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It has been shown that coherent phonons can be used as a potent tool for controlling and enhancing optoelec-
tronic and transport properties of nanostructured materials. Recent studies revealed that interaction of acoustic
phonons and fast-moving carriers in semiconductor heterostructures can be accompanied by electron-phonon
instabilities that cause ordinary and induced Cherenkov effects. However, the development of such instabilities
is still poorly understood. Our study shows that other supersonic phenomena, beyond the Cherenkov instability,
are possible for nonequilibrium charge transport in the miniband semiconductor superlattices (SLs) driven by
an acoustic plane wave. Using semiclassical nonperturbative methods and elements of the bifurcation theory,
we find the conditions for the onset of dynamical instabilities (bifurcations) which are caused by the emission
of specific SL phonons by supersonic electrons, and their back action on the electrons. Notably, the underlying
radiation mechanism is connected either to normal or anomalous Doppler effects in full accordance with the
Ginzburg-Frank-Tamm theory. The appearance of induced Doppler effects is also discussed in relation to
the formation of electron bunches propagating through the spatially periodic structure of the SL. When the
amplitude of the acoustic wave exceeds a certain threshold, the dynamical instabilities developed in the system
are manifested as drift velocity reversals, resonances in sound attenuation, and absolute negative mobility.
We demonstrate that the discovered superluminal Doppler phenomena can be utilized for tunable broadband
amplification and generation of GHz-THz electromagnetic waves, which creates a ground for the development

of novel phononic devices.

DOI: 10.1103/PhysRevB.106.014312

I. INTRODUCTION

The mediating role of lattice vibrations (phonons) in
nanocrystals has been readily recognized as a fundamental
tenet in condensed matter physics. In particular, under-
standing in depth the transport properties of phonons and
their interactions with electrons is important for enhancing
the efficiency of thermoelectric nanostructures [1,2], devel-
oping acoustic metamaterials [3,4], or novel spectroscopic
schemes [5,6]. In the past few years, there has been an
intensive research aimed to study the connection between
physics of coherent phonons excitation and nonequilibrium
dynamics in electronic systems. Prominent examples include
phononic devices based on two-dimensional (2D) materi-
als [7-10] which can exhibit high electron mobility [9,10],
high-frequency phonon transducers [11-13], and quantum
structures where coherent acoustic phonons have been gen-
erated in the THz-GHz range [7,14—16]. Recently, there has
been increased interest in amplification of acoustic phonons
due to their interaction with fast moving carriers in semicon-
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ductor superlattices (SLs) [16]. These experiments revealed
the importance of electron-phonon instabilities where or-
dinary and induced Cherenkov effects come into play. In
general, the Cherenkov effect is the well-know phenomenon
encountered in the electrodynamics when a charged particle
passes through a dielectric medium at speed greater than
the phase velocity of light in the medium. We likewise note
new research efforts devoted to the radiation dynamics of
the superluminal particle [17-20]. Interesting examples in-
clude further developments in Ginzburg and Frank theory
[21,22] describing the Doppler effects [20,23], Smith-Purcell
radiation in plasmonic crystals [17], and nonperturbative gen-
eralization of Cherenkov radiation [19]. In the acoustic realm
though, Cherenkov emission can be induced when the av-
erage electron velocity (vy) in the presence of a static field
moves faster than the speed of sound (vy). This supersonic
condition (vg; > vy) is well satisfied in an electrically biased
SL [16] where the propagating acoustic wave interacts with
the electrically driven electron current. The aforementioned
study further confirmed that Cherenkov effects and possibly
other more exotic electromagnetic phenomena might have
acoustic counterparts. It was only recently, when semiclas-
sical studies and quantum-mechanical simulations [15,24,25]
predicted that under the action of a strong acoustic wave, the

©2022 American Physical Society


https://orcid.org/0000-0002-9080-5405
https://orcid.org/0000-0002-1678-0756
https://orcid.org/0000-0001-5643-0526
https://orcid.org/0000-0003-2220-6205
http://crossmark.crossref.org/dialog/?doi=10.1103/PhysRevB.106.014312&domain=pdf&date_stamp=2022-07-26
https://doi.org/10.1103/PhysRevB.106.014312

A. APOSTOLAKIS et al.

PHYSICAL REVIEW B 106, 014312 (2022)

cry <U<A/2

4 Cos (/i‘s z

C7‘2

FIG. 1. Schematic diagram of novel electroacoustical effects beyond the ordinary charge drag. A strong acoustic plane wave of the energy
amplitude U propagates at v; = w;/k, along the growth direction (x axis) of a superlattice (SL) with a miniband width of A and lattice period d.
(a) For U < A/2, charges are always transported along the direction of the wave propagation. However, bunches of electrons begin to oscillate
strongly at U = U, which is slightly below A/2 [see Eq. (13)], and then drift of the bunches quickly slows down with an increase of U.
(b) For U > A/2, the electronic bunches move opposite to the propagating wave, and their backward drift becomes fastest at U, , which value
is slightly above A/2 [Eq. (13)]. Our analytical selection rules [Eq. (13)] indicate that the critical amplitudes U, and U, mark respectively
superluminal anomalous and superluminal backward Doppler regimes [Eq. (16)] of emission and absorption of specific phonons [Eq. (13)]
by the electrons. Additionally, at the wave amplitude U,;,, an interaction of the electrons with a high-frequency (w) electromagnetic wave can

result in its amplification.

propagating deformation potential can induce quasiperiodic
Bloch oscillations of miniband electrons. The rise of these
complex Bloch oscillations was linked to global instabili-
ties triggered with an increase of the wave amplitude, which
serves as control parameter [25]. Remarkably, the develop-
ment of these instabilities clearly distinguishes the case of SL
from the ordinary electroacoustic effect in bulk semiconduc-
tors with a quadratic band [26,27].

In this work, we study supersonic phenomena that should
appear when a coherent acoustic stimulus induces high-
frequency electron dynamics in semiconductor superlattice.
In particular, we theoretically consider acoustically driven
miniband electrons which tunnel through the SL periodic
potential under the action of a longitudinal strain wave with
energy amplitude U, as shown in Fig. 1(a). In this case, the
acoustic stimulus interacts with the electrons by means of a
deformation potential. We demonstrate that this interaction
and the induced miniband transport are controlled by the
laws of physics typical for superluminal particles with internal
degrees of freedom [28]. In our case, the internal degrees of
freedom are associated with the propagating strain-induced
deformation potential. Analysis of the semiclassical phase
space dynamics in the reference frame moving at v, allowed to
identify specific dynamical instabilities (bifurcations) which
are developed for certain critical values of the strain-induced
potential U = U, (n =1,2,..., Uy, < U, < ...). Tuning
U to these values induces the formation of new bound states
between the electrons and the phonons. We found out that
the phonon-assisted transport involving those bound states
are, in essence, a direct generalization of the normal and
anomalous Doppler effects discussed in the radiation theories
introduced by Ginzburg and Frank for supreluminal photons
[22]. Our model parameters correspond to the regime related
to the recently discovered superlight inverse Doppler effect
[20]. Moreover, our results provide compelling arguments

for the long-standing idea introduced by Tamm [29] that the
characteristics of the Ginzburg-Frank radiation theory can be
implemented to supersonic acoustical systems. The emitted
phonons which are involved in the radiation processes are
found to behave in a manner similar to a Smith-Purcell (SP)
photons [30,31].

Our study showed that stimulated emission creates electron
bunches which move along the spatially periodic structure of
the SL. For both normal and anomalous Doppler behaviors,
the electron bunching effects on directed charge transport
appear to be robust even when we take into account scattering
processes. Remarkably, the involvement of the anomalous
Doppler effects for U < A/2 decelerates the single electron
with the overall drift velocity remaining positive. Here A
is the first minband width, within which a charge tunneling
transport is assumed. For U > A/2, the reversal of the drift
results from the emergence of both anomalous and conven-
tional normal Doppler shifts.

Signatures of the Doppler effects are also found in atten-
uation of of the acoustic wave, which is characterized by
the calculated absorption coefficient. We also demonstrate a
possibility of absolute negative mobility (ANM) for a SL
structure in combined dc bias and acoustic wave drive with
sufficient large amplitude to induce superluminal Doppler
effects. Notably, ANM has already attracted great research
interest in connection to spontaneous generation of large static
fields [32] and high-frequency stimulated emission of photons
[33] when the superlattice structure is driven by intense tera-
hertz electric fields.

Our analysis shows that the discovered phenomena can be
exploited practically in schemes for tunable broadband ampli-
fication and generation of GHz-THz electromagnetic waves.
Note that SLs under moderate electric fields have been already
shown as a system to provide optical gain due to the Bloch
oscillations in the presence of weak dissipation [34,35]. This
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prediction was based on semiclassical arguments and coined
as Bloch gain, raising the possibility of inversionless lasing
in a dc biased SL. The use of phononic waves though, opens
new opportunities to enhance the performance of superlattice
oscillators. Here we put forward a scheme for the broadband
amplification of THz radiation in acoustically driven superlat-
tice similar to the Bloch gain in a electrically biased SL.

This paper is organized as follows. In Sec. II, we em-
ploy elements of the bifurcation theory and we consider the
conditions for which the superluminal nature of electron kine-
matics arises. Therefore we identify a class of Cherenkov and
Doppler resonances which are directly connected to global
bifurcations developing with an increase of the wave wave
amplitude. In Sec. III, we discuss electron bunching and the
related induced Doppler effects for choices of the wave am-
plitude between the analytical bifurcations points which is
confirmed by numerical calculations determining the kinetic
behavior of a classical ensemble of particles. In Sec. IV, a non-
perturbative solution of the Boltzmann transport equation is
followed to examine the main transport characteristics in SL
at the presence of scattering. We discuss the feasibility of
ANM, for an electrically biased SL in Sec. V and the broad-
band amplification of an electromagnetic (EM) wave for an
acoustically pumped SL in Sec. VI. We conclude in Sec. VII
with a few remarks.

II. SUPERLUMINAL PHENOMENA IN THE REALM
OF ACOUSTOELECTRIC INTERACTIONS

This section discusses the nature of the acoustoelectric
effects in SLs. The nonlinear analysis of the acoustoelectric
instabilities provides a fruitful insight for the absorption of
the acoustic wave, its scattering by miniband electrons and the
related quantum processes. This would allow us to show that a
wide range of superluminal phenomena have distinct acoustic
counterparts.

