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We investigate the effect of structural periodicity on elastic longitudinal and flexural wave propagation in
parity-time (PT ) symmetric prototypical elastic metamaterial rods and beams. Through theoretical analysis
and numerical demonstration, we reveal the link between the observed band structure of infinite periodic PT
symmetric elastic metamaterials and the unique scattering properties of the corresponding finite periodic PT
symmetric systems. In particular, we study the coherent perfect absorber and laser (CPAL). There is an observed
periodic-like occurrence of the CPAL formation when varying the cell number in the finite periodic metamaterial
that correlates to the band structure of the infinite periodic system. For this, we provide simple equations to
estimate the periodicity and the minimum cell number. Using a piezoelectric-aided elastic metamaterial consist-
ing of piezoelectric patches and active circuits, we propose a feasible configuration to realize tunable flexural
wave CPALs in a periodic-structured PT symmetric metamaterial beam, and demonstrate that the CPAL can be
induced in the Bragg’s bandgap.
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I. INTRODUCTION

Effective control of elastic wave propagation is a long-
lasting topic that has been studied for many decades and
has vital significance in nondestructive testing, medicine, and
signal processing. Man-made structures, such as phononic
crystals and metamaterials, have recently produced new
strategies to control the propagation of elastic waves [1,2].
These artificial structures show many interesting characteris-
tics. They can, for example, realize negative refraction [3],
focusing [3–5], cloaking [6], nonreciprocal transmission [7],
and asymmetric response [8–10]. These all result from de-
signed macroscopic and/or phase properties such as effective
negative mass and stiffness of the structure [11]. However,
these effects have mainly been carried out by means of the
modulation of the real part of the elastic or other material pa-
rameters. More recently, the emergent concept of parity-time
(PT ) symmetry and, more generally, non-Hermitian physics,
has enabled wave control in the complex domain [12] and has
opened a new field for the manipulation of wave propagation.

Non-Hermitian systems are open systems with loss and/or
gain. The study of non-Hermitian physics [13,14] was stim-
ulated by the breakthrough discovery that the spectra of
complex Hamiltonians, which are PT symmetric can also
be real and positive [15]. Because of their concise form and
unique properties, PT symmetric systems, as one of the most
important subsets of non-Hermitian systems, have been ex-
plored in optics [16,17], acoustics [18,19], mechanics [20,21],
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magnetics [22], electronics [23], and atomic gases [24]. A
result of this has been the observation/realization of many
unconventional behaviors, such as spectral singularities [25],
coherent perfect absorber and laser (CPAL) [26], unidirec-
tional invisibility or unidirectional zero reflection [27,28],
nonreciprocal transmission [29,30]. Although PT symmetric
systems have been extensively explored in many branches of
physics, and there has been considerable achievements, espe-
cially in optics [31,32], relatively speaking, the study of wave
propagation in PT symmetric elastic solid systems remain
very limited [20,21,30,33–36].

The introduction of PT symmetry in the elastic domain
will not only extend elastic wave theory, but also provide new
strategies to design high-performance elastic wave devices.
For example, the linear sensitivity observed using traditional
methods for damage detection in nondestructive testing has
been enhanced through exploiting wave propagation in PT
symmetric elastic systems [35]. Furthermore, nonreciprocal
microwave surface elastic wave device design using PT
symmetric resonators has been reported [30], and other ef-
forts have also been made in exploring the properties of PT
symmetric elastic systems [20,21,33,34,37]. However, much
of this work has only considered wave propagation in PT
symmetric elastic systems consisting of one or several pairs
of loss and gain, and with only few studies focused on pe-
riodic PT symmetric systems. So far, the periodic effects
remain elusive. The CPAL, as lasing or antilasing, is well
known in PT symmetric optical and electromagnetic systems
[26,38–40] and allows the system to behave simultaneously
as a laser or an absorber depending on the characteristics of
the incident waves. It has been reported that the scattering

2469-9950/2022/106(1)/014303(16) 014303-1 ©2022 American Physical Society

https://orcid.org/0000-0002-3406-8316
https://orcid.org/0000-0001-9960-2180
https://orcid.org/0000-0002-4522-7589
https://orcid.org/0000-0002-1561-0798
http://crossmark.crossref.org/dialog/?doi=10.1103/PhysRevB.106.014303&domain=pdf&date_stamp=2022-07-08
https://doi.org/10.1103/PhysRevB.106.014303


YI, MA, XIA, NEGAHBAN, CHEN, AND LI PHYSICAL REVIEW B 106, 014303 (2022)

FIG. 1. The N-cell periodic PT symmetric metamaterial bar. The global coordinate Oxz is located at the center, and the x-z plane shows
the side view of the rod with x along the axial direction.

properties of PT symmetric systems are cell-number-
dependent, and the CPAL can be approached by tuning the
number of cells [19,37,41]. We show the link between the
CPAL and the band structure of infinite periodic PT sym-
metric systems, showing that the frequency, the minimum cell
number, and the periodicity of the CPAL are related to the
Bloch wavenumber.

Developing a CPAL for elastic waves could have sig-
nificant impact. However, realization of a CPAL requires
overcoming the intrinsic difference in the physical equa-
tions between optics, airborne acoustics, and elastic mechan-
ics, and finding methods for obtaining gain. Generally, to
construct an exact PT symmetric elastic wave system, one
needs both loss and gain. Materials that induce loss are
ubiquitous in nature, however, materials that introduce gain
are not. Thus, an equivalent gain medium needs to be con-
structed artificially. There are several methods used to do this
in solids that include using piezoelectric materials shunted
by negative-resistance circuits [30], electrically biased piezo-
electric semiconductors [33], and optomechanical systems
derived by optical excitation [42]. Among these methods, due
to ease of realization and convenience in tunability, shunted
piezoelectric materials are commonly used to get gain in a
PT symmetric elastic wave system [20,21,34]. Using piezo-
electric materials with shunted circuits, we design a PT
symmetric metamaterial beam for achieving elastic flexural
wave CPAL, and show that the frequency and the periodicity
of the CPAL are also linked to the band structure, even in
complex multifield coupling elastic systems. Thanks to the
tunability of circuits, we demonstrate a unique CPAL that can
be induced in the Bragg’s bandgap. The design and analysis
is based on using Timoshenko beam theory, which provides
a means of accurately describing the response at high fre-
quencies. We also develop a semi-analytical reverberation-ray
matrix method (RRM) to analyze the scattering properties
of the PT symmetric metamaterial beam, which shows the
same fidelity but overcomes numerical instability and poor ef-
ficiency of traditional numerical methods, such as the transfer
matrix method (TMM) and the finite element method (FEM).
The flexural wave propagation is governed by a fourth-order
partial differential equation that predicts the existence of in-
trinsic evanescent waves. The effect of evanescent waves on
the CPAL are also investigated.

