
PHYSICAL REVIEW B 106, 014305 (2022)

Effect of anharmonicity on the thermal conductivity of amorphous silica
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Proper consideration of anharmonicity is important for the calculation of thermal conductivity. However,
how the anharmonicity influences the thermal conduction in amorphous materials is still an open question. In
this work, we uncover the role of anharmonicity on the thermal conductivity of amorphous silica (a-SiO2) by
comparing the thermal conductivity predicted from the harmonic theory and the anharmonic theory. Moreover,
we explore the effect of anharmonicity-induced frequency shift on the prediction of thermal conductivity. It is
found that the thermal conductivity calculated by the recently developed anharmonic theory (quasi-harmonic
Green-Kubo approximation) is higher than that calculated by the harmonic theory developed by Allen and
Feldman. The use of anharmonic vibrational frequencies also leads to a higher thermal conductivity compared
with that calculated using harmonic vibrational frequencies. The anharmonicity-induced frequency shift is a
mechanism for the positive temperature dependence of the thermal conductivity of a-SiO2 at higher temperatures.
Further investigation on the mode diffusivity suggests that although anharmonicity has a larger influence on
locons than diffusons, the increase in thermal conductivity due to anharmonicity is mainly contributed by the
anharmonicity-induced increase of the diffusivity of diffusons. Finally, it is found that the cross-correlations
between diffusons and diffusons contribute most to the thermal conductivity of a-SiO2, and the locons contribute
to the thermal conductivity mainly through collaboration with diffusons. These results offer new insights into
the nature of the thermal conduction in a-SiO2.
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I. INTRODUCTION

The role of anharmonicity on thermal conduction in amor-
phous solids is quite different from that in their crystalline
counterparts [1,2]. For crystalline materials, it is known that
anharmonicity leads to a reduction of the phonon mean
free path, which causes a decrease in thermal conductiv-
ities at higher temperatures [1]. However, for amorphous
materials, thermal conductivities increase monotonically with
an increase in temperature [2]. The mechanism for this
phenomenon and the effect of anharmonicity on thermal con-
duction in amorphous materials are still open issues [3–8].

Early studies by Alexander et al. [3,4] and Jagannathan
et al. [5] suggested that anharmonic interactions in amorphous
materials can induce phonon-assisted hopping of localized
fractons, thus leading to an increase in thermal conductivity.
Allen and Feldman [6,7] derived a thermal conductivity model
(AF theory) for amorphous harmonic solids from the Kubo
formula. This harmonic theory has successfully predicted
the positive temperature dependence of thermal conductivity
in amorphous silicon [7], which is totally attributed to the
increase in heat capacity with temperature. However, later
studies by Shenogin et al. [8] showed that positive tem-
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perature dependence of thermal conductivity in amorphous
silica (a-SiO2) and polystyrene can be predicted by molec-
ular dynamics (MD) simulations that ignore the temperature
dependence of the specific heat. Their results suggest that
anharmonicity is a mechanism for the rise of thermal conduc-
tivity in amorphous materials with a complex composition at
higher temperatures [8]. Although current research found a
positive role of anharmonicity on heat conduction in amor-
phous materials [3–5,8], the underlying mechanism for the
influence of anharmonicity is still unclear.

Recently, several thermal conductivity models that can
consider both anharmonicity and disorder have been pro-
posed [9–12] that provide tools for investigating the effect
of anharmonicity on thermal transport in amorphous mate-
rials. Lv and Henry [9] developed the Green-Kubo Modal
Analysis (GKMA) method, which combines the Green-Kubo
(GK) formula with lattice dynamics formalism. This method
[9] uses MD simulations to obtain the modal contributions
to the heat flux, thus naturally including anharmonicity and
disorder. The ability to consider modal contributions allows
it to apply a quantum correction to the heat capacity [9].
GKMA has been used to explore the effect of anharmonicity
on the thermal conduction in a-SiO2 [10]. It was found that
locons are largely responsible for the rise in thermal con-
ductivity above room temperature, and may contribute to the
thermal conductivity through collaboration with other modes
due to anharmonicity [10]. Simoncelli et al. [11] derived an
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equation that accounts for both anharmonicity and disorder
from the Wigner phase space formulation of quantum me-
chanics. This equation [11] can reduce to the expression de-
rived by Peierls-Boltzmann transport equation for anharmonic
crystals and AF theory for harmonic amorphous materials.
Isaeva et al. [12] obtained an equation that can also consider
both anharmonicity and disorder through combing the GK
theory and a quasi-harmonic description of lattice vibrations.
This equation [12] was dubbed the quasi-harmonic Green-
Kubo approximation (QHGK) for thermal conductivity.