We consider a longitudinal acoustic wave that propagates
in the direction of the superlattice axis (x) [Fig. 1(a)] gener-
ating a position and time-dependent potential energy given by
[24,36]

Vx,t) = —U sin[(k,(x + x;) — wyt)], €))]

where U = De is defined by the deformation potential con-
stant D and the strain magnitude €. The displacement x;
defines the initial phase of the driving wave, w;, is the wave
frequency, vy is the speed of sound in the materials of SL,
ks = w;/vs is the wave number, and ¢ is time. In the simplest
tight-binding scheme, it sufficient to describe the dispersion
of the first SL miniband as [37]

A d
5(px):3|:l—cos <ph )} )

where £ is the energy of an electron with quasimomentum
Px, A is the miniband width, and d is the SL period. In gen-
eral, the dispersion relation should also include a contribution
of the lateral (along the superlattice layers) motion in the
form &(py, p;) = p;/2m* + p?/2m*, where m* is the effec-
tive electron mass. However, without account of anisotropic
scattering the electron motion in lateral directions is inde-
pendent from electron tunneling along the superlattice axis,

TABLE 1. Basic parameters of superlattices studied. The fre-
quency of sound is assumed w; = 4x 10" rad/s with w; ~ 0.1/
and k,; ~ 1/d, unless stated otherwise. Further details are given in
Appendix E.

A (meV) d (nm) T (fs) vy (m/s) D (eV)
miniband lattice scattering velocity Deformation
width period time of sound potential

7 12.5 250 5000 10

20 11.4

and therefore the most interesting physical effects can be
described by the semiclassical Hamiltonian

H(x, px) = E(px) + V(x,1). (©)

It is easy to see from this Hamiltonian, the electron velocity,
0&/dp, and the force acting on the electrons, —dH/dx, due
to the propagating deformation potential Eq. (1), which read
respectively

& vd
v = = vosin 222, (4a)
apy h
dp.  O0H

p7aliainir o ksU cos[(ks(x +x;) — wst)],  (4b)
with vg = Ad/(2h) being the maximal miniband velocity. It
has been demonstrated that this simple model well describes
the experiments on charge transport in SL driven by a train
of picosecond strain pulses [12,15]. We consider mainly two
different sets of parameters which are summarized in Table I
corresponding to GaAs/Al,Ga;_,As SLs used in recent ex-
periments [16,38]. Our model Eq. (4) though has comfortably
allowed us to calculate similar results for a wide range of SL
parameters.

Efficient interaction of electrons with phonons. We turn now
to the condition for efficient interaction of the band electrons
with acoustic phonons that was initially introduced in the
theory of ultrasound absorption in metals. In the case, the
mean free path of electrons is large, the absorption of the
sound wave can be considered as scattering of an aggregate
of phonons by those electrons whose velocity in the direction
of the acoustical wave vector is equal to the phase velocity
of sound [39,40]. Indeed, for v > vy, the conservation laws
should dictate that for the absorption of a phonon

pr = pi+ hq, (5a)
E(py) = E(pi) + hag, (5b)

where p; (p;) stands for the final (initial) momentum of the
electron, and g > 0 is the quasimomentum of the absorbed
phonon. For generality, we assume here that the phonon
frequency w, can be different from the frequency of the prop-
agating deformation potential (1). Combining Egs. (5a) and
(5b) we obtain £(p; + hig) = E(p;) + hw,. Since the momen-
tum exchanged between the low-frequency phonons and band
electrons is very small, ig < p;, the energy then E(p; + fig)
can be expanded into Taylor series as

E(py) = E(pi) + hv(py)g. (6)
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By comparing Eqgs. (6) and (5b), we have
VRV, = wgy/q, (7)

which corresponds to Cherenkov effect [39,41,42]. It can be
shown that the same condition Eq. (7) needs to be satisfied
in order an electron emits a phonon with a small quasimo-
mentum 7gq. In this derivation, it was implicitly assumed that
influence of the electron potential energy in scattering events
is negligible, and also that the electrons oscillate far from
edges of the first Brillouin zone. Now we are going to show
that the resonant condition Eq. (7) naturally arises in the
analysis of the fixed points of the dynamical system Eq. (3).

Fixed points and their physical meaning. We first make
a canonic transformation to the moving with the velocity vy
reference frame, for which new Hamiltonian, electron kinetic
energy and coordinate take the forms

H =& (p)+VE),
X)) =x(@) +xo — v,

E'(px) = E(px) — vyps,

where the expressions for V(x) and £(p,) are still given by
Egs. (1) and (2). While the Hamiltonian H' becomes time-
independent, the electron momentum p, is unchanged under
the canonic transformation. In Appendix A, we showed that
the fixed points of this autonomous dynamic system are

T mit
P . 8
=Tk (8a)
ey B (B 4 (8b)
Pe= d " d’

where m and [ are arbitrary integer numbers.

To understand physical meaning of the fixed points we
first consider the case of small U when p,(¢) oscillations
are well confined within the first Brillouin zone |p,d/h| <
7, evoking thereby only the conventional acoustoelectric
response. Importantly, Eq. (8b) for the p components origi-
nates from the condition v(p,) = v, [cf. Eq. (A3a)], which
is identical to Eq. (7). Therefore Cherenkov absorption or
emission of phonons can arise in the proximity of the
stationary points. Figure 2 demonstrates schematically the
modulus of electron velocity in the momentum subspace and
the positions therein of the hyperbolic points (red circles):
Py, = (h/d)sin™ (v /vo), py, = wd/h— (h/d)sin™ (v,/v0),
and ps, = —nhi/d — (h/d) sin™! (vs/vp), which are connected
by a horizontal line corresponding to the condition [see
Eq. (7)] for the direct absorption of phonons by electrons.
More detailed consideration shows that both forward and
backward Cherenkov [42,43] effects can exist for supersonic
miniband electrons. For extended discussion see Appendix A.

The back action of such Cherenkov phonons on the mini-
band electrons is definitely small. In what follows, we will
discuss an opposite situation of significant changes in the
transport of the miniband electrons caused by their interac-
tions with such phonons that are able to carry large momenta
and therefore able to exert energy transitions both in the
miniband Eq. (2) and in the potential wells formed my the
acoustic wave Eq. (1). Of course, this will require relatively
large amplitudes of the wave U 2 A/2, when effects of the
electron potential energy cannot be ignored any more.

| v|>vs
--------- | v|<vs

FIG. 2. The modulus of electron velocity |v(p,)| [Eq. (4a)] rep-
resented by dashed lines corresponding to subsonic charge carriers
and solid curves to supersonic electrons that belong to the active
zone and therefore they can emit or absorb phonons while making
transitions within the miniband. The green horizontal line connects
the hyperbolic points p,, [Eq. (7)], with i =1, 2, and 3, denoting
the condition for absorption of the acoustic wave for small U [see
Eq. (8)]. The arrows (n = 1) and (n = 2) indicate which hyperbolic
points are connected in order to satisfy the selection rules described
by Eq. (13).

The emergence of Doppler effects. Next, we will reveal
superluminal mechanisms and the related instabilities (bifur-
cations) that are developed for larger U. A series of global
bifurcations with the increase of U have been analytically
found previously for the model described by Eq. (4) [25]. It
has been shown that they are associated with the reconnection
of the hyperbolic points [see Eq. (8)] by separatrices in the
phase space of the dynamical system Eq. (A2) at the following
critical values of U:

A Vg 2 hivgg,
Uy =—/1=(=) +—= =1, (9a)
T Yo 2
Zan 1 () 4 2n— 3" (9b)
n = — —_ n — —,
=7y ” d

where 7 is an integer designating the order of the bifurcation.
From physical point of view, Egs. (9) imply multiphonon
resonances in a transition scattering of the sound wave by
electrons [44] placed in the SL periodic potential. Specifi-
cally, the second term in Eq. (9a) defines an acoustic phonon
quantum fiw(g,) = hvsq, with the effective wave number g,
Eq. (9b), while the first term in Eq. (9a) is proportional to
the width of the active zone in energy band, which will be
discussed later. The emission and absorption of phonons with
wavenumber g, [Eq. (9b)], however, at critical (bifurcation)
points result in both normal(n = 1) and Umklapp (n > 2)
scattering transitions of electrons in momentum space. As can
be seen in Fig. 2, the two hyperbolic points (p;,, ps,) which are
involved in the first bifurcation (Fig. 13) with critical value

o Slcos(ps,d /1) — cos(ps,d /I)] + vsps, — VsPs,
o sin(kyxg, ) — sin(kgx, ) ’
(10)

lie within the first BZ resulting in an electron normal scatter-
ing transition in p, space. In contrast, an electron Umklapp
scattering stems from the second bifurcation with critical
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value

U 3 [cos(ps,d /) — cos(ps,d /)] + vsps, — vsps,
T sin(kyxs, ) — sin(kyx;,) ’
(11

in which the separatrix is reconnected (see Fig. 14) through
(ps,» ps;) with pg, being located outside the first BZ. Note that
Egs. (9) for n = 1, 2 can be derived from Eqs. (10) and (11),
respectively, by just rearranging their terms.

The active zone region.The stationary points of hyperbolic
type (x;, ps) define intervals of supersonic electron motion
in the momentum subspace p,. Within these intervals the
momentary electron velocity v(p,) can exceed the sound ve-
locity vy. In detail, the pairs of resonant points (p;,, ps,) and
(ps,» Ps;) determine intervals within the first Brillouin zone,
0 < py <mh/d and —h/d < p, < 0 respectively, in which
the supersonic motion (with the velocity in Fig. 2 represented
by black solid lines) takes place. It follows that v(p,) > vy
holds for an energy interval that is centered at the middle of
the energy band £ = A/2, and has the width

. 291/2
8Epan, = A[l — (-‘) } . (12)
Vo

Supersonic electrons belonging to the “active zone” defined
by Eq. (12) can emit phonons while following the phase
trajectories defined by Eq. (A5). When the maximal miniband
velocity vg is approaching the speed of sound vy, the active
zone becomes narrow §&,-.,, — 0.

Hypersonic limit. We now consider the implications of the
opposite limit vy/vs > 1, which is well satisfied for typical
semiconductor SLs (see Table II in Appendix E) and where
the superluminal physics become more transparent. In this
case, the active zone practically coincides with the entire
miniband, §&,-,, — A and therefore practically eliminating
the subsonic regions (black dashed lines) between blue and
red circles in Fig. 2; see discussion in Appendix E. Phys-
ically, it guarantees that the miniband electron speed v =
vo| sin(p,d/h)| exceeds the speed of sound v, almost for any
momentum p,. Additionally, the hyperbolic points Eq. (8b),
involved in the derivation of Eq. (9), are located at p; =~ 0 and
very close to the boundaries of the first and successive BZs.
In what follows, we will mainly focus on the first two major
bifurcations, for which
A ho,
) F 5
since their effects play a fundamental role, as we will see,
in the electron kinetics. It is easy to see that the relative
contribution of the terms A/2 and fiw,/2 to the value U,, in
Eq. (13) is defined by the ratio vy/v,. Therefore, in the phys-
ically interesting limit vo/vs >> 1 the critical wave amplitude
U., asymptotically approaches the value Uy = A/2, i.e., the
half of the miniband width. The limit vy/v; — o0 itself can be
reached either by increasing A, or by slowing down the speed
of sound vy — 0. The later demonstrates that the appearance
of the quantum in criterion Eq. (13) is directly related to the
propagation effects.

