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Time evolution of an infinite projected entangled pair state: A gradient tensor update
in the tangent space
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Time evolution of an infinite two-dimensional (2D) many body quantum lattice system can be described by
the Suzuki-Trotter decomposition applied to the infinite projected entangled pair state (iPEPS). Each Trotter gate
increases the bond dimension of the tensor network, D, that has to be truncated back in a way that minimizes a
suitable error measure. This paper goes beyond simplified error measures–like the one used in the full update, the
simple update, and their intermediate neighborhood tensor update–and directly maximizes an overlap between
the exact iPEPS with the increased bond dimension and the new iPEPS with the truncated one. The optimization
is performed in a tangent space of the iPEPS variational manifold. This gradient tensor update is benchmarked
by a simulation of a sudden quench of a transverse field in the 2D quantum Ising model and the quantum
Kibble-Zurek mechanism in the same 2D system.
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I. INTRODUCTION

In typical condensed matter applications quantum many
body states can be represented efficiently by tensor net-
works [1,2]. They include the one-dimensional (1D) matrix
product state (MPS) [3], its two-dimensional (2D) version
called a projected entangled pair state (PEPS) [4,5], or a
multiscale entanglement renormalization ansatz [6–9]. MPS
is a compact representation of ground states of 1D gapped
local Hamiltonians [1,10,11] and purifications of their ther-
mal states [12]. It is the ansatz optimized by the density
matrix renormalization group [13–16]. By analogy, though
with some reservations [17], PEPS is expected to be suitable
for ground states of 2D gapped local Hamiltonians [1,2] and
their thermal states [18–20]. As a variational ansatz tensor
networks do not suffer from the sign problem common in
the quantum Monte Carlo and they can deal with fermionic
systems [21–28].

Originally proposed as an ansatz for ground states of fi-
nite systems [4,5,29], subsequent development of efficient
numerical methods for infinite systems [30–33] promoted
infinite PEPS (iPEPS), shown in Fig. 1(a), to one of the
methods of choice for strongly correlated systems in 2D.
It was crucial for solving the long-standing magnetiza-
tion plateaus problem in the highly frustrated compound
SrCu2(BO3)2 [34,35], establishing the striped nature of the
ground state of the doped 2D Hubbard model [36], and
new evidence supporting gapless spin liquid in the kagome
Heisenberg antiferromagnet [37] (though tensor renormal-
ization group suggests gapped spin liquid with a long
correlation length [38]). Recent developments in iPEPS
optimization [39–41], contraction [42,43], energy extrapola-
tions [44], and universality-class estimation [45–47] opened
an avenue towards even more challenging problems, including
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simulation of thermal states [48–62], mixed states of open
systems [56,63,64], excited states [65,66], or unitary evolu-
tion [56,67–75].

The unitary evolution is the subject of this paper. As
in previous work we adapt the Suzuki-Trotter decomposi-
tion [76–78] of the evolution operator into a product of nearest
neighbor(NN) Trotter gates. As before each Trotter gate in-
creases the bond dimension that has to be truncated in order
to prevent its exponential growth. However, we do not rely
on local optimization like the simple update (SU) [68,70], the
full update (FU) [39,56], or the neighborhood tensor update
(NTU) [72,73,75], but employ further gradient optimization
to directly maximize an overlap between the truncated iPEPS
and the exact one with the increased bond dimension. The
optimization operates in the tangent space of the iPEPS vari-
ational manifold. The Gramm-Schmidt metric tensor and the
gradient are obtained with the corner transfer matrix renor-
malization group [40,79].

This paper is organized as follows. In Sec. III we introduce
the gradient optimization after the exact iPEPS is pretruncated
with NTU. In Sec. III we outline calculation of the metric
tensor and the gradient in the tangent space of the iPEPS.
More details on the use of reduced tensors/matrices instead
of full iPEPS tensors can be found in Appendix A. In Sec. IV
the gradient tensor update (GTU) method is subject to the
standard benchmark of a sudden quench in the 2D transverse
field quantum Ising model and in Sec. V by the Kibble-
Zurek (KZ) ramp in the same system. Truncation errors during
GTU evolution are presented in Appendix B. We conclude in
Sec. VI.

