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Weiwei Chen and W. Zhu*

School of Science, Westlake University, 18 Shilongshan Road, Hangzhou 310024, China
and Institute of Natural Sciences, Westlake Institute for Advanced Study, 18 Shilongshan Road, Hangzhou 310024, China

(Received 26 April 2022; revised 1 July 2022; accepted 6 July 2022; published 15 July 2022)

Rejuvenation of hydrodynamic transport in solids provides a new window to study the collective motion of
electrons, where electrons behave like a viscous fluid akin to classical liquids. So far the discussion on the fate of
hydrodynamic electronics in the presence of disorder scattering is largely phenomenological, and a systematical
study is still lacking. Here we investigate the hydrodynamic properties of Dirac electron fluid in graphene
from a microscopic viewpoint. We present strong evidence that, due to frequent electron-hole collisions, the
shear viscosity can be enhanced by electron-disorder scattering in the low-energy region, which is in sharp
contrast to the common sense of traditional Fermi liquids. Moreover, we clarify that the anomalous behavior
of Dirac electron fluid can be also revealed by the dynamic and magneto-hydrodynamics. Therefore, our paper
demonstrates the exotic landscape of hydrodynamic electronics in graphene, and presents experimentally relevant
responses to quantify the effects of electronic viscosity.
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I. INTRODUCTION

Hydrodynamic behavior of electrons in solids has been
predicted for decades [1], but only in the recent years has it
become a reality in two-dimensional materials, where many
signatures of viscous electron flows have been probed, such
as negative local resistance [2,3], superballistic flow [4–6],
current vortices [7–9], Poiseuille flow [10,11], Hall viscos-
ity [12], and violation of the Wiedemann-Franz law [13,14].
Generally speaking, to maximize hydrodynamic effects in
experiment, so far there are two main roads. One is to
seek a material in which momentum relaxing effects (e.g.,
electron-phonon scattering) are greatly suppressed. In this
respect, graphene becomes a promising candidate to observe
hydrodynamic phenomena, due to its extremely stiffness. The
other way is to create inhomogeneous electron flows mov-
ing through artificial constriction geometry such as a narrow
slit [2], where hydrodynamic behavior is generally expected.
Beyond the above two ways, an ongoing quest is to find
more mechanism that can amplify the hydrodynamic effect in
electron fluids, which is not only conceptually important but
also practically relevant for experiment.

Most of existing studies on hydrodynamic effect focus
on the electron-electron collisions [15–17], and theoretical
modeling of viscous electron flow is usually based on the
simulation of Navier-Stokes equations [17–19], where the
prevalence of imperfection like disorder is usually overlooked.
One plausible reason is that disorder is always expected to dis-
rupt collective motions by introducing a momentum-relaxing
collisions [20,21]. To date a systematic study of disorder ef-
fect on hydrodynamic phenomena in experimentally relevant
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two-dimensional materials is still lacking. On the other hand,
it has been known that disorder profoundly impacts carrier
transport in graphene. One novel example is the observation of
minimum conductivity in graphene [22], originating from im-
purity assisted resonant tunneling of massless Dirac fermions
[23–25]. Hence, with this fact on hand, it is natural to ask to
what extent hydrodynamic phenomena could be promoted or
symbiotic coexistence in disordered Dirac electron fluids. In
this paper, we investigate the disorder effect on Dirac electron
liquid in graphene. Counterintuitively, we discover an en-
hancement of viscosity for Dirac electron fluid, which endows
the graphene system with interesting, yet mostly unexplored,
static and dynamic hydrodynamic behavior.

To fully understand the disorder effect on hydrodynamic
electronics, we systematically study the shear ηs and Hall ηH

viscosities in disordered graphene, using analytic and numer-
ical methods. We consider both static and dynamic situations,
with or without an external magnetic field. First of all, we
analytically identify the static ηs shear viscosity enclosing
an additional term inversely proportional to the quasiparticle
relaxation time in the undoped graphene, which implies ηs is
enhanced by disorder near the Dirac point. In addition, the
shear viscosity around the Dirac point can be further enhanced
by an external magnetic field. These findings are in stark
contrast to those found in the conventional two-dimensional
ordinary electron gas (2DEG) [26], suggesting the importance
of the inherent electron-hole coherence around the Dirac point
of graphene. (For a detailed comparison please see Table I.)
Moreover, these anomalous behaviors also leave fingerprints
in the dynamic and magneto-hydrodynamics. Away from
charge neutrality, the viscosity coefficients tend to agree with
those of Fermi liquids. All these findings are highly relevant
to the on-going experiments on graphene, calling for detailed
studies of hydrodynamic electronics of Dirac fluid.
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TABLE I. Analytic results of static shear (ηs) and Hall (ηH ) viscosity of disordered graphene in the absence of magnetic field B = 0 and
presence of perpendicular magnetic field B = Bẑ. E is the Fermi energy, ρ is the density of states, τ is the quasiparticle relaxation time, N is
index of Landau level, A is disorder scattering parameter, and ε is the distance between the Fermi energy and the nearest Landau level center.
In 2DEG, ω̃c = eB

m is the cyclotron frequency. In graphene, ω̃c = eB
|E |/v2

f
is effective cyclotron frequency. They are equivalent by introducing

effective mass m = |E |/v2
f in graphene. “Overlapped” and “Well separated” are the regions divided by ω̃cτ � 1 and ω̃cτ � 1.

ηs in the case B = 0 ηs in the case B = Bẑ ηH in the case of B = Bẑ

Overlapped Well separated Overlapped Well separated

2DEG 1
2 E 2ρτ [26,28] 1

2
E2ρτ

1+4(ω̃cτ )2 [26,27] N2 h̄
8π2 l2

B
(1 − 2Aε2) [26] ρω̃cτ

2E2

1+4ω̃2
c τ2 [26–28] N2 h̄

8π l2
B

− 1
4ω̃c

ρE2

1+4ω̃2
c τ2 [26]

Graphene 1
8 E 2ρτ + 3

32
h̄2ρ

τ

1
8

E2ρτ

1+4ω̃2
c τ2 + h̄2

32τ
ρ

3+16ω̃2
c τ2

1+4ω̃2
c τ2

(N2+δN,0 )h̄

2π2 l2
B

(1 − 2Aε2) 1
4

ρω̃cτ
2E2

1+4ω̃2
c τ2

sgn(E )(2N2+2N+1)h̄
4π l2

B
− 1

16ω̃c

ρE2

1+4ω̃2
c τ2

A. Summary of results

The main results of this paper are summarized below. First
of all, we obtain the analytical expression of static shear
viscosity of graphene as (details in Sec. III A),

ηs(E ) = 1

8
E2ρτ + 3

32

h̄2ρ

τ
.

The first term has the same origin with that in 2DEG, but
the second term does not. The second term is inversely pro-
portional to the quasiparticle relaxation time τ and implies
the viscosity will be enhanced by disorder potential in the
low-energy region where the first term is suppressed. This is
contrary to popular belief about classical fluids and ordinary
metals, where impurities usually tends to destroy collective
behavior of particles.

Second, our result implies that the shear viscosity of clean
graphene at the Dirac point is zero rather than infinity. It is
essentially related to the zero density of states (ρ = 0) in
this condition even though the electron-electron interaction is
neglected.

Third, the shear viscosity in the ordinal metal decreases
with magnetic field due to the correction for the cyclotron
motion, we find the shear viscosity closed to the Dirac point
can be enhanced by the magnetic field denoted as (details in
Sec. III A)

ηs(E → 0) = 3A

8π2h̄2v2
f

[
Ece−A/2 + h̄v2

f

Ece−A/2
eB

]2

.