In this work, we uncover the role of anharmonicity on the
thermal conduction in a-SiO2 through comparing the thermal
conductivities calculated by the harmonic theory (AF theory)
and the anharmonic theory (QHGK), and by investigating the
effect of anharmonicity-induced frequency shift on the predic-
tion of thermal conductivities. Moreover, mode diffusivities
with and without considering anharmonicity are calculated
and compared to reveal the effect of anharmonicity on dif-
fusons and locons, respectively.

The rest of this article is organized as follows. The theo-
retical formulations used in this work are reviewed in Sec. II.
The computational details are presented in Sec. III. The cal-
culated vibrational mode properties are presented in Sec. IV,
including the inverse participation ratio (IPR), the phonon
density of states (DOS), the vibrational frequencies, and the
mode lifetimes at different temperatures. The comparisons
between the thermal conductivities and diffusivities calculated
using QHGK and AF theory are presented in Sec. V. The
effects of anharmonic vibrational frequencies on the thermal
conductivities and diffusivities are investigated in Sec. VI.
The conclusions are presented in Sec. VII.

II. THEORETICAL FORMULATIONS

Two theories are used in this work to uncover the role of
anharmonicity on thermal conduction in a-SiO2, including AF
theory [6] and QHGK [12]. AF theory [6] was derived based
on the Kubo formula using a harmonic heat current operator.
QHGK [12] was derived based on the Green-Kubo formula
starting from the harmonic heat flux, and then anharmonic-
ity was introduced through the linewidths of the vibrational
normal modes when calculating the heat flux autocorrelation
function.

The formula of AF theory [6] is expressed by

k = 1

V

∑
i

Ci(T )Di, (1)

where V is the volume of the system, Ci(T ) is the specific heat
capacity of mode i, and Di is the mode diffusivity. The specific
heat capacity of mode i is calculated by

Ci = kB
[h̄ωi/(kBT )]2eh̄ωi/(kBT )

[eh̄ωi/(kBT ) − 1]2 , (2)

where ωi is the vibrational frequency, kB is the Boltzmann
constant, and T is the temperature. Mode diffusivity is cal-
culated by

Di = πV 2

3h̄2ω2
i

�=i∑
j

|Si j |2δ(ωi − ω j ), (3)

where δ is the Dirac delta function and is approximated by the
Lorentzian function as

δ(ωi − ω j ) = η

π [(ωi − ω j )2+η2]
, (4)

with η as the broadening parameter. Sij is the heat current
operator:

Si j = h̄

2V
vi j (ωi + ω j ). (5)

The velocity operator vij is

vi j = i

2
√

ωiω j

∑
α,β

∑
m,κ,κ ′

	
βα

κ ′κ (0, m)√
mκmκ ′

ei,α
κ e j,β

κ ′ (Rm + Rκκ ′ ),

(6)
where 	

βα

κ ′κ (0,m) is the non-Hermitian force constants, ei,α
κ is

the phonon eigenvector for the κth atom along the cartesian
direction α, mκ is the mass of atom κ , Rm is the position of
cell m, and Rκ κ ′ is the distance between atom κ and atom κ ′
in a cell.

