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By deriving a general framework and analyzing concrete examples, we demonstrate a class of dynamical quan-
tum phase transitions (DQPTs) in one-dimensional two-band systems going through double-quench processes.
When this type of DQPT occurs, the Loschmidt amplitude vanishes and the rate function remains singular
after the second quench, meaning the final state continually has no overlap with the initial state. This type of
DQPT is named metamorphic DQPT to differentiate it from ordinary DQPTs that only exhibit zero Loschmidt
amplitude and singular rate function at discrete time points. The metamorphic DQPTs occur at zero as well
as finite temperatures. Our examples of the Su-Schrieffer-Heeger (SSH) model and Kitaev chain illustrate the
conditions and behavior of the metamorphic DQPT. Since ordinary DQPTs have been experimentally realized in
many systems, similar setups with double quenches will demonstrate the metamorphic DQPT. Our findings thus
provide additional controls of dynamical evolution of quantum systems.
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I. INTRODUCTION

With the rapid development in quantum technology, dy-
namical behavior of isolated quantum systems have attracted
huge research interest [1–5]. Among many interesting phe-
nomena in nonequilibrium physics, dynamical quantum phase
transitions (DQPTs) [6–8] have emerged as a thriving field
in atomic, molecular, and optical physics and condensed-
matter physics. DQPTs have been formulated in Ref. [7] in
the context of quantum dynamics following a quench. In a
common definition, a DQPT reveals nonanalytic behavior in
the real-time dynamics of a quantum system. By an anal-
ogy of the nonanalytic behavior in a thermodynamic phase
transition, DQPTs provide an elegant description of a class
of nonequilibrium phase transitions [8–10]. There have been
extensive research in theoretical studies [11–23], as well as
pioneering experiments realizing DQPTs in ionic and atomic
systems [24,25]. Moreover, there have been studies of DQPTs
in topological systems [26–31] after a single quench and
quench dynamics in other contexts [32–34]. The importance
of DQPTs lies in their direct relations to observable behavior
of quantum many-body systems in quench dynamics. More-
over, the studies of DQPTs have shed light on fundamentals
of quantum physics and added great controls to our quantum
toolbox.

The analog of the free energy in thermodynamic phase
transitions is the rate function in a DQPT for describing the
postquench behavior of a quantum system. The rate function
is related to another important quantity in the study of DQPTs,
known as the Loschmidt (or return) amplitude, which is a
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function of time t that measures the overlap between the initial
and final states and acts as the analog of the partition function
in thermodynamics. As a thermodynamic phase transition oc-
curs when the free energy exhibits singular behavior, a DQPT
occurs at critical times t∗

n that are zeros of the Loschmidt
amplitude [8] and cause singular behavior in the rate function.
The zeros are called the Fisher zeros when t is complexi-
fied [7]. The appearance of the critical times signals that the
pre- and postquench quantum states become orthogonal and
belong to different quantum phases. Furthermore, crossing a
quantum critical points by a quantum quench may also induce
DQPTs [8].

While the ordinary DQPTs exhibit singular behavior at
discrete time points, here we set out to explore possibilities
of continuous time domains of singular behavior induced by
quench dynamics. Our approach is to investigate DQPTs in
multiple-quench processes that have been recently proposed
[35]. It has been shown that in a double-quench process, both
the absence or presence of nonanalytic behavior before and
after the second quench can be demonstrated in a quantum
system, thereby providing additional controls of DQPTs by
tuning the time duration between different quenches. Nev-
ertheless, previous work [35] only demonstrated singular
behavior at discrete time points in multiquench processes.

To conduct a systematic search for continuous regimes of
singular behavior, we generalize the formalism of DQPTs in
double-quench processes to finite temperatures since mixed
quantum states are common in the real world. While early
studies of DQPTs focused on pure quantum states and their
dynamics, there have been attempts to generalize the con-
cept of DQPT to mixed quantum states [36–41]. A primary
method is to extend the concept of Loschmidt amplitude in a
suitable way to finite temperatures using the density matrix
[8,42]. Since the system after a quench is usually not in
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equilibrium, the temperature is referred to that of the initial
state in equilibrium.

We then apply the formalism to exemplary one-
dimensional (1D) two-level quantum systems with nontrivial
topological properties. The examples gives us a chance to
control DQPTs by adjusting the topology of quantum systems.
To generalize the physical quantities involved in DQPTs to
mixed states, we adopt the idea of defining the Loschmidt
amplitude as the overlap between the purified states of the
density matrices [37]. As we tune the time duration between
the two quenches, the quantum system can be driven to a final
state that is maximally different from (or orthogonal to) the
initial state and will never regain its overlap with the initial
state after the last DQPT at the second quench. We refer to
this type of DQPT as the metamorphic DQPT to distinguish
it from the ordinary DQPT that only shows discrete singular
points as time evolves. Since the framework is general, the
metamorphic DQPT can occur in other quantum systems as
well. Moreover, pure quantum states are shown to exhibit the
metamorphic DQPT in double-quench processes as tempera-
ture approaches zero.

