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Composition-transferable machine learning potential for LiCl-KCl molten salts validated by
high-energy x-ray diffraction
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Unraveling the liquid structure of multicomponent molten salts is challenging due to the difficulty in con-
ducting and interpreting high-temperature diffraction experiments. Motivated by this challenge, we developed
composition-transferable Gaussian approximation potential (GAP) for molten LiCl-KCl. A DFT-SCAN accurate
GAP is active-learned from only ∼1100 training configurations drawn from 10 unique mixture compositions
enriched with metadynamics. The GAP-computed structures show strong agreement across high-energy x-ray
diffraction experiments, including for a eutectic not explicitly included in model training, thereby opening the
possibility of composition discovery.
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I. INTRODUCTION

Molten salts are a class of high-temperature ionic liquids
relevant to liquid metal batteries, concentrated solar power
systems, and molten salt reactors [1–5]. Critical to technolog-
ical applications of molten salts are the eutectic mixtures of
alkali/alkali-earth halides, the melting temperatures of which
can be lowered by tuning the mixture composition [6,7].
Tuning the thermophysical properties of multicomponent salts
requires a precise atomistic understanding of the liquid struc-
ture; challenges for this task include (a) the difficulty of in
situ experimental measurements due to the high reactivity of
molten salts with moisture and oxygen, (b) lack of a pri-
ori knowledge regarding optimal eutectic compositions for
arbitrary molten salt chemistries [8], and (c) insufficiency
of simple, empirical interatomic potentials for capturing the

*gsivaraman@anl.gov

complex many-body interactions, such as polarizability, inher-
ent to molten salts [9–14].

Machine learning (ML) has enabled [15–18] a new gen-
eration of low-cost interatomic potentials (IPs) that provide
access to quantum-mechanically accurate many-body poten-
tial energy surfaces for condensed phases [19–28]. ML-IPs
based on neural networks and kernel methods can construct
complex, high-dimensional functional forms with large pa-
rameter sets (i.e., 104–105) by learning from ab initio data sets
[29]. These ML-IPs can drive simulations of atomic processes
with ab initio accuracy that bypass the length scale limitations
imposed by traditional ab initio methods.

Transferability is the ability of an ML-IP to predict, with
consistent accuracy, properties of configurations that differ
significantly from the ones used for training (e.g., composi-
tion change) [30]. Recent efforts have begun applying these
methods to single- and multicomponent molten salts [31–35].
However, current ML-IPs for molten salts are generally fitted
to a small number of mixture compositions (including a pri-
ori known eutectic compositions), with neural-network-based
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ML-IPs needing O(105) training samples per composition
[36], and lack transferability to arbitrary or unknown mixture
compositions. Classical empirical potentials suffer less from
these limitations due to their well-defined functional forms
that ensure some modicum of transferability. This lack of
transferability limits application of existing ML-IPs to sim-
ple interpolative efforts for molten salt compositions used
in model training and inhibits their application to eutectic
discovery for arbitrary molten salt chemistries. Thus, there is
an urgent need for ML-IPs of molten salts exhibiting multi-
component, compositional transferability across the space of
possible anion and cation combinations.

LiCl-KCl mixtures exhibit high potential for molten salt
reactors, pyroprocessing, and energy storage applications due
to their ideal physiochemical properties such as low melt-
ing point, high solubility of fission products, and high heat
capacity [37–39]. In this study, we utilize LiCl-KCl as a
model system to showcase the development of an ML-IP with
broad compositional transferability, and apply it to ascertain
the composition-dependent structure of LiCl-KCl mixtures.
The compositional transferability of this methodology opens
the door for a priori prediction, by molecular modeling, of
eutectic compositions for arbitrary molten salts. Finally, we
demonstrate the use of an ML-IP to accurately compute ther-
mal conductivity of the eutectic molten LiCl-KCl.