This paper is arranged as follow: Section II demonstrates
the unique transmission and reflection properties of a pe-
riodic PT symmetric metamaterial rod, and explains the
relation between the band structure and the periodic-like
CPAL observed when changing the cell number. Section III
uses Timoshenko beam theory to derives the conditions for
observing a PT symmetric beam, and constructs a PT

symmetric metamaterial beam using unit cells with shunted
piezoelectric materials. The section uses the more efficient
RRM described in the Appendix to demonstrate how flexural
wave CPALs can be predicted from band structure. In addi-
tion, the effect of evanescent waves on flexural wave CPALs is
discussed. Section IV demonstrates the tunability of the flexu-
ral wave CPAL, which can be induced in the Bragg’s bandgap.
Section V provides the conclusion.

II. THE PERIODIC PT SYMMETRIC
METAMATERIAL ROD

A. Scattering properties

To reveal the link between CPALs and band structure,
we first analyze longitudinal wave propagation in a simple
periodic PT symmetric thin rod. The response of the rod in
the frequency domain is governed by

ω2ρ(x)ū(x, ω) + ∂

∂x

[
E (x)

∂ ū(x, ω)

∂x

]
= 0 (1)

for the longitudinal displacement u(x, t ) = ū(x, ω)e−iωt ,
where t and ω are, respectively, time and angular frequency,
x is the spatial coordinate, i2 = −1, ρ denotes density, and
E denotes Young’s modulus. Applying the parity operator
P [i.e.,P ū(x, ω) = ū(−x, ω)] and the time reversal oper-
ator T [i.e., T ū(x, ω) = ū∗(x, ω) in which “∗” represents
complex conjugate] to Eq. (1) leads to the PT symmetric
conditions for the rod [13,43]. These conditions are given
as ρ(x) = ρ∗(−x) and E (x) = E∗(−x). When satisfied, the
function PT u(x, t ) is also a solution of Eq. (1). A possible
configuration of the N-cell PT symmetric rod is shown in
Fig. 1. Here, ρ(x) = ρ0, and E (x) = E∗(−x) is taken as com-
plex to introduce loss (i.e., El = E0e−iα) and gain (i.e., Eg =
E0eiα), with 0 < α < π/2. The positive real ρ0 and E0 used
in constructing the metamaterial are also used as the density
and Young’s modulus, respectively, of background material
outside the N-cell metamaterial rod. The unit cell of the meta-
material rod has a length L and consists of half loss and half
gain.

In this case, the displacement amplitude ū(x, ω) can be
expressed as

ū(x, ω) =
⎧⎨
⎩

A−
1 eik0(x+ NL

2 ) + D−
1 e−ik0(x+ NL

2 ), x � −NL
2 ,

ϕ(x, ω), −NL
2 � x � NL

2 ,

D+
1 eik0(x− NL

2 ) + A+
1 e−ik0(x− NL

2 ), x � NL
2 ,

(2)

in which k0 = ω
√

ρ0/E0. The transfer matrix T of one cell of
the metamaterial bar is written as T = MgNgM−1

g MlNlM−1
l
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for the state of displacement and stress, in which

Ml (g) =
[

1 1
ikl (g)El (g) −ikl (g)El (g)

]
,

Nl (g) =
[

eikl (g)L 0
0 e−ikl (g)L

]
,

and kl (g) = ω
√

ρ0/El (g). As a result, the N-cell transfer ma-
trix is TN . The amplitudes in the background response, as
given in Eq. (2), are expressed by the relation [D+

1 , A+
1 ]T =

M−1
0 TN M0[A−

1 , D−
1 ]T , in which “T ” denotes transposition

and M0 = [1, 1; ik0E0,−ik0E0]. This can also be written as

[D+
1 , A+

1 ]T = MN [A−
1 , D−

1 ]T , (3)

in which M = M−1
0 TM0. Applying the PT operator to the

solution given in Eq. (2) yields

PT ū(x, ω)

=

⎧⎪⎪⎨
⎪⎪⎩

(D+
1 )∗eik0(x+ NL

2 ) + (A+
1 )∗e−ik0(x+ NL

2 ), x � − NL
2 ,

PT ϕ(x, ω), −NL
2 � x � NL

2 ,

(A−
1 )∗eik0(x− NL

2 ) + (D−
1 )∗e−ik0(x− NL

2 ), x � NL
2 .

(4)

Thus, one also has ([A−
1 , D−

1 ]T )∗ = MN ([D+
1 , A+

1 ]T )∗. Taking
the complex conjugate and comparing with Eq. (3) shows that
a PT -symmetric system satisfies the relation

(MN )∗ = (MN )−1. (5)

This condition indicates that det(MN ) = det(TN ) = 1, in
which det(·) denotes the determinant.

The scattering matrix of the N-cell metamaterial rod is
denoted by S = [tl , rr ; rl , tr] and defined in this problem as
[D+

1 , D−
1 ]T = S[A−

1 , A+
1 ]T , in which tl and rl represent, re-

spectively, the transmission and reflection coefficients for
waves coming from the left and tr and rr represent, respec-
tively, these coming from the right. Therefore, MN can be
expressed in terms of the transmission and reflection coef-
ficients as MN = [t̄ − rl rr/t̄, rr/t̄ ; −rl/t̄, 1/t̄ ], in which t̄ =
tl = tr results from det(MN ) = 1. Following [40,41], using
Eq. (5), this leads to

MN =
[

1/t̄∗ rr/t̄
−rl/t̄ 1/t̄

]
,

and the scattering relations [40]

t̄∗t̄ + rl r
∗
r = 1, (6a)

r∗
r t̄ + rrt̄

∗ = 0, (6b)

r∗
l t̄ + rl t̄

∗ = 0. (6c)

Eq. (6) and the fact that det(MN ) = 1 result in the generalized
unitarity relation [39]

rl rr = t̄2(1 − 1/|t̄ |2),

and unimodularity of the scattering matrix det(S) = 1 [39].
For the infinite periodic metamaterial rod, using Bloch’s

theory results in the dispersion equation

det(T − IeiqL ) = 0, (7)

in which q is the Bloch wavenumber, and I is the identity
matrix. The matrix M and the transfer matrix T have the
same eigenvalues, which are denoted by η1,2, and follow
the relation η1 = 1/η2 = eiqL. Thus, η1 + η2 = 2 cos(qL).
Based on Cayley-Hamilton theorem [44,45], the N th power
of the two-by-two unimodular matrix M can be expressed
as [41]

MN = 1

sin(qL)
[M sin(NqL) − I sin ((N − 1)qL)]

=
⎡
⎣ 1

t̄∗
N=1

sin(NqL)
sin(qL) − sin ((N−1)qL)

sin(qL)
rN=1

r
t̄N=1

sin(NqL)
sin(qL)

− rN=1
l

t̄N=1

sin(NqL)
sin(qL)

1
t̄N=1

sin(NqL)
sin(qL) − sin ((N−1)qL)

sin(qL)

⎤
⎦,

which results in

1/|t̄ |2 = (1/|t̄N=1|2 − 1) sin2(NqL)/ sin2(qL) + 1. (8)

This equation relates the Bloch wavenumber to the transmis-
sion properties, and also indicates the periodic effect.