II. TANGENT SPACE OPTIMIZATION

The iPEPS is an inifinite checkerboard of tensors A and B
in Fig. 1(a). In a Suzuki-Trotter step a two-site Trotter gate is
applied to every equivalent NN bond between sites/tensors A
and B. The bond dimension on the applied bonds is increased
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FIG. 1. Trotter gate. An iPEPS is an inifinite checkerboard of
tensors A and B in (a). Every tensor has one physical index (red)
and four bond indices of dimension D (black) connecting it with its
nearest neighbors. In (b) the iPEPS is applied a Trotter gate at every
horizontal bond between A and B. The gate is a made of two tensors
contracted by an index of dimension r. Its application increases the
size of the bond index to rD. The initial iPEPS (a), with the Trotter
gate applied at every horizontal bond A − B, becomes an exact state
|φ〉 in (c). In order to reduce the bond dimension back to D the middle
diagram in (b) has to be approximated by the right diagram with a
pair of new tensors: A′′ − B′′. The new tensors make new iPEPS |ψ〉
in (d). A′′ and B′′ are optimized to maximize an overlap between the
exact state and the new iPEPS: |〈φ|ψ〉|2/〈ψ |ψ〉.

by a factor of r where r is a singular value decomposition
(SVD) rank of the gate. We refer to this new iPEPS as |φ〉.
Our goal is to approximate this exact state with an iPEPS, |ψ〉,
where all bond dimensions are brought back to the original
D. The latter iPEPS is made of tensors A′′ and B′′ which are
to be treated as variational parameters. Tensors A′′ and B′′ are
optimized in a loop, → A′′ → B′′ →, until convergence of the
overlap between |φ〉 and |ψ〉. In the following we explain one
step of the loop when A′′ is optimized at fixed B′′. The other

step, when B′′ is optimized at fixed A′′, is done in a similar
way.

We consider small variations of the state, |ψ〉 → |ψ〉 +
|δψ〉, due to variations of the tensor: A′′ → A′′ + δA′′, which
are orthogonal to |ψ〉. Up to linear order in δA′′ the variation
of the state is

|δψ〉 =
(

1 − |ψ〉〈ψ |
〈ψ |ψ〉

) ∑
μ

δA′′
μ|∂μψ〉. (1)

Here index μ numbers elements of tensor δA′′ and ∂μ is a
derivative with respect to element A′′

μ. δA′′ has to minimize a
cost function:

F = ||φ〉 − |ψ〉 − |δψ〉|2/〈ψ |ψ〉
= δA′′∗

μ GμνδA′′
ν − δA′′∗

μ Jμ − Jμ∗δA′′
μ + F0. (2)

Here the repeated indices imply summation, the Gramm-
Schmidt metric is

Gμν = 〈ψ |ψ〉−1〈∂μψ |
(

1 − |ψ〉〈ψ |
〈ψ |ψ〉

)
|∂νψ〉

= 〈∂μψ |∂νψ〉
〈ψ |ψ〉 − 〈∂μψ |ψ〉

〈ψ |ψ〉
〈ψ |∂νψ〉
〈ψ |ψ〉 , (3)

and the gradient

Jμ = 〈ψ |ψ〉−1〈∂μψ |
(

1 − |ψ〉〈ψ |
〈ψ |ψ〉

)
(|φ〉 − |ψ〉)

= 〈ψ |φ〉
〈ψ |ψ〉

[ 〈∂μψ |φ〉
〈ψ |φ〉 − 〈∂μψ |ψ〉

〈ψ |ψ〉
]

≈ 〈∂μψ |φ〉
〈ψ |φ〉 − 〈∂μψ |ψ〉

〈ψ |ψ〉 . (4)

In the last approximate equality we assume 〈ψ |φ〉 ≈ 〈ψ |ψ〉
that becomes accurate close to convergence. The quadratic
cost function Eq. (2) is minimized by

δA′′
μ = GμνJν . (5)

Here Gμν is a (pseudo-)inverse of Gμν .
In order to go beyond the linear approximation in δA′′

μ

in Eq. (1) we use the solution Eq. (5) to construct a new
variational iPEPS |ψx〉 where all A′′ are replaced by

