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Time-dependent coherent light pulse absorption from macroscopic Maxwell equations
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We present a simple way to calculate the time-dependent energy transfer between a general pulse of light
and a layered media. Although we argue that trying to define such absorption is, in general, meaningless, our
model still improves the standard method by including effects such as chromatic dispersion, more accurate time
dependence of absorption, and nonabsorptive effects.
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I. INTRODUCTION

With the advent of subpicosecond laser pulses, it has
been required to model the transient out-of-equilibrium re-
sponse of condensed matter systems to an ultrashort stimulus.
Some examples include the study of the disparate dynam-
ics for electrons and phonons in metals [1], nonthermal
electronic dynamics in metals [2] and semiconductors [3],
ultrafast magnetization dynamics of metals [4], dielectrics [5],
semiconductors [6], and half-metals [7], the melting of the
superconducting phase [8], nonlinear optics for instance for
THz generation via optical rectification [9], or the heating
and machining of polymers [10]. Even though a dynam-
ical treatment of the interaction between a coherent light
pulse and matter is possible using quantum methods such as
the real-time time dependent density functional theory [11]
(rt-TDDFT) or density matrix approaches [12], it is still often
more practical to use a semiclassical treatment where the
light pulse is seen as a transient external source of energy,
for instance, in a two-temperature model [13] (2TM) or in
a Boltzmann transport calculation [14]. In such case, one
often resorts to the transfer matrix method (TMM) in var-
ious frameworks [15–21] to compute light propagation and
the subsequent light absorption as a function of depth in the
considered system. In this case, the energy transfer from the
external electromagnetic radiation to the condensed matter
system is inferred from Poynting theorem:

∂u

∂t
+ ∇ · S = −J · E. (1)

We shall refer to this equation as the microscopic Poynt-
ing theorem in contrast to the macroscopic version given
below. The electromagnetic energy density u is given by
u = (ε0E2 + B2/μ0)/2 with ε0 and μ0 the vacuum permit-
tivity and permeability, respectively, while E and B are the
electric field and magnetic induction respectively. S = (E ×
B)/μ0 is the Poynting vector,1 while J is the charge current.

*Corresponding author: quentinremy5@gmail.com
1The general validity of the expression of Poynting vector as shown

here has been discussed before and is beyond the scope of this

Equation (1) means that energy transported by the electro-
magnetic field (left-hand side) may be transferred (lost by
the electromagnetic field) to matter (right-hand side). The
right-hand side of this equation can then be used to calculate
light absorption provided that one has an equation for J. In
TMM calculations, it is usually assumed that the external
light source is a monochromatic wave and one averages the
physical quantities of interest over a period of oscillation of
the electromagnetic field. The absorption (energy gained by
matter) is either obtained from −∇ · S or J · E. Both methods
can be found in the literature (see, for instance, Ref. [17]
or [22]). The assumption that the electromagnetic radiation
is monochromatic implies that it is fundamentally of infinite
extension in time. The time dependence of the absorption
of a pulse is then often modeled by taking the absorption
amplitude proportional to the measured intensity profile of the
light pulse. The TMM calculation itself only serves to obtain
the spatial dependence of the absorption.

One directly sees that this approach is not rigorously cor-
rect to predict light absorption of pulses since they have a
certain spectral range. This will lead to a more complicated
time dependence of the absorption (influenced by interfer-
ences between different monochromatic waves and reflections
within the layered material system) as well as chromatic dis-
persion due to the frequency dependence of refractive indices.
Our extension of the TMM to include such effects is presented
in Sec. II. We then present some example calculations of this
model in Sec. III. We find that chromatic dispersion, which
cannot be modeled in the standard TMM, leads to quantitative
changes of the (time averaged) absorption profile. They may
become significant for laser pulses with a duration of a few
femtoseconds or less provided that one knows refractive in-
dices for a sufficiently large range of frequencies. Additional
predictions of this model will lead us to discuss the validity
and meaning of the underlying assumptions of our model
in Sec. IV. In particular, we give an extensive discussion of
conservation of energy in the context of macroscopic Maxwell

work. Because we consider nonmagnetic materials with no spatial
dispersion, the expression S = E × H should still be valid [41–43].
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equations and conclude that the problem of energy transfer is
in general ill-defined in this framework, unveiling a paradigm
similar to the Abraham-Minkowski controversy for electro-
magnetic energy.

II. MODEL

We now present our model for the energy transfer from
a coherent pulse of electromagnetic radiation to matter. The
material systems considered are usually thin films, or the elec-
tromagnetic radiation has normal incidence, such that we only
consider spatial dependence along the direction z orthogonal
to the sample surface. The presented model can be easily
extended to the general three dimensional case. We first start
by a description of coherent light pulses before considering
their propagation in heterostructures via the TMM and finally
their absorption.

A. Coherent pulses

We first only discuss electromagnetic fields in vacuum
which are described by Maxwell equations without sources.
As mentioned above, considering a monochromatic wave im-
plies having an infinite pulse duration. In order to model a
pulse with a finite duration, one needs to consider a super-
position of monochromatic waves. We only consider plane
waves, assuming that the electric field in an actual electro-
magnetic field beam is orthogonal to its wave vector. This
is usually a good approximation for optical laser pulses and
typical experimental setups [23]. The external complex (with
a tilde) electromagnetic radiation incident on the material as a
function of time t and space z is then given by

Ẽ(z, t ) = E0ê
∑

n

G(ωn)ei(knz−ωnt ), (2a)

B̃(z, t ) = E0

∑
n

(kn × ê)

ωn
G(ωn)ei(knz−ωnt ). (2b)