The eigenvalues and eigenvectors of the scattering matrix S
are, respectively, s1,2 = t̄ ± √

rl rr and v1,2 = [±√
rr,

√
rl ]T .

The exceptional point (EP), at which eigenvalues and
eigenvectors degenerate simultaneously, indicates the tran-
sition from the PT symmetric phase (|t̄ | < 1) to the
PT symmetric broken phase (|t̄ | > 1), and corresponds to
perfect transmission (|t̄ | = 1) and unidirectional zero re-
flection (rl = 0 or rr = 0) [18]. According to Eq. (8),
|t̄ | < 1 for |t̄N=1| < 1, and |t̄ | > 1 for |t̄N=1| > 1. Thus,
the EPs with |t̄ | = 1 and |t̄N=1| = 1 are cell number
independent.

B. The relation between Bloch band and periodic-like CPAL

For aluminum (ρ0 = 2700 [kg/m3] and E0 = 70 [GPa])
and for L = 0.05 [m], Figs. 2(a) and 2(b) provide the band
structure for different α obtained by selecting frequency
and solving the dispersion Eq. (7). When α is a positive
real number, the PT symmetric conditions are satisfied, as
shown for α = 0.1 or α = 0.2, and the Bloch wavenum-
ber is real in the Bloch bands. Interestingly, for the PT
symmetric cases, the Bloch wavenumber cannot reach the
Brillouin boundary, as is shown in the inset of Fig. 2(b).
If α is a pure imaginary number, the metamaterial rod be-
comes a common sonic crystal with a Bragg’s bandgap
marked by the gray area in Figs. 2(a) and 2(b). Calculating
the transmittance |t̄ | with changing cell number N for the
PT symmetric cases is shown in Figs. 2(c) and 2(d). Re-
markably, periodic-like extremely high transmittance appears
that relates to cell number N (see red rectangle), and with
frequency corresponding to the point of maximum Bloch
wavenumber [i.e, the ω of maximum q(ω)] in the Bloch
band.

This interesting phenomenon can be understood in terms
of Eq. (8). The condition for |t̄ | to go to infinity is satis-
fied when sin2(NqL)/ sin2(qL) tends to |t̄N=1|2/(|t̄N=1|2 − 1)
in the broken phase. When N changes, 1/ sin2(qL) is the
envelope of sin2(NqL)/ sin2(qL), so that the maximum of
sin2(NqL)/ sin2(qL) occurs at the maximum q(ω), as shown
in Fig. 2(e). On the other hand, |t̄N=1| has a maximum in
the broken phase, as shown in Fig. 2(g), and the value of
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FIG. 2. [(a), (b)] The band structure of metamaterial rods. [(c), (d)] The periodic-like CPAL of the finite periodic metamaterial rod with
respect to cell number N relates to the point of maximum real Bloch wavenumber shown in (b). 	N indicates the interval between two
occurrences of CPAL with respect to cell number N . (e) 1/ sin2(qL) and |t̄N=1|2/(|t̄N=1|2 − 1) resulting from Eq. (8) with a normalized
gain(loss) ratio α = 0.2. [(f), (g)] The transmittance of the finite periodic metamaterial rod for given N and α = 0.2. (h) The absolute values
of the eigenvalues of the scattering matrix for given N and α = 0.2. The frequency range between the red-dashed lines represents the PT
symmetric broken phase for N = 1.

|t̄N=1| at the frequency of the maximum q(ω) almost equals
the maximum of |t̄N=1|, corresponding to the minimum of
|t̄N=1|2/(|t̄N=1|2 − 1) in the broken phase. These two facts
indicate that the CPAL (or quasi-CPAL) occurs at the fre-
quency associated with the maximum Bloch wavenumber. At
this frequency, one eigenvalue of the scattering matrix tending
to infinite and another tending to zero at the extremely high
transmittance, which is the feature of CPAL, such as is shown
in Figs. 2(f) and 2(h) for N = 8 and α = 0.2. The exact CPAL
is a singularity of the system, at which the eigenvalues of
the scattering matrix are exactly infinite and zero. Changing
the cell number can only approach the singularity, achieving
quasi-CPAL. This CPAL has no threshold, since, according to
our additional numerical study, there exists amplifying effect
as long as α > 0.

The periodicity of the CPAL with respect to cell number
can be estimated as

�N = �π/(π − max{qL})�, (9a)

or �N = �π/(π − max{qL})� + 1, (9b)

in terms of sin2(NqL) = 1 at the maximum Bloch wavenum-
ber, in which �·� denotes rounding towards negative infinity,
and the minimum cell number for the CPAL is

Nmin = �0.5π/(π − max{qL})�, (10)

in which �·� represents the nearest integer function.
In this case, the N corresponding to the CPALs are
{16, 47, 78, 110, 141, 172} for α = 0.1 in Fig. 2(c),
and {8, 23, 39, 54, 70, 85, 101, 116, 132, 147, 163,
178, 194} for α = 0.2 in Fig. 2(d). These results agree
with those estimated by the Bloch wavenumber given
according to Eq. (9) and Eq. (10). They are, with �N =
�π/(π − 0.9680π )� = 31 or �N = �π/(π − 0.9680π )� +
1 = 32, given by Nmin = �0.5π/(π − 0.9680π )� = 16,
for α = 0.1, and �N = �π/(π − 0.9355π )� = 15 or
�N = �π/(π − 0.9355π )� + 1 = 16, by Nmin =
�0.5π/(π − 0.9355π )� = 8, for α = 0.2. These indicate
that the periodicity effect of the CPAL with respect to
cell number is similar to a Bragg effect and applicable in
more complicated systems, such as considered below in
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FIG. 3. The PT symmetric beam. (a) The unit cell of PT symmetric metamaterial beam with marked geometrical parameters. (b) The
electronic circuits with effective impedance Z1 (an inductor in series with a positive resistor) and Z2 (an inductor in series with an equivalent
negative resistor). (c) The configuration of periodic N-cell PT symmetric metamaterial beam.

the case of flexural waves in piezoelectric metamaterial
beams.