II. METHODOLOGY

A. A combined workflow for GAP model fitting and
experimental validation

We have designed a combined experimental and modeling
workflow for investigating multiple compositions of LiCl-KCl
melts (Fig. 1). The modeling component of the workflow leads
to the generation of a multicomposition ML-IP, specifically
a Gaussian approximation potential (GAP) [19], for LiCl-
KCl. The GAP model uses two-body squared-exponential and
many-body smooth overlap of atomic positions (SOAP) ker-
nel functions [40,41] to measure chemical similarity between
local chemical neighborhoods. The short-range GAP model is
a reasonable choice given that the goal is to model bulk liquid
structure [31,42]. However, explicit inclusion of long-range
electrostatics is necessary for modeling scenarios requiring
inclusion of nonisotropic chemical environments such as in-
terfaces or applied electric fields [43]. GAP model training
utilizes atomic configurations drawn from a diverse set of
melt compositions. Configurational sampling [Fig. 1(a)] was
initialized with 10 unique compositions hand picked by the
experimentalist, listed here as molar fractions of KCl (100%,
90%, 80%, 67%, 58%, 50%, 33.3%, 30%, 20%, and 10%).
Initial simulation densities are fixed to literature values [44].
At each composition, a small unit cell of 60–64 atoms is used
to sample a range of melted atomic configurations by using
the Born-Mayer-Huggins-Tosi-Fumi rigid ion model (RIM) at
an elevated temperature of 2100 K. Configuration sampling
was explicitly not performed for the middle of the composi-
tion map between 50% and 33.3% KCl molar fraction. This
conscious choice was made in order to not include the actual
eutectic composition of 58.5:41.5 mol % LiCl:KCl as part
of the training set. By doing so, the ability of the generated

(a)

(e)

(b)

(d)

(c)

FIG. 1. Workflow for mapping and validating multicomposition
LiCl-KCl melts. (a) Sample the configuration space for 10 unique
compositions of pure KCl to 10 mol % KCl mixture with LiCl.
Each composition is melted by using the rigid ion model at 2100 K.
Clustering-based AL enables down selection. Ensemble simula-
tions and AL are orchestrated by using the Colmena framework
[45]. (b) Perform single-point DFT for the AL samples and fit the
GAP-ML model. (c) Enrich the configuration space by using meta-
dynamics [46] on the GAP-ML based MD. (d) High-energy x-ray
diffraction experiments. Illustration of x-ray intensity measurement.
(e) Perform rigorous validation of GAP-ML driven MD simulation
by using the high-energy x-ray PDF.

GAP model to accurately predict compositions that are not
explicitly included in the training data can be assessed.

Configurational sampling for each composition uses ap-
proximately 20 000 melt configurations drawn at 2100 K and
processed using active learning (AL). The AL approach con-
sists of an unsupervised clustering algorithm combined with
Bayesian optimization for on-the-fly hyperparameter tuning
of the GAP [47,48]. A detailed description of the AL sampling
strategy, building on our earlier dedicated study on LiCl melts
[42], is given in Appendix A. Single-point DFT calculations
[Fig. 1(b)] are performed on the AL-extracted configurations
by using the strongly constrained and appropriately normed
(SCAN) exchange correlation (XC) functional [49], which
shows superior performance compared to generalized gradient
approximation (GGA) XC functionals [50,51]. DFT single-
point calculations are performed using the Vienna ab initio
simulation package [52]. The SCAN exchange-correlation
functional and projector-augmented wave method are em-
ployed [49,53]. A large plane wave cutoff of 700 eV with
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an electronic convergence criterion of 10−7 eV is used. A
�-centered 1 × 1 × 1 k mesh is used for reciprocal sampling.

An initial GAP model is fitted to the AL-extracted con-
figurations for the 10 compositions [Fig. 1(b)], with “labels”
computed using DFT-SCAN calculations. Since all training
configurations are drawn from equilibrium MD simulations,
there is no guarantee of configurational or compositional
transferability for the GAP model. To circumvent the lim-
itations of Boltzmann sampling, strategies such as random
structure search and enhanced sampling have been applied
to enrich training databases [54,55]. Here, we employ meta-
dynamics to construct a history-dependent repulsive potential
as a function of a set of collective variables (CVs), providing
access to a large configuration space of ion pair coordination
environments that would be unexplored by simple equilibrium
MD [46,56]. We hypothesize that the increased configura-
tional diversity at each training composition should manifest
in improved compositional transferability across the LiCl-KCl
composition range.