A′′ + x [δA′′ − A′′(Jμ∗δA′′
μ)], (6)

and x is a real variational parameter. Note that to linear
order in small x it satisfies: |ψx〉 ≈ |ψ〉 + x|δψ〉, hence x
parametrizes the line of steepest descend of the cost function
Eq. (2), which is tangent to the iPEPS manifold at |ψ〉. Fol-
lowing this line promises the fastest reduction of F . However,
beyond the quadratic approximation in the second line of
Eq. (2), valid for small x, it is better to use a logarithmic
overlap:

Ox =
( 〈ψx|φ〉〈φ|ψx〉

〈ψx|ψx〉
)1/N

, (7)

where N → ∞ is a number of lattice sites. The overlap does
not suffer form the orthogonality catastrophe for large N and
is computable by tensor network methods. In the following
calculations the linear search algorithm was used to optimize
the overlap with respect to x. With the optimal x we accept

014304-2



TIME EVOLUTION OF AN INFINITE PROJECTED … PHYSICAL REVIEW B 106, 014304 (2022)

FIG. 2. Initialization. Before the gradient optimization loop new
tensors A′′ and B′′ are initialized with the neighbourhood tensor
update (NTU) [72]. In NTU A′′ and B′′ are optimized variationally to
minimize a Frobenius norm of a difference between the left and the
right diagrams in the bottom panel. NTU in turn is initialized with A′′

and B′′ obtained by SVD truncation of the thick rD-bond in the top
panel. This SVD update (SVDU) minimizes the difference between
the two diagrams in the top panel. Note that the NTU clusters in the
bottom are larger than in Ref. [72].

Eq. (6) as new A′′ and proceed to optimize B′′ in a similar
manner. The optimization of tensors A′′ and B′′ is repeated in
a loop until convergence.

In order to avoid trapping by local minima, initial A′′ and
B′′ for the gradient optimization are obtained by a robust
neighborhood tensor update [72] (NTU) outlined in Fig. 2.
The NTU in turn is initialized by a simple SVD truncation of
the rD-bond that we call SVD update (SVDU). Thus in fact
the optimization of A′′ and B′′ after each Trotter gate proceeds
in three stages:

SVDU −→ NTU −→ GTU. (8)

At the end of each stage quality of the approximation is
monitored by an overlap per site:

O =
( 〈ψ |φ〉〈φ|ψ〉

〈ψ |ψ〉
)1/N

, (9)

where |ψ〉 is the best iPEPS obtained after the
SVDU/NTU/GTU stage.

III. THE METRIC AND THE GRADIENT

In this section we outline calculation of the Gramm-
Schmidt metric tensor Eq. (3) and the gradient Eq. (4) with
the corner transfer matrix renormalization group [40,79]. To
begin with, notice that

|∂νψ〉 =
∑

s

∣∣ψν
s

〉
, (10)

where |ψν
s 〉 is the same as iPEPS |ψ〉 except that one tensor A′′

located at site s is missing, see the leftmost diagram in Fig. 3.
The free indices take the set of values ν. Here index s runs
over sublattice A only. Accordingly, the gradient in Eq. (4)
becomes

Jμ =
∑

s

〈
ψμ

s

∣∣φ〉
〈ψ |φ〉 −

〈
ψμ

s

∣∣ψ 〉
〈ψ |ψ〉

= N

(〈
ψ

μ
0

∣∣φ〉
〈ψ |φ〉 −

〈
ψ

μ
0

∣∣ψ 〉
〈ψ |ψ〉

)

≡ N
(

jμφ − jμψ
)
. (11)

FIG. 3. Connected iPEPS derivative. |ψν
j 〉c in Eq. (12) is equal to

|ψν
j 〉 − jν∗

ψ |ψ〉. A derivative of new iPEPS |ψ〉 with respect to tensor
element A′′

ν is a sum over index j–numbering sites on sublattice A–of
tensor networks |ψν

j 〉. Here |ψν
j 〉 is iPEPS |ψ〉 with one tensor A′′

missing at site j. The removal of A′′ creates open indices–four bond
and one physical–that take the set of values ν. The subtraction makes
it orthogonal to the new iPEPS: 〈ψ |ψν

j 〉c
= 0.