E0 is the amplitude of the electric field whose polarization axis
is defined by the unit vector ê (we will only consider s and p
linear polarizations). Because we only consider plane waves,
the wave vectors kn all have the same directions specified
by an angle of incidence θ0 (see Appendix B). Only their
norm kn = ‖kn‖ = ωn/c (in vacuum) is different for different
monochromatic waves indexed by the subscript n. In Eq. (2),
we only consider an electromagnetic field propagating in one
direction. In our one-dimensional model, the total electro-
magnetic field is the superposition of forward and backward
propagating fields (see Appendix B). G is a complex spectral
density which governs the shape of the light pulse. It should
be remembered that the quantities representing the true elec-
tromagnetic field are real quantities (without a tilde). This
is especially important in this work as we do not consider
quantities averaged over a period of oscillation. One must then
take the real part of Eq. (2) when calculating quantities such
as energy or Poynting vector but the complex version of each
field is still convenient for calculations noting that the real
part operator is linear. The angular frequencies ωn = nπc/L
are integer multiples of the fundamental angular frequency of

a fictitious Fabry-Pérot interferometer with a length L. This
means that Eq. (2) describes in general a periodic repetition
of pulses separated in space by a length 2L. When L → ∞,
the sum in Eq. (2) becomes an integral and represents the
Fourier transform of the spectral density. The parameter L can
be adjusted so as to reproduce the repetition rate of a laser. For
simulations, L is high enough so as to model the effect of only
a single pulse.

B. Approximations and transfer matrix method

We now consider electromagnetic fields in matter as well
as in vacuum, which are described by macroscopic Maxwell
equations [24]. A full knowledge of the macroscopic fields is
then obtained provided that one has an equation for charge
and current distributions. Electromagnetic waves propagation
is fully characterized by refractive indices in the absence
of external sources of charges and/or currents [25]. These
indices are fully described by the behavior of free charges
(via Ohm’s Law) and bound states (via the permittivity and
permeability tensors in the usual dipolar approximation [24]).
It is also assumed that the permeability tensor is equal to
the unit tensor (assumption valid for optical frequencies and
for non magnetic materials at THz frequencies) so that B =
μ0H . We further neglect any possible anisotropy (such as
birefringence or gyrotropy), nonlinear effects, spatial dis-
persion, and time inhomogeneity. Thus our materials are
described by a frequency-dependent scalar refractive index
[26], which is the most commonly available data in the lit-
erature [27]. Finally, we only consider s and p polarized light
(otherwise one needs the four by four TMM formalism [21]).
Thus, for each monochromatic wave in the electromagnetic
pulse, the electromagnetic field propagation can be computed
from the standard TMM. Then, because we only consider
linear media, the propagation of the electromagnetic pulse
Eq. (2) within any heterostructure is computed by summing
the electric and magnetic fields (in matter we more conve-
niently consider magnetic field instead of magnetic induction)
associated with each monochromatic mode. In each layer of
the heterostructure, each monochromatic wave of the electro-
magnetic field is characterized by the amplitude of the forward
and backward propagating modes as well as the angle of
incidence (complex in general) of the wave vector. We refer
to standard literature about the TMM formalism for details
[15–21]. Here, we compute the monochromatic waves propa-
gation using the implementation of Byrnes [20]. The complete
electromagnetic field as a function of time and space for s and
p polarizations is given in Appendix B. In particular, what we
need from the standard TMM formalism are the electric field
amplitudes E f

0n and Eb
0n of forward and backward modes of

monochromatic waves n, as well as the complex angles θn.

C. Absorption for pulses

We can know tackle the problem of energy absorption.
We first start by highlighting the main difference between
our approach and the conventional one to calculate the latter
quantity. In the standard TMM, the starting point is the time
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FIG. 1. Geometrical configuration of wave vectors for light ab-
sorption calculations in multilayers. We represented the wave vector
of the incident electromagnetic field as well as the wave vectors for
forward and backward propagations in one of the layers and for one
wavelength.

averaged Poynting vector Re(Ẽ × H̃
�
)/2.2 Here, we calculate

the complete Poynting vector S = E × H = Re(Ẽ ) × Re(H̃ ).
However, as in the standard TMM, we calculate the absorption
from −∇ · S and not J · E. This is because the latter form
requires a knowledge of J, usually via Ohm’s law, on top
frequency-dependent conductivities, and it does not consider
absorption due to bound states. The former on the other
hand only depends on knowing complex refractive indices
[26]. This is extensively discussed in Sec. IV. Because we
are only interested in the energy absorption integrated over
the x and y coordinates (see Fig. 1) and because there is
no electromagnetic field in a region infinitely far from the
irradiated area of the material system, the energy absorption as
a function of time and depth is defined as A(z, t ) ≡ −∂Sz/∂z,
where Sz is the z component of the Poynting vector. We first
focus on the normalized absorption a(z, t ) = A(z, t )/S0

z with
S0

z = Sz(z = 0, t = 0). We then find

(s) : a(z, t ) = −1

S0
z

∑
n,m

Re
[
ikn

(
E f

n − Eb
n

)]
× Re

[
ñm

cμ0

(
E f

m − Eb
m

)
cos(θm)

]
+

∑
n,m

Re
[
E f

n + Eb
n

]
× Re

[
ñm

cμ0
ikm

(
E f

m + Eb
m

)
cos(θm)

]
, (3a)

(p) : a(z, t ) = −1

S0
z

∑
n,m

Re
[
ikn

(
E f

n + Eb
n

)
cos(θn)

]
× Re

[
ñm

cμ0

(
E f

m + Eb
m

)]

2Within the same approximation, absorption can also be calculated
equivalently from reflection and transmission [17] because the for-
mula for the latter two quantities are obtained from the time averaged
Poynting vector for the backward wave in the initial medium (reflec-
tion) and the forward wave in the final medium (transmission).