To get a deeper insight into the physical meaning of
Eq. (13), consider an electron that absorbs or emits a phonon
with the quasimomentum /ig = 27 /A, = h/2d. As a result

Ug,, = wy = mvg/d, (13)

of the radiation/absorption act, the electron momentum be-
comes py = p; + lig, where py (p;) stands for the final
(initial) momentum and q is positive or negative depended on
whether we have absorption or emission processes. Next, a
variation of the electron kinetic energy in the moving refer-
ence frame of the acoustic wave is

8& = 686E — vdp, (14)

where 6 = E(py) — E(pi) and §p = py — p;. Assuming the
electron is initially at the center of Brillouin zone p; = 0, it is
easy to find both the variation of the electron kinetic energy
8 = A and the variation of its momentum &p = hw,/vs.
Finally, equating 8&’ to the corresponding variation of the
electron potential energy 8V = Vy —V;, we get the condition
of energy conservation in the moving frame as

8V = —A + ha,. (15)

Now consider an electron transition from the top of the po-
tential V (x') at x, = —m /(2k;) to its bottom at x|, = 7 /(2k;),
for which §V = —U — (+U) = —2U. Substituting this §V in
Eq. (15) we obtain Eq. (13). Therefore the values of the critical
amplitudes U, follow from a delicate energy balance in
distribution of the acoustic wave energy (2U) between an ex-
citation of the electron within the miniband (§y = 0 — & =
A) and absorption or emission of the quantum 7w,. Since we
have assumed that p; = 0 (lattice temperature close to zero),
the first bifurcation is related to an absorption process in order
to satisfy simultaneously Eqgs. (13)—(15). On the other hand,
the same initial condition results in emission of a phonon
after the second bifurcation. While the energy of the quantum
is relatively small fiw,/A < 1, it brings a large momentum
inversely proportional to the lattice period d [see Eq. (9b) for
n = 1]. Thereby this inelastic scattering event is able to kick
the electron from the bottom of the miniband directly to its
upper edge, giving rise to the electron Bragg reflections. The
condition of energy conservation Eq. (15) in the moving frame
can be rewritten in the alternative form

—hwy = h(—=q|v.| £ @), (16)

where |v.| = 2vg /7 is the effective electron speed and wy =
|6V |/k is the resonant frequency which corresponds to the
source excitation energy §V.

Remarkably, Eq. (16) describes both the normal and
anomalous Doppler effects, depending on the sign in from
of w,. Namely, entrance of +w, corresponds to anomalous
Doppler effect, while —w, implies a normal Doppler effect.

In our system, the first resonance (at U = Uy,) is as-
sociated with the anomalous Doppler effect. The anomalous
character of the process is reflected in the fact that despite an
electron absorbs the phonon fiw, (red wavy arrow), it makes
transition from the top of the potential to its bottom (red verti-
cal arrow) as illustrated in the left panel of Fig. 3(a). Thus the
absorption of a quantum happens at the expense of potential
energy, whereas the electron is excited at the upper edge of
the miniband as indicated by the red arrow in the right panel
of Fig. 3(a). Note that the SL parameters considered in this
work can also operate in the regime where new phenomena
such as the superlight inverse Doppler effect [20] are possi-
ble and thus |8V | > hw, whereas the corresponding Doppler
frequency shift has Aw = w; — wg < 0. Regardless of the
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5 gl A ps| = 7h/d
V(z) " %_) ---------- ff‘fd_i___.l | /
,' hwq ‘\ /\(7\{7\[1’
—U— v 0 [pz| =0
V(z) Ve &
BT S R (b)
) N B hqu
A [ Ip2| = wh/d
/ 5 ' havg
1’ Wq
——t 0 |ps| =0
V(z) Ve £
T S R ©)
SN ; |n|quI
! \ ! o = mh/d
fon v, A |pz| = 7h/
! |n|hw, | \
—U— 2 0 [pz| =0

FIG. 3. Diagrams of electron transitions within the potential of
the acoustic wave (left) and within the energy miniband (right) man-
ifested by anomalous and normal Doppler effects corresponding to
the bifurcations in increasing order. (a) The electron trapped by the
wave V (x) can either absorb the phonon /iw, and make a transition
from the top of the potential V,,;, = U to its bottom V,,,x = —U or
follow the reverse process by emitting a quantum. (b) The electron
recoils, while emitting a phonon, leading to a normal Doppler shift of
the transition (green arrow). Alternatively, the electron experiences
an excitation (red arrow) assisted by absorption of /iw,. (c) One-step
multiphonon transitions involving odd number of normal Doppler
shifts. The green lines describe emission processes where the red
lines absorption ones.

anomalous radiation act, just after the first bifurcation the
miniband electron (black circle with the right-handed arrow)
continues to move in the positive direction with effective par-
ticle velocity, v,. For detailed discussion of electron’s kinetic
behavior see the following Secs. III and IV. In similar way,
one could also analyze the radiating processes far from the
thermal equilibrium (at high temperature limit) by considering
that the electron could initially sit at the edge of Brillouin zone
(pi = mwh/d) and subsequently inelastically scattered to center
of the first Brillouin zone at p; = 0. This process is depicted
by the green vertical arrows of Fig. 3(a). On these terms,
the anomalous character of the process would lie in electron
emitting the phonon fiw, (green wavy arrow) and making a
transition from the bottom of the potential to its top. Here, the
emission of a quantum would happen instead at the expense of
the kinetic energy. In this sense our model can accommodate
a further generalization of the Ginsburg-Frank-Tamm theory
[29].

After the second bifurcation (at U = Uy,), which corre-
sponds to a normal Doppler effect, the realization of electronic
transition from the top to the bottom of the potential [green
arrow, left panel Fig. 3(b)] is conventionally accompanied

by an emission of a phonon. That, however, makes the elec-
tron to be excited [green arrow, right panel Fig. 3(b)] within
the miniband. Notably, such a transition can be associated
with the backward Cherenkov radiation [23,43], where the
electron (black circle with left-handed arrow) moves in the
opposite direction with respect to the emitted phonon and
the associated Doppler-type frequency shift has Aw < 0. On
the contrary, for an arbitrary system such as Larmor oscilla-
tor [45], the conventional normal Doppler effect holds wy =
wg — q|v.| with Aw > 0. The appearance of the Cherenkov
effect in periodic photonic structures has demonstrated inherit
connections between electron-photon interactions manifested
by the Smith-Purcell effect and the Cherenkov effect [46].
Similarly, here is the SL which can a play a role of an effective
diffraction grating for Smith-Purcell-type phonons. We can
identify that resonances Eq. (13) describe the SP mechanism
where the emission spectrum is determined only by the period
of the SL sample (w, o 1/d) which constitutes an effective
diffraction grating. The emitted radiation at wave number g
(cf. Eq. (2) in Ref. [31]) taken in the limits 8 = v/v; > 1 is
reduced to a form containing the characteristic Doppler factor
so that the angle of emission is either & = 0 or & = . Finally,
it is possible to examine the phonon absorption (emission)
processes for higher order bifurcations at U, n > 3, see
Eq. (9a). For example, a three-phonon process can occur if
the electron is inelastically scattered by a strong sound wave
(at U = U,) which allows to perform a radiating transition
from the bottom to the top of the miniband [see the right panel
of Fig. 3(c)]. This higher-order process involves stimulated
events which are illustrated by the vertical arrows in the left
panel of Fig. 3(c) and they are facilitated on the boundaries
of the first and the third Brillouin zone. Thus we obtain an
realization of Umklapp processes which result in the inelastic
scattering of electron back into the regime of normal Doppler
effect.

III. ELECTRON BUNCHES AND INDUCED
DOPPLER EFFECTS

In this section, we discuss the role of the induced Doppler
effects in nonlinear mechanisms, similar to laser-plasma in-
teractions [28,47] and relativistic microwave devices [48],
leading to formation of traveling electron bunches. In the
presence of a small-amplitude acoustic wave some of the
electrons are captured by the propagating potential, forming a
group of trapped electrons (electron bunch) and perform oscil-
latory motion within potential itself. However, if the acoustic
stimuli are strong enough they can enforce the electrons to
perform complex Bloch oscillations (phonon-assisted trajec-
tories) [24,25], which, as we found out, causes the electron
bunches to oscillate with large amplitude in p, space. To
understand the role of these effects in the acoustically driven
charge transport in SL we analyze the solution of the Boltz-
mann transport equation (BTE)

% + v(px)a—f + eE(x, t)ﬁ = St[f], (17)
ot ax ap
where St[ f] is the collision term specified later, f(x, py,t) is
the electron distribution function, E (x, t) = E cos(kex — wgt)
is a force field derived from the potential energy function
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FIG. 4. The velocity v,, of the electron bunches as a function of
the wave amplitude U in the quasiballistic regime for v, /v, = 22
(blue curve) and 10.5 (yellow curve); See Table II. The dashed line at
Uy = A/2 separates the forward motion of the electron bunches from
the backward one with respect to the propagation of acoustic wave
for v,/v; — oo. The comparison with the superluminal selection
rules [Eq. (18)] is indicated by the arrows. The inset shows the full
development of v,, with an increase of U around the first selection
rule (anomalous Doppler condition). The acoustic wave in both cases
has a frequency lying at w; = v,/d with d the lattice period of each
SL structure.

V(x,t) with E; = kU /e denoting the amplitude of the effec-
tive acoustoelectric field.

We first consider the quasiballistic regime a = kg > 1,
where [ = vpt. Here / denotes the mean free path of the
carriers being sufficiently larger than the sound wavelength
and t is the electron scattering time. In this case, the col-
lision term in Eq. (17) can be neglected as St[f] — 0. In
addition, the value of the sound frequency considered in
our calculations is, w; = 4x 101 rad/s with k; ~ 1/d, which
lies far away from the frequency ranges of the phonon stop
bands [49,50]. To characterize the kinetic properties the elec-
trons bunches, we introduce the average momentum p, =
Deli/d, where py = arg(m;) is a circular mean angle. Here
my = (exp(ipx(¢t)d/h)),, is the first trigonometric moment
m; of the distribution function [51,52]. The operator {.),,
performs averaging over an ensemble of time-dependent elec-
tron trajectories starting with the same initial momentum
pi = 0 (low temperature limit) and different initial positions
x; € [—A/2, 1/2), where A = 21 /k; means the acoustic wave
length.