Here 0 is a label for a single reference site in the infinite
lattice. Evaluation of Eq. (11) can be done with the corner
transfer matrix renormalization group (CTMRG) in the same
way as for a 1-site expectation value [79].

In a similar manner the Gramm-Schmidt metric in Eq. (3)
becomes

Gμν =
∑
s,s′

〈
ψμ

s

∣∣ψν
s′
〉

〈ψ |ψ〉 −
〈
ψμ

s

∣∣ψ 〉
〈ψ |ψ〉

〈
ψ

∣∣ψν
s′
〉

〈ψ |ψ〉

= N

〈
ψ

μ
0

∣∣
〈ψ |ψ〉

∑
s

∣∣ψν
s

〉 − |ψ〉
〈
ψ

∣∣ψν
s

〉
〈ψ |ψ〉

= N

〈
ψ

μ
0

∣∣
〈ψ |ψ〉

∑
s

∣∣ψν
s

〉 − jν∗
ψ |ψ〉

= N

〈
ψ

μ
0

∣∣
〈ψ |ψ〉

∑
s

∣∣ψν
s

〉
c. (12)

Here |ψν
s 〉c ≡ |ψν

s 〉 − jν∗
ψ |ψ〉 is a connected derivative of new

iPEPS with respect to A′′
ν at site s. The substraction on the RHS

makes it orthogonal to the new iPEPS: 〈ψ |ψν
j 〉c

= 0. Thanks
to the orthogonality the sum in Eq. (12) has nonzero contribu-
tions only from sites j that are within a correlation range from
the reference site 0. The sum can be done with CTMRG in the
same way as for a connected correlation function [40].

Last but not least, in order to make the calculations com-
putationally efficient, in place of full tensors A′′ and B′′
we optimize their reduced tensors/matrices, as explained in
Appendix A.

IV. EVOLUTION AFTER A SUDDEN QUENCH

Here as in Refs. [56,72] we consider a sudden quench in
the transverse field quantum Ising model on an infinite square
lattice:

H = −J
∑
〈 j, j′〉

σ z
j σ

z
j′ − hx

∑
j

σ x
j . (13)

At zero temperature the model has a ferromagnetic phase with
nonzero spontaneous magnetization 〈σ z〉 for the magnitude
of the transverse field, |hx|, below a quantum critical point
located at hc = 3.04438(2) [80].
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FIG. 4. Transverse magnetization after a quench. The unitary
evolution of 〈σ x〉 after a sudden quench from a fully polarized
state. Two bunches of curves are shown corresponding to evolution
with hx = 2hc, hc. Each curve is terminated when the energy per
site departed by 0.01 from its initial value or the error measured
by overlap falls below a threshold. The squares are data from FU
simulations [56] and extend as long as they appear converged for
D = 8. The dashed red line comes from NTU simulations [72] and
are terminated when the energy departs by 0.01. Here we use the
same time step, dt = 0.01, and the same second order Suzuki-Trotter
decomposition as in FU and NTU.

We set J = 1 and simulate unitary evolution after a sudden
quench at time t = 0 from infinite transverse field down to a
finite hx. After t = 0 the fully polarized ground state of the
initial Hamiltonian is evolved by the final Hamiltonian with
hx = 2hc, hc. The same quenches were simulated with ten-
sor networks [56,72] in the thermodynamic limit and neural

FIG. 5. KZ ramp. The excitation energy per site, Q, in function
of the quench time τQ during the ramp Eq. (14). Q is calculated at
t = 0, when the ramp is crossing the critical point, and at several later
scaled times, t/t̂ . The scaling hypothesis Eq. (16) implies a scaling
Q ∝ ξ̂−3 ∝ τ−3×0.386

Q for each t/t̂ . As shown by the dashed line, 0.37
in place of the exact 0.386 is a better fit to our data for the longest
achievable τQ. Here all data were obtained with D = 3.