This unexpected result is also reminiscent of disorder assisted
electron-hole collisions around the Dirac point and puts forth
suggestions for future experimental detection of electron flu-
ids.

Fourth, the dynamic shear viscosity differs significantly
in the following two regions: electron-hole (e-h) coherence-
dominated region (E ≈ 0 � 	) and electron-electron (e-
e) coherence-dominated region (0 < 	 � E ) (details in
Sec. IV A),

ηs(	) =
⎧⎨
⎩

	2

16h̄v2
f

(
1
2 + 16

15A

)
, E ≈ 0 � 	

AE2

2π2 h̄v2
f

(
π2

A2 + E2

A2	2+4E2

)
, 0 < 	 � E

.

The dynamic shear viscosity has opposite dependence on
the frequency in these two regions. Additionally, when e-h

coherence predominates, the dependence of dynamic shear
viscosity on disorder strength is monotonically increasing,
while when e-e coherence predominates, the dependence of
dynamic of dynamic shear viscosity on disorder strength be-
comes complicated.

Fifth, based on the evaluations of dynamic shear and Hall
viscosity in the presence of magnetic field, assuming good
separation of Landau levels, we find that they are both deter-
mined by the state transitions between Landau levels, Ens ↔
Ems′ , where the level indices satisfy |m − n| = 2 and there is
no restriction on s and s′. Moreover, the interband transition
counterparts En,− → En+2,+ and En+2,− → En,+ contribute
the same to dynamic shear viscosity, they cancel each
other in dynamic Hall viscosity (details in Secs. IV A and
IV B).

Sixth, in our extensive calculations, the Hall viscosity of
Dirac electrons is in line with that in 2DEG. It reflects the
topological origin [29] of Hall viscosity that should be inde-
pendent on the details such as electron dispersion.

Finally, we make a detailed comparison with 2DEG, as
shown in Table I.

B. Outline

The paper is organized as follows. In the Sec. II, we estab-
lish the formalism of the viscosity in graphene. We review
the definition of shear and Hall viscosity in Sec. II A, and
derive the strain generators and symmetric stress tensor of
Dirac fermion to establish the structure of the viscosity tensor
from first principles without relying on any phenomenologi-
cal assumptions in Sec. II B. Then, the viscosity is obtained
based on the linear response between strain rate tensor and
stress tensor and expressed by the Kubo formula in terms of
Green’s function in Sec. II C. In Sec. II D, we present the
eigenbasis of the pure system and derive the self-energy in
short-range disorder. The specific calculations of static and
dynamic viscosities are displayed in Sec. III and Sec. IV.
In Sec. III A, we present analytical and numerical solutions
of the static shear viscosity of graphene in the absence of
magnetic field and the presence of the perpendicular magnetic
field. In Sec. III B, we present analytical and numerical solu-
tions of static Hall viscosity of graphene with perpendicular
magnetic field. In Sec. IV A and Sec. IV B, we present the
corresponding dynamic shear and Hall viscosities. Finally, we
discuss the results obtained and offer some perspectives in
Sec.V.
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II. METHODS

A. Definition of shear and Hall viscosity

The viscosity, which relates the viscous stress in a fluid to
the rate of change of a deformation (i.e., strain rate), is defined
in a homogeneous Newtonian fluid by the following relation
[30]:

τi j =
∑

kl

ηi j,kl
∂λkl

∂t
, (1)

where ηi j,kl is the viscosity tensor, τi j is the stress tensor,
λkl = 1

2 ( ∂uk
∂xl

+ ∂ul
∂xk

) is the symmetric strain tensor, and ui is
the deformation displacement along i direction. In an isotropic
system, τi j is also symmetric so that η is symmetric under
i ↔ j and k ↔ l . Thus, η can be divided into symmetric
and antisymmetric parts with respect to interchanging the first
with the second pair of indices. Based on these features, the
viscosity tensor of a two dimensional isotropic system is char-
acterized in a natural basis η = ∑

ηabσa ⊗ σb (a, b = 0, x, z)
by three coefficients [28,30–32],

ηi j,kl = ζσ0 ⊗ σ0 + ηs(σz ⊗ σz + σx ⊗ σx )

+ ηH (σz ⊗ σx − σx ⊗ σz )

=

⎛
⎜⎜⎜⎝
(

ζ + ηs ηH

ηH ζ − ηs

)
kl

(−ηH ηs

ηs ηH

)
kl(−ηH ηs

ηs ηH

)
kl

(
ζ − ηs −ηH

−ηH ζ + ηs

)
kl

⎞
⎟⎟⎟⎠

i j

(2)

where the symmetric components under the exchange (i j ↔
kl), ζ and ηs denote bulk viscosity and shear viscosity, and the
antisymmetric components under the exchange (i j ↔ kl), ηH

denotes Hall viscosity. In an incompressible fluid ( ∂λii
∂t = 0),

the stress becomes independent of ζ . Thus, the incompressible
and isotropic fluids in two dimensions are characterized by
two coefficients one for the even part ηs and one for the
odd part ηH . ηs contributes to dissipation of energy, so it is
also called dissipative viscosity. ηH is dissipationless and only
exist when time reversal symmetry is broken.

B. Strain deformation and stress tensor

In the following, we derive the expression of the stress
tensor in two ways. On the one hand, we associate the
spatial strain transformation of the system with the unitary
transformation of the Hamiltonian and derive the stress in
quantum-mechanical theory. On the other hand, we simulate
graphene by a symmetric 2 + 1 dimensional Dirac field and
obtain the stress tensor based on the Noether’s theorem com-
bining symmetrization procedure of Belinfante.

a. Quantum-mechanical theory of stress. In quantum-
mechanical theory, the stress is considered to be an intrinsic
property of the quantum-mechanical ground state of matter re-
sponse to deformation [33], so we start from using the unitary
transformation in Hilbert space to describe the deformation.
The Hamiltonian of the charge carriers of graphene near the
half filling is described by a two-dimensional massless Dirac

particles with the speed of light replaced by v f ,

H = v f σ · p (3)

where σ = (σx, σy) are the Pauli matrices of pseudospin. In
the presence of magnetic field, the Hamiltonian is changed by
p → � = p + eA.

The infinitesimal spatial deformation can be described as

xi → x′
i = xi + ui(x) = u0,i + ∂ui

∂x j
x j + o(x2) (4)

where u0,i corresponds to the translation so that is ignored
here, and the repeated indices are summed in all cases. Then
the matrix of deformation transformation (x′ = �x) can be
derived as [34]

� = 1 + 1
2λi j (x j∂i + xi∂ j ) − 1

4 ri j (xi∂ j − x j∂i ) (5)

where we introduced strain tensor λi j and rotation tensor ri j ,

λi j = 1

2

(
∂ui

∂x j
+ ∂u j

∂xi

)
, ri j = ∂ui

∂x j
− ∂u j

∂xi
. (6)

It is noticed that the strain tensor is symmetric (λi j =
λ ji) and the rotation tensor is antisymmetric (ri j = −r ji).
Based on this infinitesimal transformation, we can define two
generators, strain transformation generator Ji j and rotation
transformation generator Li j , which is the well-known angular
momentum,

Ji j = − 1
2 (xi p j + x j pi ), Li j = xi p j − x j pi. (7)

The strain transformation generator is symmetric (Ji j = J ji)
and the rotation transformation generator is antisymmetric
(Li j = −Lji). Thus, one can parametrize the representation
of spatial strain transformation S (λ) in terms of the strain
transformation generator as

S (λ) = e−iλi jJi j/h̄. (8)

Then, the deformed Hamiltonian is obtained by using time-
dependent unitary operator S[λ(t )] [35],

Hλ(t ) =SHS−1 + ih̄
∂S
∂t

S−1 = H − iλi j

h̄
[Ji j, H] + ∂λi j

∂t
Ji j .

