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Dynamical quantum phase transition in diamond: Applications in quantum metrology
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Nonequilibrium dynamics is a paramount scenario for studying quantum systems. The emergence of new
features with no equilibrium counterpart, such as dynamical quantum phase transition (DQPT), has attracted
wide attention. In this paper, we depart from the well-known Ising model and showcase an experimentally
accessible configuration of a negatively charged nitrogen-vacancy center that interacts with nearby carbon-13
nuclear spins. We provide insights into this system in the context of DQPT. We show that nuclear spins undergo
DQPT by appropriately choosing the relation between the transverse and longitudinal components of an external
magnetic field. Furthermore, we can steer the DQPT via a time-dependent longitudinal magnetic field and apply
this control to enhance the estimation of the coupling strength between the nuclear spins. Moreover, we propose
a quenched dynamics that originates from the rotation of the central electron spin, which controls the DQPT
relying on the anisotropy of the hyperfine coupling.
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I. INTRODUCTION

Quantum phase transitions (QPT) rank among the most
striking behavior of matter, in which a quantum system ex-
periences a sudden change of its properties [1]. The variation
of control parameters drives the system through a critical
point where the free energy function becomes nonanalytic.
In temperature-driven QPT, this point belongs to a critical
temperature. However, QPT may happen even at zero temper-
ature as quantum fluctuations drive the system’s ground state.
Furthermore, QPT can be susceptible to microscopic control
parameters such as the atom-cavity detuning in Mott insulator-
superfluid phase transitions [2,3]. In general, equilibrium QPT
are well understood and provide a suitable path for unravelling
the properties of a system [2–4]. In contrast, nonequilibrium
QPT belong to an ongoing field that poses new challenges and
opens new avenues to study QPT [5–8].

In recent years, nonequilibrium QPT have been studied in
the context of physical quantities that become nonanalytic in
time under quenched dynamics. This particular behavior has
been termed as dynamical quantum phase transition (DQPT)
[9]. Here, the time evolution resembles the effect of the driven
parameter [6,9]. This idea has opened new horizons for the-
oretical studies about magnetization and entanglement [10],
parameter estimation [11,12], as well as proof-of-principle
experiments in trapped ions [10,13] and cold atoms [14].
The transverse-field Ising model is a paradigmatic system for
the study of DQPT [9,10,15,16], however, this critical behav-
ior has been observed in a wide variety of models [17–20].
Therefore, it is worth exploring configurations that lead to ex-
perimentally accessible devices in order to gain more insights
and control of this phenomena.

*raul.coto@protonmail.com

The negatively charged nitrogen-vacancy (NV−) center in
diamond is a promising platform for quantum technologies
[21,22]. The NV−is an alternative to the well-established
platforms of superconducting qubits, trapped ions, and cold
atoms. It can be initialized, controlled, and read out with
high fidelities. Moreover, it is stable at room temperature and
exhibits long coherence time. It has delivered important appli-
cations in quantum information processing [23,24], quantum
sensing [25–28], and quantum control [29–32]. Furthermore,
it provides a testbed for different configurations of electron
and nuclear spins [31,33,34].

In this paper we show that the NV−can be used to control
surrounding carbon-13 (13C) nuclear spins to undergo DQPT.
We extend the simulation of the well-known Ising model
to consider dipolar interactions between 13C and anisotropic
coupling to the NV−. Moreover, we consider an off-axis mag-
netic field to steer the DQPT. In addition, dynamical steering
is allowed through a time-varying field, revealing new insights
into the nonequilibrium dynamics of color centers in diamond.
In this direction, we show that this particular dynamics can be
harnessed to deliver a quantum sensing protocol. Furthermore,
we show that after freezing the dynamics (both the magneti-
zation and the rate function reach a steady state), backstage
dynamics of quantum correlations provides a time window for
maximally entangled states between the 13C.

The paper is organized as follows. In Sec. II we introduce
the system that is based on a NV−interacting with nearby
carbon-13 nuclear spins. In Sec. III we introduce DQPT,
and we describe two different quenched dynamics, namely,
quenched by external fields and quenched by a central spin.
In Sec. IV we introduce a time-varying magnetic field to steer
the DQPT. We apply this mechanism in quantum metrology
to determine the coupling strength between two 13C. Further-
more, we prepare a steady state for the magnetization and
show that quantum correlations build up to create a maximally
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FIG. 1. (a) The NV− interacts with two 13C nuclear spins in the
diamond lattice. A(i) is the hyperfine coupling tensor between the
NV− and the ith nuclear spin. (b) Energy levels. The inset shows the
splitting of the energy levels for the manifold ms = 0 when the NV−

interacts with two 13C nuclear spins.

entangled state. In Sec. V we provide the final remarks of this
paper.