FIG. 6. Reduced tensors. In (a) a two-site gate is applied to
physical indices of NN tensors A and B as in Fig. 1(b). The gate is
made of two tensors, GA and GB, contracted by an index of dimension
r. In (b) the tensor contraction A · GA is QR-decomposed into QARA.
Similarly B · GB = QBRB. Isometries QA,B will remain fixed until the
Trotter gate is completed. In (c) after SVD, RART

B = UASU T
B , S is

truncated to D leading singular values. In (d) matrices MA = UAS1/2

and MT
B = S1/2U T

B are made by absorbing a square root of truncated
S symmetrically. They are the reduced tensors to be optimized. In (e)
at this point one could abstain from further optimization and make
new iPEPS tensors as A′′ = QA · MA and B′′ = QB · MB completing
the Trotter gate. This scheme was referred to as SVD update (SVDU)
in Ref. [72]. In NTU scheme reduced matrices MA,B are further opti-
mized in the neighborhood tensor environment in Fig. 2. In GTU the
NTU optimized MA,B are further optimized by the gradient method
before being contracted back with the fixed isometries QA,B to make
new A′′ and B′′.

quantum states [81] on a finite lattice. They are probably the
most challenging application for a tensor network simulation
because the sudden quench of the Hamiltonian creates lots
of excitations, especially the quench to the gapless quantum
critical point. As far as one can think in terms of quasi-
particles, they are created as entangled pairs with opposite
quasimomenta. By moving in opposite directions, the pairs
separate in space. Asymptotically for long times, entropy of
entanglement between any two half-planes grows linearly in
time in proportion to the number of pairs separated by the
border-line between the half-planes [82]. Accordingly, the
bond dimension would have to grow exponentially in order to
accommodate all this entanglement. Therefore, ultimately the
tensor network is in general expected to fail after a finite time
with only logarithmic progress being possible by increasing
D, even when the best possible use of the bond dimension
is made. Our goal here is, therefore, not to overcome the

014304-4



TIME EVOLUTION OF AN INFINITE PROJECTED … PHYSICAL REVIEW B 106, 014304 (2022)

FIG. 7. Truncation error: GTU vs NTU. The error is measured
by 1 − O, where O is the overlap per site between the exact and the
truncated iPEPS in Eq. (9). Here we show the error after NTU initial-
ization (dotted) and the one after convergence of GTU optimization
(solid). In case of h = 2hc (top) the stopping criterion is GTU error
greater than 2 × 10−6. In case of h = hc (bottom) it is 5 × 10−6.

quasiparticle horizon effect [82] but to get closer to the op-
timal use of the bond dimension.

Our present results are shown in Fig. 4. As a benchmark
we also show FU results [56] with D = 8 up to times where
they appear converged with this bond dimension. We also
include NTU results [72] with D = 8 up to time when their
energy per site departs by 0.01 from its initial value at t = 0+.
Truncation errors quantified by the overlap Eq. (9) are shown
in Figs. 7 and 8 in Appendix B. The GTU simulations are
terminated when the energy departs by 0.01 or the truncation
error exceeds a threshold, whichever comes first.

The quench to the quantum critical point, hx = hc, is more
challenging. Much the same as for FU and NTU, progress in
evolution time made by increasing D is slow. Nevertheless,
GTU evolution time achieved with D = 6 is somewhat longer
than for FU/NTU with D = 8. Furthermore, the quench to
hx = 2hc yields an even more promising result: GTU with
D = 6 increases the evolution time more than twice as com-
pared to FU with D = 8. This is not quite unexpected as less

FIG. 8. Truncation error: GTU vs SVDU. The error is measured
by 1 − O, where O is the overlap per site between the exact and
the truncated iPEPS in Eq. (9). Here we show the error after the
SVDU initialization (dashed) and the one after convergence of GTU
optimization (solid).

excitation is created at hx = 2hc and the excitation spectrum is
gapfull making the quasiparticle pairs separate more slowly.