+
∑
n,m

Re

[(
E f

n − Eb
n

)
cos(θn)

]

× Re

[
ñm

cμ0
ikm

(
E f

m − Eb
m

)]
,

(3b)

S0
z =

∑
n,m

E2
0

cμ0
G(ωn)G(ωm) cos(θ0). (3c)

With ñm the refractive index for the monochromatic mode
m, θ0 the angle of incidence of the incident (external) light
pulse, and E f

n (z, t ) and Eb
n (z, t ) are given in Appendix B. This

definition is discussed in details in the remaining part of this
work. Equation (3) shows that one does not need to know
E0 to calculate the normalized absorption. For applications
however, it is often required to know the absorption. It is then
desired to explicitly compute S0

z . If, as often, one only knows
the fluence F of a light pulse, one must use the fact that the
integral of the Poynting vector over time, in the direction of
propagation of the pulse, is equal to the light fluence. This
is presented in Appendix A for the case of a Gaussian pulse.
To compare with the standard result of the TMM, we need
to define a time independent normalized absorption a(z). It
is obtained by the requirement that the energy density u(z)
provided locally by the light pulse to the heterostructure is
u(z) = a(z)F . This means that a(z) is obtained by

a(z) = 1

F

∫
A(z, t )dt . (4)

Where the integral must be performed over a time interval
that contains only a single pulse from the periodic repeti-
tion of Eq. (2). If chromatic dispersion is negligible, the
latter equation will provide a result that is close to the stan-
dard TMM procedure.3 From the time independent absorption
calculated with the standard TMM, the time-dependent ab-
sorption is usually phenomenologically obtained as the time
dependence of the light intensity profile. However, the true
time dependence will be in general completely different, even
without chromatic dispersion, due to interferences between
monochromatic waves and reflections inside the heterostruc-
tures which can lead, for instance, to echoes. Finally, we note
that not only absorption but also time-dependent transmission
and reflection of a coherent light pulse may be calculated
by calculating the Poynting vector in vacuum on both sides
of the heterostructure, for backward and forward pulses,
respectively.

III. RESULTS

We now present some example calculations of this model
for a simple Pt(5 nm)/Cu(10 nm) heterostructure on a trans-
parent substrate. We only present simulations at normal
incidence and so light polarization becomes unimportant. We
first consider a Gaussian optical pulse and simulate the pulse

3This is not generally the case because Eq. (4) depends on fre-
quency via refractive indices as well as wave vectors ‖kn‖ = ωnñn/c.
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FIG. 2. Spectral density G of the optical pulse used for sim-
ulations as a function of frequency f = ω/(2π ). The dashed line
represents the function given by Eq. (A1) while vertical lines rep-
resent the selected frequencies for simulations.

propagation and absorption. We also use the calculated ab-
sorption as an input for the early stage of a two temperature
model (2TM) calculation. We finish by comparing the results
obtained at THz frequencies.

A. Optical pulses

We first consider an optical light pulse of central angular
frequency ωc = 2πc/λ0, with λ0 = 800 nm the wavelength in
vacuum, and pulse duration τ = 10 fs (see Appendix A). For
such pulse durations, the spatial extension of the pulse along
the direction of propagation is of the order of 10 µm which is
much smaller than typical substrate thicknesses. We thus con-
sider that the substrate is infinite and choose a glass substrate.
The system of interest is then air/Pt(5 nm)/Cu(10 nm)/glass
where both air (̃n = 1) and glass media are considered as semi
infinite.

The spectral density of the pulse is shown in Fig. 2.
Because our electromagnetic field corresponds to a peri-
odic repetition of pulses [Eq. (2)], the spectral density is
discrete and the relevant information is represented as the
vertical lines. The separation in frequency between each line
is given by the length L previously introduced and we use
here L = 10

√
2τc (

√
2τ is the duration of the electromag-

netic amplitude pulse ∝ ‖E‖, while τ is the duration of the
electromagnetic intensity pulse ∝ ‖E‖2). The amplitude of
each selected mode is then given by Eq. (A1) and shown as
a dashed line in Fig. 2. Note that for this optical pulse, we
chose a real spectral density. The refractive index for air and
glass are 1 and 1.5136 for the considered frequency range and
the refractive index for Cu (̃n = 0.11 + 5.14i at ωc) and Pt
(̃n = 2.98 + 6.37i at ωc) are taken from the literature [28,29].

1. Propagation

By computing the electric field as a superposition of all
monochromatic waves in each medium [Eq. (2a) in air; see
Appendix B in general] based on the assumption of linear
media, one can predict how an electromagnetic pulse behaves

FIG. 3. Electric field amplitude as a function of time t and po-
sition z. The air/Pt interface of the sample is at a position z = 12
µm (white dashed line). The inset show the electric field amplitude
for t = 0 fs.

as it encounters the Pt/Cu/glass sample. This is shown in
Fig. 3 where we plotted the electric field amplitude ‖E(z, t )‖.
The electric field amplitude at t = 0 fs is shown in the inset
and has the usual shape of a Gaussian pulse as expected. For
longer times, one can see the pulse being partially reflected
by the metallic sample and also partially transmitted. The
amplitude of the transmitted field is visibly lower because of
the thickness of the considered metallic heterostructure and
one can clearly see that the light velocity and wavelength
are smaller due to the fact that the semi-infinite medium on
the right-hand side is glass. The checkerboard pattern around
t = 40 fs on the left-hand side of the sample clearly shows
interferences between the incident and reflected pulses. One
can also observe the π phase shift occurring when light is
reflected from a medium with a higher refractive index. Such
calculations can in general reproduce pulse damping and dis-
persion [23] like the Telegrapher’s equation does, as it should,
since both our approach and the Telegrapher’s equation are
based on Maxwell equations.