Figure 4 presents the dependencies of the time-averaged
electron velocity v, = (vo sin(p,(¢)d/h)); on the wave am-
plitude U which are numerically calculated (see Appendix B
for more details) for two different ratios v,/vs. Both graphs
demonstrate series of local minima of v,,, which are reached at
the critical values of U = U,,. By rearranging terms, Eq. (13)
can be rewritten in the form

A Vg
Uer, = —[1 +(2n— 3)—}, (13)
2 V.

which, as it was mentioned above, in the limit v,/v; — 00
reveals a localization condition

A

Ucr,, —> UO = E (19)
These values are highlighted by arrows with the numbers in-
dicating the index n in Eq. (18), while the dashed line at Uy =
A /2 separates the forward motion of the electron bunches
from the backward one with respect to the propagation of
acoustic wave for v, /vy, — 0o. The graphs evidences that for
larger v, /vy, the U-value corresponding to reversing of the
electron velocity v, comes closer to Uy, thus confirming the
localization criterion Eq. (19).

The Doppler effects as described in the previous section are
elementary processes whereas here the induced Doppler ef-
fects correspond to collective processes triggered by an
instability in which an elementary radiation act can induce
sequentially another one. This becomes more evident, as we
shall see, by the behavior of the electron dynamics between
the bifurcations. Figure 5(a) shows the temporal dynamics of
the electron distribution function by solving Eq. (17) for U <
Uy,, while Fig. 5(b) for the case U,;, < U < Uy. The color in
(a) and (b) relates to the values of reduced electron distribution
function f(px, ty=1/A f_lﬁz f(x, px, t)dx, where it changes
from black for the lowest value to red—for the highest one
which indicates the presence of an enhanced concentration
of electron trajectories (electron bunches) around the center
of Brillouin zone. As U increases beyond Uy, the electron
dynamics become more complicated which is manifested in
appearance of quite sophisticated patterns in f(p,, ), com-
pare Fig. 5(a) for the case of U < Uy, and Fig. 5(b) for the
case of U > U,. While the former figure demonstrate rather
regular pattern, the latter shows signatures of turbulent behav-
ior, which evidences, e.g., in occurring isolated color spots on
the map. Such dramatic change in electron distribution can be
attributed to emergence of a specific phonon-assisted trajec-
tories (complex Bloch oscillation) which is shown as a solid
curve in Fig. 5(c), recounting a wave packet moving slowly
in the proximity of p, = 0 and quickly at p, = him /d. This
type of trajectories appear for U > Uy, in addition to another
low-amplitude regular p, trajectory [dashed curve, Fig. 5(c)]
which existed also for U < Uy,. The latter one (dashed curve)
indicates a wave packet moving quickly around the center
of the Brillouin zone, corresponding to the confined electron
motion within the propagating moving potential. These two
types of trajectories differ by their initial values x;. The motion
of the electrons starting from certain initial conditions such as
the solid trajectory in Fig. 5(c) experiences Doppler instability
accompanied either by phonon absorption (red wavy arrow)
or emission (green wavy arrow) which give rise to oscilla-
tions of electron bunches with larger amplitude. Figure 5(d)
illustrates the balance between kinetic £ and potential
energy V for phonon absorption or emission processes. In an
absorption process, a wave packet with a small crystal mo-
mentum p, ~ 0, gains a considerable portion of energy while
moving [red dashed arrow, Fig. 5(d)] from the bottom to the
top of the miniband at the expense of potential energy [red
curve, Fig. 5(d)]. In contrast, during the emission process, a
wave packet with a large p, (near p, = wh/d) loses a con-
siderable part of its energy [green dashed arrow, Fig. 5(d)]

014312-7



A. APOSTOLAKIS et al.

PHYSICAL REVIEW B 106, 014312 (2022)

el lhigh 0.5m
e

<
<0
8
s

low —0.57
0 05 1 1.5 2 0 0.5 1 1.5 2
wst wst

low

FIG. 5. The temporal dynamics of the reduced electron distribu-
tion function f(py, ) before the first bifurcation (a) 2U/A = 0.95
and just after (b) 2U/A = 0.98 with the red region in the col-
ormap indicating the formation of the electron bunch. (c) p,-space
trajectories for 2U/A = 0.98 (Uy, < U < Up) and different initial
conditions: xo = 0, trapped trajectory (dashed line) in the acoustic
wave potential and xo &~ —m /(2ks), trajectory (solid line) which
experiences anomalous Doppler instabilities. The wavy arrows in-
dicate the absorption (red) and the emission (green) of phonons.
(d) The temporal oscillations of miniband energy (black curve) and
potential energy (blue curve) for 2U/A = 0.98 (U, < U < Up) and
the initial condition xy &~ —m /(2ks). (e), (f) The temporal dynamics
of the reduced electron distribution function f(p,, ) indicating the
electron bunch (red) for different wave amplitudes: (c¢) 2U/A =1
(U =Up) and (d) 2U/A = 1.04 (Uy, < U < U,). The white lines
designate the mean of electron quasimomentum distribution (mean
angle p, = p,d/h) as a function of time. The calculations have been
performed using the parameters of the SL structure with v, /v, = 22.

while a making a transition from the top to the bottom of
the potential [green arrow, Fig. 5(d)]. Each radiation act is
preceded (followed) by extended presence of electron around
the center of the Brillouin zone. Considering now an electron
ensemble, the electron wave packets are concentrated around a
single trajectory [white curve in Fig. 5(b)] with mean value p,
that oscillates further close to the center of BZ in comparison
to the trajectory in Fig. 5(a), causing the electron bunches to
slow down; see the sudden drop of v, in the inset of Fig. 4.
At U = U,, the electrons eventually become localized. In this
case, the averaged momentum p, [white curve in Fig. 5(e)]
oscillates almost periodically around p, = O resulting in a
zero v,,. For U > U the electronic bunches counter-propagate
with respect to the propagating sound wave. Such inversion
of motion becomes apparent in Fig. 5(f), where the electron
bunch is shifted below p, = 0. The inversion of electrons drift

can be explained by an increase of electron trajectories which
are subjected to anomalous Doppler shifts. The backward drift
of electrons becomes maximal at U,,,, coinciding with the first
manifestation of normal Doppler effect as discussed in Sec. II.

To gain a deeper insight in the emission processes and their
implications in electron bunching, we examine in detail the
dynamics of averaged parameters in the vicinity of the first
bifurcation at U ~ U,,. Namely, we analyze the characteris-
tics, which beside the averaged momentum p,, (Fig. 5) include
the coherence of electron distribution A = |m, |, the averaged
electron energy, E, = A/2(1 — cos{px(¢)d/h}),,, and the av-
eraged potential energy V, = —U (sin(k;x — wst))y,. Note that
the electron distribution converges to a Dirac distribution
centered on a single trajectory at mean value p, for A = 0,
whereas for the opposite limit A = 1, there is no well defined
mean of the electron momentum. Figure 6(a) shows the dy-
namics of p, in time as U growth. For U < U, = 9.55 meV
QQU/A = 0.955), p, demonstrates a low-amplitude erratic
fluctuations (blue curve), which are substituted by more regu-
lar close to quasiperiodic oscillations once U exceeds Uy, (red
curve). Further growth of U leads to increase of the amplitude
of the oscillations that remains quite regular (black curve).
Such regularization of the electron bunch dynamics and ap-
pearance of pronounced large-amplitude oscillations of p, is
associated with the Doppler instability evoked by he absorp-
tion or the emission of phonons, which, as it has been shown
above, take place for U > Uy, . Repeating inelastic absorption
or emission events perturb also the coherence parameter A
which demonstrates larger oscillations for larger U, indicating
that electron bunches are created and then deformed almost
periodically [compare blue, red, and black curves in Fig. 6(b)].
This further explains the abrupt change in electron distribution
and the formation of distinct color spots with time variation
as was demonstrated in Figs. 5(e) and 5(f). The effect of
the Doppler instability related to phonon exchange can be
clearly seen in the time realizations of the kinetic E, and
potential component V, of the electrons energy, which are
presented in Figs. 6(c) and 6(d), respectively. For U < Uy,
the energy the exchange between E, and V, is very small
[see blue curves in (c) and (d)]. However, if U even slightly
exceeds Uy, the interplay between E, and V, dramatically
intensify, and become larger for larger U [see red and black
curves in (c) and (d)]. The vertical dashed lines in (c) and
(d) illustrates the energy transformation. Namely, it indicates
a moment when the electron bunch having a large potential
energy V, start to lose it due to phonon exchange events
with simultaneous increasing the kinetic component E,. We
note that the concept of a wavelike bunching of the electrons
[53-55] in momentum space has already been used to explain
the amplification of a THz field which might arise due to the
interaction of the bunches with the THz field itself. Extended
analysis of the effects of the scattering processes on miniband
transport and sound absorption will be presented in the fol-
lowing section.

IV. NONLINEAR ELECTRIC TRANSPORT
AND THE SOUND ATTENUATION EFFECTS

Up to now, we have considered the quasiballistic regime,
ie., a =kJd > 1, to study the role of the acoustoelectric
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FIG. 6. The numerically obtained oscillations of (a) the averaged
momentum p,, (b) the coherence, A, of the electron distribution,
(c) the averaged electron energy E,, and (d) the averaged poten-
tial energy V, for 2U/A =0.95 (U < Uy, blue curves), 2U/A =
0.96,0.98 (U, < U < A/2,black and red curves). The calculations
have been performed using the parameters of the SL structure with
v. /vy = 22. Dashed vertical line is discussed in text.

effects in the quasiclassical description of the electron trans-
port. However, the effects of coherent phonon dynamics on the
miniband electrons and the related superluminal phenomena
might appear over a wide range of the parameter «, as it was
previously shown for electron phonon interactions in metals
[40,56]. A more general approach is to take into account
the scattering effects, when the mean free path, I = vy, is
comparable with to the sound wavelength A. In this case, to
describe the directed electron transport in a superlattice we use
the Boltzmann transport Eq. (17) with St[f] = (fo — f)/~,
where 7 is the relaxation time and fy(x, p,) is the Fermi

distribution in the nondegenerate limit. Solution of BTE yields
the drift velocity of electrons

Ldr 1 o, dt;
vy =/ —/ et 1) (20)
0 Tv —00 T

Here #; is the time of last collision at position x;, v,(Z, #;) is a
trajectory in time governed by Eqgs. (4) and 7Ty, = 27 /w is the
period of the acoustic plane wave. To simplify analysis, we
utilized a constant scattering time approximation. With this,
the relaxation rate t in Eq. (20) can facilitate both elastic scat-
tering processes and additional inelastic scattering processes
due to long wave phonons [57] as an inverse summation of all
corresponding scattering times [58]. Usually, the relaxation
time depends on electron energy [59]. However, superlattices
typically have narrow band width (miniband) and therefore
in many cases the energy dependence of T can be consid-
ered as negligible [60]. Despite such simplicity, the constant
scattering time approximation was shown to demonstrate a
good agreement both with the full-scale Monte Carlo simu-
lations of various transport phenomena in SLs [54,55,61] as
well as with experimental results on charge transport in SLs
[57,62] including high-frequency current oscillations induced
by coherent phonons [15]. Eq. (20) can be obtained using the
time-dependent path-integral approach [63—65] which allows
to investigate generic features of electron transport and un-
ravel the acoustolectirc effects that might arise in the system.
To analyze the deformation propagation in a SL we addition-
ally take into account the back action of electrons on the
phonon wave by considering the sound attenuation effects.
In general, the electron contribution to the attenuation of the
ultrasound in materials arises because energy is transferred
between the wave and electrons. Therefore the absorption
coefficient of the sound is given by [36,66,67]