III. THE PERIODIC PT SYMMETRIC
METAMATERIAL BEAM

This section proposes a design methodology for construct-
ing a periodic PT symmetric metamaterial beam, which uses
parameters that can be used in real experiments, and then
investigates the scattering properties of flexural waves to re-
veal the link between the band structure and the periodic
flexural wave CPAL effect in fourth-order systems. In the pro-
cess, the influence of evanescent waves, present in beams, is
evaluated.

A. Configuration and PT symmetric conditions

The unit cell of the metamaterial beam considered here
is shown in Fig. 3(a) and constructed by sandwiching an
aluminum beam by gluing two pairs of shunted piezoelectric
patches that are made of lead zirconate titanate (PZT-5H).
The coordinate system Oxz on the figure indicates the sagittal
plane of the unit cell. The piezoelectric polarization is as-
sumed to be along z, and wave propagation is to be along
x. The aluminum beam has width b and thickness hb, the
left and right pair of piezoelectric patches have lengths Ll

and Lg, respectively, width of b, thickness of hp, and are
shunted, respectively, by electronic circuits with effective
impedance Z1 and Z2. The distance between the patches is
Lb, and each patch has a distance of L0 from the end of the
cell.

Considering shear deformation, but neglecting the insignif-
icant piezoelectric effect in shear, the constitutive response of

the piezoelectric can be written as⎡
⎣εxx

γxz

Dz

⎤
⎦ =

⎡
⎣sE

11 0 d31

0 sE
55 0

d31 0 εσ
33

⎤
⎦

⎡
⎣σxx

τxz

Ez

⎤
⎦,

where εxx and σxx are, respectively, the axial (normal) strain
and stress, γxz and τxz are, respectively, the shear strain
and stress, Dz and Ez are, respectively, the electric displace-
ment and field intensity along z, and where the material
parameters are sE

11, sE
55, d31 and εσ

33, which are given for
PZT-5H in Table I. The normal compliance of the piezo-
electric shunted patch circuit with electrical impedance Z ,
using the excitation time component e−iωt , can be written
as

s̄E
11 = sE

11 + iωZd2
31bpLphp

1 − iωZCσ
p

, (11)

in which Cσ
p = εσ

33bpLp/hp is the capacitance of the piezoelec-
tric at constant stress [47]. This allows the constitutive relation
for the shunted piezoelectric patch under dynamic harmonic
loading with frequency ω to be rewritten in the form used
for linear elastic response (i.e., in a form similar to that of
aluminum) [48]. This form is written as[

σxx

τxz

]
=

[
Ep 0
0 Gp

][
εxx

γxz

]
=

[
1/s̄E

11 0
0 1/sE

55

][
εxx

γxz

]
, (12)

where Ep(ω) and Gp are effective moduli.
Using Timoshenko beam theory [49,50], the displacements

u(x, z, t ) along the x direction and w(x, z, t ) along the z di-
rection are assumed to be expressed as u(x, z, t ) = −zθ (x, t )
and w(x, z, t ) = w(x, t ), in which θ (x, t ) is the rotation
angle resulting from bending of the beam. This induces
both axial and shear strains that are given, respectively, by
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TABLE I. Material constants for aluminum [5] and lead zirconate titanate (PZT-5H) [46].

Name Symbol Value Unit

Aluminum
Young’s modulus E0 70 GPa
Shear modulus G0 26.3 GPa
Density ρ0 2700 kg/m3

Lead zirconate titanate (PZT-5H)
Compliance at constant electric field
normal sE

11 1.65 × 10−11 Pa−1

shear sE
55 4.35 × 10−11 Pa−1

Piezoelectric coefficient d31 −2.74 × 10−10 C/N
Dielectric constant under zero stress εσ

33 3.01 × 10−8 F/m
Density ρp 7500 kg/m3

εxx(x, t ) = −zθ ′(x, t ) and γxz(x, t ) = w′(x, t ) − θ (x, t ),
where “ ′ ” indicates a derivative with respect to x. The

resulting dynamical response written in the frequency
domain, with w(x, t ) = W (x, ω)e−iωt , then becomes

GAκEIW ′′′′ + (GAκρI + mEI )ω2W ′′ + (ρIω2 − GAκ )mω2W = 0, (13)

in which m denotes mass per unit length, ρI denotes mass moment of inertia per unit length along the bar calculated about the y
axis,

EI =

⎧⎪⎨
⎪⎩

E0I0, Substrate beam,

(EI )L, (EI )L = E0I0 + 2El
p[Ip + bphp(hb + hp)2/4], Z1 sandwiched beam,

(EI )G, (EI )G = E0I0 + 2Eg
p[Ip + bphp(hb + hp)2/4], Z2 sandwiched beam,

GAκ =
{

G0bhbκb, Substrate beam,

G0bhbκb + 2Gpbphpκp, Sandwiched beam,

m =
{
ρ0hbb, Substrate beam,

ρ0bhb + 2ρpbphp, Sandwiched beam,

ρI =
{
ρ0I0, Substrate beam,

ρ0I0 + 2ρp[Ip + bphp(hb + hp)2/4], Sandwiched beam,

in which E0, G0 and ρ0 are, respectively, Young’s modu-
lus, shear modulus, and density of the substrate (aluminum;
given in Table I), El

p and Eg
p are the effective Young’s mod-

uli of, respectively, the left and right piezoelectric patches
that are shunted, respectively, by Z1 and Z2, I0 = 1

12 h3
bbb,

Ip = 1
12 h3

pbp, κb and κp are adjustment coefficients associ-
ated with the shear stress for, respectively, the substrate and
piezoelectric material given by κb = 10(1 + vb)/(12 + 11vb),
κp = 10(1 + vp)/(12 + 11vp), where vb = 1 − E0

2G0
and vp =

1 − 1
2s̄E

11Gp
[50]. If the rotary inertia effect and shear de-

formations are neglected, the flexural wave motion in the
beam is described by traditional Euler’s beam theory, as
[50]

EIW ′′′′ − ρAω2W = 0. (14)

Applying the PT operator to Eq. (13) leads to the PT
symmetric conditions for the beam given as

m(x) = [m(−x)]∗, (15a)

GAκ (x) = [GAκ (−x)]∗, (15b)