2. Absorption, the role of dispersion and comparison with the
monochromatic case

Next we compute the light absorption in the sample accord-
ing to Eq. (3). In Fig. 4, we show the time dependence of light
absorption for given positions. In Fig. 4(a), we show absorp-
tion in Pt at the air/Pt interface. A first important difference
compared to the usually modeled time-dependent absorption
is the presence of oscillations due to the coherent nature of
the calculation. Also, we see that absorption can sometimes
be negative, i.e., the electromagnetic field retrieves some of
the energy it provided to matter. We shall come back to this
point in the next section. We already note however that the
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FIG. 4. Calculated time-dependent light absorption in (a) Pt at the air/Pt interface and in (b) Cu at the Cu/glass interface. (c) shows a
zoom around 40 fs for positions around air/Pt and Cu/glass interfaces. Plus and minus superscripts indicate whether the position of interest is
the right side (+) or the left side (−) of an interface.

plotted function is on average (in time) positive. In Fig. 4(b),
we show absorption in Cu at the Cu/glass interface. In this
case, absorption is also positive in average as we shall see
below, even though this is less obvious. The reason is that at
these frequencies Cu absorbs much less than Pt.

The time dependence of the absorption within each layer is
almost independent of position because layers are really thin
(only the amplitude changes as shown in Fig. 5). In general,
because of the finite velocity of light, there might be a non
negligible phase shift between the time-dependent absorption
at different position within a layer, but this requires layers at
least a few hundreds of nanometers thick. There is however
a significant phase shift at interfaces. This is clearly shown
in Fig. 4(c) where we consider absorption on both sides of
the air/Pt and Cu/glass interfaces. The reason for this phase
shift is the fact that the (frequency-dependent) transmission
and reflection coefficients obtained from Fresnel equations are
in general complex since refractive indices themselves are
complex numbers. We note that absorption in air and glass
is not identically zero for reasons we will explain in the next
section, but it is exactly zero when integrated over time.

We now compare our results with the standard TMM
by computing the time independent absorption according to
Eq. (4). The results are shown in Fig. 5. Figure 5(a) shows
almost no difference between our method and the standard
TMM. This is because refractive indices actually do not
change much with frequencies for the considered spectral
density (Fig. 2). We recover the fact that absorption, when
integrated over time, must be positive (and is exactly zero
in media with a real refractive index; not shown). There is,
however, a drastic change in the optical properties of Cu
for photon energies of around 2.1 eV (590 nm wavelength;
508 THz frequency), which is barely covered by the spectrum
of Fig. 2, due to interband transitions [30]. Hence, we also cal-
culated the time integrated absorption for a central wavelength
of 600 nm in Fig. 4(b). For the same pulse duration of 10 fs,
we see an increased difference with the monochromatic case.
This difference is further increased if we use a pulse duration
of 4 fs. We however could not decrease the pulse duration
even more because of the lack of data for sufficiently high
and low frequencies. Interestingly, a significant difference in
absorption is also observed in Pt while dispersion (dñ/dω) is

FIG. 5. Time integrated absorption as a function of depth z′ =
z − 12 µm in the sample computed for a central wavelength of (a) 800
and (b) 600 nm and for various pulse durations. Results obtained with
the standard TMM method (monochromatic/infinite pulse duration)
are also shown.
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FIG. 6. Calculated electronic temperature in the metallic struc-
ture as obtained by the 2TM and the calculated time-dependent
absorption. We give the electronic temperature for two depths z′ =
2.5 nm (Pt) and z′ = 10 nm (Cu). Temperatures T � are obtained by
neglecting electronic diffusion and the electron-phonon interaction
in the 2TM. The time axis has been shifted by defining t ′ = t −
40 fs. The (measured [23]) fluence used for simulations is
1.84 mJ/cm2. The relatively high electronic temperature in Cu con-
sidering its low absorption is due to its relatively low heat capacity,
around an order of magnitude lower than for Pt.

almost identical for both 600 and 800 nm. Finally, we note
that significant differences of absorption profiles may also be
obtained for longer pulse durations (around 100 fs) in more
complex multilayer structures [23].

3. Consequence on condensed matter dynamics

Our model may have direct consequences for models of
condensed matter systems that do not rigorously simulate the
light matter interaction. To illustrate this, we consider the sim-
ple case of the 2TM with methods and parameters as detailed
in Refs. [23,31]. The main point is to use A(z, t ) = a(z, t )S0

z
as the energy source term in the 2TM. The results are shown
in Fig. 6.

We only focus on the electronic temperature Te at instants
when the light pulse is still interacting with the metallic
structure. As expected from Fig. 4, the electronic temper-
ature increases in a non monotonous way, coherently with
the light pulse. Of course the validity of the 2TM (and the
existence of such fast oscillations in the electronic temper-
ature) is especially dubious at this timescale but it allows
us to simply illustrate the transfer of energy between light
and matter happening within the framework of macroscopic
Maxwell equations we introduced earlier. To make this even
simpler, we also made calculations neglecting the electron-
phonon interaction (negligible at this timescale) and electronic
transport (here diffusion). We call the resulting temperature
T �

e and plot it in Fig. 6 for the same depths as earlier. The role
of electronic diffusion is then evidenced and one can clearly
see the heat transport from the highly excited Pt layer towards
the Cu layer. Our main focus is however the shape of T �

e : the

FIG. 7. Spectral density G of the optical pulse used for simula-
tions as a function of frequency f = ω/(2π ). The top panel (a) shows
the norm of the spectral density while the bottom panel (b) shows its
argument. Contrary to Fig. 2, we do not show explicitly the discrete
nature of the spectral density because frequency difference between
each mode is too small to be displayed.

superposition of a pulsed oscillation with a sigmoid. A similar
behavior is also obtained from rt-TDDFT [32] for the charge
motion. It is understood from the existence of absorptive and
nonabsorptive processes during light matter interaction [33]
which is inherently present in the formalism we use via the
real and imaginary parts of the refractive index.