The explicit calculations will show that for the Su-
Schrieffer-Heeger (SSH) model, the metamorphic DQPTs can
be realized by quenching its Hamiltonian from an initial state
to one with a different topology and back. For the Kitaev
chain, the metamorphic DQPTs does not necessarily need to
involve a change of the topology since it has more control-
lable parameters in the Hamiltonian. While the 1D two-band
examples with exact solutions unambiguously demonstrate
the metamorphic DQPTs in double-quench processes, we will
argue that the framework and analysis are general in the sense
that the metamorphic DQPT should, in principle, exist in more
complicated systems. However, the calculations and analyses
are more challenging.

The rest of the paper is organized as follows: In Sec. II,
we give a general introduction to the setup and framework
for investigating DQPTs in double-quench processes. A de-
tailed theoretical analysis then shows where ordinary and
metamorphic DQPTs will emerge. Section III presents two
explicit examples, the Su-Schrieffer-Heeger (SSH) model and
the Kitaev chain, to demonstrate the metamorphic DQPTs
and discuss the behavior associated with various DQPTs.
Section IV discusses some implications for experiments.
Finally, Sec. V concludes our work.

II. THEORETICAL FRAMEWORK AND METHOD

We first give a briefly overview of DQPTs. In the follow-
ing, we will set h̄ = 1 = kB. The key object in the theory of
DQPTs is the Loschmidt (or return) amplitude [7,8]

G(t ) = 〈ψ (0)|ψ (t )〉 = 〈ψ (0)|e−iHt |ψ (0)〉, (1)

where t represents time, |ψ (0)〉 is the initial quantum state,
and H denotes the quenched Hamiltonian. The Loschmidt
amplitude measures the deviation of the time-evolved state
from the initial condition, and its zeros t∗

n denote the transition
points of DQPTs [37,38]. While a quantum phase transition
[43] occurs when the ground states become orthogonal across
a critical point determined by a parameter in the Hamiltonian,
a DQPT similarly describes orthogonality of states induced

by time evolution. Since a dynamical quench process is
generically not an equilibrium process, rather than the conven-
tional thermodynamic free-energy, the “dynamical version” of
the free-energy is introduced as

f (t ) = − 1

N
lim

N→∞
ln |G(t )|2, (2)

where N is the overall degrees of freedom. Accordingly,
|G(t )|2 plays the role of the partition function in thermody-
namics [8]. f (t ) is usually called the rate function, which
exhibits singular behavior at the zeros of G(t ).

In quantum information theory [44], G(t ) is referred to
as the quantum fidelity, qualifying the “similarity” between
the initial and final states. Uhlmann defined two pure states
to be parallel if and only if the fidelity between them is
a positive real number [45]: 〈ψ1|ψ2〉 = 〈ψ2|ψ1〉 > 0. Using
this definition, if two states are perpendicular to each other
with 〈ψ1|ψ2〉 = 0, they are said to have minimal similarity
since the state vectors |ψ1,2〉 contain no component of each
other. Therefore, the evolved quantum state will have minimal
similarity with respect to the initial state at t∗

n s, leading to
DQPTs.

To generalize the formalism of DQPTs to mixed quantum
states, it is convenient if we have a pure-state like description
of mixed states. This can be achieved by a protocol called
purification of density matrices [45]. Suppose a mixed state is
described by the density matrix ρ = ∑

i λi|i〉〈i|. If ρ has full
rank, a matrix W = √

ρU = ∑
i

√
λi|i〉〈i|U with U being an

arbitrary unitary matrix is said to purify ρ since ρ = WW †.
W is called the purification or amplitude of ρ. The purified
state given by |W 〉 = ∑

i

√
λi|i〉 ⊗ U T |i〉 is isomorphic to W .

The inner product of two purified states follows the Hilbert-
Schmidt product 〈W1|W2〉 = Tr(W †

1 W2).
The concept of the Loschmidt amplitude can be general-

ized as follows. If the initial mixed state of a quantum system
is given by ρ(0) = W (0)W †(0), the density matrix will evolve
as ρ(t ) = e−iHtρ(0)eiHt after a quench governed by H . This
leads to W (t ) = e−iHtW (0). Thus, the Loschmidt amplitude
can be obtained by generalizing Eq. (1) to

Gρ (t ) = 〈W (0)|W (t )〉 = Tr
[
W †(0)W (t )

]
= Tr[ρ(0)e−iHt ]. (3)

We mention that equivalent expressions have been found as
the transition amplitude of purified states [37,41]. Similarly,
the generalization of the rate function (2) is given by

g(t ) = − lim
N→∞

1

N
ln |Gρ (t )|2. (4)

Here the limit N → ∞ must be taken at the end of the eval-
uation. As pointed out previously [8], at critical times t∗

n ,
the rate function shows nonanalytic behavior if the quench
process induces a dynamical quantum critical point, where the
Loschmidt amplitude vanishes.