In the QHGK approximation [12], thermal conductivity is
expressed by

kαβ = 1

V

∑
i j

ci jv
α
i jv

β
i jτi j, (7)

ci j = h̄ωiω j

T

f0i − f0 j

ω j − ωi
, (8)

and

τi j = �i + � j

(�i + � j )2 + (ωi − ω j )2 + O(ε2). (9)

f0i is the Bose-Einstein occupation number of the ith normal
mode. �i is the linewidth of mode i, which is related to the
lifetime by

τi= 1

2�i
. (10)

In Eq. (7), the summation of terms with i = j is the au-
tocorrelation contribution to the thermal conductivity, while
the summation of terms with i �= j is the cross-correlation
contribution to the thermal conductivity.

The anharmonic vibrational frequencies and lifetimes are
computed using the MD simulation-based normal mode
decomposition (NMD) method [13–15]. In NMD, the trajec-
tories of each atom from MD simulations are projected onto
the normal mode:

Q(k, ν, t ) =
3∑
α

n∑
j

N∑
l

√
mj

N
uα

jl (t )eα∗
j (k, ν ) exp (−ik · rl j ),

(11)
where N is the total number of unit cells, mj is the mass of
atom j, u is the displacement, and e is the phonon eigenvector.
The spectral energy density (SED) is calculated through the
Fourier transform of the time derivative of the normal mode:

	(k, ν, ω) = |F(Q̇(k, ν, t ))|2 =
∣∣∣∣
∫ +∞

0
Q̇(k, ν, t )e−iωt dt

∣∣∣∣
2

.

(12)
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The anharmonic vibrational frequencies and lifetimes are
obtained through fitting the SED by a Lorentzian function:

	(k, ν, ω) = C(k, ν )

[ω − ωA(k, ν )]2 + [�(k, ν )]2
, (13)

where ω is the spectral frequency, ωA is the anharmonic fre-
quency, and � is the linewidth.

For a-SiO2, the atomic structure is disordered. Therefore,
the NMD is carried out only at the gamma point (k = 0).

III. COMPUTATIONAL DETAILS

MD simulation is a versatile tool to investigate thermal
transport [16,17]. The open-source package LAMMPS [18]
is used to perform MD simulations of a-SiO2. The vibrational
properties and thermal conductivities are computed based on
MD simulations. The van Beest-Krammer-van Santen (BKS)
potential modified by adding a 24–6 Lennard-Jones (LJ) po-
tential [19–21] is employed. The cutoffs of Buckingham and
LJ potentials are set to 10 Å and 8.5 Å, respectively. The
electrostatic interactions are calculated through the Wolf sum-
mation method with a cutoff of 12 Å and a damping factor of
0.22 3 Å–1.

All simulations are carried out with periodic boundary
conditions and a time step of 0.905 fs. This time step is
chosen according to the work of Larkin and McGaughey [22],
which also studies the thermal conductivity of a-SiO2 using
the modified BKS potential. Good thermostat is reached using
this time step. The melt–quench procedure is used to obtain
the atomic configurations of a-SiO2 at different temperatures
[23]. First, a system containing 648 atoms for a-SiO2 is melted
to 8000 K in a constant number, pressure, and temperature
(NPT) ensemble. Then, the system is cooled at a rate of
2.21 ∼ 3.37 K/ps to 1900 K, 1500 K, 1300 K, 1100 K,
900 K, 700 K, 500 K, 300 K, 200 K, and 100 K. When cooled
to 1100 K, a-SiO2 is annealed in a NPT ensemble for 9 ns
to remove metastability before continuing the cooling [22].
After the cooling process, the system is further equilibrated
in a NPT ensemble for 1.8 ns, followed by a constant number,
volume, and temperature (NVT) ensemble for 0.9 ns, and then
a constant number, volume, and energy (NVE) ensemble for
0.9 ns.

The radial distribution function (RDF) of a-SiO2 is cal-
culated as shown in Fig. 1 in comparison with the RDF of
a-SiO2 from previous MD simulations [22] and experimental
data [24]. The results from this work are in good agreement
with previous work. The first nearest neighbors for Si-O, O-O,
and Si-Si are 1.62 Å, 2.58 Å, and 3.06 Å, respectively, which
compare well with the experimental measurements of 1.60 Å,
2.60 Å, and 3.05 Å [24].