Another consequence of our model on light matter interac-
tion simulations is due to the observed phase shift in Fig. 4(c).
This phase shift means that the electric field and/or the
absorption may have different signs in different layers. Con-
sidering that charge transport happens at the sub-femtosecond
timescale [34], this effect may have an important effect in
condensed matter systems excited by ultrashort light pulses.
The authors are not aware of any work in this direction.

B. THz pulses

We finish this section by showing similar calculations but
for THz pulses which have become a widely used tool to ex-
cite and probe condensed matter [35–37]. The spectral density
we now consider is shown in Fig. 7.

We consider a more complicated spectral density whose
analytical expression is given in Appendix C. The substrate is
replaced by a Si substrate. Considering that the light pulse
now has a size of a few millimeters, we consider a finite
substrate with a thickness of 0.25 mm. For simulations, we
now use L = 20

√
2τc. The refractive indices were obtained

from [38,39] with ñ = n + in and n = √
σDC/(2ε0ω) where
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FIG. 8. Electric field amplitude for the THz pulse as a function
of time t and position z. The air/Pt interface of the sample is at a
position z = 3 mm (left white dashed line) while the Si/air interface
is at a position z = 3,25 mm (right white dashed line). The amplitude
of the electric field after the air/Pt interface has been multiplied by a
factor of 35. The inset show the electric field amplitude for t = 0 fs.

σDC is the DC conductivity [40]. At 1 THz, n 	 509 for Cu
and n 	 186 for Pt. Similarly to the optical case, we plot the

propagation of the THz pulse, as it encounters the multilayer
structure, in Fig. 8.

Because of the large reflection, we increased the electric
field amplitude after that interface by a factor of 35. This
makes the various reflections inside the Si substrate clearly
visible. Because of the larger wavelengths considered in this
example we find, as expected, that the electric field inside
the metallic multilayer is a constant function of space to a
good approximation (i.e., the electric field amplitude is al-
most the same in Pt and in Cu at all instants). In addition,
even though refractive indices strongly depend on frequency,
no effect of dispersion is expected (because the propagation
factors exp(ikz) are almost equal to 1), which is indeed what
we observe. From these results, the absorption in the Pt/Cu
structure is calculated as before and shown in Fig. 9.

As for the optical case, the absorption as we calculate it
is not zero for a given instant in air and Si, even though its
value is smaller than in the metallic layers. The time inte-
grated absorption is however zero, as it should. Again, the
time dependence of the absorption is an oscillating function,
as calculated before, for instance, in Ref. [22]. However, the
absorption is in this case mostly positive (the calculated min-
imum value is around −2 × 10−6 nm−1) which is explained
by the higher sample reflectivity at THz frequencies (see
Sec. IV). Because the electric field is constant throughout the
metallic multilayer, absorption is almost independent of space
in a given layer.

Finally, we use the calculated absorption as an input for
a 2TM calculation and show the electronic temperature for
two positions in the metallic multilayer in Fig. 10. In this
case, the electric field amplitude and fluence are related to
each other by numerically integrating the computed Poynting

FIG. 9. Calculated time-dependent light absorption in (a) air at the air/Pt interface, in (b) Cu at the Cu/Si interface, in (c) Pt at the air/Pt
interface and in (d) in Si at the Cu/Si interface. Plus and minus superscripts indicate whether the position of interest is the right side (+) or the
left side (−) of an interface.
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FIG. 10. Calculated electronic temperature in the metallic struc-
ture as obtained by the 2TM and the calculated time-dependent
absorption for the THz pulse. We give the electronic temperature for
two depths z′ = 2.5 nm (Pt) and z′ = 10 nm (Cu). The time axis has
been shifted by defining t ′ = t − 10 ps and the depth axis by defining
z′ = z − 3 mm. The fluence used for simulations is 0.92 mJ/cm2.

vector for the incident pulse. One can see that the evolution of
the electronic temperature is mostly dominated by the three
peaks of absorption observed in Figs. 9(b) and 9(c). Even
though absorption is strongly different between Pt and Cu,
the calculated electronic temperature is almost the same at
both positions for all times. This is due to the fast electronic
transport (diffusion in this model) compared to the THz pulse
duration.

IV. DISCUSSION

A. The energy conservation equation

The definitions of absorption given earlier (−∇ · S or
J · E) are ambiguous. To have a better understanding of this,
one needs to look at conservation of energy in detail. Certain
approaches to derive the equation for conservation of energy
tend to suggest that one can unambiguously separate the en-
ergy due to the electromagnetic field from the energy of matter
[41]. In such case, absorption is uniquely given by J · E. A
better description of light-matter interaction can be obtained
from the lagrangian of quantum electrodynamics.4 Field the-
ory straightforwardly gives an equation for the conservation
of energy [44]:

∂e

∂t
+ ∇ · T = 0, (5a)

4We only need to consider a classical electron field. One can con-
sider several fields for matter (such as a field for nuclei) but this is
unimportant for our discussion. No quantum field theory is required
for our explanation of conservation laws. Such theory is required
to understand renormalization effects necessary to properly consider
self interactions. This is however beyond the scope of this work and
we do not discuss self-fields [45].

e = u + ψ†
(
cα · (p − qA) + mc2β

)
ψ, (5b)

