¢ TDBS

401 & INS r

0 250 500 750 1000 1250 1500

Temperature (K)

FIG. 7. The elastic constants (a) Cj;, (b) Cjs, and (¢) Cyy com-
puted using QHA (N < 4) with LDA, GGA, and SCAN and our
TDBS (diamonds) and INS (circles) measurements. Open markers
and solid lines denote adiabatic conditions whereas dashed lines and
solid markers denote isothermal conditions. For C,4, adiabatic and
isothermal conditions yield the same results.

Having evaluated the temperature dependence of various
observables under zero-stress conditions, we now explore the
pressure dependence of the bulk modulus at 7 = 300 K to
leading order in pressure using Eqgs. (54) and (52) with the
N < 4 Taylor series (see Fig. 8). Our results are compared to
two previous experimental results [82,83] which have zero-
pressure intercepts of 198 and 195 GPa, respectively, and
slopes at zero pressure of 4.6 and 5.4, respectively, putting
the two experimental results in reasonable agreement. We
begin by analyzing the zero-pressure result, which is already
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FIG. 8. The isothermal bulk modulus as a function of pressure
at T =300 K. The experimental curves were extracted from the
published equations of state [82,83]; the zero-pressure result is from
Ref. [42]. The theoretical results were computed using the QHA with
N < 4 to leading order in pressure for LDA, GGA, and SCAN.

contained within our previous analysis of Cj; and Cj, at
T =300 K and zero pressure. For C;;, GGA substantially
underestimated, LDA substantially overestimated, and SCAN
mildly underestimated the TDBS results; similar conclusions
held for Cy, at T = 77 K. Therefore, we expect the same trend
to hold for the bulk modulus at 7 = 300 K, which suggests
that the result of Olsen et al. might be more consistent with
TDBS and is closer to the result of Macedo et al. [42]. The
three DFT functionals all produce comparable slopes, which
are closer in value to the slope of Idiri et al. [82].

VII. CONCLUSIONS

Here we presented the most general version of the QHA,
allowing for the computation of observables at a given tem-
perature and true stress in an arbitrary crystal, implemented
purely using space group irreducible derivatives. We cast
the generalized QHA in terms of a truncation of the Born-
Oppenheimer potential, retaining the strain dependence of
the elastic energy and the dynamical matrix. The resulting
vibrational Hamiltonian is therefore quadratic and the quan-
tum partition function can be written in closed form in terms
of the phonon frequencies, allowing for a straightforward
numerical evaluation of the Helmholtz free energy as a func-
tion of strain. The strain map can then be constructed as a
function of temperature and true stress via inversion, allowing
for the evaluation of thermodynamic observables at constant
temperature and true stress. It should be noted that the general
formalism that we presented for evaluating observables at
constant temperature and true stress is written in terms of the
exact free energy, and therefore can be used with approxima-
tions that go beyond the generalized QHA.

A key feature of our approach to the generalized QHA
is that the dynamical matrix is always resolved in terms of
space group irreducible displacement derivatives, guarantee-
ing that our vibrational Hamiltonian satisfies symmetry by

construction. All irreducible derivatives are computed using
the lone irreducible derivative (LID) approach, which indi-
vidually computes each irreducible derivative using central
finite difference in the smallest supercell allowed by group
theory. Executing the QHA requires the parametrization of
the strain dependence of two key quantities: the elastic energy
and the irreducible second-order displacement derivatives.
We explore two complementary approaches for executing the
parametrization: a Taylor series expansion in terms of the
irreducible representations of strain and a grid of strains which
is then interpolated. The first approach is beneficial in that
the QHA is guaranteed to be correct order by order, while the
latter will yield reasonable QHA results even in the case of
large strains and temperatures.

The generalized QHA is illustrated in the case of ThO,
using the LDA, GGA, and SCAN approximations for the DFT
exchange-correlation functional. We compute the temperature
dependence of the thermal expansion and the full elastic con-
stant tensor, in addition to the pressure dependence of the
bulk modulus at 7 = 300 K. Special attention is devoted to
studying the range convergence of the thermal expansion and
identity strain elastic constant, demonstrating that reasonable
convergence is already obtained using irreducible derivatives
from the conventional cubic supercell. We demonstrate that a
quartic Taylor series and a grid interpolation of strain depen-
dence within the QHA deliver comparable results for thermal
expansion up to approximately 7 = 1200 K. Within the strain
Taylor series, the cubic terms are similar among the three DFT
functionals, as are the quadratic terms, while the quartic terms
can be drastically different for SCAN, which results in clear
differences in computed observables.