(9)
Thus one can obtain the integral stress tensor by the
fundamental thermodynamic relation for deformed bodies
[31,36,37]

Ti j =
∫

drτi j = −∂Hλ

∂λi j
= i

h̄
[Ji j, H]. (10)

Substituting the Hamiltonian equation (3) into the above equa-
tion and performing Fourier transformation, the symmetric
stress tensor is obtained as

Ti j = v f

2
(σi p j + σ j pi ), (11)

which does not contain the effect from disorder potential
since that one strains the electron liquid rather than the host
materials [26].

In the presence of magnetic field, the spatial strain
transformation should couple a gauge transformation
S (λ) → S (λ)e− ie

h̄ ξ . Thus, the Eq. (10) becomes Ti j →
i
h̄ e− ie

h̄ ξ [Ji j, H]e
ie
h̄ ξ . It is obvious that the stress tensor under

magnetic field is obtained by p → � = p + eA.
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Above, we obtained the stress tensor based on the ther-
modynamics of deformation, in fact, Eq. (10) is equal to the
definition in a metric compatible Riemannian manifold Tμν =
2 1√|g|

δS
δgμν [38], where the small deformations strain tensor is

replaced by the fundamental metric tensor, which have the
relation λi j = 1

2 (gi j − δi j ). δi j plays the role of the funda-
mental metric tensor for undeformed region whose geometry
corresponds to a flat Euclidean space [39].

Another thing worth noting is that for the same stress tensor
Ti j , the strain transformation generator Ji j that satisfies the
relation, Ti j = i

h̄ [Ji j, H], is not unique. In previous papers
[40,41], it was established that a strain transformation genera-
tor including strain transformations in pseudospin of graphene
as J ′

i j = − 1
2 {xi, p j} + ih̄

8 [σi, σ j], and they acquired the same
stress tensor as Eq. (11). The similarity between Ji j and J ′

i j
is that they are both symmetric [42]. The latter is closer to the
symmetrization procedure of Belinfante in field theory, which
we will simply derive in 2 + 1 dimensional Dirac field.

b. Belinfante stress-energy-momentum tensor in field the-
ory. The symmetric stress tensor can also be arrived from
Belinfante stress-energy-momentum tensor in field theory. We
start with a symmetric Lagrangian density of a 2 + 1 dimen-
sional Dirac field,

L = i

2
h̄v f ψ̄σ̄ μ(

−→
∂ μ − ←−

∂ μ)ψ, (12)

where ψ̄ = ψ†σz is adjoint of the field ψ , Dν ≡ (∂v f t ,∇) is
the covariant derivation in time-space coordinate, the Dirac
matrices are chosen as

σ̄ 0 = σz; σ̄ 1 = iσy; σ̄ 2 = −iσx; (13)

which satisfy Clifford algebra {σ̄ μ, σ̄ ν} = 2gμν .
Based on the Noether’s theorem, one can obtain the canon-

ical stress-energy-momentum tensor [38],

τμν = ∂L
∂ (∂μψ )

∂νψ + ∂νψ̄
∂L

∂ (∂μψ̄ )
− gμνL

= i

2
h̄v f ψ̄σ̄ μ(

−→
∂ ν − ←−

∂ ν )ψ. (14)

By adding the divergence of a Belinfante tensor Bαμν antisym-
metric in the first two indices (Bαμν = −Bμαν),

Bαμν = 1

8
h̄v f ψ̄

{
σ̄ α,

i

2
[σ̄ μ, σ̄ ν]

}
ψ, (15)

one can obtain the Belinfante stress-energy-momentum tensor
as

τ
μν
B = T μν + ∂αBαμν

= i

4
h̄v f ψ̄[σ̄ μ(

−→
∂ ν − ←−

∂ ν ) + σ̄ ν (
−→
∂ μ − ←−

∂ μ)]ψ. (16)

Here, τ 00
B represents the energy density, τ 0i

B the momentum
density (or energy flux density), and τ

i j
B the stress tensor. Since

this stress tensor is derived for the Lagrangian density, the
integral form of τ

i j
B is consistent with Eq. (11).

C. Kubo formula of viscosity

Since we have got the expression of the deformed Hamil-
tonian and stress tensor, the viscosity defined in Eq. (1) can be
evaluated by the linear response theory [31],

〈Ti j〉(t ) = −i
∫ ∞

−∞
dt ′θ (t − t ′)

〈
[Ti j (t ),Jkl (t

′)]
∂λαβ (t ′)

∂t ′

〉

=
∫ ∞

−∞
dt ′Xi jkl (t − t ′)

∂λαβ (t ′)
∂t ′ (17)

where

Xi jkl (t − t ′) = −iθ (t − t ′)〈[Ti j (t ),Jkl (t
′)]〉 (18)

is stress-strain correlation function and 〈· · · 〉 means average
over disorder. The Fourier transformation of it is

Xi jkl (	) = i
∫ ∞

0
dt〈[Ti j (t ),Jkl (0)]〉ei	+t (19)

where 	+ = 	 + i0+. We can express Eq. (19) in an
additional equivalent form as stress-stress form by using time-
translation invariance and the relation∫ ∞

0
Jkl (−t )eiω+t dt =

∫ 0

−∞
Jkl (t )e−i	+t dt

= 1

−i	+

[
Jkl (0) +

∫ ∞

0
Tkl (−t )ei	+t dt

]
(20)

based on

Ti j = i

h̄
[Ji j, H] = −∂Ji j

∂t
. (21)

Thus the response function can rewritten as

Xi jkl (	) = 1

	+

{
〈[Ti j (0),Jkl (0)]〉

+
∫ ∞

0
dt〈[Ti j (t ), Tkl (0)]〉ei	+t

}
(22)

where the first term, which is called a contact term analogous
to the diamagnetic conductivity, contributes to the bulk vis-
cosity [31,43]. In this paper we focus on the shear and Hall
viscosity, we then obtain the viscosity to be

ηi jkl (	) = 1

	+V

∫ ∞

0
dt〈[Ti j (t ), Tkl (0)]〉ei	+t , (23)

which is called Kubo formula of viscosity. To calculate this
retarded stress-stress correlation function, one can transform
it into Matsubara function by analytical continuations 	+ →
i	n and it → τ ,

ηi jkl (i	n) = 1

i

1

i	nV

∫ β

0
dτ 〈Tτ Ti j (τ )Tkl (0)〉ei	nτ (24)

where the factor 1
i origins from dt → 1

i dτ , and β = 1
kBT . For

the disordered system, the integrand can be evaluated by the
perturbation expansion as

〈Tτ Ti j (τ )Tkl (0)〉 = 〈Tτψ
†(τ )Ti jψ (τ )ψ (0)†Tklψ (0)Uβ〉0

〈Uβ〉0
(25)
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where 〈· · · 〉0 means the thermodynamic average over
the eigenstates of unperturbed Hamiltonian and Uβ =
Tτ {exp[− ∫ β

0 dτ ′V (τ ′)]} is the time evolution operator in Mat-
subara formalism. By Wick’ theorem and summations of
Matsubara Green’s functions with branch cuts, the Kubo for-
mula Eq. (23) is written in terms of retarded (R) and advanced
(A) Green’s functions as

ηi jkl (	) = − h̄

	V Tr
∫ ∞

−∞

dω

2π

× [
( fω+	 − fω )

(
Ti jG

R
ω+	Tkl G

A
ω − Ti jG

A
ω+	TklG

A
ω

)
+ fω

(
Ti jG

R
ω+	Tkl G

R
ω − Ti jG

A
ω+	Tkl G

A
ω

)]
(26)

where fω = 1
exp[β(ω−E )]+1 is the Fermi-Dirac distribution func-

tion. The detailed derivation of Eq. (26) is shown in the
Supplemental Material Sec. 1 [44] (see, also, Refs. [45,46]
and references therein).