T = S + c2

2
(ψ† pψ − (pψ†)ψ ),

− c2ψ†qAψ + ∇ ×
(

ψ† h̄c2

4
σψ

)
, (5c)

where ψ is the electron bispinor field, α and β are the matrices
appearing in Dirac equation, p = −ih̄∇, q = −|e| is the elec-
tron charge, A is the vector potential, m is the electron mass
and σ = σ ⊗ I2 with σ the vector of Pauli matrices and I2 the
two by two unity matrix. As shown by Eq. (5) the quantity that
is time invariant and that can thus be safely defined as energy
is the volume integral of the total energy density e. Attempt-
ing to define the energy of light and matter as two separate
quantities, such as, for instance, u and ψ†(cα · p + mc2β )ψ ,
respectively, would be devoted of sense in general because
of the term cqψ†α · Aψ . This term depends of both matter
and electromagnetic fields and could thus be assigned to ei-
ther the energy of light or matter or even shared between
light and matter. Only when both fields are sufficiently well
separated in space, such that ψ†α · Aψ 	 0 everywhere in
space, one can unambiguously define the energy of light and
matter [44]. The same is obviously true for the energy cur-
rent T and momentum density T/c2. This inevitably leads
to the impossibility of defining without ambiguity quantities
such as light absorption (this work) or the momentum of
light (the Abraham-Minkowski controversy, see, for instance,
Ref. [46]) in a general manner. Any separation is fundamen-
tally based on an approximation (which may depend on the
chosen gauge). A similar conclusion can be drawn for any
interacting system, such as a mixture of electrons and phonons
in the framework of the 2TM used in the previous section,
where energies of each subsystem are defined as the energies
(often renormalized [47]) of the noninteracting parts of an
Hamiltonian.

B. Macroscopic Maxwell equations and the definition of light
absorption

Properly calculating energy transfers therefore requires
to completely account for interactions which is usually an
impossible task in practice. The question our work tries to
answer, which is “What is the amount of energy acquired by
matter, from light, at each moment in time?” does not have
a proper answer. Nonetheless, it is still helpful to provide
a qualitative answer to this question in many semiclassical
problems. We thus come back to the framework of macro-
scopic Maxwell equations. In this case, the equation that is
used to describe transfers of energy, the macroscopic Poynting
theorem, is [24]

E · ∂D
∂t

+ H · ∂B
∂t

+ ∇ · (E × H ) = −J · E. (6)

Even in this framework, one deals with ambiguities to define
the energy of the electromagnetic field because of the light-
matter interaction. First, it is well-known that in general no
electromagnetic energy density can be defined even mathe-
matically, because the first two terms of the left-hand side of
Eq. (6) cannot be written as the time derivative of any quan-
tity [24,48]. Even in simpler cases, where such quantity can
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be defined mathematically, ambiguities still remain. We first
consider the standard case of a light pulse which is sufficiently
long such that chromatic dispersion are small in the range of
frequencies where the spectral density is considerable and the
spectral density is mostly centered around a central angular
frequency ωc [24]. Then Eq. (6) becomes

∂ueff

∂t
+ ∇ · S = −J · E − ωc Im(ε(ωc)) 〈E2〉

− ωc Im(μ(ωc)) 〈H2〉 , (7a)

ueff = 1

2
Re

(
d (ωε)

dω
(ωc)

)
〈E2〉

+ 1

2
Re

(
d (ωμ)

dω
(ωc)

)
〈H2〉 . (7b)

Angular brackets denote a time average over a period 2π/ωc.
From this equation, it is clear that both definitions −∇ · S
and J · E contain different contributions to energy transfers,
even if the effective electromagnetic energy density ueff could
be defined as the true electromagnetic energy density. The
definition J · E has the advantage of being zero in vac-
uum but it does not contain absorption due to bound states
−ωc Im(ε(ωc)) 〈E2〉 − ωc Im(μ(ωc)) 〈H2〉. The opposite is
true for −∇ · S. The net advantage of the latter definition is
that when computing the time integrated absorption, corre-
sponding to the well defined energy acquired by matter due
to the light pulse,5 energy transferred to both free and bound
charges (the two kinds of constituents considered by the
macroscopic approximation of Maxwell equations) is consid-
ered. This justifies our earlier choice of definition. The reason
why absorption calculated with −∇ · S is not zero in vacuum
is because it also considers local increase and decrease of
energy in the electromagnetic field (well-defined in vacuum)
as a light pulse propagates, as given by −∇ · S = ∂u/∂t . We
note that, just like in the Abraham-Minkowski controversy, an
infinite amount of definitions of absorption exist, and not just
the two discussed here [46].

The next simple case we consider, of interest for our metal-
lic sample and transparent substrate at THz frequencies, is
the case where one can neglect bound states. In this case,
D = ε0E and Eq. (6) becomes

∂

∂t

(
1

2
ε0E2 + 1

2
μ0H2

)
+ ∇ · (E × H ) = −J · E. (8)

The material system is then made of a free electron gas.
Integrating this equation over a time window which starts
well before the light pulse irradiates the sample and ends well
after irradiation (such that overlap between electromagnetic
and matter fields can be safely neglected) shows that the time
integrated absorption, calculated with any definition, will give
the same result, consistently with the fact that bound states are
neglected. Equation (8) is then essentially identical to the mi-
croscopic Poynting theorem Eq. (1), since B = μ0H with the

5Long before the light pulse spatially overlaps with the material
sample, and long after this irradiation, one can define the energy of
the light pulse and matter. The difference of matter energy between
two such instants in time is the total energy absorbed.

FIG. 11. Comparison of two definitions for (normalized) light
absorption, −∇ · S/S0

z (blue solid line) and J · E/S0
z (red dashed

line), for both the considered optical (a) and THz (b) light pulses.
The time axis has been shifted by defining t ′ = t − 40 fs in (a) and
t ′ = t − 10 ps in (b). The calculation is performed for Pt at the air/Pt
interface.

exception that H must be computed with frequency-dependent
refractive indices [Eq. (B2)]. This suggests that in this case,
the true absorption should be defined as J · E. We use the fact
that the charge current may in this case be calculated directly
from the optical conductivity σ̃ (ω), i.e., ñ = √

1 + iσ̃ /(ε0ω)
[26] to compare both definitions of absorption in Fig. 11, for
both optical (a) and THz (b) pulses.