Enhanced sampling is performed by using the well-
tempered variation of metadynamics for an equal fraction of
LiCl and KCl (i.e., 50%) [57]. A system size of 64 atoms
near the melting temperature (∼757 K) is simulated by using
the atomic pair coordination CV parametrized by the first
minimum of the pair distribution function (PDF). The meta-
dynamics calculations are performed using the PLUMED 2
packages [58]. A coordination number collective variable is
chosen. For any two arbitrary chemical species groups A and
B, they are estimated using the following switch function:

CAB =
∑

i∈A, j∈B

1 − ( ri j

r0

)6

1 − ( ri j

r0

)12 (1)

with ri j being the distances between the atom-atom pairs from
the species groups.

A system size of 64 with 16 anion-cation pairs each for
Li-Cl and K-Cl is used for sampling. The r0 was parametrized
from the first minima of the partial pair distribution functions.
For Li-Cl and K-Cl the r0 of 3.35 Å and 4.25 Å, respec-
tively, are found to be optimal. The metadynamics used an
initial Gaussian height of 40 kJ/mol. The Gaussian widths
of 1.45 and 2.58 are used for CLiCl and CKCl, respectively.
A Gaussian was deposited every 250 fs with a bias factor
equal to 50. The evolution of the CV over 4 ns is shown
in Fig. 2. In equilibrium MD the sampled configuration will
be dominated by ∼4 and ∼7 coordinated Li-Cl and K-Cl,
respectively. Metadynamics facilitates efficient exploration of
out-of-equilibrium regions of configuration space. The config-
urations obtained from over 4 ns of metadynamics simulation
were passed to AL and down-selected. It is observed that AL
efficiently samples from near and far away from equilibrium
regions of metadynamics configurations, thereby enriching
the training database (Fig. 2). The final GAP model is trained
by using the metadynamics-enriched data set. The details of
the GAP training database and hyperparameters are listed in
Table I and Table II. The entire GAP model is generated with
only 1127 training samples which is also the total number
of single-point DFT performed as a part of this study, effec-
tively bypassing the need for expensive ab initio molecular
dynamics for training data set generation which would be a

FIG. 2. Evolution of the anion-cation pair collective variable for
the 50:50 composition over 4 ns of well-tempered metadynamics
performed using the initial GAP-ML model. The configurations se-
lected by active learning for single-point DFT are shown as black
dots. The y axis shows coordination number (CN) averaged over 16
anion-cation pairs used in the CV definition.

Herculean task at a DFT-SCAN level of theory. A single com-
pute node benchmark with a 64-atom unit cell of 50:50 mol
% showed a 15,000× speedup of GAP-MD (∼0.042 s/MD
time step) relative to DFT-SCAN (∼618 s/MD time step). The
GAP model (Tables I and II) validated on 120 independent test
samples drawn at the 10 compositions showed a root mean
square error (RMSE) in energy and force of 5 meV/atom and
0.12 (±0.04) eV/Å, respectively. The RMSE in energy can
be attributed to the target accuracy set for the AL sampling
strategy as described in Appendix A.

B. High-energy x-ray diffraction experiments

High-energy x-ray diffraction (HEXRD) experiments were
performed to characterize the structure of molten LiCl-KCl
mixtures in parallel with the modeling work (Fig. 1). For
HEXRD experiments, LiCl-KCl mixture samples were pre-
pared in an ultrahigh-purity Ar glove box (< 1 ppm O2, < 1
ppm H2O). Samples with the desired LiCl-KCl ratio were
melted in glassy carbon crucibles to create homogeneous mix-
tures; then the solidified mixtures were crushed and loaded
into silica glass (SiO2) ampules and sealed under vacuum
for the experiments. HEXRD experiments were performed at
beamline 6-ID-D of the Advanced Photon Source, Argonne
National Laboratory. LiCl-KCl mixtures were heated to the
desired temperatures at which diffraction data were recorded.

TABLE I. GAP training database.

System Number of samples

Melt 928
Metadynamics 196
Isolated atoms 3
Total 1127
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TABLE II. GAP model hyperparameters.