To calculate the thermal conductivities through the Green-
Kubo formula, the time step is set to 0.2 fs. The MD
simulations are carried out for 8 ns in a NVE ensemble,
during which the autocorrelation function of the heat flux is
calculated every 2 fs. The thermal conductivity is obtained by
integrating the autocorrelation function of the heat flux.

To perform the NMD, the equilibrium configuration of
a-SiO2 is first obtained through energy minimization. After
the minimization, the system is equilibrated with a time step
of 0.2 fs in a NVT ensemble for 0.2 ns at the targeted temper-

FIG. 1. Radial distribution function g(r) of a-SiO2 of all atom
pairs at 300 K from this work, MD simulations of Larkin and
McGaughey [22], and experimental measurement [24].

ature, and then in a NVE ensemble for an additional 0.2 ns.
After the equilibrium process, the velocities of each atom are
dumped every 5 fs in a NVE ensemble during a time span of
1 ns for postprocessing.

Force constants are calculated by the General Utility
Lattice Program [25] based on the equilibrium configura-
tions of a-SiO2. Then, the harmonic vibrational properties
are obtained through lattice dynamics calculations using the
PHONOPY code [26].

IV. VIBRATIONAL MODE PROPERTIES

The IPR and phonon DOS are computed as shown in Fig. 2.
The equation for calculating the IPR is

1

p(k, ν )
=

∑
j

[∑
α

(
eα

j (k, ν )
)2

]2

, (14)

where eα
j is the eigenvector of atom j along the direction

α. The IPR characterizes the extent of localization for a
specific mode. For the vibration localized on a single atom,

FIG. 2. The inverse participation ratio and density of states of
vibrational modes in a-SiO2 at 300 K.
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1/p would be 1, while 1/p would be 1/N if the vibrations
were equally distributed on all atoms. Figure 2(a) indicates
that locons are located in two frequency regions, 175 to 206
rad/ps and more than 234 rad/ps, which are shaded in light
red. The other modes are delocalized, including propagons
and diffusons. Larkin and McGaughey [22] have reported a
propagons/diffusons cutoff frequency of 4.55 rad/ps. Here
we use the same cutoff frequency. The frequency region of
propagons is shaded in light blue in Fig. 2, and the frequency
region of diffusons is not shaded. These results indicate that
diffusons are the dominate vibrational modes in a-SiO2. Due
to the limited size of our simulated system, the lowest fre-
quency predicted in this work is 7.31 rad/ps. Therefore, only
diffusons and locons are considered in this work. This is
reasonable because the contribution of propagons to the to-
tal thermal conductivity of a-SiO2 is negligible according to
previous investigations [22].

The DOS is calculated by

DOS(ω) =
∑

i

δ(ωi − ω), (15)

and is plotted in Fig. 2(b). For diffusons, the DOS is con-
stant over most of the frequency range. The DOS of locons
increases with frequency in the range of 175 to 206 rad/ps,
and decreases with frequency in the range of 234 to 245
rad/ps. Locons only constitute approximately 10% of the total
vibrational modes.

Next, we move to investigate the effect of anharmonicity on
phonon vibrational spectra. The anharmonic vibrational fre-
quencies and lifetimes at different temperatures are calculated
through the NMD method described in Sec. II. The density
of states at different temperatures are shown in Fig. 3(a). The
anharmonicity leads to a red shift in the vibrational frequency,
and the shift increases with an increase in temperature. Lv and
Henry [10] also reported a lowering in the vibrational frequen-
cies of a-SiO2 at higher temperatures. The frequency shift,
which is the difference between the anharmonic vibrational
frequency and harmonic vibrational frequency, is plotted in
Fig. 3(b). At 100 K, the frequency shift is small and oscillates
around zero. When the temperature increases to 300 K, the
frequency shifts of most modes become negative. With an
increase in temperature, the negative frequency shift becomes
larger. The frequency shifts of locons are, in general, larger
than diffusons. This indicates that anharmonicity has a more
pronounced influence on locons than diffusons.