In the optical case, the absorption calculated using J · E6

has the same shape than the absorption calculated using

6The charge current is obtained via Ohm’s law J(z, t ) =
Re(

∑
n σ̃ (ωn)(Ẽ

f
n (z, t ) + Ẽ

b
n(z, t ))), where Ẽ

f
n and Ẽ

b
n are the com-

plex forward and backward monochromatic (with frequency ωn)
electric field vectors. They are the terms in the sums of Eqs. (B2e)
and (B2f) respectively (for s polarization) or Eqs. (B2i) and (B2j)
respectively (for p polarization). For instance, at normal incidence
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Poynting vector (apart from a small phase shift) but a different
amplitude. As explained above, the time integrated absorp-
tion will be the same in the absence of bound states. The
difference between both definitions will be the amplitude of
the nonabsorptive energy transfer (giving rise to negative ab-
sorption) which comes from the electromagnetic field induced
by the electronic response to the external light pulse [33].
This induced field is more precisely due to electric dipole
emission which is taken into account via the optical conduc-
tivity.7 Interestingly, absorption also has a negative part when
using J · E, because the induced field is included in the total
electric field E. Equation (8) seems to allow us to exclude
the part of the energy transfer purely due the light pulse
propagation (the only possible energy transfer in vacuum), in
the approximation of no bound state. Nevertheless, in light
of Eq. (5) and the corresponding discussion, we cast some
doubt about the correctness of the interpretation of J · E as
the true time-dependent energy absorption. In addition, it is
not clear whether the approximation of no bound state is good
in metals at optical frequencies and we still recommend to
use −∇ · S with refractive indices obtained experimentally or
from ab initio calculations.

The approximation of no bound state is valid when
σ̃ /(ε0ω) is sufficiently larger than the permittivity of bound
states, that is when the considered frequencies are sufficiently
lower than the lowest resonant bound state frequency [24].
This is believed to be true in many metals at THz frequencies
[38,39]. However, this condition of low frequency usually
implies a large refractive index (both real and imaginary parts)
meaning that there will be a large reflection at the air/metal
interface. This in turn implies a small electromagnetic field
transmission in the sample. According to our previous discus-
sion of Eq. (5), this means that the light and matter fields will
be more clearly separated in space, at all times, permitting a
separation (to a good approximation) of the electromagnetic
and matter energies. This is illustrated in Fig. 11(b) where we
computed absorption using both definitions for the THz pulse.
The results are almost identical, consistently with the large
reflection observed in Fig. 8. The difference between both
absorptions is equal to the absorption calculated in Fig. 9(a)
in air at the air/Pt interface consistently with Eq. (8) (not
shown). This is also consistent with the fact that the calculated
absorption in the metallic sample for the THz pulse is mostly
positive at all times, meaning that non absorptive effects and
then induced fields are negligible.

We finish by noting that, even though a more accurate
description of the problem of light-matter interaction neces-
sarily includes coupled equations describing the evolution of

and for s polarization, this gives J(z, t ) = Re(
∑

n σ̃ (ωn)(E f
n (z, t ) +

Eb
n (z, t ))ŷ).
7The electric dipole emission in general comes from both free and

bound charges as the wave propagation equation ∇(∇ · E ) − ∇2E =
− ∂

∂t (μ0ε0
∂E
∂t + μ0J + ∂P

∂t ) shows, where P is the polarization vec-
tor. For a complex monochromatic wave of angular frequency ω,
the right-hand side of the wave propagation equation becomes
(ω2/c2 )Ẽ (̃εr + iσ̃ /(ε0ω)) = (ω2ñ2/c2)Ẽ. The linearity (in E) of the
wave propagation equation justifies our approach. When bound states
are negligible, P = 0 and ε̃r = 1.

the system (as opposed to what was shown for instance in
Fig. 6 where absorption calculations are used as an input in
equations describing matter), it is possible to describe the
energy transfer between light in matter more quantitatively
with the formalism shown in this work, in an effective way.
One just has to consider time dependence of refractive indices,
provided that one has access to temperature (if coupled for
instance to the 2TM) or time-dependent refractive indices.

V. CONCLUSION

To conclude, we presented a model to calculate the time-
dependent energy transfer from a light pulse to matter when
the electromagnetic field and matter is described by macro-
scopic Maxwell equations and the response of matter is
included in refractive indices. Because of the interaction of
light with matter, we argued that it is in general not possible
to define an absorption because one cannot separate the total
energy into energies for light and matter. Still, we argue that if
such a quantity needs to be calculated, it is in general better to
use −∇ · S because it includes bound states and is to a good
approximation identical to J · E at low frequencies, when the
role of bound states is negligible.