In addition to comparing with previous experiments, we
perform our own measurements of the elastic constants us-
ing time-domain Brillouin scattering for 7 = 77-350 K and
using inelastic neutron scattering for 7 = 300-1200 K. The
SCAN functional delivers the most accurate prediction of
the experimental lattice parameter up to the highest temper-
ature evaluated, with an overprediction that is always less
than 0.6%. For the coefficient of thermal expansion, all three
functionals overpredict experiment, with LDA being slightly
closer to experiment than SCAN. However, some degree of
overprediction is anticipated due to the limitations of QHA.
Our experimental measurements of the elastic constants at
T =77 K are in best agreement with the SCAN functional,
with the largest error being 1.7%. SCAN predicts a temper-
ature dependence for Cs44 which decreases more rapidly than
measurements obtained from neutron scattering, though the
discrepancy may be reasonable given the limitations of the
QHA. The leading-order pressure dependence of the bulk
modulus at 7 = 300 K within the QHA is compared to ex-
periment, showing reasonable agreement.

Our approach to the generalized QHA via irreducible
derivatives greatly facilitates the implementation without fur-
ther approximations and reduces the computational cost.
Using only space group irreducible derivatives to parametrize
the generalized QHA means that only a minimum amount
of information is required, which facilitates dissemination
of results, reproducibility, and high-throughput applications.
Furthermore, the generalized QHA can be viewed as a trun-
cation to the Born-Oppenheimer potential, and therefore it is
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a natural starting point for more advanced approaches. Future
work will directly include anharmonic displacement deriva-
tives, and the resulting vibrational Hamiltonian will then be
solved using a variety of techniques, including variational
theories, classical molecular dynamics, and other approaches.
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APPENDIX A: NONANALYTIC CORRECTION FOR IONIC
INSULATORS

Ionic insulators require special treatment for the Fourier
interpolation of phonons in order to correctly recover the
polar phonon branches in the vicinity of the I point, and we
employ the standard dipole-dipole approach [81,86], which is
normally used in conjunction with density functional pertur-
bation theory [79]. While the standard dipole-dipole approach
has been implied to be challenging to implement within finite
displacement approaches for computing phonons [87], there
is no difference between the implementation within finite
displacement and perturbative approaches, though this may
not be totally apparent. Indeed, others have reported calcula-
tions using the standard dipole-dipole approach in conjunction
with finite displacement approaches [88], though no detailed
description of their algorithm was provided. A brief outline
of the standard dipole-dipole approach to polar insulators is
given here using our notation and conventions for clarity,
and it should be emphasized that our discussion is general to
perturbative and finite displacement approaches to computing
phonons.

First-principles approaches may be used to compute ng
[see Eq. (63)] in polar insulators over some discrete grid of q
points defined by a finite translation group, which is dictated
by some supercell. Strictly speaking, no correction is needed
to account for electric fields due to polarization, as these
effects are already accounted for in Dy . However, the polar
branches are not well defined at the I" point, and can only be
characterized in the limit of ¢ — 0. Therefore, Di{ requires a
special correction when interpolating, which can be achieved
using the standard dipole-dipole approach.

We begin by recalling the standard Fourier interpolation al-
gorithm (see Ref. [56] for notation and a detailed discussion).
In this Appendix, we will employ Cartesian reciprocal lattice
points Q, where Q = gb, and Cartesian real space lattice
vectors T, as opposed to lattice coordinates which are used
throughout the paper. Fourier interpolation consists of four
main steps. First, a set of DQ is computed where Q € Qg
and Qpy = {qb | q € gpz}. Second, the DQ are Fourier trans-
formed:

1 . N
=% > €MDy, (A1)
Qe0s;
Third, Wigner-Seitz packing is performed,
a ~ A WS ~
{@r|T € Tgz} — {@y |T e Tp,°} (A2)

where Tpz = {ta|t € fpz} and TS = {ta |t € 7}},’}. Finally,

the dynamical matrix can be predicted at an arbitrary Q point
as

A QT A WS
Dy = Z i

TeT s

(A3)

where the superscript F'/ differentiates the interpolated dy-
namical matrix from that over the discrete grid of Q points.
It should be emphasized that D/ = Dg when Q € Opz.

While ﬁgl will interpolate Dg to an arbitrary Q point, it
will not properly interpolate the effects of the dipole-dipole
interaction near the I' point. To remedy this deficiency, a
nonanalytic correction based on the dipole-dipole term can be
directly added to 136’ , yielding the final interpolated dynami-
cal matrix as

o FI
- Dy,

Dy + Dq (Ad)

where the dipole-dipole contribution ’f)Q is defined by [81]

Nea,k" B
B Z Do-o "

P

Dy P =Dy P - (A5)

where i, k" label atoms within the primitive cell, «, 8 label the
displacement polarizations (i.e., x, y, and z directions), and

Dy’ = Zz:w oD P (A6)
where Z¢ ,, is the Born effective charge and
(G+Q)u(G+Qpe T A
= ) >0
Pres’s _ 4r 26 Y, (6+Q) e, (GHQ), Q|