To give concrete examples of dynamical effects of quench
processes at finite temperatures, we consider a generic
one-dimensional (1D) two-band Hamiltonian with periodic
boundary condition H = ∑

k �
†
k Hk�k relevant to a group of

systems in condensed-matter physics. Here �k is a Nambu
spinor of a pair of fermionic operators, and Hk is a 2 × 2
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matrix of the form

Hk = Ek + 1
2�kn̂k · 	σ , (5)

where 	σ = (σx, σy, σz ) are the Pauli matrices, �k corresponds
to the energy gap of Hk , and the function Ek plays no important
role in the following discussion. The 1D momentum k is lim-
ited to the first Brillouin zone and is thus periodic, and the unit
vector n̂k = (sin θk cos φk, sin θk sin φk, cos θk )T . The reason
we choose this type of models is because they allow exact
solutions, many of which exhibit interesting topological prop-
erties, as we will see shortly. Moreover, those 1D two-band
models have minimal numbers of controllable parameters for
the metamorphic DQPT in double-quench processes, allowing
succinct demonstrations.

While a typical DQPT involves only one quench, here we
consider a double-quench process governed by H (t ). At t = 0,
the system experiences the first quench, and the Hamiltonian
is suddenly switched from H0 to H1. At a later time t = τ ,
a second quench is applied, and the Hamiltonian is subse-
quently switched to H2. Similar to Eq. (5), the time-dependent
Hamiltonian can be expressed as

Hk (t ) =

⎧⎪⎨
⎪⎩

H0k = E0k + 1
2�0kn̂0k · 	σ , t < 0

H1k = E1k + 1
2�1kn̂1k · 	σ , 0 � t < τ

H2k = E2k + 1
2�2kn̂2k · 	σ , t � τ,

(6)

where τ is the time interval between the two quenches. If
H1k = H2k (i.e., n̂1k = n̂2k), the model actually reduces to a
single-quench process, which has already been extensively
studied [37,38,41].

To introduce the concept of temperature in quench pro-
cesses, the initial mixed state ρ(0) is chosen as the thermal
equilibrium state at temperature T . Using Eq. (6), the corre-
sponding density matrix is

ρ(0) =
∏

k

⊗ρk (0) =
∏

k

⊗ e−βH0k

Tr(e−βH0k )

=
∏

k

⊗1

2

(
1 − tanh

β�0k

2
	σ · n̂0k

)
, (7)

where β = 1/(kBT ).
After constructing the initial and final purified states, the

Loschmidt amplitude as a function of time for the double-
quench process is obtained as

Gρ (t ) =
{

Tr
(
ρ(0)e− i

h̄ H1t
)
, 0 � t < τ

Tr
(
ρ(0)e− i

h̄ H2(t−τ )e− i
h̄ H1τ

)
, t � τ,

(8)

where

e− i
h̄ H1τ =

∏
k

⊗{e− i
h̄ E1kτ [cos (ω1kτ )12×2

− i sin (ω1kτ )n̂1k · 	σ ]},
e− i

h̄ H2(t−τ ) =
∏

k

⊗{e− i
h̄ E2k (t−τ )[cos[ω2k (t − τ )]12×2

− i sin[ω2k (t − τ )]n̂2k · 	σ ]}, (9)

with ω1k = �1k/(2h̄) and ω2k = �2k/(2h̄). To sim-
plify the notations, we introduce a1k = cos(ω1kτ ),
a2k = cos ω2k (t − τ ), b1k = sin(ω1kτ ), and b2k = sin[ω2k

(t − τ )]. Plugging Eqs. (7) and (9) into Eq. (8) and ignoring
any terms linear with respect to the Pauli matrices since
Trσx = Trσy = Trσz = 0, we get

Gρ (t ) =
∏

k

C′
k

2
[cos (ω1kt ) − i sin (ω1kt )	nk · n̂1k], (10)

for 0 � t < τ , and

Gρ (t ) =
∏

k

Ck

2
[a1ka2k − b1kb2kn̂1k · n̂2k − ia1kb2k 	nk · n̂2k

− ia2kb1k 	nk · n̂1k + b1kb2k 	nk · (n̂1k × n̂2k )] (11)

for t � τ . Here C′
k = e−E1kt/h̄, Ck = e−E1kτ/h̄e−E2k (t−τ )/h̄, and

	nk = − tanh(β�0k/2)n̂0k is temperature dependent.
When 0 � t < τ , only the first quantum quench is imple-

mented and the result is exactly that of the single-quench
process studied previously [37,41]. According to Eq. (10),
DQPTs may occur at

t∗
n = 1

ω1kc

(
nπ + π

2

)
, (12)

where n is a non-negative integer (similarly hereinafter) and
kc is the critical momentum such that 	nkc · n̂1kc = 0.