II. SPINS CONFIGURATION

The negatively charged nitrogen-vacancy (NV−) center in
diamond is a point defect whose molecular structure is given
by a substitutional nitrogen atom next to a vacancy in the
crystal lattice. The NV− center has a C3v symmetry and can be
modeled as a two-electron hole system with spin S = 1. From
first-principles calculations [35,36] based on dipole-dipole
interaction of two electrons one obtains that the ground state
of this defect presents a natural zero-field splitting D/2π =
2.87 GHz between ms = 0 and ms = ±1 degenerated states
[37,38]. Hence, an external magnetic field along the N-V axis
(symmetry axis) lifts the degeneracy between states ms = ±1
because of the Zeeman effect. In addition, full control of
the spin triplet can be addressed by a microwave field [37].
Nearby spin-1/2 (I = 1/2) carbon-13 (13C) nuclear spins are
hyperfine coupled to the NV−. Moreover, each 13C interacts
with the nuclear spins bath via dipolar interaction, as shown
in Fig. 1. The Hamiltonian of the system reads

Ĥ = DŜ2
z + γeB · S + S ·

N∑
i=1

A(i) · I(i) + ĤI , (1)

where γe/2π = 2.8 MHz/G is the gyromagnetic ratio of the
electron spin and B = Bxx̂ + Bzẑ corresponds to the external
magnetic field. The Bx component will be used for external
control of the dynamics of the whole system. A(i) is the
hyperfine tensor, and ĤI is the Hamiltonian of nuclear spins
that is given by

ĤI = γnB ·
N∑

i=1

I(i) + Ĥn, (2)

where γn/2π = 1.07 kHz/G is the gyromagnetic ratio of the
13C and I(i) is the nuclear spin operator of the ith 13C. Ĥn cor-
responds to the dipole interaction between the nuclear spins

that is written as

Ĥn =
∑
i< j

μ0γ
2
n

4πr3
i j

(
I(i) · I( j) − 3(I(i) · ri j )(ri j · I( j) )

r2
i j

)
, (3)

with μ0 the vacuum permeability, and ri j is the dis-
tance between the ith and jth nuclear spins. The vec-
tor ri j in spherical coordinates reads ri j = (rx

i j, ry
i j, rz

i j ) =
(ri j sin θi j cos φi j, ri j sin θi j sin φi j, ri j cos θi j ). Thereby, the
Hamiltonian for the nuclear interaction is written as

Ĥn =
∑
i< j

μ0γ
2
n

4πr3
i j

[Âi j + B̂i j + Ĉi j + D̂i j + Êi j + F̂i j], (4)

with

Âi j = Î (i)
z Î ( j)

z (1 − 3 cos2 θi j ),

B̂i j = − 1
4

[
Î (i)
+ Î ( j)

− + Î (i)
− Î ( j)

+
]
(1 − 3 cos2 θi j ),

Ĉi j = − 3
2

[
Î (i)
+ Î ( j)

z + Î (i)
z Î ( j)

+
]

sin θi j cos θi je
−iφi j ,

D̂i j = − 3
2

[
Î (i)
− Î ( j)

z + Î (i)
z Î ( j)

−
]

sin θi j cos θi je
iφi j ,

Êi j = − 3
4 Î (i)

+ Î ( j)
+ sin2 θi je

−2iφi j ,

F̂i j = − 3
4 Î (i)

− Î ( j)
− sin2 θi je

2iφi j , (5)

where θi j is the angle between ri j and the ẑ axis, while φi j

is the azimuth angle with respect to the x̂ axis. The inter-
actions labeled by Ĉi j , D̂i j , Êi j , F̂i j can be neglected under
the so-called secular approximation for large magnetic fields.
Henceforth, we will neglect these terms in our analytical
calculations. In Appendix A we numerically support this con-
sideration. Then, the Hamiltonian (4) reads

Ĥn ≈
∑
i< j

βi j

4

[
(Î (i)

+ Î ( j)
− + Î (i)

− Î ( j)
+ ) − 4Î (i)

z Î ( j)
z

]
, (6)

where βi j = −μ0γ
2
n

4πr3
i j

(1 − 3 cos2 θi j ).

Considering the zero-field splitting to be larger than the
perpendicular magnetic field and the hyperfine coupling, i.e.,
D � γeBx and D � A(i)

α,η, one can perform the secular ap-
proximation, that neglects Ŝx and Ŝy contributions in the
second and third terms in the Hamiltonian (1). We numerically
confirm this approximation and consider transverse relaxation
in Appendix A. Hence, the Hamiltonian for the tripartite sys-
tem can be written conditioned to the electron spin manifold,
such that

Ĥms = (
m2

s D + msγeBz
) + γnB ·

N∑
i=1

I(i)

+ ms

N∑
i=1

∑
α=x,y,z

A(i)
zα Î (i)

α + Ĥn. (7)

III. DYNAMICAL QUANTUM PHASE TRANSITION

Nonequilibrium phase transitions give rise to different dy-
namics that in several cases have no equilibrium counterpart
[6,19,39]. The nonequilibrium dynamics originates from dif-
ferent scenarios like Floquet engineering [40–42], reservoir
coupling [43,44], quenched parameters [9,14], among others.
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In this paper, we focus on dynamical quantum phase transi-
tions (DQPT) driven by a quenched dynamics [9]. For this
goal, we consider a Hamiltonian of the form Ĥ = Ĥ0 + Ĥ1,
where Ĥ0 is the dipolar Hamiltonian in Eq. (6). Ĥ0 has a Z2

symmetry that yields a twofold degenerated ground state (all
spins up | ⇑〉 or all spins down | ⇓〉). The system is initially
prepared in one of the degenerated states, say |Ψ (0)〉 = | ⇓〉,
originating spontaneous symmetry breaking, as witnessed by∑N

i=1〈I (i)
z 〉 �= 0. Suddenly, Ĥ1 (to be defined for each example)

is turned on and the time evolution is monitored.
It has been shown that the Loschmidt amplitude G(t ) =