The anharmonicity-induced frequency shifts are less than
10% for 99.6% vibrational modes. Therefore, it is appropriate
to use the QHGK expression derived by Isaeva et al. [12] and
replace the frequency in QHGK by the temperature-dependent
frequencies.

The vibrational mode lifetimes are plotted in Fig. 4. The
lifetimes of diffusons first decrease and then increase with
frequency. A local peak forms at the diffusons/locons cutoff
frequency (175 rad/ps). With the increase in temperature, the
lifetimes decrease due to the anharmonic effect.

V. COMPARISION BETWEEN AF THEORY AND QHGK

The anharmonic effect on the thermal conductivities of
a-SiO2 can be investigated at two levels. First, one can com-

FIG. 3. (a) The DOS of anharmonic vibrational modes at differ-
ent temperatures. (b) Frequency shifts at different temperatures.

pare the results from AF theory and QHGK. AF theory was
derived based on harmonic approximation, which can only
be used for predicting the thermal conductivities of stiff
material at low temperatures [6]. QHGK is applicable to sys-
tems with anharmonicity at higher temperatures due to the
introduction of vibrational lifetimes [12]. Second, since the
vibrational frequencies change with temperature due to an-
harmonicity, using temperature-dependent frequencies allows
us to consider the anharmonic effect more accurately. In this
section, we compare the results of AF theory and QHGK.

FIG. 4. The vibrational mode lifetimes of a-SiO2 at different
temperatures.
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FIG. 5. The thermal conductivities calculated by AF theory [6],
QHGK [12], and the theory of Simoncelli et al. [11] using harmonic
vibrational frequencies. η is the broadening parameter in the AF
theory.

In the next section, the thermal conductivities calculated us-
ing temperature-dependent frequencies will be compared with
those calculated using harmonic frequencies.

The result of AF theory [Eqs. (1)–(6)] is sensitive to the
choice of the broadening parameter η. The effect of η on
thermal conductivity is shown in Fig. 5. With an increase in
η, thermal conductivity first increases to a peak value at η =
0.2 meV, and then decreases. The maximum thermal conduc-
tivities predicted by AF theory are lower than those calculated
by QHGK in the whole temperature range. This result in-
dicates that more careful consideration of anharmonicity in
the model leads to an increase in the thermal conductivities.
With an increase in temperature, the difference between the
results of QHGK and AF theory increase followed by a slight
decrease, as shown by the triangles in Fig. 6.

The thermal conductivities of a-SiO2 are also calculated
by the anharmonic theory derived by Simoncelli et al. [11], as
shown by the purple circles in Fig. 5. The results of QHGK

FIG. 6. The difference between the thermal conductivities cal-
culated by different methods. kQHGK

harmo is the thermal conductivity
calculated by QHGK using harmonic vibrational frequencies. kAF

harmo

is the thermal conductivity calculated by AF theory using harmonic
vibrational frequencies. kQHGK

anharmo is the thermal conductivity calculated
by QHGK using anharmonic vibrational frequencies.

FIG. 7. (a) The diffusivities of vibrational modes in a-SiO2 at
1900 K calculated by AF theory [Eq. (16)] and QHGK [Eq. (17)].
(b) The absolute (left) and relative (right) differences between the
diffusivities calculated by QHGK and AF theory.

[12] are in agreement with the results of the theory of Simon-
celli et al. [11].