For a genuine double-quench process, one usually has
n̂1k �= n̂2k . Inspired by previous discussions for 0 � t < τ , we
consider the case that there exist another critical momentum
k̃c such that n̂1k̃c

· n̂2k̃c
= 0. Thus, Eq. (11) implies

Gρ (t ) =
∏
k �=k̃c

Gk
ρ (t ) × Ck̃c

2

[
cos

(
ω1k̃c

τ
)

cos ω2k̃c
(t − τ )

− i cos
(
ω1k̃c

τ
)

sin[ω2k̃c
(t − τ )]	nk̃c

· n̂2k̃c

− i cos ω2k̃c
(t − τ ) sin

(
ω1k̃c

τ
)
	nk̃c

· n̂1k̃c

+ sin
(
ω1k̃c

τ
)

sin[ω2k̃c
(t − τ )]	nk̃c

· (
n̂1k̃c

× n̂2k̃c

)]
.

(13)

Moreover, if we choose a special initial state satisfying 	nk̃c
//

n̂2k̃c
at k̃c, then 	nk̃c

· n̂1k̃c
= 0 and 	nk̃c

· (n̂1k̃c
× n̂2k̃c

) = 0, and
Eq. (13) can be simplified as

Gρ (t ) = Ck̃c

2
cos

(
ω1k̃c

τ
)
[cos ω2k̃c

(t − τ )

− i sin[ω2k̃c
(t − τ )]	nk̃c

· n̂2k̃c
]
∏
k �=k̃c

Gk
ρ (t ). (14)

Note the condition 	nk̃c
· n̂1k̃c

= 0 actually implies k̃c = kc,
hence we will omit the “hat” of k̃c hereafter. According to
Eq. (14), an interesting result is that Gρ (t ) = 0 for any time
t > τ if the interval τ between the two quenches satisfies

τ = τ ∗ = 1

ω1kc

(
nπ + π

2

)
. (15)

The behavior of the rate function when t > τ ∗ needs
a detailed analysis. For simplicity, we suppose there
is only one critical momentum kc. Using Eq. (4), we
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get

g(t ) = − lim
N→∞

2

N

{
ln

Ckc

2
+ ln | cos (ω1kcτ

∗)| + ln
[

cos2[ω2kc

× (t − τ ∗)] + sin2[ω2kc (t − τ ∗)](	nkc · n̂2kc )2]}

− lim
N→∞

2

N

∑
k �=kc

ln |Gk
ρ (t )|. (16)

Importantly, there is always a t-independent singular term
ln | cos(ω1kcτ

∗)| if the time duration τ between the two
quenches is chosen properly. To understand this, we first ex-
plain the meaning of Gρ (t > τ ∗) = 0. Physically, Gρ (t∗) = 0
of a single-quench process means that the initial and final
mixed states share minimal similarity at t∗, as pointed out pre-
viously [41]. For a double-quench process exhibiting Gρ (t >

τ ∗) = 0, the condition n̂1kc · n̂2kc = 0 can be understood as an
implication that H1 and H2 are perpendicular to each other at
least at one critical momentum kc, denoted by H1⊥H2 at kc

hereafter. Thus, a DQPT occurs when the second quench is
applied at t = τ ∗ if H1⊥H2 at kc. After that, the subsequent
dynamical evolution is governed by H2, and the system stays
in the state maximally different from the initial state since we
always have Gρ (t ) = 0 for t > τ ∗ in this case.

We emphasize that this phenomenon cannot happen in the
1D two-band system going through a single-quench process
at finite temperatures, which only allows Gρ = 0 at discrete
points. Since the final state remains orthogonal to the initial
state after the second quench in a double-quench process
with suitable parameters, we refer to the DQPT occurring at
t = τ ∗ as a metamorphic DQPT. Importantly, the rate func-
tion remains singular after a metamorphic DQPT occurs in a
double-quench process because the final state does not gener-
ate any overlap with the initial state after τ ∗.

If the system is initially prepared in an equilibrium state at
temperature T , then 	nk = − tanh(β�0k/2)n̂0k . The condition
for the occurrence of a metamorphic DQPT only requires
n̂0kc // n̂2kc and n̂2kc ⊥ n̂1kc at kc. Thus, a simple protocol
to ensure the occurrence of a metamorphic DQPT is to let
the Hamiltonian after the second quench return to the initial
Hamiltonian, i.e., H2 = H0 (implying n̂0k = n̂2k). In this set-
ting, a metamorphic DQPT can occur if at least one critical
momentum kc exists. In our examples, we will focus on this
simple setting.