We showed that this approach takes chromatic dispersion
into account, which becomes important for ultrashort laser
pulses, as well as possible phase shifts between different lay-
ers and coherent effects which change the temporal shape of
the absorption profile. The latter fact is especially important
for instance for THz pulses which cannot be modeled as
Gaussian pulses in general and whose absorption has been
shown to lead to important effects such as ultrafast demag-
netization [36]. More effects can easily be taken into account
(such as anisotropy or general light polarizations) by using a
generalized TMM. Finally, this more general way of comput-
ing absorption may find applications for models who need to
consider absorptive and nonabsorptive energy transfers on an
equal footing.
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APPENDIX A: GAUSSIAN OPTICAL LASER PULSE IN
VACUUM

In many instances, optical laser pulses can be modeled or
treated as having a Gaussian temporal profile. The spectral
density is then also given by a Gaussian function:

G(ω) = πc√
2πLσω

e
− (ω−ωc )2

2σ2
ω . (A1)

With σω the standard deviation of the spectral density and
ωc its central angular frequency. Using Eqs. (A1) in (2a) and
taking the limit L → ∞:

Ẽ(z, t ) = E0ê exp

(
− σ 2

ω

2

(
z

c
− t

)2)
ei(kcz−ωct ) (A2)

with kc = ωc/c. The electric field is then given by the product
of a Gaussian envelop with a monochromatic wave. This does
not however justify applying the TMM for the central angular
frequency ωc and subsequently multiplying the absorption
by the Gaussian envelop to get the correct propagation and
absorption of the laser pulse as this neglects interference be-
tween different monochromatic waves as well as chromatic
dispersion. The power flow Sz in the direction orthogonal to
the sample interface is

Sz(z, t ) = E2
0 cos(θ0)

μ0c
cos2(kcz − ωct )

× exp

( − 1

2(σ I
t )2

(
z

c
− t

)2)
. (A3)

The standard deviation of the pulse intensity pro-
file σ I

t = 1/(
√

2σω ) is related to the pulse duration
τ = 2

√
2 ln(2)σ I

t because the latter is the full width at half
maximum of the temporal intensity profile by definition. The
electric field amplitude on the other hand can be related to the
measured laser fluence F [23]:

E2
0 = 2Fμ0c

√
2πσ I

t

(
1 + e−2

(
σ I

t

)2
ω2

c
) . (A4)

As shown by integrating Eq. (A3) over time.

APPENDIX B: EXPRESSIONS FOR ELECTRIC AND
MAGNETIC FIELDS IN MATTER

For completeness, we provide here the equations for the
electric and magnetic fields inside the heterostructure for both
s and p polarizations, which are a generalization of the ex-
pressions given in Ref. [20]. We write the incident electric
and magnetic fields as follows:

ki = 2π

λn
(cos(θ0)ẑ + sin(θ0)x̂), (B1a)

Ei
n(r, t ) = E0G(ωn)ei(ki·r−ωnt ), (B1b)

(s) : E i(r, t ) = ŷ Re

[∑
n

E i
n(r, t )

]
, (B1c)

H i(r, t ) = 1

cμ0
(sin(θ0)ẑ − cos(θ0)x̂)

× Re

[∑
n

E i
n(r, t )

]
, (B1d)

(p) : E i(r, t ) = (− sin(θ0)ẑ + cos(θ0)x̂)

× Re

[∑
n

E i
n(r, t )

]
, (B1e)

H i(r, t ) = 1

cμ0
ŷ Re

[∑
n

E i
n(r, t )

]
. (B1f)

Where we have kept the spatial dependence in r =
(x, y, z) for generality, λn = 2πc/ωn is the wavelength of the
monochromatic wave n in vacuum and the geometry is defined
by Fig. 1.

In the heterostructure, the various electric field ampli-
tudes E f

0n and Eb
0n of the respective forward and backward

monochromatic plane wave modes, as well as the wave vector
(complex) angles θn with respect to the air/sample surface
normal, are directly obtained from the TMM code of Byrnes8

[20]. The total fields in the heterostructure (separating forward
and backward propagation) are

k f
n = 2π ñn

λn
(cos(θn)ẑ + sin(θn)x̂), (B2a)

kb
n = 2π ñn

λn
(− cos(θn)ẑ + sin(θn)x̂), (B2b)

E f
n (r, t ) = E f

0nG(ωn)ei(k f
n ·r−ωnt ), (B2c)

Eb
n (r, t ) = Eb

0nG(ωn)ei(kb
n·r−ωnt ), (B2d)

(s) : E f (r, t ) = ŷ Re

[∑
n

E f
n (r, t )

]
, (B2e)

Eb(r, t ) = ŷ Re

[∑
n

Eb
n (r, t )

]
, (B2f)

H f (r, t ) = Re

[ ∑
n

ñn

cμ0
(sin(θn)ẑ

− cos(θn)x̂)E f
n (r, t )

]
, (B2g)

Hb(r, t ) = Re

[ ∑
n

ñn

cμ0
(sin(θn)ẑ

+ cos(θn)x̂)Eb
n (r, t )

]
, (B2h)

(p) : E f (r, t ) = Re

[ ∑
n

(− sin(θn)ẑ

+ cos(θn)x̂)E f
n (r, t )

]
, (B2i)

8In the code of Ref. [20], the amplitudes are given for E0 = 1.
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Eb(r, t ) = Re

[ ∑
n

(− sin(θn)ẑ

− cos(θn)x̂)Eb
n (r, t )

]
, (B2j)

H f (r, t ) = Re

[∑
n

ñn

cμ0
ŷE f

n (r, t )

]
, (B2k)

Hb(r, t ) = Re

[∑
n

ñn

cμ0
ŷEb

n (r, t )

]
. (B2l)

The total fields are then given by E = E f + Eb and H =
H f + Hb.

APPENDIX C: THZ PULSE SPECTRAL DENSITY

The spectral density for the THz pulse considered in this
work is given by

G(ω) = F (ω, λ0, τ ) + eiα(ω−ωc )F (ω, λ′
0, τ

′) (C1)

with ωc = 2πc/λ0 and the function F defined by

F (ω, λ, τ ) = πc

L

s exp
((

s 2πc
λ

)
ln(ωτ )

)
e−ωτ

�
(
s 2πc

λ
+ 1

) , (C2)

where � is the gamma function and we have used
λ0 = 0.33 mm, λ′

0 = 0.05λ0, τ = 1ps, τ ′ = 10τ , α =
1.4 ps, and s = 10−12 is a scaling factor used to avoid
large numbers when numerically computing the spectral
density.
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