ρI (x) = [ρI (−x)]∗, (15c)

EI (x) = [EI (−x)]∗. (15d)

Since the parameters m, GAκ , and ρI are real, the first three
equations are satisfied when Ll = Lg. According to Eqs. (11),
(12), and (14), the fourth condition given in Eq. (15) is sat-
isfied when Ll = Lg and iZ1 = (iZ2)∗. For the following, the
material properties are given in Table I and the geometric
design parameters considered for the unit cell are given in
Table II. For these parameters and properties, if one takes
the resistances Z1 = −Z2 = R = 500 �, the PT symmetry
conditions are satisfied and result in the effective parameters
(EI )L and (EI )G plotted in Fig. 4. The real and the imaginary
parts of these two effective parameters have the relations
Re((EI )L ) = Re((EI )G) and Im((EI )L ) = −Im((EI )G). An

TABLE II. Geometric parameters (unit:mm).

b hb hp L0 Lb Ll Lg

40 0.8 0.8 10 20 30 30
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FIG. 4. The effective parameters of the metamaterial beam in
the sandwiched part with R = 500 �. Solid lines represent loss, and
dashed lines represent gain.

effective impedance Z2 with negative resistance can be real-
ized using an equivalent negative resistance circuit, as shown
in Fig. 3(b), in which an operational amplifier is needed with
connection to an external power source.

B. Complex band structure

The harmonic wave solution W (x, ω) can be rewritten as

W (x, ω) = C1eλx, (16)

in which C1 is the wave amplitude. Substituting Eq. (16) into
Eq. (13) leads to the characteristic equation

GAκEIλ4 + (GAκρI + mEI )ω2λ2

+ (ρIω2 − GAκ )mω2 = 0,

that can be solved analytically to get

λ1 = −i

√
mω2EI + GAκω2ρI + √

	

2GAκEI
,

λ2 = −i

√
mω2EI + GAκω2ρI − √

	

2GAκEI
,

λ3 = −λ1, λ4 = −λ2.

in which 	 = (mEI − GAκρI )2ω4 + 4(GAκ )2mω2EI .
Therefore, the solution takes the form

W (x, ω) = a1eλ1x + a2eλ2x + d1eλ3x + d2eλ4x. (17)

Using the O′x′z′ coordinate system, as shown in
Fig. 3(a), the state vector of the beam at x′, given as
X(x′) = [deflection, rotating angle, bending moment, shear
force]T = [W, �, M, Q]T , can be expressed in the form

X(x′) = A(x′)a + D(x′)d, (18)

for

A(x′) =

⎡
⎢⎢⎣

eλ1x′
eλ2x′

c1eλ1x′
c2eλ2x′

EIc1λ1eλ1x′
EIc2λ2eλ2x′

GAκ (λ1 − c1)eλ1x′
GAκ (λ2 − c2)eλ2x′

⎤
⎥⎥⎦,

D(x′) =

⎡
⎢⎢⎣

eλ3x′
eλ4x′

c3eλ3x′
c4eλ4x′

EIc3λ3eλ3x′
EIc4λ4eλ4x′

GAκ (λ3 − c3)eλ3x′
GAκ (λ4 − c4)eλ4x′

⎤
⎥⎥⎦,

a =
[

a1

a2

]
, d =

[
d1

d2

]
,

in which ci = mω2+GAκλ2
i

GAκλi
for i = 1, 2, 3, 4, and the parameters

EI , GAκ , m, and ρI change along the unit cell. For each length
Li with constant parameters, the transformation matrix takes
the form

Ti = [Ai(Li ) Di(Li )][Ai(0) Di(0)]−1.

The transfer matrix for the entire unit cell, as shown in
Fig. 3(a), then becomes

T = T0Tl
pTbTg

pT0,

where T0 and Tb are transformations for, respectively, the
substrate-only segments of length L0 and Lb, and Tl

p and
Tg

p are transformations for, respectively, the sandwiched seg-
ments with lengths Ll and Lg. The periodic Bloch’s theorem
provides the dispersion equation of the metamaterial beam as

|T − eiqLI| = 0, (19)

in which q denotes the Bloch wave number for flexural wave.
Dispersion equation (19) results in the band structures

shown in Fig. 5, as given for the short circuit case [Z1 =
Z2 = 0, Figs. 5(a) and 5(b)] and the PT symmetric case
[Z1 = −Z2 = 1000 �, Figs. 5(c) and 5(d)]. The gray areas in
the figure represent Bragg’s bandgaps where the Bloch wave
number is imaginary. For comparison, the results based on
Euler beam theory and based on FEM analysis are also shown
in the figure. The FEM analysis is conducted by the com-
mercial software Comsol Multiphysics, assuming plane stress
and using serendipity quadrilateral elements. Because of the
shunted piezo patches in metamaterial model, we use the solid
mechanics module, electrostatics module and electrical circuit
module in Comsol. The mechanical response and electrical
response of piezo patches are unified by the piezoelectric
effect interface. The shunted circuits are set in the electrical
circuit module, and are connected to electrostatics module
through terminal interfaces.

Comparing theories based on the Euler and Timoshenko
beam theories to the more accurate FEM results indi-
cates that the Timoshenko beam theory clearly captures the
high frequency response much more accurately. In addition,
the solution indicates a transition in the third Bloch band
(6–9 kHz) from the short circuit case that the Bloch wavenum-
ber q can reach the boundary q = π/L to the PT symmetric
case where q cannot reach π/L, as shown by comparing
Fig. 5(a) and (c). This is further supported by the FEM so-
lution, that indicates the eigenfrequency becomes a complex
number for the PT symmetric case, and that there exists
a band EP indicating the block Bloch bands degenerate, as
shown in the insets of Fig. 5(c). In particular, the inset iden-
tified by a red dashed outline shows the development of the
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FIG. 5. Band structures of the infinite periodic metamaterial beam. [(a), (b)] Short circuit case (Z1 = −Z2 = R = 0). [(c), (d)] PT
symmetric case (Z1 = −Z2 = R = 1000 �). [(b), (d)] Show only that the imaginary components of the band structure obtained by solving
the dispersion equation (19) given frequency. The insets in (c) indicate the real and imaginary components of the eigenfrequency calculated
by FEM. FEM calculates eigenfrequency given wavenumber. The analytical results are obtained by solving for the wavenumber given
frequency.

imaginary part of eigenfrequency in the FEM analysis. Com-
parison of the FEM obtained EP and the solution obtained
from the dispersion equation (19) indicates that the maximum
Bloch wavenumber, identified by red arrows in Fig. 5(c),
corresponds to the band EP obtained in FEM by solving for
frequency given wavenumber. When the Bloch wavenumber
is smaller than band EP, the wavenumber and the frequency
of dispersion curves are pure real, and the dispersion curves
in the both scenarios, solving for wavenumber and solving
for frequency, should agree totally. However, Timoshenko’s
beam model is also an approximation theory, which gives
rise to the small difference between the analytical and the

FEM. Following the analysis described for the PT symmetric
metamaterial rod, the flexural wave CPAL gets induced at the
frequency associated with the maximum Bloch wavenumber.