We emphasize that the metamorphic DQPTs in double-
quench processes may also occur if the initial states are pure
quantum states. By substituting 	nk = − tanh(β�0k/2)n̂0k into
Eq. (14), we have

Gρ (t ) = Ckc

2
cos (ω1kcτ )

[
cos ω2kc (t − τ )

+ i sin[ω2kc (t − τ )] tanh
β�0kc

2

] ∏
k �=kc

Gk
ρ (t ). (17)

At zero temperature (β → ∞), we have
limβ→∞ tanh(β�0k/2) = 1 and ρ(0) = 1

2 (1 − 	σ · n̂0k ).
The latter is just the projection operator of the ground-state
energy level E0k − 1

2�0k . The Loschmidt amplitude reduces

to

Gρ (t ) = Ckc e
iωkc (t−τ )

2
cos (ω1kcτ )

∏
k �=kc

Gk
ρ (t ). (18)

Therefore, metamorphic DQPTs may occur if τ = (nπ +
π/2)/ω1kc .

Furthermore, we point out that there are no subsequent
ordinary DQPTs after the second quench (t > τ ∗) is applied
in the situation with n̂0kc // n̂2kc and n̂2kc ⊥ n̂1kc at finite tem-
peratures. The only nonanalyticity of g(t > τ ∗) comes from
the metamorphic DQPT at t = τ ∗, which can be deduced
from Eqs. (13) and (14). We will also verify this observation
numerically in our examples. Moreover, for the 1D two-band
model analyzed here (with at least one kc such that n̂0kc // n̂2kc

and n̂2kc ⊥ n̂1kc ), it can be shown that there is no ordinary
DQPT after the second quench if a metamorphic DQPT is
absent, i.e., τ �= τ ∗. Nevertheless, ordinary DQPTs may still
appear at t > τ in more general situations of double-quench
processes by controlling τ and the parameters of H0, H1 and
H2, as discussed in Ref. [35].

Our discussion so far focuses on the simple 1D two-band
quantum systems. Here we briefly analyze whether the meta-
morphic DQPTs are generic phenomena in double-quench
processes for other systems. Note that there are at least three
controllable parameters (T , τ and k) in our analysis based on
Eq. (13). The vanishing of Gρ only imposes two conditions
for the real and imaginary parts. Hence, there are in principle
infinite sets of parameters that can fulfill Gρ (t ) = 0. At every
finite temperature T , there are values of τ ∗ and kc for the
metamorphic DQPT. For quantum systems with more than
two bands or higher dimensions of the Brillouin zone (with a
replacement of k by vector k), there are more controllable pa-
rameters and Eq. (13) becomes more complicated. However,
it still imposes only two conditions. Thus, there will be more
choices to ensure the occurrence of metamorphic DQPTs with
Gρ (t ) = 0, and we expect more complicated phase diagrams.
Nevertheless, the 1D two-band models are valuable because
they provide minimal setups with concrete and exact results
of the metamorphic DQPTs.

III. EXAMPLES

Here we present two explicit examples to demonstrate the
metamorphic DQPTs at finite temperatures in double-quench
processes. Instead of repeating the construction of the puri-
fied states and the evaluation of the Loschmidt amplitude for
locating various DQPTs, here we will use the conditions for
generic 1D two-band models and analyze the parameters of
the examples that meet the conditions.

A. Su-Schrieffer-Heeger model

The first example is the Su-Schrieffer-Heeger (SSH) model
[46], which is a paradigm of 1D topological insulators. We
will see that the metamorphic DQPTs are closely linked
to the topological properties of the SSH model. The SSH
model is described by the Hamiltonian with periodic boundary
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condition:

Ĥ =
L∑

i=1

(
J1a†

i bi + J2a†
i bi−1 + H.c.

)
, (19)

where the alternating hopping coefficients J1 and J2 are both
positive. The Hamiltonian can be cast into the form (5) in
momentum space with

Ek = 0,

�k = 2
√

J2
1 + J2

2 + 2J1J2 cos k,

n̂k = 2

�k
(−J1 − J2 cos k, J2 sin k, 0)T . (20)

In the SSH model, it is actually the dimensionless parame-
ter J1/J2 that determines the properties of the system. For a
double-quench process, there are three Hamiltonians of the
SSH model at different times. The corresponding parameters
are respectively labeled by Ji1 and Ji2, corresponding to Hi

(i = 0, 1, 2).
A metamorphic DQPT can occur if the critical momentum

kc, defined by n̂1kc · n̂2kc = 0, can be found. It can be shown
that

n̂1k · n̂2k = 4

�1k�2k
[(J11 + J12 cos k)(J21 + J22 cos k)

+ J12J22 sin2 k]. (21)