Q GGﬁ iG-(Ac—Ay
1a] ZG#)Z G,e' AAD Q =0,

(A7)

where G is a Cartesian reciprocal lattice vector, A, is the
Cartesian position of atom « within the primitive unit cell,
and €, is the dielectric tensor. Having defined Dq, the

L A FI . .
Fourier interpolated counterpart D, can be obtained using
the Fourier interpolation scheme outlined in Egs. (A1)—(A3),
which completely defines the dipole-dipole interpolation algo-
rithm. It should be emphasized that the Q = 0 case of Eq. (A7)

. - . . A FI
will be utilized in the construction of DQ, and therefore

014314-19



MARK A. MATHIS et al.

PHYSICAL REVIEW B 106, 014314 (2022)

’1531:0 recovers the Q = 0 case of Eq. (A7). In the small-Q
limit, we have

lim (,Dgy,/(’ﬁ i DSI,KLX,K/ﬂ)

Q—0
_ b (ZV QyZ:qVW)(ZV/ Qy’Z:’vV/ﬂ) (AS)
|al Zw’ Qﬁ'}/g;
where Q = Q/|Q|. Additionally, we have
N A~ FI ~
Do=Dqy., Qe€ sz, (A9)

such that @Q - ’1531 cancels for all Q € Opz. The above

L - A FI . .
properties illustrate why D — Dy, is the correction that may

be added to ﬁQ in order to properly interpolate dipole-dipole
effects. )

The matrix elements D" # are evaluated using the Ewald
summation technique, where the |Q| > 0 case in Eq. (A7) can
be evaluated as

szK(X,K/ﬂ _ Z 4_7[ K. Kpg
e - lal Y., K,e® K,
G with K=G+Q vy Y Tyy' Y
o0
< eiK-(AK—A,(/)exp _Zw’ Kye)s Ky
4N2

V/det(e>)

_ Z A}g,’Q.TH(X,ﬁ(AATKK’7 ADryr)
T

4A3
_6/0(/ e)™! oapo 0’
—3m((é ) Dap, Q1>
(A10)

where A is a damping term that is chosen such that each
sum converges rapidly; the terms in the real space sum are
defined as

droe =T+A — Ay, (A11)
(Atec)a = Y _((€°) Nap(drcer)p, (A12)
B
DTKK’ = ATK/(’ . dTKK’? (A13)
and
Hy 5(x.v) xax,33f()+27vz 3+2
v (X, y) = ——| —erfc —e | =
PR E T [T AR
2
ool erfc(y) 2 e
- wg| —— + —=—1|. (Al4
(™) )ﬂ[ SRyl SGIL)

The Q = 0 case of Eq. (A7) is evaluated in the same man-
ner. In practice, if A is chosen appropriately, the real space
summation can be neglected entirely without any appreciable
loss in fidelity; we used this simplification in the present study
with A = 0.2 A~!,

While the strain dependence of all variables has been sup-
pressed throughout this Appendix, the evaluation of the strain
derivatives of the dynamical matrix [see Eq. (A4)] may be re-
quired. Here we present the strain derivatives of the reciprocal
lattice points and basis atom positions, and neglect the strain
dependence of the dielectric tensor and the Born effective

charges, as both are small effects. The strain derivative of the
reciprocal space lattice vectors with respect to a Biot strain
component in the absence of rotation is given by

0Q(e)
86,‘

It should be noted that Eq. (A1S5) recovers the derivatives
given previously for an unstrained state [89,90]. The basis
atom positions can be encoded in Cartesian coordinates Ay (€)
or lattice coordinates o, (€), where A;(€) = o (€)a(e). The
derivative of basis atom positions with respect to strain is then
LS _ 3 50) + (o
a€i o€ i
where the first term vanishes for basis atoms with no degrees
of freedom as dictated by the space group. Given the strain de-
pendence of the lattice vectors and atomic positions, the strain
derivatives of Eq. (A7) can be evaluated [see Supplemental
Material [51], Egs. (S23) and (S24), for the first and second
derivatives of Eq. (A10)].

In thoria, the basis atom positions in direct coordinates
have constant strain dependence for strains transforming like
Ay, or Eg, but have a degree of freedom for strains transform-
ing like T,. The strain dependence of the direct coordinates
is only evaluated to first order as outlined and justified in
Appendix B.