D. Eigenbasis of the pure system and disorder-induced
self-energy

In the absence of magnetic field, the eigenvalues and eigen-
states of the pure graphene are

Eks = sh̄v f k, (27)

�ks(r) = 〈r|ks〉 = eik·r
√

2A

(
1

seiθk

)
, (28)

where s = ± denotes the chiral and A is the area of sample.
The basis formed by �ks is called (k, s) basis. In this basis,
the components of stress tensor Txy and Txx − Tyy, which will
be used in the calculation of shear and Hall viscosity, are
written as

Txy(k) = h̄v f k

2
(σz sin 2θk − σy cos 2θk), (29)

Txx(k) − Tyy(k) = h̄v f k(σz cos 2θk + σy sin 2θk). (30)

Then, we consider the graphene in the presence of a
magnetic field perpendicular to the graphene, B = Bẑ. The
corresponding vector potential is given by A = Bxŷ satisfy-
ing Landau gauge. The eigenenergy and eigenstates of the
Hamiltonian in the magnetic field are

En,ky,s = sh̄ωc
√

n; s = ±1; n = 0, 1, 2, · · · (31)

and

�n,ky,s(x, y) = eikyy√
Ly

{
(0, φ0,ky )T

; n = 0
1√
2
(−isφn−1,ky , φn,ky )T

; n �= 0
(32)

with

φn,ky (x) =
√

1

2nn!
√

π lB
e−
(

x
lB

+lBky

)2
/2Hn

(
x

lB
+ lBky

)
(33)

where lB = √
h̄/eB is magnetic length, ωc = √

2v f /lB is cy-
clotron frequency. The basis formed by �n,ky,s is called
(n, ky, s) basis. In this basis, the components of stress tensor
Txy and Txx − Tyy are written as

〈n, ky, s|Txy|n′, k′
y, s′〉

= δky,k′
y

⎧⎪⎪⎪⎨
⎪⎪⎪⎩

0; n = n′ = 0
−is′ h̄ωc

2
√

2
δ0,n′−2; n = 0, n′ �= 0

is h̄ωc

2
√

2
δ0,n−2; n �= 0, n′ = 0

h̄ωc
4 (is

√
n − 1δn,n′+2 − is′√n + 1δn,n′−2); n, n′ �= 0

, (34)

〈n, ky, s|Txx − Tyy|n′, k′
y, s′〉

= δky,k′
y

⎧⎪⎪⎪⎨
⎪⎪⎪⎩

0; n = n′ = 0
−s′ h̄ωc√

2
δ0,n′−2; n = 0, n′ �= 0

−s h̄ωc√
2
δn−2,0; n �= 0, n′ = 0

−(s
√

n − 1δn′,n−2 + s′√n + 1δn′,n+2); n, n′ �= 0

, (35)

which can be easily derived by the second quantization shown
in the Supplemental Material Sec. 2 [44].

The disorder V (r) we considered is a short-range random
potential having form in the r space as

V (r) =
Ni∑
i

Viδ(r − ri ) (36)

with random strength distribution satisfying V (r) = 0 and
V (r)V (r′) = niV 2

0 δ(r − r′), where · · · stands for averaging
over disorder realizations, V 2

0 is the variance of impurity
strength, and ni = Ni/V is the concentration of impurity.
In the following, we show the analytic expression of self-
energy function based on self-consistent Born approximation

(SCBA) (details in the Supplemental Material Sec. 3 [44]),
and express the density of state in term of self-energy. In this
paper, we assume the SCBA is applicable for Dirac electrons.
To explicitly justify the SCBA is out of the scope of this paper.
Additionally, we stress that the main results shown in this
paper do not rely on the SCBA. Our starting point is a finite
self-energy function induced by impurity scattering [47–49].

a. In the absence of magnetic field B = 0.

At first, we evaluate the self-energy with SCBA in the
absence of magnetic field

�(E ) = 2(h̄v f )2

A

∫
dkk

E − �

(E − �)2 − (h̄v f k)2
(37)
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where A = 4π (h̄v f )2

niV 2
0

is the dimensionless parameter charac-
terizing the scattering strength. The solution of the above
self-consistent equation in weak-disorder limit is given by
[50]

Im�(E ) = −Ece−A/2 − π

A
|E | (38)

where Ec ≈ 7.2 eV is the energy cutoff. The density of states
in terms of self-energy is given by

ρ(E ) = − 2A

π2(h̄v f )2
Im�(E ). (39)

b. In the presence of magnetic field B �= 0.

In the presence of magnetic field, we write the SCBA
equation of self-energy in Landau quantized (n, ky, s) basis,

�(E ) = 〈n, ky, s|V G(E )V |n, ky, s〉 = (h̄ωc)2

2A

∑
ns

Gns(E )

(40)
where Gns(E ) = (E − s

√
nh̄ωc − �)−1 is the Green’s func-

tion in the (n, ky, s) basis. ωc = √
2v f /lB is cyclotron

frequency, lB = √
h̄/eB is magnetic length. Similar to the

case of 2DEG, we consider the graphene in the presence of
magnetic field in two classes: “well separated” region, where
the Landau levels are well separated with each other, and
‘overlapped” region, where the Landau subbands broaden and
overlap with each other due to the disorder scattering. While
the criterion distinguishing these two regions in 2DEG is the
product of the cyclotron frequency, which is determined by the
magnetic field, and the relaxation time, which is determined
by the disorder strength, in graphene, due to the uneven dis-
tribution of Landau levels, it should also consider the location
of the Fermi level. Thus, we introduce an effective cyclotron

frequency ω̃c = h̄ω2
c

2|E | , which can tend to the expression of

cyclotron frequency in 2DEG, i.e., ω̃c = eB
m , by using effective

mass m = 2|E |
v2

f
. Then the “well separated” region and “over-

lapped” region are divided by 	̃cτ � 1 and 	̃cτ � 1.
In the region of well separated Landau levels, we get

Im�(E ) = −h̄ωc

√
1

2A
− ε2 (41)

where the Fermi energy E is assumed locating close to the
Landau level ENS and the distance is characterized by the ε =
(E − ENS )/2h̄ωc.

In the region of overlapped Landau levels,

Im�(E ) = −Ece−A/2 − (h̄ωc)2

2Ece−A/2
− π

A
|E |
[

1 + 2δ cos
πE

h̄ω̃c

]
(42)

where δ = e− 4π2E2

A(h̄ωc )2 .
In this condition, the density of states is expressed as

ρ(E ) = − 2

π2l2
B

2A

(h̄ωc)2
Im�(E ). (43)

III. STATIC VISCOSITY

A. Static shear viscosity ηS

We start from evaluating the static shear viscosity ηS in
graphene at the zero temperature: It can be obtained by the
real part of Kubo formula Eq. (26) with the stress tensor
components chosen as Ti j = Tkl = Txy,

ηs(E ) = Re
[
ηRA

s (E ) − ηRR
s (E )

]
(44)

with

ηLM
s (E ) = 4

h̄

2πV Tr
[
GL(E )TxyGM (E )Txy

]
(45)

where L, M = R, A denotes the retarded and advanced
Green’s function and the factor 4 denotes the degeneracy of
spin and valley. In the Boltzmann transport theory, the con-
tribution from the retarded-retarded (RR) channel is usually
discarded. In the studies of quantum conductivity of graphene,
however, this term becomes as much relevant as the RA one in
proximity to Dirac point [51]. In this paper for viscosity, we
also find ηRR

s cannot be neglected in vicinity of Dirac point.
In the following, we will calculate and analyze the shear

viscosity in the two cases: (1) in the absence of magnetic field,
B = 0; (2) in the presence of a magnetic field perpendicular
to the xy plane, B = Bẑ. The vertex corrections of the Kubo
formula for viscosity in both cases B = 0 and B = Bẑ are
proved to be zero due to short-range disorder scattering in the
Supplemental Material Sec. 4 [44]. A plausible explanation is
given by analogizing the vertex correction in Kubo formula
to the transport relaxation time correction in Boltzmann trans-
port theory, which is a scheme to distinguish the contributions
of forward scattering and back scattering. The Kubo formula
for viscosity is in nature a stress-stress correlation function
and the stress is an product of velocity and momentum. There-
fore, the effect of short-range disorder consisting of uniformly
distributed plane waves in the momentum space on viscosity
isotropic due to a nontrivial compensation between the veloc-
ity direction and momentum direction.