Let x = cos kc, the existence of kc requires

J11J21 + J12J22 + (J11J22 + J12J21)x = 0, (22)

whose root is

x = −J11J21 + J12J22

J11J22 + J12J21
. (23)

The constraint −1 � x � 1 needs to be considered. Note that
x is always negative, implying kc > π

2 . Using Eq. (23), the
condition x � −1 is equivalently expressed as

(J11 − J12)(J21 − J22) � 0. (24)

In other words, if J11 � (�)J12, then J21 � (�)J22 is required
for the existence of kc. The bulk bands of the SSH model with
Ji1 < Ji2 exhibit different topology from that with Ji1 > Ji2

[47]. The topology is related to the Zak phase that can be
measured in cold atoms [48]. Thus, the condition of H1⊥H2

at kc is equivalent to that of the bulk bands of H1 and H2

having different topologies. This provides a possible way to
realize metamorphic DQPTs in experiments: One can manip-
ulate the parameters of the Hamiltonian (the ratio Ji1/Ji2) such
that the topological property of the system is changed after
each quench. The condition for the existence of the critical
momentum in this case is indicated by the shaded regions in
Fig. 1 as a phase diagram in terms of the two ratios J11/J12

and J21/J22.
The last condition to ensure the occurrence of metamor-

phic DQPTs is that the initial state satisfies n̂0kc // n̂2kc , as
discussed before. This further requires J01J22 = J02J21. More-
over, the duration between the two quenches that induces a
metamorphic DQPT is determined via ω1kcτ

∗ = nπ + π/2.

FIG. 1. Phase diagram of the SSH model in the double-quench
process described in the context with the shaded regions indicating
where metamorphic DQPTs may be found.

Using Eq. (22), we get

τ ∗ = nπ + π
2√

J2
1 + J2

2 + 2J1J2 cos kc

. (25)

Therefore, after the second quench is applied at t = τ ∗ and all
those conditions are satisfied, a metamorphic DQPT always
occurs at any finite temperatures.

To visualize our results, we consider an explicit example
of the SSH model with J11 = 0.4, J12 = 0.8, J01 = J21 = 1.0,
and J02 = J22 = 0.8 at T = 3.0J01, and present our numeri-
cal results by plotting the rate function g as a function of
t in Fig. 2. In the top panel, the duration between the two
quenches is chosen as τ = τ ∗ = 11.044/J01 by setting n = 1
in Eq. (25). Hence, when t < τ ∗, a DQPT occurs at t∗

0 =
3.681/J01 according to Eq. (12), which is reflected by the
sharp peak of g(t ). Note that the rate function includes the
contributions from k �= kc as well, so the singular behavior
is a kink at t∗

0 in g(t ). At t = τ ∗, the system experiences the
second quench, which induces a metamorphic DQPT. As a
consequence, the rate function is always singular when t > τ ∗
in this case, and we use a shaded area to cover that region
following the metamorphic DQPT. After the second quench,
the dynamical behavior of the rate function except the di-
vergent term ln | cos(ω1kcτ

∗)| is completely analytic in this
situation, as we have discussed before. However, the details
are concealed by the divergence of g(t ) after t = τ ∗.

As a comparison, we choose a different value of the time
duration with τ = 8.0/J01 in the bottom panel, where no meta-
morphic DQPT occurs when the second quench is applied.
Thus, the behavior of the rate function is now visible after
the second quench. Usually, there is a discontinuity at t = τ

due to the quench. We remark that all peaks in the region
where t > τ are smooth and no DQPT appears in the latter
case. Moreover, the metamorphic DQPT of the SSH model
can arise if the double quench process crosses the topological
transition point J1/J2 = 1 twice as H0 → H1 → H2. However,
the direction of crossing the topological transition point does
not matter.

B. Kitaev chain

The previous example of the SSH model shows a broad
range of parameters for observing the metamorphic DQPT
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FIG. 2. Rate function g(t ) vs t for the SSH model going
through a double-quench process with J11 = 0.4, J12 = 0.8, J01 =
J21 = 1.0, and J02 = J22 = 0.8 at T = 3.0J01. The first quench
occurs at t = 0. (top panel) τ = τ ∗ = 11.044/J01 (indicated by
the vertical line) with a metamorphic DQPT at t = τ ∗. The
rate function diverges in the shaded region. (bottom panel)
τ = 8.0/J01 (indicated by the vertical line) without a metamorphic
DQPT. For the bottom panel, no singular behavior arises for t > τ .
The kinks on both panels in the range 0 < t < τ indicate the ordinary
DQPTs.

after double quenches. Next, we study a double-quench
process of the periodic Kitaev chain modeling 1D p-wave
superconductors [49]. We remark that DQPTs in fermionic
BCS superfluids going through single-quench processes have
been studied in Ref. [50]. The Hamiltonian of the 1D Kitaev
chain is given by