F=/<H(pmt)f(px’xat)>ﬁdpx (21)

Here H = dH/dt, whereas the angle brackets designate aver-
aging over time, namely the period of the sound wave T; =
27 /ws. By solving Eq. (21), we find (see Appendix C) the
absorption coefficient of the sound in the SL miniband, which
is presented for our convenience in a normalized form

A= < <f)(t) - ”—) cos(kyx — wst)> L@
21)() T,

where the absorption coefficient I' is related to Ay as I' =
(2kU)A; and (1) = (v(2))/vp is the electron velocity av-
eraged over the distribution function, f, satisfying the BTE
[Eq. (17)]. The dependence of the drift velocity vy on U
for an acoustic wave with w; = 0.17~! (a ~ 1.3) and a su-
perlattice with a miniband width of 7 meV (vy/vs = 13)
is presented in the left-hand panel of Fig. 7(a). One can
recognize two characteristic values of U. First, the drift
velocity is drastically suppressed beyond U = U,;, and subse-
quently the v, (U ) characteristic exhibits an observable change
in slope at U = Uy,. The black solid curve in Fig. 7(a) re-
minds the classical Esaki-Tsu v, (E;.) [37], which describes
the response of miniband electrons to an electric field E;.,
applied along the growth direction of the superlattice. How-
ever, in our case the specific changes in v, with variation of U
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FIG. 7. (a) The dependence of the drift velocity v, as a func-
tion of the acoustic wave amplitude U. The left panel demonstrates
vy(U) for the wave frequency w; = 0.1t~ whereas the right panel
for @ = 0.5t~ (dashed yellow curve) and w, = t~! (blue curve).
(b) The dependence of the absorption coefficient of the sound wave
A; =T /(2kyU) upon U calculated for different frequencies: w, =
0.177" (left), w; = 0.5t~ (right, blue curve) and w, = 7! (right,
yellow curve). (¢) Zoom in of (b)—right panel, showing the differ-
ent regimes of phonons emissions. The vertical lines designate the
critical values of U. The calculations have been performed using the
parameters of the SL structure with vy /v, = 13; See Tables II and I1I.

are directly associated with changes in the electron bunches
dynamics, revealing the appearance of the superluminal ef-
fects as discussed in Sec. III. Hence, the critical amplitudes
Uy, and U, designated by the vertical lines in Fig. 7(a)
correspond to the thresholds for triggering the superluminal
anomalous and superluminal backward Doppler effects that
are associated with emission and absorption of phonons in the
presence of scattering. Figure 7(b) demonstrates the behavior
of A; with change of U. The increase of U first enhances the
absorption of the acoustic wave, since its its interaction with
the electrons becomes stronger. However, once U reaches Uy,
the absorption starts to drop gradually. Such reduction of A,
relates to the rise of normal Doppler effects resulting from the
recoil momentum given to the radiating system by the emitted
phonons. The changes in v;(U) and A;(U) indicating transi-
tions between different superluminal regimes which become
more evident for acoustic driving with higher frequency w;.
In the right panel of Fig. 7(a), the dependencies v,(U) are
shown for w; = 0.5~ (& ~ 6.6) by dashed yellow curve and
ws = 17! (o ~ 13.2) by solid blue curve. Both dependencies
have pronounced features at the same values of U. How-
ever, in contrast to the low-frequency case presented in the
left panel Fig. 7(a) the high-frequency dependencies indicate
more features also related to U, (9) for n > 2. Importantly,
these high-frequency (short-wavelength) acoustic excitations

can induce the reverse of the electron drift (v; < 0) due to
mechanisms discussed in Sec. II. The features in the graph
of vy (U) are also reflected in the dependence A (U) shown
in in the right-hand panel of Fig. 7(b). For example, a kink
in A;(U) at Uy, in Fig. 7(b) coincides with the maximum
of vy (U) in Fig. 7(a). A local minimum of A, at U = Uy,
corresponds to the reverse of drift velocity v,. Other abrupt
changes in v, are observed when A (U) attains the minima
[see Fig. 7(b)] at U, for n =3 and 4. The appearance of
these kinks, i.e., local minima in v, (U ), A;(U) can attributed
to the transition between different supeluminal regimes of
phonons emission. Figure 7(c) illustrates these regimes con-
sidering a zoomed part of yellow curve A;(U) from the right
panel of the Fig. 7(b). They include (i) an anomalous Doppler
regime (Uy, < U < Uy,) indicated by the blue shaded area
in Fig. 7(c) where a significant portion of electron trajectories
experiences anomalous Doppler instabilities which start to
move backwards leading to the suppression of drift velocity
and considerable reduction in the sound absorption coeffi-
cient. (ii) Coexistence of anomalous and normal Doppler
effects (Uy, < U < Ug,). In this regime, an increase of U
enables more charged particles to experience normal Doppler
instabilities resulting in emission of phonons at the expense
of electron trajectories which are subjected only to anomalous
Doppler instabilities. Hereafter, the overall drift of electron
bunches remains negative whereas the absorption of the sound
wave is further reduced. (iii) Multiphonon Doppler processes
(U > U,) in which the electrons are inelastically scattered
by the acoustic wave allowing their trajectories to enter suc-
cessively higher Brillouin zones. These more complicated
trajectories are responsible for the further suppression of the
absorption coefficient.

V. ABSOLUTE NEGATIVE MOBILITY

In previous Sec. IV, we studied the superluminal mecha-
nisms governing the directed electron transport in a strongly
coupled SL subjected to a sole acoustic plane wave. Next,
we consider the absolute negative mobility (ANM) and the
superluminal Doppler effects which go hand in hand in case
a constant electric field E,,. is additionally applied along the
SL. The ANM has been already reported [33] in DC-biased
SLs under high frequency irradiation ox Eg cos(€2t), shown as
inversion of electron current in the vicinity of E;. = 0. In our
model, the acoustic drive oscillates both in time and space and
thus the semiclassical equations of motion for the miniband
electrons are

. (pxd)
v=uypsin| — ),
7

dp,
dt

(23a)

= eE;. + kU cos[(ky(x + x;) — wst)], (23b)
where e > 0 is the elementary charge. Figure 8 shows the
dependencies of drift velocity v, as a function of the electric
field E,4. numerically calculated for different amplitudes of U.
For our calculations we chosen the parameters close to ones
from recent experiments [16], A = 20 meV and w; = 0. 1t}
(a ~ 3.5). For a weak acoustic excitation (black solid and
black dashed curves), vg(E;:.) is almost identical to the
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FIG. 8. Dirift velocity-electric field characteristics with variation
of the wave amplitude U = 0.3, 0.5, and 2 meV and at the critical
values of the instabilities Uy, = 9.55 meV and U, = 10.46 meV.
E.=2.3 kV/cm is the critical field for the onset of NDV in the
Esaki-Tsu characteristic. The solid and dashed black lines indicate
the v, (E,.) characteristics for small wave amplitude at U = 0.3 and
0.5 meV, respectively. The frequency of the acoustic wave is fixed at
oy = 0.177! (@ ~ 3.5). The calculations have been performed using
the parameters of the SSL structure with vy /v, = 35; see Table 1.

Esaki-Tsu dependence [37]. Therefore the supersonic condi-
tion (v; > vy) for the Cherenkov emission can exist for U <
U.,, however it does not necessary produce ANM or result in
the suppression of the drift velocity. This was confirmed in the
recent experiments [16], which have shown that the current-
voltage characteristics are almost identical with or without
illumination of the SL sample by the femtosecond pulse train
resulting the coherent acoustic wave generation due to stim-
ulated Cherenkov phonon emission. However, as the value
of U increases the dependence become less and less steeper,
compare pink curve for U= 2 meV, yellow curve U = U, =
9.55 meV and blue curve for U = U, = 10.46 meV. The
mechanisms of such a suppression [12,15] are similar to the
mechanisms governing the electron transport in a DC-biased
SL under electromagnetic irradiation [33]. They relate to the
fact that the electron tunneling probability is affected by the
energy fiw of the excitation quantum of frequency w, which
could be either photon (/€2) or phonon (%wy) interacting with
the electron. Here, the drift velocity can be expressed in terms
of the phonon-assisted replicas of the Esaki-Tsu drift velocity
[12,68],

vi ~ Y JR(B)ay(Eaed + nhwy/e), (24)

n=—0o0

where J,, is the first-kind Bessel function of order n, vy, (E4.)
is the dependence of the electron drift velocity on the DC
bias E;. for SL in the absence of photon/phonon excitations,
B = edE;/(hws) and E; = k,U/e is voltage equivalent of
the magnitude of the acoustic wave driving the SL. For a
range of B the term with Jy produces a dominant effect, so
implying suppression of the v; with growth of U. The validity
of Eq. (24) for the phonon-assisted transport is limited either
to small amplitude 8 (black curve, Fig. 8) or to the quasistatic
limit a = k! < 1 [69]. Thus we resort instead to the fully
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FIG. 9. Dependence of the drift velocity v,. on the dc bias E,. for
the amplitude of the acoustic wave U = U, = 3.92 meV and for
different sound frequencies: positive slope for w,t = 0.1 (@ = 1.3,
black curve), ANM for w;t = 0.3 (a = 3.9, red curve) and w, T =
0.5 (a = 6.6, blue curve). E. = 2.1 kV/cm is the critical field for
the onset of NDV in the Esaki-Tsu characteristic. The calculations
have been performed using the parameters of the SSL structure with
vo/vy = 13; see Table I1.

numerical integration of the model Eq. (23) and calculation
of drift velocity via BTE solution Eq. (20) which indicate that
ANM takes also place for a propagating acoustic excitation.
In particular, we found that for selected values of the SL
parameters, ANM is realized when U exceeds Uy = 10 meV.
Since Uy, < Uy < Uy, it indicates the gradual onset of the
ANM due to the absorption and emission of phonons under
the conditions of the anomalous Doppler effect. The inset of
Fig. 8 illustrates a zoomed part of the main panel of Fig. 8
in vicinity of E;. = 0 and it reveals a negative drift of the
electrons (vy < 0) for E4. = 0 when U = U, = 10.46 meV
(blue curve) and positive vy when U = U, = 9.55 meV (yel-
low curve) or U =2 meV (pink curve). It follows that the
condition for near zero mobility of an acoustically driven SL
can be given by