The classical AF theory and QHGK can both be written in
the form of Eq. (1) with Ci = kB. Therefore, the difference
between the thermal conductivities calculated by these two
models lies in the difference in the diffusivities. The mode
diffusivities of AF theory and QHGK can be expressed by

DAF
i = 1

3

�=i∑
j

DAF
i j = 1

3

�=i∑
j

|vi j |2
[
π

4

(
ω j

ωi
+ 1

)2]
δ(ω j − ωi )

(16)

and

DQHGK
i = 1

3

∑
j

DQHGK
i j = 1

3

∑
j

|vi j |2τi j, (17)

respectively.
The comparison between the mode diffusivties of AF

theory and QHGK is shown in Fig. 7(a). The diffusivities
computed by QHGK are generally larger than the diffusivities
calculated by AF theory. The absolute and relative differences
between the diffusivities calculated by these two theories are
�DQHGK-AF

i = DQHGK
i − DAF

i and �DQHGK-AF
i /DAF

i , respec-
tively, as shown in Fig. 7(b). �DQHGK-AF

i of diffusons (4.55
to 175 rad/ps and 206 to 234 rad/ps) is generally larger
than �DQHGK-AF

i of locons (175 to 206 rad/ps and more
than 234 rad/ps). However, �DQHGK-AF

i /DAF
i of diffusons is
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FIG. 8. The temperature dependence of the relative contributions
of diffusons (left) and locons (right) to the total diffusivity difference
between QHGK and AF theory.

much smaller than �DQHGK-AF
i /DAF

i of locons. The relative
contributions of diffusons and locons to the total diffusivity
difference are calculated by

�DQHGK-AF
diffusons

�DQHGK-AF
=

∑diffusons
i

(
DQHGK

i − DAF
i

)
∑total

i

(
DQHGK

i − DAF
i

) (18)

and

�DQHGK-AF
locons

�DQHGK-AF
=

∑locons
i

(
DQHGK

i − DAF
i

)
∑total

i

(
DQHGK

i − DAF
i

) , (19)

respectively. The variations of �DQHGK-AF
diffusons /�DQHGK-AF and

�DQHGK-AF
locons /�DQHGK-AF with temperatures are plotted in

Fig. 8. The relative contributions of diffusons to the total
diffusivity difference are 94% to 99%, while the relative
contributions of locons are only 1.0% to 5.5%. With the
increase in temperature, �DQHGK-AF

diffusons /�DQHGK-AF decreases,
while �DQHGK-AF

locons /�DQHGK-AF increases. These results indi-
cate that although the anharmonicity has a greater influence
on locons than diffusons, the increase in diffusivities and
thermal conductivites caused by the anharmonicity are mostly
contributed by the anharmonic diffusons. This is because the
diffusons account for 90% of the total vibrational modes,
and the diffusivities of diffusons are much larger than the
diffusivities of locons.

VI. EFFECT OF ANHARMONIC VIBRATIONAL
FREQUENCIES ON THERMAL CONDUCTIVITY

Due to anharmonicity, vibrational frequencies decrease
with an increase in temperature, as shown in Fig. 3. The use of
temperature-dependent frequencies (anharmonic frequencies)
allows us to consider the anharmonic effect more accurately.
A comparison is made between the thermal conductivities
calculated using harmonic and anharmonic frequencies, and
the results are plotted in Fig. 9. The blue line shows the
thermal conductivity computed by QHGK using harmonic
frequencies and classical specific heat, while the yellow line
is the thermal conductivity computed by QHGK using anhar-

FIG. 9. The thermal conductivities calculated by QHGK using
harmonic or anharmonic vibrational frequencies and classical or
quantum specific heat, and their comparisons with the results of the
Green-Kubo formula based on MD simulations and experimental
data [27,28].

monic frequencies and classical specific heat. The thermal
conductivities calculated using anharmonic frequencies are
higher than those calculated using harmonic frequencies at
all temperatures. This result indicates that the anharmonicity-
induced frequency shifts have a positive contribution to the
thermal conduction in a-SiO2. The difference between the
thermal conductivities calculated using anharmonic frequen-
cies and harmonic frequencies increases with temperature, as
shown by the circles in Fig. 6. The total changes in the ther-
mal conductivity induced by the anharmonicity introduced in
QHGK and the anharmonic frequencies increase monotoni-
cally with temperature, as shown by the squares in Fig. 6.