1. B = 0

In the absence of magnetic field, the ηLM
s in Eq. (45) can be

expanded in the (k, s) basis and given by

ηLM
s (E ) = h̄3v2

f

8π2

∫
dkk3(gL

+ + gL
−)(gM

+ + gM
− ) (46)

where gR/A
± (E ) = (E ∓ h̄v f k − �R/A)−1 is the full Green’s

function in the (k, s) basis with self-energy �R/A approxi-
mately obtained from the SCBA equation (37). The detail of
analytic derivation of ηLM

s is performed in the Supplemental
Material Sec. 5 [44]. ηRA

s finally arrives at ηRA
s (E ) = 1

8 E2ρτ +
h̄2

32τ
ρ, where τ = h̄

2|Im�(E )| is the quasiparticle relaxation time.

The real part of ηRR
s approaches to ReηRR

s (E ) = − h̄2

16τ
ρ, which
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FIG. 1. (Left) Numerical result for the shear viscosity ηs as a
function of Fermi energy in the absence of magnetic field. A =
4π (h̄v f )2

niV 2
0

is a dimensionless parameter characterizing the scattering

strength (see main text). (Right) Cartoon picture for hydrodynamic
flow for doped and undoped graphene.

is as much relevant as ηRA
s in the limit E → 0. The total real

part of shear viscosity, therefore, is obtained as

ηs(E ) = 1

8
E2ρτ + 3

32

h̄2ρ

τ
. (47)

If we plug the expressions of self-energy Eq. (38) and density
of states Eq. (39) into the above result, it can be rewritten as

ηs(E ) = h̄

8π2(h̄v f )2

[
AE2 + 3

A
(π |E | + EcAe−A/2)2

]
. (48)

The first term in Eq. (47) and Eq. (48) is in accordance
with that in 2DEG, and can also be written as 1

4 mn̄v f l , where
m = |E |/v2

f is the effective mass, n̄ = ∫
ρdE ≈ 1

2ρ|E | is the
average charge density, and l = v f τ is mean free path. The
second term, which does not exist in 2DEG, is inversely
proportional to the quasiparticle relaxation time and implies
the viscosity will be enhanced by disorder potential near the
Dirac point. This is inconsistent with ordinary metals and
classical fluids, where impurities can pack to eliminate any
sign of collective behavior of particles. Similar to the minimal
conductivity of graphene due to impurity assisted resonant
tunneling through the electron-hole coherence and retarded-
retarded (RR) channel [51]; this anomalous term in static shear
viscosity also mainly comes from the electron-hole coherence
and RR term. However, in distinction to the charge current, the
momentum current also contains single-particle contributions.
Thus, the disorder-assisted transport is significantly larger in
viscosity compared to conductivity.

In order to clearly see the effect of the anomalous term
in ηs, we also performed the numerical calculation of the
Eq. (46) and the SCBA equation (37) of the self-energy
function. The results for several different disorder strengths
are illustrated in Fig. 1. The relationship between ηs and

disorder scattering can be divided into two regions with
opposite behaviors. In the high-energy region that we call
the “normal region”, ηs decays rapidly with the increas-
ing of disorder scattering. This is consistent with the
2DEG and classical fluids. In the low-energy region roughly
[−1.1 eV, 1.1 eV], which we call “anomalous region”, ηs has
a peculiar enhancement induced by disorder. It well agrees
with the analytic prediction in Eq. (47). Furthermore, the
range of this “anomalous region” is quite large, not just the
interval extremely close to the Dirac point, which is consistent
with the hydrodynamic transport region detected in experi-
ments [2–4]. Intuitively, the different observation in doped
and undoped graphene can be understood by the pictures as
illustrated in Fig. 1: In the updoped case in the vicinity of
Dirac point, electrons flow in the direction opposite to the
holes, and frequent electron-hole collisions leads to enhance-
ment of hydrodynamic behavior. While in the doped case with
a large Fermi surface, only one type of carriers contributes so
the hydrodynamic behavior should be similar to that of normal
Fermi liquid. Moreover, for the clean system, both the analytic
and numerical results indicate that ηs vanishes at the Dirac
point, which essentially originates from the zero density of
states in this condition, since the electron-electron interaction
is neglected in this paper.

2. B �= 0

Under a magnetic field perpendicular to the graphene, we
expand the Kubo formula Eq. (44) into the (n, ky, s) basis (see
the Supplemental Material Sec. 2 [44]), and get

ηLM
s (E ) = (h̄ωc)2

4π2l2
B

∑
n

(n + 1)Re
(
gL

ngM
n+2 + gM

n gL
n+2

)
(49)

where gR/A
n = 1

2 (GR/A
n,+ + GR/A

n,− ) = E−�R/A

(E−�R/A )2−n(h̄ωc )2 . The
derivation of the analytic expression of ηs for B �= 0
is separated into two classes, and are displayed in the
Supplemental Material Sec. 6 [44]. When the Landau levels
are well separated, i.e., ω̃cτ � 1, we get

ηs(E ) = (N2 + δN,0)
h̄

2π2l2
B

(1 − 2Aε2) (50)

where ε = (E − ENS )/2h̄ωc characterizes the distance be-
tween the Fermi energy and the center of nearest Landau level.
The predicted values of static shear viscosity at the center of
Landau levels are quantized as ηs = (N2 + δN,0) h̄

2π2l2
B
. When

the Landau levels are overlapped (ω̃cτ � 1), ηs is approxi-
mately given by

ηs = 1

8

E2ρτ

1 + 4ω̃2
cτ

2
+ h̄2

32τ
ρ

3 + 16ω̃2
cτ

2

1 + 4ω̃2
cτ

2
(51)

The first term in this result is consistent with the result
for 2DEG [26], except for the cyclotron frequency ω̃c, which
depends on both magnetic field and Fermi energy in graphene
but only depends on magnetic field in 2DEG. Since the
well separated and overlapped regions are determined by the
value of ω̃cτ , the relation ω̃c ∝ 1

|E | means that the separated
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region in graphene is close to the Dirac point. The second
term, which can reduce to the anomalous term in Eq. (47)
when ω̃c → 0, is positively related to both disorder scatter-
ing and magnetic field strength according to the self-energy
equation (42). After plugging the self-energy function (42)
and density of states (43) into Eq. (51), the static shear vis-
cosity can be further evaluated by separated the states into
|E |/h̄ωc > 1 and |E |/h̄ωc � 1. For the states |E |/h̄ωc > 1,
the static shear viscosity is obtained as

ηs(E ) = h̄

4π2l2
B

AE2

(h̄ωc)2(1 + 4α2)

[
1 + 4α2δ

1 + 4α2
cos

πE

h̄ω̃c

]

(52)

where α = A
π

h̄ω̃c
E and δ = e− 4π2E2

A(h̄ωc )2 . The second term in the
above expression exhibits Shubnikov-de Haas-type oscilla-
tions, but the contribution of this term will be suppressed as E
increases since the parameters α and δ both decrease with E .