Parameter name Two-body SOAP

Cutoff (Å) 5.92 5.92
Sparse method Uniform CUR
Sparse points 65 1200
Delta (eV) 2.74 0.78
(lmax, nmax) (4,8)

The diffraction patterns of empty furnace and empty glass
ampules were also recorded for background subtraction. The
diffraction data of LiCl-KCl with several compositions includ-
ing 70:30 mol %, 58.5:41.5 mol % (eutectic composition),
and 50:50 mol % were recorded at multiple temperatures.
Temperature dependence is studied by measuring the struc-
tures of 70:30 mol % at ∼ 822 K, 797 K, 772 K, and 747 K.
The 58.5:41.5 mol % (eutectic composition) and 50:50 mol %
are measured near the melting temperatures of ∼ 645 K and
757 K, respectively.

III. RESULTS

A. Validation of GAP model for composition transferability

To verify the composition transferability of the GAP
model, validation is performed at five independent compo-
sitions where the GAP model was never trained listed here
as molar fraction of KCl (25%, 40%, 45%, 61%, and 75%).
At each of these compositions, RIM simulations are used to
melt small unit cells of 64–66 atoms at 3000 K, and are then
equilibrated to 1200 K. To ensure that the validation samples
are well decorrelated the MD is continued at 1200 K for
13.5 ns. The first 12.5 ns are discarded and twenty uniform
snapshots are obtained from the last 1 ns of this run (i.e.,
50 ps apart to ensure there is no correlation between ob-
tained configurations and are spread across long timescales).
Single-point DFT-SCAN calculations are performed on these
100 (i.e., 20 × 5 compositions) to obtain atomic forces. We
use the GAP model to compute forces and directly compare
them against the DFT-derived values to assess whether the
model provides consistent accuracy as a test of transferability.
For comparison, we also report the atomic forces computed
by RIM and the state-of-the-art polarizable ion model (PIM)
fitted to DFT reported by Ishii et al. [59]. The results are
shown in Fig. 3. Notice that GAP provides near DFT-SCAN
accuracy (≈0.1 eV/Å) across compositions. The RIM model
has the largest prediction error. The PIM model exhibits a 6–
9× increase in error in predicting DFT-SCAN derived forces
as compared to the GAP model. The higher systematic error
in RIM and PIM can be attributed to the limitations imposed
by their inflexible functional forms and parameters.

B. Comparison of composition- and temperature-dependent
HEXRD measured structures with GAP-MD prediction

The final GAP model obtained from the workflow in Fig. 1
is used to perform simulated annealing with a system size over
∼1000 atoms at each of the experimental compositions and
temperatures (Table III) [60]. We performed GAP-MD using

FIG. 3. Comparison of RIM, PIM, and GAP models against ex-
act DFT-SCAN-derived forces for 100 diverse configurations across
five independent compositions not explicitly included in the GAP
training. The LiCl-KCl composition as mol % fraction for each
validation group is reported in the legend. The standard deviation
of the fit is reported in plot legend parentheses.

the LAMMPS software package compiled with the QUIP pair
style [61,62]. The structure prediction with simulated anneal-
ing is performed in three steps: (1) Each simulation condition
is initially thermalized at 1100 K in the (NVT) ensemble
[63,64], followed by volume relaxation in an isothermal-
isobaric (NPT) ensemble with a pressure coupling of 1 bar
[65–67], (2) the temperature is increased to 1700 K over
200 ps in the NPT ensemble, and (3) the system is cooled
from 1700 K to the target temperature over 200 ps of NPT
simulations. All heating and cooling MD simulations used
a time step of 0.5 fs. At the target temperature the volume
of the system is relaxed for 2 ns with a time step of 1.0 fs
and the last 1 ns is used for computing the structure. Further
information on the number of atoms, starting densities, and
densities estimated from GAP-MD for each composition and
temperature is listed in Table III (includes outside of experi-
mental conditions).

To determine the quality of the generated GAP model, the
structures obtained from simulations are validated by com-
parison to HEXRD measurements. The structure factors and
PDFs from experiments and simulations are shown in Fig. 4.
The corresponding snapshots of the simulation systems have
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TABLE III. GAP-MD simulation setup. A 50:50 composition of LiCl:KCl with 1024-atom system is equal to 256 anion-cation pairs for
each salt. The initial density and target temperature used for MD simulation. The density computed from the last 1 ns of GAP-MD based
NPT simulation along with standard deviations (parentheses) are reported in the last column. The additional compositions 80:20 and 30:70 are
computed to showcase the capability of the GAP model to predict outside of experiment conditions.