C. The periodic flexural wave CPAL

Figure 3(c) shows the finite periodic N-cell PT symmet-
ric metamaterial beam sandwiched between two semi-infinite
aluminum beams, which function as the background medium.
The wave field in the background mediums and metamaterial
beam can be expressed as

W (x, ω) =

⎧⎪⎪⎨
⎪⎪⎩

A−
1 eλ3(x+ NL

2 ) + A−
2 eλ4(x+ NL

2 ) + D−
1 eλ1(x+ NL

2 ) + D−
2 eλ2(x+ NL

2 ), x � −NL
2 ,

φ(x, ω), −NL
2 < x < NL

2 ,

A+
1 eλ1(x− NL

2 ) + A+
2 eλ2(x− NL

2 ) + D+
1 eλ3(x− NL

2 ) + D+
2 eλ4(x− NL

2 ), x � NL
2 ,
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FIG. 6. The band structure and scattering properties of a PT symmetric metamaterial beam with Z1 = −Z2 = R = 500 �. (a) The band
structure from Eq. (19), on which the red-solid arrow indicates the maximum wavenumber. (b) The transmittance varying cell number, on
which the dashed arrows represent the CPALs, and the red arrow denotes the CPAL with minimum cells. (c) The transmittance and (d) the
eigenvalues of scattering matrix S with noted cell numbers. The red-solid rectangles indicate the same frequency as in (a) and (b).

in which A−
1 , A+

1 , D−
1 , D+

1 are the amplitudes of the
propagation waves, and A−

2 , A+
2 , D−

2 , D+
2 are the amplitudes

of the evanescent waves. The resulting input amplitude vector
as and output amplitude vector ds are defined as

as = [A−
1 , A−

2 , A+
1 , A+

2 ]T , ds = [D−
1 , D−

2 , D+
1 , D+

2 ]T . (20)

The existence of evanescent wave in the beam results in a
4 × 4 scattering matrix Sr with the elements on the principal
diagonal representing reflection coefficients. For an N-cell
metamaterial, the fourth-order scattering matrix Sr can be
explicitly and efficiently calculated by RRM. The detailed
derivation is provided in Appendix. Only propagating waves
in the far field in the background media lead to the scattering

matrix of propagating waves, which can be written as

S =
[

tl rr

rl tr

]
=

[
Sr

31 Sr
33

Sr
11 Sr

13

]
,

[
D+

1
D−

1

]
= S

[
A−

1
A+

1

]
. (21)

Setting Z1 = −Z2 = R = 500 �, Figs. 6(a) and 6(b)
shows, respectively, the band structure obtained by solv-
ing Eq. (19) and the transmittance resulting from varying
the cell number N . Surprisingly, even in the more compli-
cated piezoelectric metamaterial beam, a periodic-like high
transmittance flexural wave CPAL appears, and its frequency
corresponds to the frequency at the point of maximum Bloch
wavenumber in the Bloch band that cannot reach to Bril-
louin boundary (i.e., qπ/L = 1). This follows since this
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FIG. 7. The scattering properties of the 6-cell PT symmetric metamaterial beam. (a) The transmittance and reflectance for propagating
waves. (b) The phases of transmission and reflection. [(c), (d)] The output to input ratio of energy for absorber and laser, respectively. [(e),(f)]
The amplitudes of outgoing waves for absorber and laser, respectively. The red arrows indicate the frequency of the flexural wave CPAL, and
the blue-dashed arrows indicate the unidirectional reflectionlessness.

phenomenon is an interference effect. The cell number N
of these periodic CPAL are {6, 17, 29, 40, 52}, and the
maximum Bloch wavenumber, indicated by a red arrow in
Fig. 6(a), is 0.9133π/L at 7.197 kHz. These are linked
by Eq. (9) (i.e., �N = �π/(π − 0.9133π )� = 11 or �N =
�π/(π − 0.9133π )� + 1 = 12). According to Eq. (10), the
minimum cell number to achieve the flexural wave CPAL
is Nmin = �0.5π/(π − 0.9133π )� = 6 in agreement with the
results in Figs. 6(c) and 6(d). It is worth noting that the
low-frequency band still cannot reach the boundary, as shown
in the inset of Fig. 6(a), but is close. It takes more cells to
achieve the CPAL, as Nmin = �0.5π/(π − 0.9972π )� = 179
at 1.8 kHz. Changing the value R, the minimum N and the
interval �N can be made smaller as the CPALs in Figs. 2(b)
and 2(c) show. However, in this piezoelectric metamaterial
beam, these are not a monotonic function of R since the

loss and gain are not monotonic in R. In short, the CPAL is
predictable using only the band structure of the infinite peri-
odic beam to identify the frequency of periodicity. It is worth
mentioning that, besides the flexural mode in beam, longitu-
dinal and torsional modes also exist. We conducted additional
three-dimensional FEM analysis, which shows there are band
EPs of longitudinal modes, but no band EP for the torsional
modes. This implies that our piezoelectric beam metamaterial
cannot achieve torsional wave CPAL.

D. The effect of evanescent wave

The CPAL can act as a multifunctional device, amplifier,
absorber and laser, depending on the nature of the incident
waves. At the CPAL, when the incident wave comes from
only one side, either the left or the right, the transmittance
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FIG. 8. The effective parameters of the metamaterial beam in
the sandwiched part with R = 10 � and fLC = 4 kHz. Solid lines
represent loss, and dashed lines represent gain.

and reflectance simultaneously become extremely high, as
shown in Fig. 7(a). The phases of the transmission and the
reflection change by π in the frequency domain near this
point, as shown in Fig. 7(b). If the input signals are si-
multaneously excited at both sides of the PT symmetric

metamaterial beam, there is an additional degree of freedom
that can be used to manipulate the system. The two-by-two
scattering matrix S of the propagating waves has nor-
malized eigenvectors v1,2 = [1, ±√

rl/rr]T /
√

1 + |rl |/|rr |
corresponding to eigenvalues s1,2. At the CPAL, for
N = 6, there is a minimum eigenvalue |s1| 	 1 and a maxi-
mum eigenvalue |s2| 
 1, as shown in Fig. 6(d). Therefore,
when the input amplitude vector as = [A−