〈Ψ (0)|e−iĤt |Ψ (0)〉 plays a pivotal role in DQPT [6,9,39,45],
resembling the canonical partition function in equilibrium
phase transition (EPT). The latter, EPT, is signaled by the
nonanalytic behavior of the free energy potential contained
in the Lee-Yang zeros of the partition function [46] (also
known as Fisher zeros [47]). Thereby, the signature of DQPT
shows up when crossing the zeros in the complex time plane,
which occurs during the time evolution. The Loschmidt am-
plitude gives the projection of the time evolved state with
the initial state. Additionally, it is also convenient to intro-
duce the Loschmidt echo P(t ) = |G(t )|2, that is interpreted
as the return probability to the ground-state manifold. Since
this manifold is twofold degenerated, we resorted to use the
following extension for the probability: P(t ) = P⇓(t ) + P⇑(t ),
with Pi = |〈i|e−iĤt |Ψ (0)〉|2, and i = {⇓,⇑} [6,10,48] (see
Appendix B for experimental insights). For simplicity, we
restrict our analysis to the case where P(t ) exhibits an expo-
nential dependence upon the number of degrees of freedom
N . Therefore, we can introduce a rate function as


(t ) = − lim
N→∞

1

N
log[P(t )]. (8)

Then, in analogy with the free energy potential, the
nonanaliticity of 
(t ) at the critical times tc probes the DQPT.
However, the above expression for 
(t ) considers the thermo-
dynamic limit (N → ∞), which can not be always attained
in experiments or quantum simulations. Instead, it is worth
considering the dominant contribution of the probability, that
yields a finite-size signature of DQPT [10,17,49] and our main
tool to predict it,

λ(t ) = min
η∈{⇓,⇑}

(
− 1

N
log[Pη(t )]

)
. (9)

We remark that λ(t ) coincides with 
(t ) for large N [6]
(see Appendix C). Since the nonanaliticity appears when
crossing the region P⇑ = P⇓, it means that the dynamics
restores the symmetry in the ground state probability P(t )
initially broken by the state preparation.

Order parameters are crucial to witness quantum phase
transitions. In general, one seeks observables that highlight
differences between the phases, and exhibit a sudden change
when crossing the critical points. Nonequilibrium dynamics
demands dynamical order parameters to account for critical
times [6,10,50]. Firstly, we will focus on the magnetization as
the dynamical order parameter, 〈Mz〉 = (1/N )

∑N
i=1〈Î (i)

z 〉, and
later on we will discuss the case of quantum correlations, see
Appendix D. The former, has signaled DQPT by vanishing
when the system restores the symmetry [6].

FIG. 2. Nonanalytical points in the rate function λ(t ) (a) coin-
cides with vanishing magnetization 〈Mz〉 (b) at critical times. For
the simulation we consider two nuclear spins (N = 2) and magnetic
fields Bx = 100 G and Bz = 50 G.

A. Quenched dynamics by longitudinal and transverse
magnetic fields

First, we focus on the ms = 0 manifold of the NV− electron
spin in Eq. (7). Considering θi j = 0 we obtain the following
Hamiltonian:

Ĥ = β12

2

(
(Î (1)

+ Î (2)
− + Î (1)

− Î (2)
+ ) − 4Î (1)

z Î (2)
z

)
+ γnBz

(
Î (1)
z + Î (2)

z

) + γnBx
(
Î (1)
x + Î (2)

x

)
, (10)

where Î (i)
± = Î (i)

x ± iÎ (i)
y and hereafter we set β12/2π = 4 kHz.

We identify Ĥ0 and Ĥ1 with the first and second line in
Eq. (10), respectively. Hence, in the absence of magnetic field,
the dynamics is governed by Ĥ0, which has a twofold degen-
erated ground state, given by | ↓↓〉 = | ⇓〉 and | ↑↑〉 = | ⇑〉.

In Fig. 2(a) we show that 13C nuclear spins surrounding
the NV− center undergo a DQPT. The DQPT is witnessed
through nonanalyticities in the rate function λ(t ) at the critical
time tc1 = 2.4 μs. Furthermore, in Fig. 2(b) we show the
evolution of the magnetization (dynamical order parameter)
that, as mentioned above, vanishes at the critical time tc1 . For
completeness, we show in Appendix C that the critical time
holds when increasing the number of nuclear spins.

In last years, the transverse Ising model has been a play-
ground for the study of dynamical quantum phase transitions
[9,10,15]. However, color centers in diamond offer an ubiqui-
tous solid-state platform for extending this model. The central
spin given by the electron spin of the NV− serves as a con-
trol qubit upon the nuclear spins [32,51]. Moreover, dipolar
coupling between nuclear spins raises a complex dynamics
that can be further controlled with a bias off-axis magnetic
field. We numerically show here that the relation between the
transverse (Bz ) and longitudinal (Bx ) magnetic fields define
the region where DQPT takes place, as shown in Fig. 3(a). The
bottom region, where the DQPT fails, is characterized by a
negative value in the averaged magnetization. For illustration,
in Figs. 3(b) and 3(c), we show the magnetization as a function
of Bx and time for fixed amplitudes of Bz. When moving
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FIG. 3. Phase diagrams for the dynamical quantum phase transition. In panel (a) we vary magnetic fields Bx and Bz to find the regions
where dynamical quantum phase transition exists (does not exist), which is illustrated by the green (blue) colored area. The magnetization as
a function of time and the magnetic field Bx is calculated for Bz = 5 G (b) and Bz = 50 G (c). The solid-black lines show the regions where
〈Mz〉 = 0.

ahead in time, one can observe multiples DQPT signaled by
the zero-magnetization threshold. Nevertheless, by increasing
the transverse field up to Bz = 50 G, we observe that there
is a broader region for the longitudinal field where no DQPT
appears [Fig. 3(c)].