For the states |E |/h̄ωc � 1, which are in the vicinity of
Dirac point, the static shear viscosity can be approximately
given by

ηs(E ) = 3A

8π2h̄2v2
f

[
Ece−A/2 + h̄v2

f

Ece−A/2
eB

]2

, (53)

which is positively related to the strength of magnetic field.
In Fig. 2 we show the numerical results of ηs in the pres-

ence of magnetic field, which are obtained by numerically
solving Kubo formula (49) and self-energy equation (40). As
shown in Fig. 2(a), the curves of ηs(E ) with different disorder
strength change from separated peaks to Shubnikov-de Haas-
type oscillations and then to smooth, which is consistent with
the prediction of analytic solutions. From the inset in Fig. 2(a),
one can also find an anomalous disorder-induced shear viscos-
ity enhancement behavior in the low-energy region, similar to
the case in the absence of a magnetic field. Furthermore, for
the states near the Dirac point, the shear viscosity can also
be enhanced by magnitude of the applied magnetic field B as
shown in Fig. 2(b). This behavior is contract to the 2DEG,
where the static shear viscosity decays with B as a function,

ηs ∝ B2
0

B2
0+B2 [28].

B. Static Hall viscosity ηH

The Hall viscosity is an example of “anomalous transport
coefficients”, which only exists in the time-reversal sym-
metry broken systems. It can also be represented by the
strain-induced Berry curvature of wave function and therefore
exhibit the striking phenomenon of topology when the Fermi
level falls in a spectral gap [29,32,52].

Here, we focus on the static Hall viscosity ηH in the pres-
ence of magnetic field perpendicular to the graphene plane. It
can be calculated by the real part of Kubo formula Eq. (26)
with Ti j = Txy, Tkl = 1

2 (Txx − Tyy),

ηH (E ) = Re
[
ηI,RA

H (E ) − ηI,RR
H (E ) + ηII

H (E )
]

(54)

where

ηI,LM
H (E ) = 4

h̄

4πV Tr[GL(E )(Txy − Tyy)GM (E )Txy], (55)
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FIG. 2. (a) Static ηs as E for fixed magnetic field strength B =
10 T and different disorder scattering A = 4π (h̄v f )2

niV 2
0

= 20, 50, 100,

500. Dashed lines in top pane denote the predicted values of static
shear viscosity of each Landau level in the absence of disorder,
ηs = (N2 + δN,0 ) h̄

2π2 l2
B

. The inset is the same plot with a larger energy

scope. (b) Static ηs vs E for fixed A = 15 and B = 0.1 T, 0.2 T, 0.5 T,
1 T, 1.5 T.

ηII
H (E ) = 4

h̄

4πV

∫
dω fωTr

[
GR(ω)(Txy − Tyy)

dGR(ω)

dω
Txy

− dGR(ω)

dω
(Txy − Tyy)GR(ω)Txy

]
, (56)

which is analogous to the Kubo-Streda formula of the Hall
conductivity. Compared with ηs, the Kubo formula of ηH has
an extra term ηII . ηII is strikingly different from terms ηI,LM in
that it contains contributions from the entire Fermi sea, while
ηI,LM only from electron states at the Fermi surface. After
plugging the expressions of stress tensor Txx − Tyy and Txy, the
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ηI,LM
H and ηII

H are reduced as

ηLM
H = ih̄3ω2

c

16π2l2
B

∑
n,s,s′

(n + 1)
[
GL

n+2,s(E )GM
n,s′ (E )

− GL
n,s(E )GM

n+2,s′ (E )
]
, (57)

ηII
H = ih̄3ω2

c

8π2l2
B

∫
fωdω

∑
nss′

(n + 1)

×
[

GR
n+2,s(ω)

dGR
ns′ (ω)

dω
− GR

ns′ (ω)
dGR

n+2,s(ω)

dω

]
. (58)

Obviously, ηI,RR vanishes, so the contribution of Fermi surface
states is only reflected in ηI,RA

H , which is calculated in the
Supplemental Material Sec. 7 [44]

ηI,RA
H (E ) = 1

4

ρω̃cτ
2E2

1 + 4ω̃2
cτ

2
. (59)

The real part of ηII
H is

ReηII
H (E ) = h̄

8π2l2
B

{
E
∑

ns

(2n + δn,0)ImGR
ns(E )

− 2
∫

dω f (ω)
∑

ns

(n + 1)2

× [
ImGR

ns(ω) − ImGR
n+2,s(ω)

]}
. (60)

Since the broaden of the Landau level will strikingly affect
the value of ImGR

ns(ω) − ImGR
n+2,s(ω), the real part of ηII

H is
evaluated in the separated and overlapped region, respectively.
In the separated region (ω̃cτ � 1),

ReηII
H (E ) ≈ − E2ρ

16ω̃c
+ sgn(E )

h̄

4π l2
B

(2N2 + 2N + 1).

(61)
In the overlapped region (ω̃cτ � 1),

ReηII
H (E ) = − h̄E3

2(h̄ω)2
ρ(E ) + 2h̄

(h̄ωc)2

∫ E

0
dωω2ρ(ω) ≈ 0.

(62)
Thus, the analytic expression of the total static Hall viscosity
ηH is

ηH (E ) =
{

sgn(E )(2N2+2N+1)h̄
4π l2

B
− 1

16ω̃c

ρE2

1+4ω̃2
c τ

2 ; ω̃cτ � 1
1
4

ρω̃cτ
2E2

1+4ω̃2
c τ

2 ; ω̃cτ � 1
.

(63)
From this result, we find the behavior of static Hall vis-

cosity is somewhat similar to the Hall conductivity. It is also
quantized in the Landau level gaps where the density of states
vanishes, and has opposite signs for the electron states and
hole states. At the same time, ηH is not integral quantized
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FIG. 3. (Top) dc Hall viscosity ηH as a function of Fermi energy
E for fixed magnetic field strength B = 10 T and different disorder

scattering A = 4π (h̄v f )2

niV 2
0

= 50, 100, 500. Dashed lines denote the pre-

dicted values of Hall viscosity of each Landau level in the absence of

disorder, ηH = sgn(E )(2N2+2N+1)h̄
4π l2

B
. (Bottom) Different contributions of

ηH (see main text).

but has an additional 1/4, which is analogy to the additional
1/2 in Hall conductivity of graphene, both of which are the
hallmark of the chiral nature of graphene [53]. Besides, we
find that the quantized value is mainly contributed from the
Fermi sea states, i.e., ηII

H . With the overlap of the Landau
levels, the contribution from Fermi sea fades and the contribu-
tion from Fermi surface states increases. Therefore, when the
Landau level gaps are smoothed by the decrease of ω̃cτ , the
quantization behavior of ηH disappears.

In Fig. 3, we show the numerical results of ηH for a
fixed magnetic field strength B = 10 T and different disor-
der scattering strengths: A = 50, 100, and 500 (top pane),
and compare the different contributions from ηI,RA

H and ηII
H

at A = 50 and 500 (bottom pane). For the extremely small
scattering A = 500 close to pure graphene, it can be clearly
seen that ηH has a step structure. The height of the step in
the Landau level gap is well consistent with the analytically
prediction, ηH = sgn(E )(2N2+2N+1)h̄

4π l2
B

. When the disorder scatter-
ing is strengthened, the plateau of the step structure shrinks
due to the broaden of Landau levels, and the center of plateau
slightly moves to zero energy due to the shift of Landau levels.
Furthermore, just as predicted in Eq. (62), the contribution
from Fermi sea ηII is fading away with the overlap of Landau
levels.