Ĥ =
L∑

i=1

(−Ja†
i ai+1 + Maiai+1 − μ

2
a†

i ai + H.c.), (26)

where L is the number of sites, J is the hopping coefficient,
μ is the chemical potential, and M > 0 is the superconduct-
ing gap. We introduce the dimensionless parameters m = μ

2M
and c = J

M that control the model. A comparison with the
SSH model shows that there is one more controllable pa-
rameter in the Kitaev chain, so we expect more complicated
results to follow. We further introduce the Nambu spinor �k =
(ak, a†

−k )T to write the Hamiltonian with periodic boundary
condition in the form (5) in momentum space with

Ek = 0,

�k = 2M
√

(c cos k − m)2 + sin2 k,

n̂k = 2M

�k
(0,− sin k,−m + c cos k)T . (27)

FIG. 3. c2-m2 phase diagram with the shaded region indicating
where critical momentum exists for the Kitaev chain in a double-
quench process with m1 = 0.2 and c1 = 5.0.

As before, we consider a double-quench process and intro-
duce three Hamiltonians with the corresponding parameters
respectively labeled by mi and ci (i = 0, 1, 2). If all ci are set
to 1.0, the result has no physical difference from the previous
SSH model. Here we consider the more general situation.
The existence of a critical momentum kc for the metamorphic
DQPT requires

n̂1k · n̂2k = 4M1M2

�1k�2k
[sin2 k + (m1 − c1 cos k)(m2 − c2 cos k)].

(28)

Let y = cos kc and solve Eq. (28), we get

y = (m1c2 + m2c1) ± �2

2(c1c2 − 1)
, (29)

where � = [(m1c2 − m2c1)2 − 4c1c2 + 4 + 4m1m2]1/2 � 0,
as required by Vieta’s theorem. The constraint −1 � y � 1
imposes more stringent conditions of the parameters m1, m2,
c1, and c2. Furthermore, the requirement n̂0kc // n̂2kc is satis-
fied if m2 − m0 = (c2 − c0) cos kc. When all those conditions
are satisfied, a metamorphic DQPT can occur in the double-
quench process if the duration between the two quenches is

τ ∗ = nπ + π
2

M1

√
(c1 cos kc − m1)2 + sin2 kc

. (30)

Altogether, there are four parameters of the Kitaev chain
that control the existence of metamorphic DQPTs. To simplify
the discussion, we fix Hamiltonian after the first quench and
search for suitable parameters of the Hamiltonian after the
second quench. For example, if we set m1 = 1.0 and c1 = 1.0,
the roots of Eq. (29) are y1 = (m2 + 1)/(c2 − 1) and y2 = 1.
Thus, there always exists a critical momentum kc = 2nπ for
all possible choices of m2 and c2 at any temperature. Next,
we try another choice: m1 = 0.2 and c1 = 5.0. For this set
of parameters, the existence of kc depends on the choices of
m2 and c2 in Eq. (29). In Fig. 3, we show a c2-m2 phase di-
agram with the shaded region indicating where metamorphic
DQPTs may occur. Different from the SSH model, there exist
two possible critical momenta for the Kitaev chain in this
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FIG. 4. g(t ) as a function of t for the Kitaev chain with M1 =
M2 = 1.0, m1 = 0.2, c1 = 5.0, and m2 = c2 = 2.0 at T = 5.0M1.
The first quench occurs at t = 0. (top) Time duration τ = τ ∗

2 =
1.373/M1 (red solid line) with a metamorphic DQPT occurring at
t = τ ∗

2 . g(t ) remains singular after the second quench. (bottom) Time
duration τ = 1.2/M1 (indicated by the vertical line) without a meta-
morphic DQPT. When τ �= τ ∗

1,2, g(t ) remains regular after the second
quench. The kinks on both panels in the range 0 < t < τ indicate the
ordinary DQPTs.

case:

kc1,2 = arccos

( c2
5 + 5m2

) ± �2

2(5c2 − 1)
. (31)

As a consequence, there are two possible choices of τ ∗, la-
beled τ ∗

1 and τ ∗
2 , at which metamorphic DQPTs may happen

according to Eq. (30). We remark that the topological transi-
tion point of the Kitaev chain is at |m| = c [49], so the double
quenches for the metamorphic DQPTs are not tied to the
topological transition point, in contrast with the metamorphic
DQPTs of the SSH model.

To understand these results more clearly, we choose an
example of the Kitaev chain with M1 = M2 = 1.0, m1 = 0.2,
c1 = 5.0, and m2 = c2 = 2.0 at T = 5.0M1 and present our
numerical results in Fig. 4. In the top panel, g(t ) is plotted
as a function of t , and the time duration between the two
quenches is set to τ = τ ∗

2 = 1.373/M1, where τ ∗
2 is obtained

from Eq. (30) by setting n = 0 and using

kc2 = arccos
( c2

5 + 5m2) − �2

2(5c2 − 1)
.