1 , A−
2 , A+

1 , A+
2 ]T

is given by as = [1, 0,
√

rl/rr, 0]T /
√

1 + |rl |/|rr |, based on
Eq. (21), the elements corresponding to propagating waves
in the output amplitude vector are D+

1 = s1/
√

1 + |rl/rr |
and D−

1 = s1
√

rl/rr/
√

1 + |rl/rr |, and the output to input
ratio of energy of the propagating waves is |s1|2. The
eigenvalue |s1| 	 1 leads to an absorber at the frequency
of 7.207 kHz, indicated by a red arrow in Fig. 7(c).
On the contrary, when the input amplitude vector as =
[1, 0,−√

rl/rr, 0]T /
√

1 + |rl/rr |, the elements of the output
amplitude vector become D+

1 = s2/
√

1 + |rl/rr | and D−
1 =

s2
√

rl/rr/
√

1 + |rl/rr |. This achieves the laser shown in
Fig. 7(d) for |s2| 
 1. It should be noted that the amplitudes
of evanescent waves in the input amplitude vector as are set
to zero. This is consistent with the general understanding
that the precise control of induced evanescent waves is hard

FIG. 9. The band structures of a PT symmetric metamaterial beam with resistors and inductors (the resistance R = 10 � and resonant
frequency fLC = 4 kHz). [(a), (c)] The real parts of band structure given by Eq. (19) and FEM. [(b), (d)] Represent the imaginary parts
corresponding to the real band structures in (a) and (c) obtained by solving Eq. (19), respectively. [(c), (d)] Expanded portions indicated by
the green dashed squares in (a) and (b). The inset in (c) is the corresponding imaginary parts calculated by FEM. The green arrow indicate the
band EP (FEM), and the black and red arrows indicate the maximum wavenumbers (Timoshenko beam theory).
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in practice, but the control of propagating waves is easily
implemented. The output energy with evanescent waves (D−

2
and D+

2 ), based on Eq. (A10), results in an output to input
ratio of energy, ||Sras||2/||as||2, for the absorber and laser
as shown, respectively, in Figs. 7(c) and 7(d). The results
indicate that the influence of the evanescent waves is relatively
insignificant, even in the near field. In general, the amplitudes
of evanescent waves are about one order smaller than that of
propagating waves, as shown in Figs. 7(d) and 7(e), except
for the points indicated by the blue dash arrows, at which the
system interestingly acts as an unidirectional output device.

IV. TUNABLE SCATTERING PROPERTIES: FLEXURAL
WAVE CPAL IN THE BRAGG’S BANDGAP

A distinct advantage of piezoelectric metamaterials is
that the effective material parameters are highly tunable
due to the diverse tunable circuits. When an inductor is
introduced in series with either the positive resistor or
effective negative resistor in their associated circuits, as
shown in Fig. 3(b), the circuit and the piezoelectric patch
can form an RLC resonance circuit with the resonant
frequency fLC = 1

2π
√

L̄Cσ
p

, in which L̄ is inductance, and

FIG. 10. The scattering properties of PT symmetric metamaterial beam with resistors and inductors (the resistance R = 10 � and resonant
frequency fLC = 4 kHz). (a) The transmittance for varying cell number. 	N indicates the interval between two CPALs with respect to cell
number N . The CPALs are marked by the red box. (b) The eigenvalues of two-by-two scattering matrix S for different cell number N . [(c), (d)]
The output to input ratio of energy for absorber and laser, respectively. [(e), (f)] The amplitudes of outgoing waves for the absorber and laser,
respectively. The red arrows indicate the frequency of the flexural wave CPAL.
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one gets Z1 = R − iωL̄ and Z2 = −R − iωL̄. With these
shunt circuits, the metamaterial beam can also be PT
symmetric for the case iZ1 = (iZ2)∗ and requiring the
effective parameters (EI )L and (EI )G having the relations
Re((EI )L ) = Re((EI )G) and Im((EI )L ) = −Im((EI )G).
Figure 8 shows such a condition for R = 10 � and
fLC = 4 kHz.

It was shown above that there exists a Bragg’s bandgap in
the frequency range from 2.5 kHz to 6 kHz for the short circuit
case [see Figs. 5(a) and 5(b)]. When inductors are introduced,
a passband is induced by electromechanical resonance. For
instance, for R = 10 � and fLC = 4 kHz a passband is in-
duced near the resonant frequency in the Bragg’s bandgap
for the short circuit case, as shown in Fig. 9. Here the band
structures are calculated based on both the Timoshenko beam
model and by FEM since the electromechanical resonance
leads to drastic changes of the effective material parameters
(see Fig. 8). Although the result from using the Timo-
shenko beam theory indicates narrow bands of flexural wave,
indicated by black arrows in Fig. 9(c), they are different from
the results from FEM [51]. The main passbands calculated
based on Timoshenko beam theory and by FEM agree, other
than for very small frequency shifts.

The results indicate that the passbands induced by reso-
nance cannot reach the Brillouin boundary. According to the
band-CPAL correspondence, this predicts the existence of a
periodic CPAL at the frequency associated with the maxi-
mum Bloch wavenumber, which is indicated by a red arrow
in Fig. 9(c). Figure 10(a) provides the transmittance, that is
also calculated using RRM when varying the cell number.
Surprisingly, extremely high transmittance (CAPL) occurs
periodically at the frequency associated with the maximum
Bloch wavenumber at 3.956 kHz with the associated cell num-
ber N of {4, 12, 21, 29}. These are perfectly consistent with
the prediction of Eq. (9) and Eq. (10) that, for example, gives
for �N = 8 or �N = 9, Nmin = 4 at max{qL} = 0.8785π .
For Nmin = 4 and at 3.956 kHz, one of the eigenvalues of
the two-by-two propagating flexural wave scattering matrix is
|s1| 	 1 and the other is |s2| 
 1, shown in Fig. 10(b), which
correspond, respectively, to absorber and laser as shown in
Figs. 10(c) and 10(d) for the output to input energy ratio.
Figures 10(e) and 10(f) provide the amplitudes, respectively,
of the outgoing waves when the incident wave vectors are
eigenvectors corresponding to s1 and s2.