E, = aE,. (25)

Here, we have rewritten localization condition Eq. (19) in
terms of the amplitude, E; of the effective acoustoelectric
field, whereas E. = #i/(edt) is the critical electric field for
the onset of the negative differential velocity (NDV) in Esaki-
Tsu characteristic [37]. In contrast, the localization condition
[33,68] for the photon-assisted transport is Jo(8) = 0 with the
first root given at § = Eq/(E.Q21) ~ 2.4. Furthermore, the
dynamic localization and ANM are not possible for any ac
field amplitude when Qt < 1 and therefore the smallest am-
plitude of an ac field which can induce ANM is Eq = 2.4E,
at Q = 1/t [70]. In Sec. IV and Appendix E, we noticed that
Doppler effects start to have more prominent implications in
directed transport once the sound wavelength becomes com-
parable with the mean free path of the charge carrier, i.e.,
a/(2m) 2 0.5. This is further confirmed by Fig. 9 showing
that the increase of sound frequency w, and therefore of « re-
sults in the appearance of ANM (« = 3.9, red curve) similar to
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Fig. 8 in which we have considered a slightly smaller ¢ = 3.5.
Hereafter, Eq. (25) indicates values that are comparable with
the minimum amplitude of ac field which can induce ANM but
with considerably lower oscillating frequencies. On the other
hand, for « close to zero, i.e low sound frequencies w; or SL
structures with extremely narrow minibands [71] and there-
fore smaller vy, onset of ANM is not feasible. In this limit,
the acoustic wave driving acts practically like a quasistatic
ac signal, whereas the electron drift can be described well by
Eq. (24).

VI. BROADBAND AMPLIFICATION OF EM WAVES

In this section, we consider amplification of high-
frequency electromagnetic waves in acoustically driven SLs
[see Fig. 1(b)] and the corresponding role of the Doppler
effects, which result in the gain similar to the Bloch gain in
electrically biased SLs [34,35]. In this study, we consider the
model Eq. (23), in which the Eq. (23b) is substituted by

dp,
dt

with the term E(t) = E, cos(wt) designating a weak probe
field of the amplitude E,, and frequency w. Note that in prac-
tice, the frequency w can be favorably tuned by an external
resonant cavity [72]. The absorption of the probe ac field E ()
is determined by the real part of the dynamical conductivity
[73]

= eE, cos(wt) + kU cos[(ks(x + x;) — wst)], (26)

2(j(t t
o (w) = M7 27)
E,
where j(t) = eNvy(t) is the time-dependent current generated
by the SL driven by the acoustic wave which is calculated
using the time-dependent drift velocity

t
va(t) = / LS (28)
NS T
similar to the semiclassical approach presented in Sec. IV,
whereas the ballistic trajectory v, (¢, t;) is now governed by
Egs. (4a) and (26). Within this framework, the absorption
corresponds to o,(w) > 0 and gain to o,(w) < 0. The Drude
conductivity of the SL is o9 = 2j,/E., where j, =eNvg
is the peak current density, directly proportionally to elec-
tron density N. Here, o,(w) is estimated for a superlattice
with a miniband widh (20 meV) sufficiently smaller than
the optic phonon energy in GaAs [74] and a pump fre-
quency w;t = 0.1. The magnitude of the acoustic wave’s
frequency corresponds to o = 3.5. The proper choice of o—
parameter is important for the appearance of electron bunches
with a negative drift and ANM, which indicate strong in-
volvement of Doppler effects, and for controlling interaction
between bunches and the probe field, see Appendix E for more
details.

Figure 10 illustrates how the absorption profile o, () is
affected by the variation of U. For small wave amplitude
U =1.2 meV, o,(w) (green dash-dotted curve) almost fol-
lows the free-carrier absorption (red curve) in the absence
of a pump field, demonstrating a power-like decay as probe
frequency o increases, i.e., o, o (1 + w?t?)~'. Comparison

0.1 ) i 6
wT

FIG. 10. Absorption and gain profiles, o,(w), at fixed o, =
0.177! and different values of wave amplitude (U=1.2 meV, U, =
9.55 meV, Uy = 10 meV, and U, = 10.46 meV). The red curve
signifies the free-carrier absorption whereas the horizontal dashed
line marks the zero absorption. (Inset) Averaged position of ballistic
electron trajectories, x,(t), calculated for U = U, (yellow curve)
and U, (black curve). The calculations have been performed using
the parameters of the SL structure with vy/v, = 35; see Table II.

of the absorption profiles calculated for U = Uy, (yellow),
Uy (black), and Uy, (blue) shows that as U grows, the low-
frequency absorption gradually decreases, and for U close
to U, a low-frequency gain is realized in the system, see
blue curve for U = U,,. This transition originates from the
emergence of phonon-assisted Bloch oscillations which are
associated with the anomalous Doppler effect. As we showed
earlier in Sec. II, at U =~ U, the electrons starts to demon-
strate the Doppler instabilities that obey the first selection
rule [see Eq. (13)]. As a result electron bunches are formed,
which include the frequency-modulated Bloch oscillations
with maximal frequency wp®* = k,Ud /hi [24,25]. Appearance
of such trajectories decreases absorption for low frequen-
cies w. Indeed, the absorption profile calculated for U = Uy,
(yellow curve) shows significantly lower low-frequency ab-
sorption as compared to one for U = 1.2 meV (green curve),
with the second maximum of absorption in the vicinity of
wg™, which for the given parameters corresponds to wt ~
3.3. Further increase of U can localize electrons drift, see
the inset illustrating the averaged ballistic electron trajec-
tories calculated for U = Uy, (yellow) and for U, (black).
This localization leads to further decrease of absorption for
low-frequency range of electromagnetic probe field, com-
pare black and yellow curves in the main panel of Fig. 10.
For large enough U, the Doppler effects become more and
more prominent, and the drift of electron bunches can even-
tually be reversed. These mechanisms create a condition for
appearance of a low-frequency gain (o,(w) < 0) as it is evi-
denced by the absorption profile calculated for U = U,,, (blue
line). The numerical calculations reveal that for the chosen
parameters and U = U,,,, the gain is possible for the wide
range of frequencies up to w/(27) = 480 GHz. Further analy-
sis showed that o, (w) can obtain a significant THz gain value
(o = —0.0709) at U = U, comparable with the maximum
gain of a merely dc-biased superlattice (i.e., canonical Bloch
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oscillator): min{o,(w)/op} = —1/8 at Eg./Ec = NE) [73] and
larger than expected from SLs driven by monochromatic
and polychromatic fields with oscillating frequencies at the
sub-THz range [75]. Normally, we relate the magnitude of
the gain o, in units cm™' to dynamical conductivity as
ag = ag(o,/09) with ag = 1/(c/€€p) X 2jp/E: [75,76]. This
means that one can acquire the value a, = 37 cm™! for qp ~
527 cm~! given a temperature of few millikelvins, moderate
doping N = 10'® cm™3 and relative permittivity & = 13 cor-
responding to GaAs.

VII. CONCLUSION

In this work, we theoretically studied the physical mech-
anisms of acoustoelectric effects associated with miniband
charge transport in semiconductor superlattice. Our analy-
sis reveals that superluminal effects, previously described
within the framework of Ginzburg-Frank-Tamm theory for
electro-magnetic radiation [21,22,29], play an important role
in acoustically (strain) driven electron transport in minibands.
In particularly, our results suggest the realization of super-
luminal anomalous Doppler and backward normal Doppler
effects which are related to the development of dynamical
instabilities for certain magnitudes of acoustic stimuli propa-
gating through a superlattice structure. A kinetic model, based
on a semiclassical nonperturbative approach demonstrates
that these effects induced by coherent phonons manifest
themselves in excitation of complex Bloch oscillations and
formation of electron bunches which can counter-propagate
or be localized with respect to the propagating deformation
pulse. Such character of electron transport is reflected in
characteristic kinks in the dependence of electron drift veloc-
ity upon the acoustic wave amplitude, and can even lead to
the absolute negative mobility. Remarkably, our calculations
indicate that the anomalous Doppler effect for supersonic
miniband electrons (effectively superluminal) enables real-
ization of a highly tunable gain similar to the Bloch gain
occurring in the voltage driven superlattices [34]. These find-
ings open additional avenues for development of efficient
acoustoelectronic devices for microwave and THz ranges
by providing alternative means for manipulations of elec-
tromagnetic waves in various superlattice electronic devices
(SLEDs) [62,77] including harmonic multipliers [78,79] and
heterostructure millimiter-wave detectors [80]. Since semi-
conductior superlattices serve as building blocks for quantum
cascade lasers (QCLs), our theory provides with helpful
guidelines for the investigation of unusual acoustoelectric
phenomena in QCLs [81], which can be employed for tuning
QCL’s broadband THz emission [82]. In this context, it would
be useful to investigate the microscopic effects of different
scattering mechanisms, such as scattering of electrons by in-
terface roughness and electron-impurity interaction [83], on
the reported phenomena. For this aim, one could use Monte
Carlo simulation or/and utilize the approaches similar to the
[84,85].

In a wider context, similar phenomena can be expected
in other miniband systems subjected to slowly propagating
excitations such as ultracold atoms in optical lattices [86] or
in the physical systems with similar Hamiltonians, e.g., the
driven Harper models [87].
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APPENDIX A: NONLINEAR DYNAMICS IN THE REST
FRAME OF THE ACOUSTIC WAVE

The system dynamics describing the motion of an electron
under the influence of a propagating wave potential is de-
scribed by Eq. (4). To conceptualize how the acoustoelectric
phenomena discussed in terms of waves and quanta are re-
lated to bifurcations mechanisms, we analyze the equations of
motion in the moving reference frame x'(¢) = x(¢) + x; — v,t.
In this frame, the electron is subjected to a time-independent
potential V (x") = —U sin(k,x’) whereas the kinetic energy of
an electron is translated into £'(p,) = E(py) — vsp,. After
this transformation, the Hamiltonian becomes

H' =& (po)+ V) (AD)
and therefore the equations of motion can be cast as
y . ((pd
X' = vp sin - ) Vg, (A2a)
Dr = kU cos(kx'), (A2b)

which in contrast to Egs. (4) have no explicit dependence on
time in their right-hand sides. It follows that the equilibria
of the dynamical system Eq. (A2) should meet the following

conditions:
d
vo sin (%) = v, (A3a)
cos(kx') = 0. (A3b)
This dictates the locations of the fixed points
, b4 n mr (Ada)
X =—+— a
2k kg’
h v hm
= (=1'=sin”" [ =) +1—, Adb
pe=(=1) ks (Uo) +i— (A4b)

where m and [ are arbitrary integer numbers. From a viewpoint
of a wider miniband (vy > vs) and therefore higher conduc-
tion current, a simple stability analysis reveals that all these
fixed points are always either hyperbolic or elliptic points. Af-
ter dividing Eqs. (A2b) by (A2a) and performing integration,
we obtain the phase trajectory equation

-1y fivg [ vo ped pid
—1 — | COS — COS —
Ud| v, [ i

kg
pxd  pod T
+ 2 2 :|}+ij,

where j is an integer number, and (x;, p;) is an initial condi-
tion.