B. Quenched dynamics by a central spin

A depart from quenched parameters can be worked out
with a sudden change of the electron spin manifold. This
provides a route towards studying DQPT. The NV− acting as
a central spin conditions the 13C nuclear spins Hamiltonian,
beyond previously studied models. In contrast to the previous
section, here the transverse and longitudinal magnetic fields
are replaced by the isotropic and anisotropic hyperfine cou-
plings. For practical reasons, we do consider a small bias
magnetic field Bz = 17 G. This field lifts the degeneracy in
the ms = ±1 states and allows us to selectively address state
ms = +1. A nucleus-independent rotation (hard π pulse) on
the electron spin can be achieved with a Rabi frequency
∼8 MHz [52], which approximates the rotation to be instanta-
neous, as compared with the dipolar interaction Ĥ0 [first line
in Eq. (10)]. We begin by preparing the system in one of the
Ĥ0 eigenstates (for Bz = 0), |0 ↓↓〉. Then, after turning on
Bz, the quenched dynamics originates from the instantaneous
rotation of the electron spin to state | + 1〉, that transforms the
Hamiltonian to Ĥ = Ĥ0 + Ĥ1, with Ĥ1 given by

Ĥ1 = DŜ2
z + ŜzA(1)

zz Î (1)
z + ŜzA(2)

zz Î (2)
z

+ 1
2 ŜzA(1)

ani (Î
(1)
+ e−iφ1 + Î (1)

− eiφ1 )

+ 1
2 ŜzA(2)

ani (Î
(2)
+ e−iφ2 + Î (2)

− eiφ2 ), (11)

where A(i)
ani = (A(i)

zx
2 + A(i)

zy
2)1/2 and tan φi = A(i)

zy /A(i)
zx . Note

that we have omitted the electron and nuclear Zeeman inter-
actions from the bias magnetic field because they have no
effect on the DQPT. But we do consider it in our numerical
calculations. Next, we study DQPT as the probability to return
to the initial state in the nuclear spins manifold (| ↓↓〉) after
the time evolution under the total Hamiltonian Ĥ for the
electron spin manifold ms = +1. In Fig. 4 we show the rate
function λ(t ) and the magnetization 〈Mz〉 for the following
set of 13C nuclear spins, A(1)

zz = −27 kHz, A(2)
zz = −28 kHz,

A(1)
ani = 128 kHz, and A(2)

ani = 19 kHz [53].

Our simulations reveal a DQPT for the novel quenching we
are considering here. It is important to notice that the DQPT
appears when the anisotropic hyperfine coupling (A(i)

ani ) is
greater than the isotropic one (A(i)

zz ). We support this statement
with numerical simulations with the parameters sets reported
in Refs. [53,54]. In contrast, the rate function does not present
nonanalytical points and the magnetization always remains
negative when the anisotropic component is weaker than the
isotropic one, as observed for A(1)

zz = 2.281 MHz, A(2)
zz =

1.884 MHz, A(1)
ani = 0.240 MHz, and A(2)

ani = 0.208 MHz [55].
In summary, we have considered two different quenched

dynamics driven by: (i) external magnetic fields, and (ii) a
central electron spin. Starting from a dipolar Hamiltonian
[Eq. (6)] with Z2 symmetry, a spontaneous symmetry
breaking appears after the preparation of the initial state. Fur-
thermore, each of the above quenching explicitly breaks this
symmetry. Nevertheless, we found that the time evolution tries
to restore the original symmetry by matching the ground-state
probabilities P⇓ = P⇑, signaling a DQPT.

IV. DYNAMICAL STEERING VIA TIME-VARYING
MAGNETIC FIELD

For concreteness, hereafter we focus on the quenched dy-
namics triggered by the magnetic fields. The competition

FIG. 4. The quenched dynamics induced by the central spin
(NV−) leads to DQPT, as witnessed by the rate function (dashed-red
line) and magnetization (solid-blue line). The dotted vertical lines
correspond to the times where the rate function is nonanalytical and
coincides with a vanishing magnetization.
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FIG. 5. Controlling dynamical quantum phase transition via time-varying magnetic fields. In the top (bottom) panels we show the rate
function λ(t ) (magnetization 〈Mz〉). (a) With an oscillatory field Bx (t ) we are able to steer the DQPT by controlling the period. Here, we reach
a maximum field Bx (t ) that amounts to 100 G. tc1 is the critical time for the rate function when the magnetic field is fixed to Bx = 100 G,
see Fig. 2. (b) With a Gaussian field we have more control on the DQPT, where we can change the critical time and the number of critical
points. For all the simulations we considered a closed dynamics under the secular approximation with the initial state | ↓↓〉 for ms = 0, and
Bz = 50 G.

between the longitudinal and transverse magnetic fields
allows us to dynamically steer the DQPT. Let us begin by con-
sidering the Hamiltonian Ĥ in Eq. (10) with a time-dependent
magnetic field Bx(t ), and we calculate the probabilities ac-
cording to this time-dependent Hamiltonian.