Composition (LiCl:KCl) Number of atoms Temperature (K) Initial density (g cm−3) Density from GAP-MD (g cm−3)

70:30 1120 747.15 1.602 1.696 (±0.012)
772.15 1.602 1.692 (±0.012)
797.15 1.602 1.690 (±0.012)
822.15 1.602 1.685 (±0.012)

Eutectic 1040 645.15 1.622 1.558 (±0.015)
50:50 1024 757.15 1.584 1.555 (±0.015)
30:70 1120 900 1.583 1.580 (±0.012)
80:20 960 800 1.578 1.764 (±0.012)

been visualized in Fig. 5. Note that such a comparison at tem-
peratures just above the melting points has not been previously
reported. The simulated PDFs [G(r)] and structure factors
[S(q)] exhibit excellent agreement with those obtained from
HEXRD across all examined compositions. Specifically, GAP
accurately predicts the structure of the eutectic [Figs. 4(a),
4(b)] despite lacking any training data specifically in this com-
position regime. These results indicate that the GAP model is
capable of predicting the structure of LiCl-KCl across all rel-
evant compositions. This performance is a direct result of the
use of AL to sample diverse configurations, and introduces the
potential to develop ML-IPs for binary molten salt mixtures of
arbitrary composition.

Use of the validated GAP models provides insight into the
atomistic ordering of LiCl-KCl melts across all compositions.
As KCl content decreases in the mixture, the peak in the pair
distribution curve near 3.1 Å also decreases, which can be
attributed to the decreased amount of K-Cl bonding in the melt
[Fig. 4(a)]. This also manifests in the reduced structure factor,
as the peaks near 4 Å−1 and 5 Å−1 both increase [Fig. 4(b)].
Unlike MgCl2-KCl mixtures, which contain a single network
former (Cl-Mg-Cl) and a single network breaker (K-Cl), the
components in LiCl-KCl are both network breakers [60,69].
Therefore, we do not expect that the variation of LiCl and
KCl content will change the midrange (i.e., on the scale of
1 nm) ordering of the melt. To further elucidate the prefer-

ential interaction/exclusion of K/Li with Cl at short range
(i.e., r < 5 Å), we have computed the local/bulk partition
coefficient [KP(r)] which is defined as

KP = [〈nα (r)〉/〈nβ (r)〉]local(
ntot

α /ntot
β

)bulk , (2)

where 〈nX (r)〉 is the cumulative number distribution function
of X (X = α for K around Cl, X = β for Li around Cl) at
a distance r and ntot

X is the total number of X in the simu-
lation box. KP > 1 indicated a preferential interaction of K
with respect to Cl [70,71]. Equation (2) can be interpreted
as KP(r) > 1 in regions where K preferentially interacts with
Cl and KP(r) < 1 in regions where Li preferentially interacts
with Cl. The composition dependence of KP(r) estimated at
a fixed temperature of 747 K is shown in Fig. 6. All three
compositions exhibit KP(r) > 1 at short range, showing a
preferential interaction of K with Cl. Further, at short range
the maximum values of KP(r) show a trend of 70:30 > eutec-
tic > 50:50, indicating an increase of preferential interaction
of K with respect to Cl with decreasing content of KCl in the
mixture. Complementary to the information in Fig. 4(c), the
temperature dependence of KP(r) at the 70:30 composition
is visualized in Fig. 7. It can be observed that temperature
does not lead to any significant change in KP(r). We also
examined the coordination number of Li-Cl and K-Cl of LiCl-

FIG. 4. GAP-predicted structures of molten LiCl-KCl compared to those measured by HEXRD: (a) PDFs and (b) reduced structure factors
of LiCl-KCl with compositions of 50:50 mol %, 58.5:41.5 mol % (eutectic), and 70:30 mol %, at 757.15 K, 645.15 K, and 747.15 K,
respectively. (c) PDFs of molten 70:30 mol % LiCl-KCl at 747 K, 772 K, 797 K, and 822 K.
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FIG. 5. Visualization of atomic configurations for LiCl-KCl melts with compositions of 50:50 mol %, 58.5:41.5 mol % (eutectic), and
70:30 mol %, at 757.15 K, 645.15 K, and 747.15 K. The red, green, and silver spheres each correspond to atomic species for K, Cl, and Li,
respectively. The visualization is performed using VESTA software [68].