In this case, a metamorphic DQPT occurs at t = τ ∗
2 . When

t < τ ∗
2 , there are also two ordinary DQPTs due to the

first quench, which are actually related to the other critical

momentum

kc1 = arccos
( c2

5 + 5m2) + �2

2(5c2 − 1)

via n = 0, 1 in Eq. (12), respectively. When t > τ ∗
2 , the be-

havior of g(t ) is concealed by the metamorphic DQPT at τ ∗
2 as

g(t ) becomes singular after the second quench. In the bottom
panel, we choose a different duration τ = 1.2/M1, which does
not match the condition of metamorphic DQPTs. Therefore,
the behavior of the rate function for t > τ is regular and
visible. As discussed before, no ordinary DQPT arises after
the second quench in the latter case.

IV. EXPERIMENTAL IMPLICATIONS

Reference [8] summarizes some pioneering experimen-
tal realizations of DQPTs from single-quench processes in
trapped ions or ultracold atoms. Moreover, a direct measure-
ment of the nonanalytic behavior of the rate function has been
carried out in a simulator of interacting transverse-field Ising
model in Ref. [24] and in topological nanomechanical systems
in Ref. [51]. There are more recent demonstrations of DQPTs
and their implications in correlation functions [52,53], spinor
condensates [54,55], photonic platforms [56], superconduct-
ing qubits [57], NV centers in diamonds [58], and nuclear
magnetic resonance quantum simulators [59]. In addition,
observation of DQPTs through the dynamical vortices after a
sudden quench close to a topological phase transition has been
reported [25], which may be interpreted as the Fisher zeros of
the Loschmidt amplitude [20]. Since double-quench processes
can be performed in similar fashions by including a second
quench of the Hamiltonian, the metamorphic DQPT should be
realizable in similar platforms that demonstrate the ordinary
DQPTs. Therefore, the predictions of the metamorphic DQPT
in this work should be experimentally verifiable. For example,
the final state after a metamorphic DQPT will never return to
the initial state, making the measurable rate function [8,24,51]
singular after the second quench.

Theoretically, the rate function g(t ) will stay divergent if
the second quench is applied exactly at t = τ ∗, as we have
discussed before. In realistic situations, however, the time
duration between the two quenches may not be exactly τ = τ ∗
in experiments, where a small deviation ε from τ ∗ may arise.
According to Eq. (16), the dominant contribution to g(t ) after
the second quench in the case with a metamorphic DQPT
is the singular term ln | cos ω1kcτ

∗|. To estimate the influ-
ence of the deviation from τ ∗ in experiments, we plot gi =
− 2

N ln | cos ω1kc (τ ∗ + ε)| vs ε for the SSH model in Fig. 5,
following the double-quench process depicted in Fig. 2. For a
small deviation ε, we found gi ∼ − ln | sin ω1kcε| ∼ − ln |ε|.
For a system with a metamorphic DQPT, the logarithmic
divergence of the rate function as a function of the deviation of
the duration between the two quenches thus serves as another
signature of the metamorphic DQPT. A similar analysis of the
Kitaev chain in the double-quench process shown in Fig. 4
exhibits a similar logarithmic divergence with the deviation ε

from τ ∗ as well. We also remark that the 1D two-band models
analyzed here allow their energy spectra to be characterized
by a periodic parameter (momentum k for example). If more
complicated interactions are introduced, the construction and
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FIG. 5. The singular contribution gi to the rate function as a
function of the time deviation ε from τ ∗ for the SSH model in the
double-quench process depicted in Fig. 2.

analysis of the Loschmidt amplitude may depend on the de-
tails of the system, making it challenging to predict whether a
metamorphic DQPT arises.

V. CONCLUSION

We have analyzed the dynamical behavior of generic 1D
two-band systems going through double-quench processes at

finite temperatures and presented a type of DQPT, named
the metamorphic DQPT, where the final state continually has
no overlap with the initial state. For the 1D two-band sys-
tems analyzed here, the metamorphic DQPT is not possible
in single-quench processes. The general conditions for the
existence of metamorphic DQPTs are derived. We discuss the
implications of the metamorphic DQPT in two examples. In
both the SSH model and Kitaev model, suitable choices of the
quench Hamiltonians and the duration between the quenches
can induce a metamorphic DQPT at the second quench, caus-
ing the Loschmidt amplitude to vanish and the rate function
to be singular after the second quench. The general formalism
applies to pure states at zero temperature as well as mixed
states at finite temperatures. Our findings help provide more
controls of dynamical evolution of quantum systems in future
experiments, possibly including strongly interacting systems
[60,61].
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