In what follows, we study the effect of two different fields,

Bx(t ) = Bx0 + A cos
(2πt

T

)
, oscillating field, (12)

Bx(t ) = Be−(t−τ )2/(2σ 2 ), Gaussian field. (13)

First, the oscillating field represents a sinusoidal signal that
oscillates around the value Bx0 = 50 G with period T and
amplitude A = 50 G. Second, the Gaussian field describes a
localized pulse around the time τ with a characteristic width
σ and amplitude B. In Fig. 5 we show the behavior of the
rate function λ(t ) (top panel) and the magnetization 〈Mz〉
(bottom panel). From the oscillating field, Fig. 5(a), we note
that depending on the period the system may undergo a DQPT.
To understand this, we remark that our setting for the fields is
similar to the one in Fig. 2, where the first DQPT takes place at
the critical time tc1 ≈ 2.4 μs for a constant field Bx = 100 G.
Considering the oscillating field for T = 2tc1 , we realize that
the accumulated action of the field

∫ tc1
0 dt Bx(t ) is smaller than

that for the constant field in Fig. 2, and hence there is no
DQPT. For the case T = 6tc1 , the action of the field occurs
for a longer time, which yields a DQPT. The main conclusion

here is that the accumulated action of the magnetic field can
be used to control whether the DQPT occurs by sweeping this
quantity near a threshold region.

The above result enables us to define the control in terms
of an effective area. Therefore, the Gaussian field is more suit-
able since it steers the DQPT, allowing us to set the time where
the DQPT occurs, and also the number picks (crossings) in λ

(〈Mz〉), see Fig. 5(b). To summarize, we can steer the DQPT in
a nonequilibrium dynamics by controlling a time-dependent
magnetic field.

A. Applications in quantum metrology

Spin-spin interaction is a central topic in quantum physics,
and the precise knowledge of the strength of this interaction
is a key aspect. There are several approaches for estimating
the coupling strength, each one with pros and cons depend-
ing on the system, noises, measurement apparatus, etc. In
particular, the estimation of the coupling strength between
two 13C nuclear spins in diamond has attracted attention.
For instance, in the seminal work in Ref. [56], the authors
considered a simple sequence comprising the initialization of
the tripartite system (NV− and two 13C), followed by time
evolution and subsequent measurement on one of the nuclear
spins. A more elaborated scheme based on weak measurement
has been proposed to estimate the hyperfine coupling between
the NV− and a 13C [57], which could be also extended to
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FIG. 6. (a) Two different measurement strategies for the Fisher
information, the second involves DQPT. (b) DQPT driven by a Gaus-
sian longitudinal magnetic field improves the Fisher Information
corresponding to the dipolar coupling β12, as compared to the case
without DQPT at Bx = 0. We used Bx (t ) = B exp{−(t − τ )2/(2σ 2)},
with B = 200 G, τ = 3tc1 , and σ = τ/2. Bz = 50 G is fixed for both
cases.

determine the interaction between two 13C. In this paper, we
provide an alternative viewpoint for this task, which involves
a proof-of-principle demonstration of the role of nonequi-
librium dynamics for quantum metrology. Previous papers
dealing with parameter estimation around critical points have
focused on the Ising model and delivered opposite outcomes
for slightly different purposes [11,12]. Here, we contribute
to the ongoing debate by showing that DQPT provides an
advantage for quantum metrology.

In what follows, we use the Fisher information (FI) to
quantify the amount of information that can be retrieved from
the dipolar coupling strength (β12) between the two 13C for a
particular measurement scheme. FI of an unknown parameter
x is defined as

FI(x) =
∑

i

1

Pi(x)

(dPi(x)

dx

)2
, (14)

where Pi(x) is the probability of the measurement outcome i
and the sum is over all the outcomes. Our measurement strat-
egy involves measurements on one of the nuclear spins, which
provides two possible outcomes, the probability of being in
spin up (P|↑〉(β12)) or spin down [P|↓〉(β12) = 1 − P|↑〉(β12)].
Hence, the FI reduces to

FI(β12) = 1

P|↑〉(β12)(1 − P|↑〉(β12))

[dP|↑〉(β12)

dβ12

]2
. (15)

The measurement strategy considers the initialization
of the system in a probe state, the time evolution under
the Hamiltonian Ĥ in Eq. (10) for a certain interrogation
time (ti ), followed by a measurement on the nuclear spin
[see Fig. 6(a)]. We analyze two particular cases for the
longitudinal component of the magnetic field and probe state

(i) Bx = 0 with |ψ (0)〉 = | ↑↓〉; and (ii) Bx(t ) =
Be−(t−τ )2/(2σ 2 ) with |ψ (0)〉 = | ↓↓〉. The transverse
component remains constant for both cases (Bz = 50 G)
and the electron spin is fixed in ms = 0.

In Fig. 6(b) we show the evolution of the FI. We ob-
serve that in the absence of a longitudinal magnetic field
Bx = 0 (resembling the protocol in Ref. [56]), the FI follows
a quadratic evolution, FI = t2. Details of the calculation are
given in Appendix E. In the presence of the Gaussian field
[in the DQPT regime shown in Fig. 5(b)], the FI shows os-
cillations that outperform the previous result. We remark that
the time-varying field is crucial for this enhancement since a
constant magnetic field Bx delivers no improvement. Hence,
we demonstrate that improved metrology can be attained in
color centers in diamond by driving the system around critical
points.