014205-9



WEIWEI CHEN AND W. ZHU PHYSICAL REVIEW B 106, 014205 (2022)

IV. DYNAMIC VISCOSITY

A. Dynamic shear viscosity ηs(�)

Now, we turn to the dynamic shear viscosity ηS (	) in
graphene. In this case, the Kubo formula of ηs is simplified
as ηs(E ) = Re[ηRA

s (E ) − ηRR
s (E )] with

ηLM
s (	) = −4

h̄

2πV

∫ ∞

−∞
dω

fω+	 − fω
	

Tr
[
GL

ω+	TxyGM
ω Txy

]
.

(64)
Similar to the static shear viscosity, we separate the calcula-
tion of dynamic shear viscosity into two conditions: B = 0
and B = Bẑ.

1. B = 0

In the absence of magnetic field, we rewrite ηLM
s (	) in the

(k, s) basis as

ηLM
s (	) = − h̄3v2

f

8π2

∫ ∞

−∞
dω

fω+	 − fω
	

×
∫

dkk3[gL
+(ω + 	) + gL

−(ω + 	)]

× [gM
+ (ω) + gM

− (ω)]. (65)

When h̄	 → 0, the dynamic shear viscosity ηs(	) reverts
to the static shear viscosity described in Sec. III A. At zero
temperature, fω tends to be a step function. According to the
term fω+	 − fω in Eq. (65), the states that contribute to ηs(	)
need locate on the two sides of Fermi surface, which means
that the frequencies ω + 	 and ω in the integrand should
satisfy ω < E < ω + 	 for 	 > 0, and ω − 	 < E < ω for
	 < 0. In this section, we will evaluate the ηs(	) under two
other constraints at zero temperature: (1) E ≈ 0 � 	 and (2)
0 < 	 � E . Due to the electron-hole symmetry in graphene,
the condition for negative 	 is symmetric to the case for
positive 	 and is therefore ignored. Under the first condition
that implies ω < 0 < ω + 	 in Eq. (65), the contribution
from electron-hole (e-h) coherence plays a dominant role.
In contrast, under the second condition, which implies 0 <

ω � ω + 	, the electron-electron (e-e) coherent contribution
due to collisions of thermally excited carriers is dominant.
The analytic derivation of ηs(	) in these two conditions is
displayed in the Supplemental Material Sec. 8 [44].

In the e-h dominant region E � 	, the ηs(	) is given by

ηs(	) = 	2

16h̄v2
f

(
1

2
+ 16

15

1

A

)
, (66)

In the e-e dominant region 0 < 	 � E , the ηs(	) arrives at

ηs(	) = E2

2π2h̄v2
f

(
π2

A
+ AE2

A2

π2 	2 + 4E2

)
. (67)

We compare and analyze these two results for dynamic shear
viscosity in the e-h dominant and e-e dominant regions from
both frequency-dependent and disorder effects perspectives.
We find that the dynamic shear viscosity ηs is positively
correlated with frequency 	 in the e-h dominant region, but
negatively correlated with frequency 	 in the e-e dominant
region. The dependence of ηs(	) on disorder scattering is
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FIG. 4. [(a)–(c)] Numerical results of as shear viscosity ηs vs
frequency h̄	 in the disordered graphene at zero temperature with
Fermi energy: (a) E = 0 eV; (b) E = 0.5 eV; and (c) E = 1.5 eV.
[(d),(e)] Comparison of the contributions of electron-electron (e-e)
coherence and electron-hole (e-h) coherence for disorder scattering
A = 20 and Fermi energy corresponding to [(a)–(c)]. The insets in
(d) and (f) are the sketches of e-e coherence and e-h coherence.

more complicated. In the e-h dominant region, ηs is mono-
tonically increasing with the disorder scattering. When the
e-h coherence is dominant, however, ηs also relies on the
Fermi energy. As disorder scattering increases, ηs declines at
4E2 � A2

π2 	
2 and strengthens at 4E2 � A2

π2 	
2. This opposite

behavior of dynamic ηs versus disorder scattering over dif-
ferent Fermi energy region is reminiscent of the static shear
viscosity shown in Fig. 1, where one finds similar behaviors
in two different regions: “normal region” (|E | > 1.1 eV) and
“anomalous region” (|E | � 1.1 eV).

To clearly show the above properties of dynamic shear vis-
cosity, we also illustrate the numerical results of ηs versus 	

in the disordered graphene at zero temperature in Figs. 4(a)–
4(c), where the Fermi energies are set to E = 0 eV, 0.5 eV,
and 1.5 eV. In the results of E = 0.0 eV, which belongs to
e-h dominant region, ηs increases superlinearly with 	 and
decreases with A, both behaviors are well agree with the
analytic prediction Eq. (66). In the case of E = 1.5 eV and
low frequency, which belongs to e-e dominant region, ηs drops
sharply with 	, and the ηs(	) curves of different disorder
strengths have a cross. These behaviors also meet expectation
of Eq. (67). In the case of E = 0.5 eV, the transition between
the e-h dominant region and e-e dominant region can be seen.
The different transport mechanisms for these Fermi energies
are also demonstrated by comparing of the contributions of
electron-electron coherence and electron-hole coherence in
Figs. 4(d) and 4(e).

Another remarkable piece of information we gain from the
numerical results is a link between dynamic and static shear
viscosities. We introduced “normal region” (|E | > 1.1 eV)
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FIG. 5. [(a),(b)] The numerical results of ηs vs 	 for the mag-
netic field B = 10 T and Fermi energy: (a) E = 0.05 eV and (b)
E = 0.13 eV. [(c),(d)] The schematic representation of the transi-
tions correspond to the peaks Ti in [(a),(b)].

and “anomalous region” (|E | � 1.1 eV) when analyzing the
static shear viscosity. In the case of E = 1.5 eV, the increase
of 	 can let available ω cross the “normal region” into
“anomalous region”. The critical frequency is h̄	 ≈ 0.4 eV,
which quite matches the cross point shown in Fig. 4(c).

2. B �= 0

In the presence of magnetic field B = Bẑ, the total dynamic
ηs(	) = Re[ηRA

s (	) − ηRR
s (	)] can be written as

ηs(	) = − h̄3ω2
c

8π2l2
B

∫ ∞

−∞
dω

fω+	 − fω
	

∑
n,s,s′

(n + 1)

× [
ImGR

ns(ω + 	)ImGR
n+2,s′ (ω) + (ω + 	 ↔ ω)

]
.

(68)

At the well separated Landau levels region and zero tempera-
ture, it is evaluated as

ηs(	) = h̄3ω2
c

8l2
B

∑
n,s,s′

n + 1

	

× [( fEns − fEn+2,s′ )δ(	 + En+2,s′ − Ens)

+ (Ens ↔ En+2,s′ )]. (69)

From Eq. (69), one can easily find that in this case the dynamic
shear viscosity is determined by the state transitions between
Landau levels, Ens ↔ Ems′ , where the level indices satisfy
|m − n| = 2 and there is no restriction on s and s′. Similar
selection rule exists in the calculation of magneto-optical con-
ductivity in graphene, but in which level index of the allowed
transitions satisfies |m − n| = 1 [54–57].

In Figs. 5(a) and 5(b), we show the results of ηs(	)
as a function of frequency 	. When the disorder scatter-
ing is extremely small, ηs(	) shows a series of resonant

peaks as expected in Eq. (69). These peaks correspond to the
transitions between the separated Landau levels. Meanwhile,
the schematic diagrams, which can help us understand the
transitions in Figs. 5(a) and 5(b) are given in Figs. 5(c) and
5(d). It can be seen from the numerical results combining
with the schematic diagrams that the transitions between the
same two Landau levels contributes the same intensity to the
resonance peak of ηs despite the location of Fermi energy.
The peaks T1, T3, and T4 in Figs. 5(a) and 5(b) have same
intensities since they correspond to the same transitions in
two cases, as shown in Figs. 5(c) and 5(d). The peak T2

in Fig. 5(b) is half of that in Fig. 5(a) because the peak T2

in Fig. 5(a) contains the transitions E3− to E1+ and E1− to E3+
but the peak T2 in Fig. 5(a) has only contributions from E1− to
E3+.