= —Q(eki(1+&)HT. (A15)

(A16)

APPENDIX B: DETERMINING A;(¢) AND
CONSIDERATIONS FOR THE EXPECTATION
VALUE OF

For a given space group, the basis atom positions may have
degrees of freedom. These degrees of freedom are chosen
by minimizing the Born-Oppenheimer potential at a given
strain, yielding the classical values of the basis atom positions.
The classical basis atom positions A;(€) will be used as a
reference point from which to define displacement amplitudes
u at a given strain €, and it should be emphasized that an
exact evaluation of the Helmbholtz free energy F (T, €) will
be independent of this choice of reference point. Here we
formally outline this procedure of finding the classical basis
atom positions A;(e€) as a function of strain. Recall that the
basis atom positions are stored in n, vectors A; of length 3
(see Sec. I A); however, here it will be more convenient to
construct a vector X of length 3n,, storing all positions. The
BO potential energy can then be constructed as a function
of the basis atom positions and the strain, denoted V(X €),
and it should be emphasized that Vi only allows for q = 0
displacements. For a given strain e, the classical basis atom
positions X*(€) are determined by minimizing Vr, given by

X*(€) = argming Vr (X, €). (B1)

The above minimization can normally be performed by first-
principles methods at a relatively small computational cost
given that it only requires calculations using the primitive unit
cell. The classical basis atom positions X*(e), which can be
stored as A;(e), are then used as the reference point from
which to construct the displacement amplitudes {uaj )}.

In order to construct the strain derivative of the dipole-
dipole contribution to the dynamical matrix [i.e., Eq. (A5)],
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FIG. 9. The oxygen basis atom displacements projected onto the
I"-point ng vector as a function of €1y The circles are the result of
minimizing Vr at the specified value of strain, and the solid line is
computed by the linear approximation [Eq. (B4)].

we will need the strain derivative of X*(e). While the deriva-
tive can be constructed numerically, it is convenient to derive
an analytic expression to leading order in strain [53], and here
we evaluate the range of convergence in the case of thoria. We

begin by considering the minimization condition, given by
Vr (X,
P o, (B2)
X

and Taylor series expanding to first order in displacements and
strains about € = 0 and X = X*(0), we obtain

2Vr(X, €)
0=——- X —X*0
X2 X:X*(O)( )
e=0
2 Vr (X, €)
D e B3
+ 0X ¢ X:X'(0)€ + (B3)

€=

We note the equivalence of the derivative in the first term with
Dr(0) [see Eq. (63)] due to the fact that X — X*(0) are q = 0
displacements. Solving for X*(e) — X*(0) yields

32Vr
0Xoe

X*(e) — X*(0) = Dr(0)™' (B4)

X= X'(O)

For the T, strains in thoria, there is a single degree
of freedom in the oxygen basis atom positions, due to the
fact that the space group is lowered from Fm3m to Immm.

The only nonzero strain and displacement cross derivative in
thoria is

?Vr (X, €)

s . (B5)
a}(Tzi}2 aGTzig

X=X*(0)

P
where i is any row of the 75, irreducible representatlon The
values for Eq. (BS) are 5.50, 3.76, and 4.91 eV/A for LDA,
GGA, and SCAN, respectively. The resulting linear approxi-
mation to X*(€) is compared with the numerically exact result
for the strain €ry (see Fig. 9). The lowest-order Taylor se-

ries approximation is shown to be adequate up to strains of
€rp = 0.08, which is within the range of strains explored by

the QHA for the highest temperatures probed in our study.

Our definition of the generalized QHA, given in Eq. (62),
dictates that the expectation value of the optical q = 0 dis-
placement amplitudes, present in crystals with multiple atoms
per primitive unit cell, will be zero at all temperatures and
strains. However, it should be emphasized that the reference
point which defines the displacement amplitudes is a function
of strain, given by Eq. (B1). Therefore, within the generalized
QHA, the average position of each atom within the unit cell
is fixed at the classical 7 = O value at a given strain. Going
beyond the generalized QHA by adding anharmonic dis-
placement derivatives and their strain dependence to Eq. (62)
allows for changes of the average position of atoms within the
unit cell as a function of temperature for a fixed strain.

Perhaps the simplest approach to go beyond the gener-
alized QHA is to include the reference point X as another
parameter beyond what is included in V,;,, which would in-
corporate anharmonic contributions not encoded in the strain
dependence. The reference point X would then serve as a set
of variational parameters to be minimized over when evalu-
ating the free energy [91], and this approach is sometimes
considered a more general form of QHA [91-93]. This ap-
proach has been implemented for shear strain derivatives in
crystals with the diamond cubic and zinc-blende structures
[93], where it is referred to as “finite temperature atomic
relaxation.” One can recover the same physics by taking
Vg, adding all anharmonic terms associated with the q = 0
displacements, and evaluating the partition function using a
variational theory based on a general quadratic trial density
matrix [94,95]. Therefore, we view the finite temperature
atomic relaxation approach to be a level of theory beyond
the generalized QHA. Restricting the generalized QHA to
mean precisely Eq. (62), where no variational parameters are
used to construct the free energy, is consistent with nearly all
previous QHA calculations in the literature and allows for a
clear delineation between the QHA-type theories and more
advanced theories.
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