V. QUANTUM KIBBLE-ZUREK MECHANISM

In this section instead of the sudden quench we consider a
continuous ramp

hx(t )/hc = 1 − ε(t ), J (t ) = 1 + ε(t ). (14)

Here

ε(t ) =
{

t
τQ

− 4
27

t3

τ 3
Q
, when t � 0

t
τQ

, when t > 0
(15)

with the time running from ti = − 3
2τQ to t f = τQ. Near the

critical point, at t = 0, the ramp is linear ε(t ) ≈ t/τQ with a
quench time τQ. Near the initial time it is bending in order
to avoid a discontinuous time derivative that would generate
some excitations already at the very beginning of the ramp that
would have to be accounted for by extra bond dimension but
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which are not interesting from the point of view of the quan-
tum KZ mechanism (QKZM) [83–89]. The latter quantifies
excitations generated in the universal regime near the critical
point where the evolution is bound to become nonadiabatic
due to closing of the energy gap at the criticality [90–95].
The KZ ramp in the 2D quantum Ising model was numeri-
cally simulated in Ref. [73]. A first attempt at its quantum
simulation with Rydberg atoms was made in Ref. [96].

One of the predictions of the QKZM is a scaling hypothesis
for excitation energy per site, Q, as a function of time [97–99]:

Q(t ) = ξ̂−(z+d )FQ(t/t̂ ). (16)

Here d = 2 is dimensionality of our 2D system, z = 1 is
its dynamical exponent, ξ̂ ∝ τ

ν/(1+zν)
Q is the KZ correlation

length, where ν = 0.629971 is the correlation length expo-
nent, t̂ ∝ ξ̂ z is the KZ scale of time, and FQ is a nonuniversal
scaling function. Equation [16] is expected to be valid near the
critical point for times between −t̂ and +t̂ . In particular it im-
plies Q(t ) ∝ ξ̂−(z+d ) = ξ̂−3 ∝ τ

−3ν/(1+zν)
Q = τ−3×0.386

Q for any
fixed t/t̂ in this regime.

With GTU we are testing this prediction in Fig. 5 where
Q is plotted in function of τQ for several values of scaled
time t/t̂ = 0, ..., 0.5. Here we set t̂ = 1τ

ν/(1+zν)
Q = τ 0.386

Q with
a unit numerical prefactor. The actual t̂ was estimated [73] as
approximately one fourth of this value implying that the scal-
ing hypothesis is expected to hold up to t/t̂ ≈ 0.25 instead of
≈1. The log-log plots in Fig. 5 demonstrate that for the longest
available τQ the data approach a power law Q(t/t̂ ) ∝ τ−3×0.37

Q .
Although the quench times obtained here are 3..4 times longer
than in Ref. [73], where the plain NTU was used for the same
simulations, there are still appreciable nonuniversal correc-
tions to the exact exponent making it closer to 0.37 in place
of 0.386. For the longest τQ = 12.8 small extra oscillations
on top of the KZ excitation energy are visible for smaller t/t̂
where the KZ energy is still relatively small. They are induced
by truncation of the bond dimension. This problem becomes
more severe for even longer quench times.

VI. CONCLUSION

The gradient optimization can significantly increase evo-
lution times achievable with iPEPS as compared to more
standard methods like the full update or the neighborhood
tensor update, both after a sudden quench and during a linear
KZ ramp. In this paper the corner transfer matrix renormal-
ization group was employed to calculate the Gramm-Schmidt
metric tensor and the gradient vector. Further progress may
be achievable with the help of variational methods [100]. The
same gradient method could also be applied in imaginary time
evolution simulating thermal states.
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APPENDIX A: REDUCED TENSORS

The gradient optimization in Sec. III is not performed on
full tensors A′′ and B′′ but on their much smaller reduced
tensors/matrices MA and MB defined in Fig. 6. They are
the actual variational parameters optimized by the gradient
method. The reduction makes the metric tensor and the gra-
dient much more compact. For instance, the metric is not a
D4d × D4d matrix but instead a D2d × D2d one. Not only the
final metric is smaller but, more importantly, tensors involved
in its computation by CTM, which is the bottleneck of the
method, are more compact by a factor of D2.

APPENDIX B: TRUNCATION ERRORS

Figures 7 and 8 show the error defined in Eq. (9) after,
respectively, the NTU optimization and the SVDU initial-
ization. Combining data in the figures we can infer that the
error drops several times during the NTU optimization stage.
The following GTU optimization can add another 20−30%
reduction.
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