FIG. 6. Local/bulk partition coefficient computed at 747 K as a
function of LiCl:KCl composition.

FIG. 7. Local/bulk partition coefficient computed for LiCl:KCl
composition of 70:30 as a function of temperature.

KCl mixtures with different compositions by integrating the
PDF to the first minimum, and found that the coordination
number decreases as the KCl content increases in the mixture
at similar temperatures (i.e., 747 K to 757 K). This might be
due to the larger size of K ions that reduce the number density
of the melt. Increased temperature also leads to Li-Cl and
K-Cl coordination numbers decreasing; however, the change
is difficult to distinguish when the temperature variation mag-
nitude is less than 100 K. Details of the coordination number
changes are listed in Table IV.

C. Thermal conductivity from GAP-MD

Finally, we assessed whether the accurate prediction of
structure translated to the accurate prediction of thermophys-
ical properties. Specifically, the ML-IP trained at the level
of DFT-SCAN has also shown to significantly improve the
prediction of thermal conductivity relative to the GGA [72].
Hence we compute the thermal conductivity of LiCl-KCl at
the eutectic composition. We estimated the thermal conduc-
tivity by using the wave method [73]. A detailed discussion
on the wave method is available in Appendix B.

The GAP-MD simulation was performed for the eutectic
system at 645.15 K with an elongated system [73]. In order
to avoid finite-size effects, a very large Lz ≈ 1000 Å which
translates to a system size of 8320 atoms (1.558 g cm−3) is
chosen. For benchmark purposes, we also set up a simulation
using the RIM model with the same number of atoms and
elongation (1.512 g cm−3). The simulations are performed

TABLE IV. Coordination numbers estimated from GAP-MD.

Composition Temperature (K) Li-Cl K-Cl

70:30 747 4.42 7.28
772 4.37 7.40
797 4.45 7.27
822 4.42 7.37

Eutectic 645 4.56 7.50
747 4.21 6.90

50:50 757 4.06 6.87
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TABLE V. Fit parameters for Eq. (B3) and the estimated thermal conductivity. Linear fit DT (k) is performed as function of k for all the
points with statistical error up to 10−2 (parentheses) and extrapolated to k = 0 as explained in Ref. [73].

Method cv [J/(K mol)] γ cs (Å/ps) DT (Å2/ps) λ [W/(m K)]

GAP 34.1 1.21 0.434 27.5(2) 0.659
RIM 29.8 1.20 0.355 43.9(2) 0.856
Experiment [44] 0.690

with the NVT ensemble with a global stochastic velocity
rescaling thermostat [74]. A time step of 0.5 fs is used and the
simulations are performed for 500 ps. The results are reported
in Table V. The value obtained from GAP-MD [0.659 W/(m
K)] is very close to the experimental value [0.690 W/(m K)]
[44]. Encouraged by these results, we will undertake compre-
hensive composition dependent transport property studies in
the future.

IV. CONCLUSIONS

In conclusion, here we report the development of a
composition-transferable GAP model for LiCl-KCl melts. We
show that the model can effectively reproduce DFT-SCAN
level forces within the limit of the training accuracy for five
independent melt compositions that were not included in the
model training process. We also show that the GAP model can
accurately predict the experimentally measured eutectic com-
position that was also never seen during the model training.
Finally, the thermal conductivity computed using the GAP
model for the eutectic composition at 645 K shows close
agreement with that obtained from experiment.

The AL-enabled, and HEXRD-validated, ML-IP workflow
described in this study allows for the rapid characterization
of multicomponent molten salts of arbitrary compositions and
will find broad applicability to other eutectic salt systems.
This workflow accelerates the development of DFT-accurate
composition-transferable ML-IP which can be used for high-
accuracy property prediction across various compositions and
simulation conditions, while simultaneously enabling the real-
time deconvolution of complex chemical structures obtained
from HEXRD experiments.