B. Quantum correlations in stationary magnetization

Another important case of nonequilibrium dynamics ap-
pears when studying the steady state of the system in
terms of the order parameter, e.g., the asymptotic behavior
of the magnetization. For instance, this problem has been
addressed in the transverse Ising model with long range inter-
actions [16,49,58], where it was found a connection between
DQPT and this nonequilibrium criticality (that is another
kind of DQPT). In this section we show that even when
the magnetization reaches a steady state, quantum correla-
tions (nondiagonal elements of the density matrix) oscillate
between the maximum and minimum values of concurrence
[59]. We begin with the system prepared in state | ↓↓〉 (ms =
0) and perform a quench over the magnetic fields from zero
to: Bz = 50 G and Bx as given in Fig. 7.

In Fig. 7(a) we show the time evolution of the magneti-
zation and the rate function, that rapidly reach a stationary
state. In Fig. 7(b) we show that the concurrence [C(t )] follows
a periodic behavior in the longtime evolution, see the inset.
From Fig. 7(b) we retrieved the disentangled and the maxi-
mally entangled states to be of the form

|ψ〉 = r(eiϕ1 | ↑↑〉 + eiϕ2 (| ↑↓〉 + | ↓↑〉) + eiϕ3 | ↓↓〉), (16)

with r ≈ 1/2. On the one hand, the maximally entangled state
(C ≈ 1 [59]) is given by {ϕ1 = 0.31, ϕ2 = 1.16, ϕ3 = −1.13}.
On the other hand, the disentangled state (C ≈ 0) is {ϕ1 =
−0.59, ϕ2 = 0.11, ϕ3 = 0.82}. The definition and other cal-
culations with the concurrence (C) are given in Appendix D.

We remark that entanglement (or quantum correlation in
general) ranks among the most distinguishing features in
quantum mechanics. Therefore, it is worth studying its con-
nection with DQPT [10], critical points [60], or spontaneous
symmetry breaking [61]. In our simulations we show that
DQPT can be accompanied by to different behaviors of entan-
glement. On the one hand, in Appendix D we show that the
rate function exhibits a periodic behavior while the concur-
rence follows a longtime monotonic behavior—see Figs. 11
and 12. On the other hand, we show in Fig. 7 that one can
steer the rate function to reach a stationary value, driving the
entanglement to an oscillatory behavior. A detailed analysis
of this connection it is left for a future work.
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FIG. 7. (a) Evolution of the rate function λ(t ) (dashed-red line)
and magnetization (solid-blue line) for a Gaussian field. The mag-
netization reaches a steady state that is adjusted around 〈Mz〉 = 0.
(b) The concurrence shows oscillations even when the magnetization
has been frozen, and amounts to one, indicating the creation of a
maximally entangled state.

V. CONCLUSIONS

In this paper we proposed a negatively charged nitrogen-
vacancy (NV−) center and nearby carbon-13 (13C) nuclear
spins as a testbed for studying dynamical quantum phase tran-
sition (DQPT). We found two different quenched dynamics
that enforce DQPT on the nuclear spins. First, we observed
that nuclear spins undergo DQPT by appropriately choosing
the relation between the transverse and longitudinal compo-
nents of an external magnetic field. Moreover, one can steer
the DQPT via a time-dependent longitudinal magnetic field.
In addition, this dynamical steering can be harnessed to en-
hance the Fisher Information concerning the estimation of
the coupling strength between two 13C nuclear spins. Second,
by rapidly rotating the NV− electron spin (that is a central
spin), the 13C nuclear spins undergo a DQPT depending on the
relation between the anisotropic and isotropic coupling of the
hyperfine interaction. We also studied the role of bipartite and
tripartite entanglement during the critical points where DQPT
takes place, and in the steady state of the magnetization.
Overall, we believe that NV− and surrounding nuclear spins
provide a prototype for studying nonequilibrium dynamics,
and in particular, DQPT.
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APPENDIX A: SECULAR APPROXIMATION AND
RELAXATION

Throughout this paper, we considered a lossless scenario
and the secular approximation. The latter allows us to sim-
plify the analytical calculations by restricting the Hamiltonian
to be conditioned to the NV− electron spin manifold. This
approximation breaks down when D � γeBx, and hence the
Zeeman terms Ŝx and Ŝy must be considered. Furthermore, we
shall consider magnetic noise on the NV− and 13C nuclear
spins. When the electron spin is in the ms = 0 manifold, we
considered it isolated from magnetic noise. However, when
the electron spin occupies states ms = ±1 (which occurs
without the secular approximation) a transverse relaxation
process must be taken into account [28,32]. The NV− elec-
tron spin coherence time typically ranges from 4 to 10 μs
[25]. We resorted to use T �

2 = 7 μs, which provides enough
time to observe the DQPT in Fig. 4. To support our re-
sults given in the main text, we include the full Hamiltonian
(without secular approximation) and including transverse re-
laxation over the electron and nuclear spins with a coherence
time T �

2n = 0.5 ms [32]. We find that for magnetic fields
below Bx = 500 G, our simplified model reproduce very
well the magnetization up to 70 μs. The rate function λ(t ),
which is less important for the physical validation of the
model, behaves well up to 20 μs. The reason behind this is
the logarithmic function in its definition that increases the
mismatch.