V. CONCLUSIONS

We have investigated longitudinal and flexural wave prop-
agation through periodically-structured PT symmetric elastic
metamaterials both theoretically and numerically. For the
beam, we calculated the results based on using the Euler and
the Timoshenko beam theories, and compared them to the
more accurate, but more expensive, plane stress FEM analysis
and found that only when using the Timoshenko beam theory
did we get significantly accurate results at high frequencies.
We showed that the occurrence of apparently periodic CPALs
with changing cell number in PT symmetric elastic meta-
materials is an interference effect, and can directly be related
to the band structure of the infinite periodic metamaterial. In
particular, that the frequency, the minimum cell number and

periodicity can be accurately predicted from examining the
Bloch band, even for complex systems such as the proposed
periodic PT symmetric piezoelectric metamaterial beam.

As expected, we show that the PT symmetric metama-
terial beam can act as a multifunctional device at the CPAL
frequency depending on the characteristics of the incident
waves. In particular, it can function as an amplifier, absorber,
laser or unidirectional output device, and has excellent
performances in all these aspects according to our simulations.
For instance, the significant amplifying effect of the 6-cell
metamaterial gives rise to easily reached transmittance
above 10. Although the existing developed piezoelectric
structures with circuits can achieve many unusual functions
for elastic wave control, such as nonreciprocity [52], rainbow
trapping [53], and amplification [54], our proposed device
has obvious advantages of comprehensive versatility and high
performance. In addition, PT symmetry is a new mechanism
for elastic wave control, and the PT symmetric arrangement
is simple.

As such, our study and the associated analytical tools pro-
vide a new strategy for design of elastic wave devices. To this
end, we demonstrate that a periodic CPAL can be induced in
the Bragg’s bandgap using the band-CPAL correspondence.
The plausibility of this demonstration was aided by the ease
in tunability of the effective properties of the proposed meta-
material through controlled shunt circuits. In addition, we
developed an efficient high-frequency-accurate and time sav-
ing RRM based on the Timoshenko beam theory to calculate
the scattering properties of periodic PT symmetric piezoelec-
tric metamaterial beams. Due to the accuracy of this analysis
in the needed high frequency range, it can be used in place
of the much more expensive and time consuming FEM cal-
culations. These contributions can potentially aid in the rapid
development of designs with applications in signal processing.
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APPENDIX: REVERBERATION-RAY MATRIX METHOD
FOR CALCULATING TRANSMISSION AND REFLECTION

The reverberation-ray method [55] is used to calculate the
scattering matrix of the structure due to numerical stability
in transfer matrix methods at high frequencies. For this, the
N-cell metamaterial beam is divided into n parts along the x
direction and, thus, get n + 1 interfaces in the system. Dual
coordinate systems, shown in Fig. 11, are used to describe the
problem. For coordinate system (Oxz)J (J+1), considering the

FIG. 11. The dual coordinates (Oxz)J (J+1) and (Oxz)(J+1)J .
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expression (17), the state vector XJ (J+1) can be written as

XJ (J+1) = AJ (J+1)aJ (J+1) + DJ (J+1)dJ (J+1), (A1)

in which AJ (J+1) and DJ (J+1) have the same form as shown in
Eq. (18), and

aJ (J+1) = [
aJ (J+1)

1 , aJ (J+1)
2

]T
, dJ (J+1) = [

dJ (J+1)
1 , dJ (J+1)

2

]T
,

(A2)

represent, respectively, the arriving and departing wave ampli-
tudes. As a result of the continuity condition at the interface,

XJ (J−1)(0) = CXJ (J+1)(0), C =

⎡
⎢⎣

−1
1

−1
1

⎤
⎥⎦.

(A3)

The eight amplitudes in the two local coordinate systems
(Oxz)J (J+1) and (Oxz)J (J−1) at the Jth interface can be ex-
pressed as

dJ = SJaJ , (A4)

in which

SJ = −[DJ ]−1AJ , AJ = [AJ (J−1),−CAJ (J+1)],

DJ = [DJ (J−1),−CDJ (J+1)], aJ = [[aJ (J−1)]T , [aJ (J+1)]T ]T ,

dJ = [[dJ (J−1)]T , [dJ (J+1)]T ]T .

Furthermore, for the pair of dual coordinate systems shown in
Fig. 11, there are the relations

W (J−1)J (x(J−1)J , ω) = −W J (J−1)(L(J−1)J − x(J−1)J , ω),
(A5a)

�(J−1)J (x(J−1)J , ω) = �J (J−1)(L(J−1)J − x(J−1)J , ω), (A5b)

where L(J−1)J is the distance between the origin of the two
coordinates. Equation (A5) leads to a relation for the phase of
the amplitudes in each pair of dual coordinates given as

a(J−1)J = P(J−1)JdJ (J−1),

P(J−1)J =
[−e−λ1L(J−1)J

0
0 −e−λ2L(J−1)J

]
.

Thus, at the Jth interface, there is the relation

aJ = PJ d̄J , (A6)

in which

PJ =
[

P(J−1)J 0
0 P(J+1)J

]
, d̄J = [[d(J−1)J ]T , [d(J+1)J ]T ]T ,

where PJ is the local phase matrix.
Each continuity condition (A4) result in a relation between

arriving wave amplitudes and departing wave amplitudes in
each local coordinate. Thus, together they give⎡

⎢⎢⎢⎢⎣
d1

d2

...

dN−1

dN

⎤
⎥⎥⎥⎥⎦ =

⎡
⎢⎢⎢⎢⎣

S1

S2

. . .

SN−1

SN

⎤
⎥⎥⎥⎥⎦

⎡
⎢⎢⎢⎢⎣

a1

a2

...

aN−1

aN

⎤
⎥⎥⎥⎥⎦. (A7)

According to Eq. (20), Eq. (A7) can be rewritten as[
ds
d

]
=

[
S̄11 S̄12

S̄21 S̄22

][
as
a

]
, (A8)

in which

d = [[d12]T , [d2]T , . . . , [dN−1]T , [dN (N−1)]T ]T ,

a = [[a12]T , [a2]T , . . . , [aN−1]T , [aN (N−1)]T ]T .

Also, the local phase matrices (A6) lead to a global phase
matrix P and the relation

a = PHd, (A9)

where

P =

⎡
⎢⎢⎢⎢⎣

P12

P2

. . .

PN−1

PN (N−1)

⎤
⎥⎥⎥⎥⎦,

H =

⎡
⎢⎢⎢⎢⎣

L
L

. . .

L
L

⎤
⎥⎥⎥⎥⎦, L =

⎡
⎢⎣

0 0 1 0
0 0 0 1
1 0 0 0
0 1 0 0

⎤
⎥⎦.

Equations (A8) and (A9) combine to give

ds = Sras, (A10)

where

Sr = S̄11 + S̄12[(I − PHS̄22)−1PHS̄21]. (A11)
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