Another notable feature in the analytic solution Eq. (69) is
n+1
	

. For 	 > 0, in the electron-hole (e-h) transitions, n+1
	

∝
	 due to h̄	 = |En+2,s′ − Ens| ≈ 2

√
nh̄ωc, but in the electron-

electron (e-e) transitions, n+1
	

∝ 	−3 since h̄	 = |En+2,s′ −
Ens| ≈ h̄ωc√

n
. This is also confirmed by the numerical results

in Fig. 5(b), where the ηs contributed by electron-electron
transition tends to diverge as 	 approaches zero. As the Lan-
dau levels gradually overlap, the peak of ηs(	) will drop and
merge with others, but as shown by the numerical results, the
magnitude of ηs still maintains a general trend of decreasing
with 	 for the e-e transitions and increasing with 	 for the
e-h transitions.

B. Dynamic Hall viscosity ηH (�)

The Kubo formula of dynamic Hall viscosity is similar as
the one of the static shear viscosity except the finite frequency
	. It is also divided into three parts as

ηH (	) = Re
[
ηI,RA

H (	) − ηI,RR
H (	) + ηII

H (	)
]
. (70)

Then, we evaluate dynamic Hall viscosity at the well sepa-
rated Landau levels region and zero temperature,

ηH (	) = h̄3ω2
c

8π l2
B

∑
n,s,s′

n + 1

	

×
{

2( fEns+	 − fEns )
	 − En+2,s′ + Ens

(	 − En+2,s′ + Ens)2 + �2

+ ( fEn+2,s′+	 − fEns−	)
	 + En+2,s′ − Ens

(	 + En+2,s′ − Ens)2 + �2

− (Ens ↔ En+2,s′ )

}
, (71)

where the self-energy is assumed to be a small pure imaginary
number −i�. It is obvious that, at the limit 	 → 0, the first
and second terms in the curly brace represent the Fermi sur-
face and Fermi sea contributions, which have been analyzed
in the section of static Hall viscosity. Here, we focus on the
dependence of ηH on 	. Since the term

	∓En+2,s′±Ens

(	∓En+2,s′±Ens )2+�2 in
Eq. (71) describes a kink with the center 	c = ±(En+2,s′ −
Ens), we assume the 	 in the distribution function multiplied
by the kind function tends to 	c. Thus, the dynamic Hall
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FIG. 6. (a) The schematic diagram of the allowed transitions in calculating dynamic Hall viscosity. (b) Dynamic Hall viscosity ηH vs
frequency 	 for magnetic field B = 10 T and several Fermi energies. (c) Dynamic Hall viscosity ηH vs Fermi energy E for same magnetic
field and several frequencies. (d) A global dependence of ηH on 	 and E .

viscosity can be further simplified as

ηH (	) ≈ h̄3ω2
c

8π l2
B

∑
n,s,s′

n + 1

	

×
[

( fEn+2,s′ − fEns )
	 − En+2,s′ + Ens

(	 − En+2,s′ + Ens)2 + �2

− (Ens ↔ En+2,s′ )

]
. (72)

This expression is somewhat analogous to the evaluation
of dynamic shear viscosity in the well separated Landau
levels region Eq. (69). They have the same transition rule
n ↔ n + 2, but different types of transition function: delta
structure for ηs(	) and kink structure for ηH (	). Another
essential different between these two is the sign before the
exchange (Ens ↔ En+2,s′ ). In the expression of ηs(	), it is a
plus sign, which means the addition of the counterparts. In the
expression of ηH (	), however, it is a minus sign, so the coun-
terparts cancel each other out. Figure 6(a) shows the schematic
diagram of the transitions in a general case where the Fermi
level is assumed to fall in the gap between the Landau levels
with indices (n,+) and (n + 1,+). It is noticeable that there
are only four transitions left, as the others cancel out with their
counterparts under the exchange (ns) ↔ (n + 2, s′).

The numerical results of dynamic Hall viscosity are shown
in Figs. 6(b)–6(d). In Fig. 6(b), we plot dynamic Hall vis-
cosity ηH versus frequency 	 in the presence of magnetic
field B = 10 T. The energies of the low-order Landau lev-
els in this condition are shown in Figs. 5(c) and 5(d). For
Fermi energy E = 0.05 eV, there is only one resonance kink
structure around 	 = 0.16 eV, which is consistent with the
prediction of Eq. (72), since there is only one single tran-
sition with frequency 	 = 0.16 eV in this case. For Fermi
energy E = 0.13 eV, there are three resonance kink structures
corresponding to the three single transitions at 	 = 0.09 eV,

0.16 eV, and 0.31 eV. For Fermi energy E = 0.18 eV and
0.22 eV, there should be four resonance kink structures ac-
cording to the Eq. (72). However, in the numerical results, the
lowest two resonance structure are partially and fully overlap
for E = 0.18 eV and E = 0.22 eV, since their transition fre-
quencies are too close together.

In Fig. 6(b), we plot ηH versus E for different frequencies.
In Fig. 6(b), we plot a global dependence of ηH on 	 and
E . Both of these figures show how the static quantized Hall
viscosity should evolve into the dynamic Hall viscosity. The
plateau structure is retained, but the heights of the plateaus
vary with frequency and resonate around the frequencies that
lead to single transitions.

V. DISCUSSION

We have presented a microscopic theory on hydrodynamic
electrons in disordered graphene. We provide a unified de-
scription for both undoped and doped graphene, with or
without external magnetic fields. Surprisingly, we identify the
shear viscosity exhibits an anomalous enhancement around
the Dirac point, due to disorder-assisted electron-hole col-
lisions, in remarkable contrast to the normal Fermi liquids.
Interestingly, by considering the external magnetic field, the
shear viscosity can be further enhanced. Additionally, it is
found that the anomalous change of viscosity can be also re-
vealed in the dynamic and magneto-hydrodynamic responses.

Our findings reveal that the impurities offer a coun-
terintuitive effect on the collective motion of electrons in
graphene near the Dirac point, due to electron-hole colli-
sions that do not exist in conventional 2DEG. It implies
that undoped graphene is nice to realize hydrodynamic elec-
tronics. Moreover, momentum currents contain single-particle
contributions compared to charge currents, which makes the
disorder-assisted effect significantly larger in viscosity than
in conductivity. Uncovering the critical relevance of hydro-
dynamic electronics with electron-hole coherent collisions
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affords a unique link between quantum-critical electron trans-
port and the wealth of fluid dynamics phenomena.

The current paper is complementary to the existing stud-
ies on electron viscosity. Generally speaking, the effect of
impurities is believed to suppress the scattering events with
small momentum transfer [58] and collective motion of elec-
trons [59]. Here, our findings demonstrate that the effect of
impurities on the viscosity in graphene needs a careful study,
especially around the Dirac point, where the density of states
can be enhanced by impurities.

Furthermore, electrons in graphene behave as quasirela-
tivistic gas of quasiparticles satisfying the relativistic equa-
tion of motion, providing a playground to study relativistic
effects in fluid dynamics. In this paper, we have shown that
the electron-hole coherence related to quasirelativistic nature

of graphene results in numerous peculiar behaviors in both
static and dynamic viscosities. It calls for more careful studies
on the Navier-Stokes equation due to relativistic effects in
describing the flow of Dirac electrons.
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