Cherenkov effects near fixed points. We now answer the
question whether our moving particle with velocity v(py)
larger than vy, is able to induce phenomena analogous to

X =

sin~! { sin kyx; —

(A5)
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FIG. 11. Schematic representation in the g—v space of the for-
ward and the backward Cherenkov effects when a charged particle
is moving with a supersonic velocity v(p,) at the center and the
borders of the superlattice Brillouin zone. (a) Forward Cherenkov
absorption in the proximity of py, . (b) Forward Cherenkov emission
in the proximity of py, . (c) Backward Cherenkov absorption in the
proximity of py,. (d) Backward Cherenkov emission in the proximity
of p,,. The angle of 6 is the opening angle of the Vavilov-Cherenkov
cone indicating an almost perpendicular orientation of the velocity
vector v with respect to abscissa-located phonon wave vector ¢
for U <« Ug,. The insets demonstrate the projection of Cherenkov
effects in the active zone described by Fig. 2.

Cherenkov-like conical flow and how the stationary points
can help to probe these effects. Strictly speaking, to answer
this question one should then take into consideration a real-
istic three-dimensional description by including a quadratic
isotropic dispersion law in the Hamiltonian [Eq. (3)] for the
in-plane kinetic momentum components p; = (p,, p;). How-
ever, the forward and reversed Cherenkov radiation, in the
proximity of the stationary points, is consistent with the as-
sumption of the 1D emission in Eq. (5) being finitely small.
This implication is easily understood by considering an elec-
tron with v;/v(p) < 1 with p the total electron momentum.
In that case, the Cherenkov mechanism! acts mainly in a
direction g, almost perpendicular to electron velocity v with
its x component being the scalar projection v onto § = ggy:

comp;b = |v| cos§ = %vo Sin(py), (A6)
where 0 is the angle between the electron velocity and
wave vector § of the emitted phonon in the proximity of
the stationary points. Hereafter we consider in detail the
nature of Cherenkov effects around the center of the first
Brillouin zone: (i) when p; > p; = —py,, so that g > 0.
This results in an absorption of phonon and a positive elec-
tron velocity that surpasses sound velocity, which is forward
Cherenkov radiation [Fig. 11(a)]. (ii) When p; < p; = py,,
so that ¢ < 0. This results in an emission of phonon and
a negative electron velocity that its norm surpasses sound
velocity, which is again forward Cherenkov radiation. Con-
sider now what happens at the border of the first Brillouin

I'This is nothing more than the kinetic description of Cherenkov
interactions of sound wave with electrons in metals stemming from
Landau absorption mechanism [96].

4
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FIG. 12. [(a) and (b)] Phase space trajectories (left) and the re-
lated electron trajectories (right) in real space that can determine
the nature of Cherenkov effects in the vicinity of the center and
the border Brillouin zone for U = 1.2 meV. The yellow trajectories
correspond to the backward Cherenkov whereas the blue ones to
the forward Cherenkov. (¢) The complex meandering trajectory and
the corresponding trajectory in real space representing the phonon-
assisted Bloch oscillation which arises for U = 10 mev > Uy, . The
positions of the elliptic points are depicted by black solid circles
and the hyperbolic points by red crosses. The calculations have been
performed using the parameters of the SL structure with vy/v; = 35;
see Table II.

zone: (iii) when py < p; = p,,, so that g < 0. This results
in an emission of phonon and a positive electron velocity
with v > vy, which is backward Cherenkov. Finally, (iv) when
Pr > pi = ps, which may lie outside the first BZ (Umklapp
process), so that ¢ > 0 and in this sense is an absorption
of phonon [Fig. 11(d)]. To find the physically equivalent
point inside the first BZ, we have to subtract the module
of the reciprocal superlattice vector |Go| = 27 /d from py.
Thus p’f = py — |Gp| will be found in the proximity of p;,
with v < 0 which results in a backward Cherenkov effect.
Practically, we have forward and backward Cherenkov-like
conical flow in the center and at the edges of BZ respec-
tively. Similar description one can attain from the elliptic
points at the center and edges of the BZ, i.e., normal versus
backward Cherenkov. In essence, the counter-wise rotation of
the phase-space trajectories around the elliptic points [left-
handed panel of Fig. 12(a)] with p,, = (h/d) sin’l(vx/vo)
and p,, = wd/h — (li/d)sin~! (vs/vy) designate the nature of
the Cherenkov instabilities. Therefore, for absorption of an
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infinitely small quasiparticle (g) the clockwise trajectory (blue
curve) in the proximity of p,, is related to an electron tra-
jectory in the real space that moves in the positive direction
of x, v(p,, + g) > 0 (forward Cherenkov effect). On the con-
trary, the electron trajectory which moves momentarily in the
negative direction, v(p,, + ¢) < 0 (backward Cherenkov ef-
fect), corresponds to the counterclockwise trajectory (yellow
curve). Those two trajectories are directly associated with the
motion of electrons confined by the propagation potential and
they coexist for small U with unbounded trajectories [left-
handed panel of Fig. 12(b)] in the moving reference frame.
The latter phase-space trajectories are related to unconfined
motion [right-handed panel of Fig. 12(b)] of electrons in real
space and their different direction has origin again in the
nature of different Cherenkov effects.

Global instabilities (bifurcations). The aforementioned tra-
jectories and the associated Cherenkov effects can well exist
both for small and large wave amplitudes. Considering though
substantially larger values of U triggers a series of global in-
stabilities which are attributed to instances where the manifold
of one hyperbolic point touches another hyperbolic point. It
has been shown that the conservation of energy, H' = const
[see Eq. (A1)], can be used to determine the bifurcation points
analytically [25]

_ Aeos(pyd/R) — cos(pyd /T)] + vspy, —

U vS p S
¢ sin(kx;;) — sin(k,x,)

. (AT

where (x;,, p;;) and (xy,, ps;) are a set of coordinates of
hyperbolic points which are involved in a specific bifur-
cation. Using these coordinates one can attain the explicit
formulations for critical values of the wave amplitude, i.e.,

ksx' /7

FIG. 13. Separatrix structure in the proximity of the first bifur-
cation point U, for (a) U =9, (b) 9.52, and (c) 9.6 meV. The
positions of the elliptic points are depicted by black solid circles
and the hyperbolic points by red crosses. The calculations have been
performed using the parameters of the SL structure with vy /v, = 35;
see Table II.

ped/(hm) pgd/(hm) pyd/(hn)
N O — O = N—= O = N

ksx'/m

FIG. 14. Separatrix structure in the proximity of the second bi-
furcation point U, for (a) U = 10, (b) 10.4, and (c) 10.5 meV. The
positions of the elliptic points are depicted by black solid circles
and the hyperbolic points by red crosses. The calculations have been
performed using the parameters of the SL structure with vy /v, = 35;
see Table II.

Egs. (9)—(11). The bifurcations cause dramatic transformation
of the phase space (see Figs. 13 and 14) and result in the
emergence of meandering trajectories such as the one depicted
in the left-handed panel of Fig. 12(c) which corresponds to
frequency-modulated oscillations in real space shown in the
right-handed panel of Fig. 12(c). This trajectory in contrast
to the ones depicted in Figs. 12(a) and 12(b) follows from a
nonconventional acoustoelectric effect which is an effective
counterpart of the superluminal anomalous Doppler effect.
The discussion under which conditions this phenomenon
arises and how relates to global instabilities are presented in
detail in Sec. II.

APPENDIX B: ENSEMBLE-AVERAGED
PHYSICAL QUANTITIES

By resorting to ensemble-averaged physical quantities in
Sec. IIT helped us to better understand the role of the Doppler
effects in the global transport in the dissipationless limit. In
this Appendix, we will discuss in detail the proper definition
of these quantities starting from a straightforward approach
in which we simply average across the initial positions x;
of electrons, or, equivalently across the initial phases of the
acoustic wave

v, (1) = v0<sin{pX(ht)d}> , (Bla)
A [pd

E,(t) = 3<1 cos {—h }>x,‘7 (B1b)

Vu(t) = U (sin(ksx — wst))y;, (Blc)
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where v,(t) = (x),, is the averaged electron velocity, E,(t) =
(E(py))y, is the averaged electron energy and V,(t) =
(V(x, 1))y, is the averaged potential energy. For example, the
value of (v,(t)x),, is determined by averaging x over an
ensemble of electron trajectories with different x; from the
interval [—A/2, A/2). Here, A = 2m /k, designates the space
period of the propagating wave. We are ready now to define
the dissipationless approach (r — oo) for the evaluation of
(20). Thus one can formally calculate the time-averaged ve-
locity v, = (v,(t)) A, by using

1 r/2 At dt
U = —/ dx,-/ v(t, ;) — (B2)
AJ 0 At
and the initial conditions
x(t, ) =x;, pei, ) =0. (B3)

In this approach, [v(t,1;), p«(t,t;)] plays the role of the
Vlasov phase and #; designates the initial time as described
in Refs. [88,89] and references therein.