The comparisons between the thermal conductivities cal-
culated by different methods shown in Fig. 9 also reveal the
mechanisms for the positive temperature dependence of the
thermal conductivity of a-SiO2. If the harmonic frequencies
and classical specific heat were used, the thermal conductiv-
ity decreases at high temperatures (blue line in Fig. 9). The
thermal conductivity increases at high temperatures after the
use of the anharmonic frequencies (yellow line in Fig. 9). This
indicates that the anharmonicity-induced temperature depen-
dence of the vibrational frequencies is a mechanism for the
positive temperature dependence of the thermal conductivity.
Considering the quantum specific heat in the theory leads to
a steeper temperature dependence of the thermal conductivity
(orange line in Fig. 9), which is in reasonable agreement with
experimental data [27,28].

Furthermore, the thermal conductivities of a-SiO2 are cal-
culated by the Green-Kubo formula based on MD simulations
(yellow squares in Fig. 9) for comparison. The heat flux
calculated by MD simulations can consider a full order of an-
harmonicity. The difference between the thermal conductivity
calculated by QHGK and MD simulation-based Green-Kubo
is within 15%. This comparison is a verification of the theory
of QHGK with anharmonic frequencies as an appropriate
method for calculating the thermal conductivity of a-SiO2

considering anharmonicity.
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FIG. 10. The absolute (a) and relative (b) changes in the thermal
conductivity of different modes induced by frequency shifts.

The absolute �k and relative changes �k/k in the thermal
conductivity of different modes induced by frequency shifts
are shown in Fig. 10(a) and 10(b), respectively. With the
increase in temperature, both �k and �k/k increase, which
corresponds to the increase of the negative frequency shift
[Fig. 3(b)]. This result indicates a positive correlation between
the negative frequency shift and the changes in the thermal
conductivity. However, �k of diffusons is larger than �k of
locons [Fig. 10(a)], while the frequency shifts of diffusons
are smaller than locons. This is because �k is also influenced
by the mode diffusivity. The diffusivity of diffusons is larger
than locons, as shown in Fig. 11(a), thus resulting in the larger
absolute changes in the thermal conductivity. �k/k of locons
are larger than �k/k of diffusons (Fig. 10(b)), which agrees
with the larger frequency shifts of locons [Fig. 3(b)].

The mode diffusivities computed using harmonic
and anharmonic frequencies are compared as shown in
Fig. 11(a). Anharmonic diffusivity is larger than harmonic
diffusivity for all vibrational modes. The absolute and
relative differences between the anharmonic and harmonic
diffusivities are �Danharmo-harmo

i = Danharmo
i − Dharmo

i and
�Danharmo-harmo

i /Dharmo
i , respectively, as shown in Fig. 11(b).

�Danharmo-harmo
i of diffusons is generally larger than

�Danharmo-harmo
i of locons, while �Danharmo-harmo

i /Dharmo
i

of locons is larger than �Danharmo-harmo
i /Dharmo

i of diffusons.
The relative contributions of diffusons and locons to the total
diffusivity difference are calculated by

�Danharmo-harmo
diffusons

�Danharmo-harmo
=

∑diffusons
i

(
Danharmo

i − Dharmo
i

)
∑total

i

(
Danharmo

i − Dharmo
i

) (20)

FIG. 11. (a) The diffusivities of vibrational modes in a-SiO2 at
1900 K calculated by QHGK [Eq. (17)] using harmonic and anhar-
monic vibrational frequencies, respectively. (b) The absolute (left)
and relative (right) differences between diffusivities calcualted using
anharmonic and harmonic vibrational frequencies.

and
�Danharmo-harmo

locons

�Danharmo-harmo
=

∑locons
i

(
Danharmo

i − Dharmo
i

)
∑total

i

(
Danharmo

i − Dharmo
i

) , (21)

respectively. The variations of �Danharmo-harmo
diffusons /�Danharmo−harmo

and �Danharmo-harmo
locons /�Danharmo-harmo with temperature are

shown in Fig. 12. �Danharmo-harmo
diffusons accounts for 97% to 99%

of the total diffusivity difference, while �Danharmo-harmo
locons

only accounts for 1.0% to 3.0%. With an increase in
temperature, �Danharmo-harmo

diffusons /�Danharmo-harmo decreases,
while �Danharmo-harmo

locons /�Danharmo-harmo increases. These
results indicate that the increase of the diffusivities and
thermal conductivites induced by the anharmonicity-induced
frequency shifts is mostly contributed by the anharmonic
diffusons, while the anharmonicity has a larger influence on
locons than diffusons.