In addition, we generalized our linear model to the case
where the nuclear spins are randomly placed in the diamond
sample with random orientations. We vary the hyperfine cou-
plings A(i) from few to few tens of kHz, the dipolar interaction
βi j = μ0γ

2
n /4πr3

i j ranges from zero to 4 kHz, and θi j ∈ [0, π ]
and φi j ∈ [0, π/2] [see Eq. (5)]. These calculations also in-
clude noise and all nonsecular terms. In Fig. 8 we show that
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(a)

(b) (c)

FIG. 9. Wired diagram for the initialization and read out pro-
cesses. (a) The “Init” box stands for the λ = 637 nm laser that resets
the NV−. Each dashed box encapsulates the initialization sequence
for a 13C nuclear spin. The “DQPT” box stands for the main sequence
to obtain the dynamical quantum phase transition, either the variation
of the fields or the electron spin rotation. (b) Each dashed box mea-
sures the corresponding 〈I (i)

z 〉 expectation value for the calculation
of the averaged magnetization. (c) The sequence performs a partial
two-qubit tomography 〈I (1)

z I (2)
z 〉 to determine P⇑(t ) and P⇓(t ).

for the firsts cusp (nonanalyctic points) in λ(t ) there is no
significant difference between these models, and the DQPT
holds. We perform several realizations and observe similar
behaviors.

APPENDIX B: INITIALIZATION AND READ OUT

In this section we briefly describe the initialization and
read out processes to obtain the probabilities P⇑(t ) = |0 ↑↑〉
and P⇓(t ) = |0 ↓↓〉 [for the calculation of the rate function
λ(t ) in Eq. (10)] and the averaged magnetization 〈Mz〉 =
(1/2)

∑2
i=1〈Î (i)

z 〉. For simplicity, we focus on the cryogenic
temperature regime, ∼4 K, where single-shot read out of the
electron spin can be performed with high fidelity. Initialization
of the electron spin in ms = 0 manifold is achieved with a res-
onant 637 nm laser by optical pumping. The 13C nuclear spins
are sequentially initialized through a polarization transfer gate
that maps the polarized electron spin onto the nuclear spin,
and a reset of the electron spin [31,33,34].

Optical read out of the NV− electron spin is driven by the
resonant 637 nm red laser via spin-dependent fluorescence. In-
dividual read out of 13C nuclear spins can be achieved by first
mapping its state onto the electron spin and subsequently read
out the electron spin [33,56,62]. We propose this sequence
to measure each expectation value 〈Î (i)

z 〉 that contributes to
the averaged magnetization. For the estimation of the joint
probability P⇑(t ) and P⇓(t ) we resorted to propose a two-qubit
state tomography, where we are only interested in the parallel
contribution 〈I1

z I2
z 〉. The initialization and read out processes

are pictured in Fig. 9.
We note that we provided a proof-of-principle demon-

stration of a single conduction of the experiment. Further
elaboration on the experimental process may consider optimal

FIG. 10. Evolution of the rate function for different numbers of
spins. The universality of the critical time holds. λ(t ) has the same
behavior independent of the number of spins.

approach depending on the strength of the hyperfine cou-
pling [63], or simultaneous initialization and read out [64,65].
Moreover, in the case of room temperature one may consider
an ancilla qubit for single-shot read out [66], or Bayesian
estimation [67] instead.

APPENDIX C: SCALABILITY

Throughout this paper we have focused on the finite-size
signatures of DQPT as witnessed by the rate function λ(t ) in
Eq. (9). This function should agree with the more general rate

(t ) defined in Eq. (8) for large N , given that in this regime
the probability is dominated by one of the two contributions
P⇑ or P⇓ [10]. We numerically find that for our particular
problem λ(t ) rapidly converges to a universal critical time
tc for the DQPT, with no finite-size corrections observed as
the number of spins N increases (we performed simulations
up to N = 20 spins). To illustrate further that this behavior
predicts the thermodynamic limit, we focus on the scaling of
the rate function 
(t ). 
(t ) shows a smooth behavior at tc, but
it becomes sharper when increasing N and rapidly approaches
λ(t ). The results are shown in Fig. 10. For the calculations, we
consider a fixed geometry of a 1D array of nuclear spins with
the same coupling strength given by

Ĥ = γeBz

N∑
i=1

Î (i)
z + γnBx

N∑
i=1

Î (i)
x

+
N−1∑
i=1

β

2

(
(Î (i)

+ Î (i+1)
− + Î (i)

− Î (i+1)
+ ) − 4Î (i)

z Î (i+1)
z

)
, (C1)

with β/2π = 4 kHz, Bx = 100 G, and Bz = 50 G.

APPENDIX D: ENTANGLEMENT AS ORDER PARAMETER

In the past, it has been shown that critical points cor-
responding to DQPT yield increased quantum correlations
[10]. Here, we contribute to this analysis by showing the
same behavior for the entanglement, but also by shedding
light on the multipartite entanglement. First, we quantify the

014313-8



DYNAMICAL QUANTUM PHASE TRANSITION IN … PHYSICAL REVIEW B 106, 014313 (2022)

FIG. 11. Concurrence increases in the regions where the rate
function λ(t ) becomes nonanalytic, signaling a maximum in its
derivative. Bx = 100 G and Bz = 5 G.

entanglement by the concurrence [59], that is defined as

C(ρ12) = max(λ1 − λ2 − λ3 − λ4, 0), (D1)

where the λi are the square roots of the eigenvalues, in de-
creasing order, of the matrix R = ρ̂12(Î (1)

y ⊗ Î (2)
y )ρ̂∗

12(Î (1)
y ⊗

Î (2)
y ). ρ̂∗

12 is the complex conjugate of the density operator
of the bipartite system corresponding to the two 13C nuclear
spins.