However, this approach described by Eq. (B1) faces short-
comings when we are seeking to define precisely the averaged
momentum p,, i.e., the center of the mass of the electron dis-
tribution (CMED), f(py, x, t), in the quasimomentum space.
Let us now the reduce the dimensionality of f(py,x,t) by
integrating over all initial phases (from —A/2 to A/2) of the
acoustic wave

F(pest) = (f(pry X, 1)) -

We may obtain the x;-averaged quantities [Eqgs. (Bla)—(Blc)]
that were introduced earlier by averaging against f, (.), =
d/(mh) ff:g/l () F(px, 1)dpx. One can easily understand the
implications of such a choice for (p,),, by considering the
f(ps.t) centered around a symmetric and narrow peak at
px =mh/d. In that case, the expectation value (py),, =0
contradicts the real value of w//d. To predict with precision
the CMED, we resort to a circular mean angle ps = p.d/h
which is determined by the first trigonometric moment m; of
the distribution®

(B4)

Dy = argmy, my = (exp(ipcd/h))y,,

while the (circular) variance of the distribution is obtained
from absolute value, |m;| =A, of the first trigonometric
moment

Yy=1-A. (B5)

Here the V takes values between 0 and 1. The value of the
lower bound, V = 0, implies a Dirac §-distribution function
centered at mean angle pg, whereas the value of the upper
bound, V =1, indicates a distribution function which has
no defined mean. To analyze though the effects of electron
bunching in Sec. III, we shall use A which describes the
coherence of the electron distribution, i.e., how concentrated

>This method relies on superlattice balance equations [51] and
their connection to rotationally symmetric distributions in directional
statistics [52].

is f around its mean. The averaged velocity and averaged
energy can be obtained in terms of the variables pg, A

_AAd . £ — AA q B6

T sin(py), E, = 7[ — cos(pg)]. (B6)
From Egs. (B1) and (B6), one finds that

Asin(pg) = (sin(pyd /1))y, (B7a)

A(1 = cos(py)) = (1 — cos(pid /). (BTb)

In fact, our numerical calculations further confirmed that the
ensemble average approach [Eq. (Bla)] and the averaging
against circular distribution [see Eq. (B6)] of electron velocity
are equivalent.

p-space bunching between higher order bifurcations

Figure 15 complements Figs. 5 and 6 by summarizing
the properties of wavelike bunching of electrons in mo-
mentum space between consecutive higher-order bifurcations.
Specifically, we consider three values of U between Uy,
and U,, viz. 2U/A =1.06, 1.08, and 1.1 and another
three values between U, and U, namely, 2U/A = 1.14,
1.17, and 1.2. When U > U, new type of trajectories rise,
such as the ones depicted by the dashed curves in the first
panel of Figs. 15(a)-15(c), resulting in nonlinear bunching
of the electron distribution function f [see second panel
Figs. 15(a)-15(c)]. The amplitude of these p,-nonlinear oscil-
lations exceeds the size of the second Brillouin zone caused
due to an anomalous Doppler shift and a normal Doppler
shift near the end of the first and the second Brillouin zone
respectively. As U changes between U, and U, the non-
linear bunching becomes more prominent at the value of
2U/A = 1.08 [second panel Fig. 15(c)], coinciding with a
local maximum of v,,(U) in Fig. 4. This behavior implies a
balanced mixture of anomalous and normal Doppler emis-
sions similar to Smith-Purcell effects in photonics crystals
[46]. Once U lies between U, and U, more complicated
trajectories emerge involving three-phonon emissions, e.g.,
black dashed curve in the left panel of the Fig. 15(d). Finally,
calculating the averaged electron energy and potential energy
further confirms the absorption-emission events since the am-
plitude of their oscillations is enhanced with the variation of
U, implying the emission (absorption) of larger number of
phonons. Note E,(¢) and V,(¢) in third and fourth panel of
Figs. 15(a)-15(f).

APPENDIX C: DERIVATION OF THE SOUND
ABSORPTION COEFFICIENT

Consider a coherent acoustic wave that propagates through
the superlattice. We want to study its evolution and the attenu-
ations effects due to the interaction with the electrons and the
crystal under the Hamiltonian Eq. (3). Then, the derivative of
H with respect to time is given by

& . V. 0H

H=—p, +—%+—. Cl
T T €D
By averaging Eq. (C1) over Ty = 27 /w,, we obtain
: Ue(px)  Us
(H)r, = 2k,U — cos(kyx — wst)) . (C2)
Vo Vo T,
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FIG. 15. The temporal dynamics of p,-space trajectories subjected to normal and anomalous Doppler instabilities (first panel), the electron
bunches (second panel), the averaged electron energy E,, (third panel) and the averaged potential energy V,, (fourth panel) for (a) 2U/A = 1.06,
(b)2U/A =1.08,(c)2U/A = 1.1 withU, < U < Uy, and (d) 2U/A = 1.14,(e) 2U/A = 1.17,(H) 2U/A = 1.2 with Uy, < U < Uy,. The
black and blue curves in the first panel were calculated for x; = —m /(2k;) and —2/k;, respectively. The white lines in the second panel indicate
the center of electron distribution as a function of time. The calculations have been performed using the parameters of the SL structure with
Ve /vy =22.
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To calculate the absorption I" coefficient, we need to substitute
the right-hand side of Eq. (C2) in the definition Eq. (21).
The last step requires the exact solution of Boltzmann equa-
tion in the general case by using the path-integral approach
[Eq. (20)].

APPENDIX D: SMALL-SIGNAL GAIN
IN THE QUASISTATIC LIMIT

Here we discuss how a parameter, effectively the product
(vo/vy) X (wyT), is important for the appearance of electron
bunches with a negative drift but also whether it can influence
the interaction of electrons with the electric probe field in the
quasistatic limit. By employing again the formulation for the
amplitude, E; = kU /e, of a effective acoustoelectric field, we
obtain a generalized condition for the onset of the successive
bifurcations derived by Eq. (18) which reads

L S S N A T A P DI
(E);““”‘ (z)(%) d O

Then from the above equation, it follows that « can also deter-
mine the amplitude of the acoustoelectric field for which the
electron localization [see Eq. (19)] takes place. In addition, the
second term of Eq. (D1) depends on v;/v, with v, = 2vy/7,
which controls the size of the active region [Eq. (12)], the scat-
tering induced broadening 7/t incorporated in Eq. (20) and
the product k,d which is associated with propagation of the
acoustic wave. To investigate all the former considerations, we
calculated first the drift velocity v, as a function of vy/v; and
wsT at U = Uy, [Fig. 16(a)] where the negative drift velocity
is possible. The upper-right blue area indicates values (vy /vy,
w,T) that result in an enhancement of the backward drift due
to the complex Bloch oscillations which are linked to the
anomalous Doppler effect. In contrast, the dark red area des-
ignates the region with no reversal of drift velocity to negative
values. As a next step, we calculate the absorption, o,(w, U),
of an ac probe field as a function of an arbitrary amplitude
U, of the acoustic wave by resorting to an exact solution of
the BTE. We assume that frequency of the acoustic wave is
;T = 0.1 whereas the signal field frequency is much smaller
than the inverse relaxation time (wt <« 0.1). Figure 16(b)
demonstrates how the absorption changes with the variation of
U for different superlattice parameters and therefore different
values of the parameter a. By increasing the wave amplitude,
the incoherent absorption remains positive (yellow curve) for
vo/vs = 13 (a ~ 1.3) evenif U exceeds the critical value Uy,
On the contrary, for a larger miniband width, A = 20 meV
(a ~ 3.5), gain is feasible (blue curve) if U reaches the values,
where the sign of o, starts to be sensitive to the Doppler
frequency shifts. Remarkably, gain exhibits an abrupt change
and attains a maximum value close to U = U,,, similar to
the characteristic changes in drift velocity (see Fig. 7). These
effects imply a sensitive dependence of absorption on the
sign of drift velocity and « parameter. It then follows that
the true parameter that determines the mode of absorption
of the probe field is « rather than just w;tr. This occurs
because w;, and k; enter in the kinetic equations into a com-
bination. Interestingly, for an even larger o ~ 5.5, the o,(w)
dips anew to negative values when U = U, [green curve,
Fig. 16(a)].

—
o

vy (102 ms'l)

\®)
S

FIG. 16. (a) Color map showing the dependence of the drift
velocity v, on vy/vs and w,t. The open circles mark the exact
values of vy for which absorption was calculated numerically in the
figure below. (b) Absorption o,(w) of the oscillating field E(¢) as
a function of the wave amplitude U (1* lower scale) or the strain
magnitude € (2™ lower scale) for wt < 0.1 and different values of
vo/vs =: 13,35, 55. The upper scale denote the values of the acous-
toelectric field [see Eq. (D1)] for a SL structure with vy /v; = 35 and
E. = 2.3 kV/cm. The vertical lines correspond to the U = Uk, for
different SL parameters; see Table II.

APPENDIX E: KEY QUANTITIES AND
PRACTICAL CONSIDERATIONS

In this Appendix, we provide further details regarding the
superlattices structures considered to calculate the physical
quantities related to acoustoelectric effects. Table II outlines
the chosen parameters taken from realistic samples [16,38,73]

TABLE II. Parameters of superlattices studied.

A (meV) 0o (S/m)
miniband d (nm) T (fs) vo/ Vs Drude
width lattice period scattering time Ve /U conductivity
7 12.5 250 13 (10.5) 5.04

20 11.4 250 35(22) 11.98

60 6 200 55 (35) 7.96
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TABLE III. Critical values of the wave amplitude for the SL
structures in Table II.

Ucr 1 Ucr2 Ucr3 Ucr4
Vo / Vs meV meV meV meV
13 3.1 3.92 4.75 5.58
35 9.55 10.46 11.37 12.27
55 29.14 30.87 32.59 34.31

and depicts the critical ratio vy/v; that is largely responsible
for the demonstration of different types of supersonic behavior
and effectively controls the size of the active zone. A short
overview of material properties, device design, experimental
conditions and dominant scattering mechanisms determining
T in Table II can be found in Refs. [55,90-93]. The entries
in the parentheses denote the ratio which is proportional to
the effective electron speed (v, = 2vp/m) and it is involved
in the expressions of the selections rules [Eq. (18)] allowing
us to make a straight-forward comparison with their effects
on direct transport in the quasiballistic limit. Furthermore, the
fourth column gives the Drude conductivity which is used to
scale the dynamical conductivity and therefore complement-
ing Figs. 10 and 16.

One can characterize in a direct way the fraction of super-
sonic electrons by calculating the probability density g(v(p,))
of miniband electron velocities for the particles starting from
x; = 0 and the initial momenta p; uniformly distributed within
the interval (—mhi/d, wh/d), i.e., within the first BZ. In this
case, the miniband electron velocities obey a shifted arcsine
distribution [94] whose probability density function is g(v) =
1/(w+/(v)? — v?) with —vg < v(py) < vo. Figure 17 illus-
trates a colormap of g calculated versus v(p,)/vs and vy /v;.
For a typical SL structure with vg/v; = 13, whose parameters
are given in Table II, the probability density g demonstrates
values of small order ~0.01 in the subsonic (subluminal)
region shown by the area between the dashed horizontal lines.

0.10
0.08
0.06
0.04
0.02

v(pz)/vs

10

vo/vs

FIG. 17. Color map showing the probability density g of a par-
ticle’s velocity v(p,) within (—vg, vg) for p, uniformly distributed
over (—mh/d, wh/d) and different ratios vy /v;.

Figure 17 reveals that g in the subsonic region is reduced sig-
nificantly (transition between yellow and dark-purple colors)
with the increase of vg/v,, ensuring that v would surpass vy
almost for any p, at the limit vy > v;.

Table III summarizes the critical values associated with the
physical processes corresponding to bifurcations [cf. Eq. (9)].
The bolded entries represent the critical values of U which
are all in excellent agreement with numerical simulations, as
portrayed by Fig. 7. The wave amplitudes are directly propor-
tional to the deformation potential D and the maximum strain,
€, that the acoustic wave creates. For the simulations in this
work we consider D = 10 eV [38] and € < 0.5 % which lies
within an easily accessible experimental range [38,95]. These
values are sufficiently large to reach the critical values of U
described in Table II.
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