To investigate the mechanism for the heat transfer in
a-SiO2 further, the contributions of autocorrelation and cross-
correlation of diffusons and locons to the thermal conductivity
are calculated. It is found that the autocorrelations of both
diffusons and locons are zero. The contributions of cross-
correlations of diffusons–diffusons, diffusons–locons, and
locons–locons to the total thermal conductivities are plotted
in Fig. 13. The cross-correlations between diffusons and diffu-
sons, and between diffusons and locons, contribute 97.37% ∼
99.99% and 0.01% ∼ 2.22% to the total thermal conduc-
tivity, respectively. The cross-correlations between locons
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FIG. 12. The temperature dependence of the relative contribu-
tions of diffusons (left) and locons (right) to the total difference
between the diffusivities calculated by anharmonic and harmonic
vibrational frequencies.

and locons are negligible. These results indicate that heat is
transferred in a-SiO2 mainly through the interaction between
diffusons and diffusons. Locons contribute to the heat transfer
mainly through collaboration with diffusons.

The effects of anharmonicity on the thermal conductivity
of a-SiO2 are summarized in Fig. 14. QHGK with anharmonic
vibrational frequencies can well reproduce the experimen-
tal value. However, QHGK ignoring anharmonicity-induced
frequency shifts underestimates the thermal conductivity
by 8.17%. Compared to QHGK, AF theory underestimates
the thermal conductivity by 14.09% or 24.13%, depend-
ing on whether anharmonicity-induced frequency shifts are
considered or not considered. Figure 14 also shows that
diffusons–diffusons cross-correlations dominate the heat con-
duction in a-SiO2, and consideration of anharmonicity in the
thermal conductivity model (QHGK) enhances the contri-
bution of diffusons–locons cross-correlations to the thermal
conductivity.

FIG. 13. The contributions of cross-correlations between diffu-
sons and diffusons, between diffusons and locons, and between
locons and locons to the total thermal conductivity.

FIG. 14. Thermal conductivity of a-SiO2 at 1900 K computed
by AF theory and QHGK, and a comparison with experimental data
[27]. The symbol a represents the results calculated using harmonic
vibrational frequencies, while b represents the results calculated us-
ing anharmonic vibrational frequencies.

VII. CONCLUSION

We investigated the effect of anharmonicity on thermal
conduction in a-SiO2 from two perspectives. First, a com-
parison is made between QHGK and AF theory. QHGK
is a thermal conductivity model that can consider both an-
harmonicity and disorder. AF theory is also applicable to
amorphous materials, but it ignores the effects of anharmonic-
ity in the atomic interactions. It is found that the thermal
conductivities calculated by QHGK are larger than the pre-
dictions of AF theory. Second, a comparison is made between
thermal conductivities calculated using anharmonic and har-
monic vibrational frequencies. It is found that the use of
anharmonic vibrational frequencies results in a higher thermal
conductivity compared with that calculated using harmonic
vibrational frequencies. The temperature dependence of the
anharmonic vibrational frequencies is a mechanism for the
positive temperature dependence of thermal conductivity. Fur-
ther investigation of mode diffusivities indicates that the
enhancement of the thermal conductivity due to the anhar-
monicity is mainly contributed by the anharmonic diffusons,
though the anharmonicity has a larger influence on locons than
diffusons. This is because diffusons have larger mode diffu-
sivities than locons, and diffusons constitute 90% of the total
vibrational modes. Finally, it is found that cross-correlation
between diffusons and diffusons is the major mechanism for
heat conduction in a-SiO2, and locons transfer the heat mainly
through collaboration with diffusons.
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