In Fig. 11 the concurrence evidences the generation of
quantum correlations between the two spins when the rate
function presents nonanalytical points, in agreement with
Ref. [10]. Furthermore, its derivative [Ċ(t )] is maximum at
these points. For this plot we followed the dynamics discussed
in Sec. III A.

Second, we pay attention to the generation of multipartite
entanglement. To this end, we consider three nuclear spins.
Then, the Hamiltonian for this new system, conditioned to the
NV− electron spin in the ms = 0 manifold reads

Ĥ = γeBz

3∑
i=1

Î (i)
z + γnBx

3∑
i=1

Î (i)
x

+ β12

2

(
(Î (1)

+ Î (2)
− + Î (1)

− Î (2)
+ ) − 4Î (1)

z Î (2)
z

)

+ β23

2

(
(Î (2)

+ Î (3)
− + Î (2)

− Î (3)
+ ) − 4Î (2)

z Î (3)
z

)
. (D2)

For simplicity, we consider the spins in a 1D-array con-
figuration with first-neighbors interaction and β12 = β23 = β.
Throughout this paper we have set β/2π = 4 kHz. To quan-
tify multipartite entanglement we use the tangle (τ ) [68],

τ123 = C2
1(23) − C2

12 − C2
13, (D3)

where τ123 represents a residual entanglement of the collective
three spins system [68], and C2

1(23) = 2(1 − Tr[ρ2
1 ]) represents

the entanglement between 13C1 and pair 13C2 − 13C3. C12 and

FIG. 12. Multipartite entanglement increases during the time
evolution. After several critical points the plateaus show up, indi-
cating a similar behavior with the concurrence in Fig. 11. Inset:
Longtime behavior of the concurrence. Bx = 100 G and Bz = 5 G.

C13 stand for the concurrence of the bipartite systems given by
Eq. (D1).

Figure 12 shows the evolution of the tangle (τ123) for
the tripartite system made up of three 13C nuclear spins.
We note that at early evolution, the tangle is approximately
zero since it takes time for bipartite entanglement to built
up first. After ∼15 μs, the tangle increases, and the plateaus
appear, coinciding with the minimum of the rate function
λ(t ) (similar to the concurrence in Fig. 11). For compar-
ison, in the inset we show the longtime behavior of the
concurrence.

APPENDIX E: FISHER INFORMATION CORRESPONDING
TO β12 FOR Bx = 0

To begin with, we consider the Hamiltonian in the ms = 0
manifold given in Eq. (10) for Bx = 0,

Ĥ = γnBz
(
Î (1)
z + Î (2)

z

)

+ β12

2

(
(Î (1)

+ Î (2)
− + Î (1)

− Î (2)
+ ) − 4Î (1)

z Î (2)
z

)
. (E1)

The corresponding eigenstates and eigenvalues are

|ψ1〉 = |0 ↓↓〉, E1 = −
(

γnBz + β12

2

)
,

|ψ2〉 = |0 ↑↑〉, E2 = γnBz − β12

2
,

|ψ3〉 = 1√
2

(|0 ↓↑〉 − |0 ↑↓〉), E3 = 0,

|ψ4〉 = 1√
2

(|0 ↓↑〉 + |0 ↑↓〉), E3 = β12. (E2)

The initial state (probe state that increases the FI) is |0 ↑↓〉,
that in the eigenstate basis can be written as

|ψ (0)〉 = |0 ↑↓〉 = 1√
2

(|ψ4〉 − |ψ3〉). (E3)

The evolution of this state reads

|ψ (t )〉 = e−iĤ (β12 )t |ψ (0)〉 = 1√
2

(
e−iβ12t |ψ4〉 − |ψ3〉

)
. (E4)
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In the bare basis the density matrix reads (we omitted the
electron spin state |0〉)
ρ(t ) = |ψ (t )〉〈ψ (t )| = 1

4 [(e−iβ12t − 1)(eiβ12t − 1)| ↓↑〉〈↓↑ |
+ (e−iβ12t − 1)(eiβ12t + 1)| ↓↑〉〈↑↓ |
+ (e−iβ12t + 1)(eiβ12t − 1)| ↑↓〉〈↓↑ |
+ (e−iβ12t + 1)(eiβ12t + 1)| ↑↓〉〈↑↓ |]. (E5)

To obtain the reduced density matrix for 13C1 we trace over
the 13C2 degrees of freedom,

ρn1 (t ) = Trn2 [ρ(t )] = 〈↑ |n2ρ(t )| ↑〉n2 + 〈↓ |n2ρ(t )| ↓〉n2

= sin2

(
β12t

2

)
|↓〉〈↓| + cos2

(
β12t

2

)
|↑〉〈↑|. (E6)

Next, we calculate the probability to find the nuclear spin
in states | ↑〉 (P|↑〉(β12)) and | ↓〉(P|↓〉(β12)),

P|↑〉(β12) = cos2

(
β12t

2

)
, (E7)

P|↓〉(β12) = 1 − cos2

(
β12t

2

)
= sin2

(
β12t

2

)
. (E8)

Finally, we replace the above expressions into the Fisher
information in Eq. (15) and obtain

FI(β12) = t2. (E9)
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