The GAP model, training data, and MD trajectories have
been deposited in the Materials Data Facility [75,76] for pub-
lic access [77].
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APPENDIX A: ACTIVE LEARNING

The pseudocode for the clustering-based active learning
[47], described below, bears overlap with the previous work
of Sivaraman et al. [42,48]. For each composition of LiCl-KCl
melt:

Initialization: trajectory, distance measure, target accu-
racy.

(1) Configurations of the input trajectory are featurized by
using distance matrices.

(2) Perform unsupervised clustering based on HDBSCAN
algorithm [79] to obtain uncorrelated clusters. The distance
measure of root mean square deviation of atomic positions is
used.

(3) Training and test configurations are sequentially drawn
from the clustering performed on a large pool of RIM simula-
tion configuration.

(4) Perform single-point DFT configuration.
(5) Perform hyperparameter tuning using Bayesian opti-

mization as implemented in the GPyOpt library [80] to get the
best GAP model for a chosen set of training configurations as
validated against independent test configurations.

(6) Draw more samples from the clustered configurations
if the GAP target accuracy of � 5 meV/atom has not been
achieved and repeat steps 3–5.

(7) Exit if the target accuracy is achieved. For the accuracy
we use mean absolute error in GAP-predicted energy with
respect to DFT in units of meV/atom.

The number of training configurations drawn at each itera-
tion depends on the outcome of unsupervised clustering, and
hence adjusts automatically with the input chemical system
of interest [47,81]. A step-by-step tutorial is also available
elsewhere [82].
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APPENDIX B: THERMAL CONDUCTIVITY

The thermal conductivity estimated from virial stress based
heat flux implemented with LAMMPS is not valid beyond
pair interaction models [61,83]. Hence they cannot be applied
to many-body ML-IP such the GAP model. To bypass this
problem we will estimate the thermal diffusivity of eutectic
liquid using the thermally driven liquid density fluctuation at
the hydrodynamic limit (i.e., as system size goes to infinity,
k → 0) [73,84]. The most relevant details of the approach are
reproduced below. The density field of the liquid in bulk limit
[ρ(r, t )] is computed from equilibrium MD simulation. For
a periodic system with dimension of {Lx, Ly, Lz}, the Fourier
transform of the density field ρ(r, t ) in a bulk liquid is defined

as

ρ̃(k, t ) = 1

V

N∑
i=1

exp[−ik ri(t )], (B1)

where the reciprocal lattice vector, k = { 2πnx
Lx

,
2πny

Ly
,

2πnz

Lz
}. The

power spectrum of the density field fluctuation with frequency
ω is defined as

S(k, ω) = 1

T0

∫ T0

0
〈̃ρ(k, 0)̃ρ(k, t )〉 exp(−iωt )dt . (B2)

The S(k, ω) derived from the MD simulation can be fitted
to a power spectrum equation derived from hydrodynamic
theory:

S(k, ω) = S(k)

2π

[(
γ − 1

γ

)
2DT k2

ω2 + (DT k2)2
+ 1

γ

(
�k2

(ω + csk)2 + (�k2)2
+ �k2

(ω − csk)2 + (�k2)2

)]
, (B3)

where, γ = cP/cV is the ratio of particle specific heat capacities (defined below), DT is the thermal diffusivity, cs is the adiabatic
speed of sound, b is the kinematic longitudinal viscosity, and the sound attenuation constant � = (γ − 1)DT /2 + b/2. The first
term in Eq. (B3) is related to thermal transport and the last two terms corresponds to sound waves traveling in opposite directions.
Further details on the methodology along with the code are discussed in detail elsewhere [73].

Now we will briefly discuss the thermodynamic relation relevant to quantities that arise in Eq. (B3). These quantities are
estimated from numeric partial deviates with respect to state variables as defined below:

cV = 1

N

(
∂E

∂T

)
V

, (B4)

cP − cV = −T

N

(
∂P

∂T

)2

V

(
∂P

∂V

)−1

T

, (B5)

c2
s = −V 2γ

Nm

(
∂P

∂V

)
T

. (B6)

As described in Ref. [73], DT and b will be treated as the fit parameters. Once the DT is obtained by a linear fit, the thermal
conductivity (λ) can be computed using the following relation:

λ = ρ0cPDT , (B7)
where ρ0 is the liquid density.
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