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Nonequilibrium dynamics of the localization-delocalization transition in the non-Hermitian
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In this paper, we investigate the driven dynamics of the localization transition in the non-Hermitian Aubry-
André model with the periodic boundary condition. Depending on the strength of the quasiperiodic potential
λ, this model undergoes a localization-delocalization phase transition. We find that the localization length ξ

satisfies ξ ∼ ε−ν with ε being the distance from the critical point and ν = 1 being a universal critical exponent
independent of the non-Hermitian parameter. In addition, from the finite-size scaling of the energy gap between
the ground state and the first excited state, we determine the dynamic exponent z as z = 2. The critical exponent
of the inverse participation ratio for the nth eigenstate is also determined as s = 0.1197. By changing ε linearly
to cross the critical point, we find that the driven dynamics can be described by the Kibble-Zurek scaling (KZS).
Moreover, we show that the KZS with the same set of the exponents can be generalized to the localization phase
transitions in the excited states.
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I. INTRODUCTION

The quasiperiodic system, lying in between the periodic
system and the disordered system, exhibits very interesting
properties, such as the topological phase [1–6], the Anderson
localization [7–17], the quantized adiabatic pumping [3,18],
and the cascade of the localization transition [19]. As a
typical model, the Aubry-André (AA) model [7,20], whose
on-site potential has an irrational period compared with the
lattice period, has received increasing attention in recent
years, partly inspired by its realization in the pseudorandom
optical lattice [21] and ultracold atoms [22]. It was shown
that the AA model can undergo a localization transition
with the change in potential strength [5,7,12,13], in contrast
to the case of the disordered system which only has the local-
ization phase in one dimension [23–25]. Moreover, various
extensions of AA models have been studied. For example,
the energy-dependent mobility edges is found in a general-
ized AA model with modified quasiperiodic potentials [9]
and long-range hopping terms [10,11], and the critical phase
lying between the extended and localized phase is found for
a generalized AA model with two quasiperiodic modulation
parameters [18,26,27], and many-body localization (MBL)
has been found in the AA model with the interaction term
introduced [27–31].

Recently, nonequilibrium dynamics in localized systems
has attracted increasing attentions. Lots of exotic properties
therein have been discovered. For instance, it is shown that
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the periodic driving cannot only turn the localized eigenstates
into extended ones and vice versa [32,33], but also bring the
system into the topological MBL phase [34]. In addition, a dy-
namical localization transition can happen when the system is
suddenly quenched from the localized phase to the delocalized
phase [35,36]. Furthermore, for the linearly quench across the
localization transition point, the driven dynamics can be well
described by the Kibble-Zurek scaling (KZS) [37].

On the other hand, inspired by the experimental progress,
the non-Hermitian systems have attracted enormous stud-
ies [38–57]. In particular, it has been shown that the interplay
of non-Hermiticity and the disordered (or quasiperiodic) po-
tentials can bring intriguing perspectives in the localization
phenomena [2,58–89]. For instance, it was shown that for the
non-Hermitian AA model with the nonreciprocal hopping the
localization transition happens at the same point as the real-
complex transition [2,61,64,71,90]. For the nonequilibrium
dynamics in non-Hermitian localization systems, the periodi-
cal driving and the sudden quench have been studied [91–94].
However, linearly quench dynamics in the localization tran-
sition in the non-Hermitian systems is still unexplored. A
natural question is whether the KZS is still applicable in
describing the driven dynamics in the localization transition
in the non-Hermitian systems.

To answer this question, in the present paper we study
the scaling behavior of the driven dynamics of localization
transition in the non-Hermitian AA model [61]. The non-
Hermiticity of this model is induced by the non-reciprocal
hopping. According to the locations of the critical points
of the localization-delocalization transition and real-complex
transition, we classify the eigenstates into three classes. The
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first class is the ground state in which the energy spectrum is
always real, and this type of the state has only the localization
transition. The second class corresponds to the eigenstates in
which the localization transition and real-complex transition
happen at different points. The third class corresponds to
the eigenstates in which the localization transition and real-
complex transition happen at the same critical point. Then,
we study the driven dynamics in this model for various kinds
of states. Starting from the deep localized phase and slowly
tuning the potential strength across the critical point, we find
that the driven dynamics of the localization-delocalization
phase transition for different types of initial state can be
described by the KZS. Accordingly, we generalize the KZS
to localizaion transition in the non-Hermitan quasiperiodic
systems.

The remainder of the paper is organized as follows. In
Sec. II, the non-Hermitian AA model is introduced, and the
static scaling behaviors are presented. In Sec. III, the driven
dynamics of the localiation-delocalization transition is stud-
ied. The KZS for various kinds of states is examined by the
numerical study. A summary is given in Sec. IV.

II. NON-HERMITIAN AA MODEL AND THE STATIC
CRITICAL PROPERTIES

A. The non-Hermitian AA model

The Hamiltonian of the non-Hermitian AA model
reads [61]

H = −
L∑
i

(JLC+
j Cj+1 + JRC+

j+1Cj )

+ 2λ cos [2π (γ j + φ)]C+
j Cj, (1)

where C+
j (Cj ) is the creation (annihilation) operator of the

hard-core boson, JL = Je−g and JR = Jeg are the asymmetry
hopping amplitude in the left and right directions, respec-
tively, λ measures the amplitude of the quasiperiodic potential
with γ therein being an irrational number, and φ ∈ [0, 1)
is a random phase of the potential. The periodic boundary
condition is assumed in the following calculation. To satisfy
the periodic boundary condition, γ has to be approximated
by a rational number Fn/Fn+1 where Fn+1 = L and Fn are the
Fibonacci numbers. It was shown that all the eigenstates of
model (1) are localized when λ > eg, whereas all the eigen-
states are delocalized when λ < eg. Thus the critical point for
the localization transition is λc = eg [61,65].

As illustrated in Fig. 1, the energy spectra of Eq. (1) are
plotted. Here, the eigenstates are arranged in a descending
order of the real parts of the eigenenergies. We find that the
eigenstates can be classified into three classes. Class I: The
first class has the real spectra for all λ’s. The typical states
in this class are the ground states. Class II: The second class
corresponds to the states in which the real-complex transition
and the localization transition happen at different λ’s. The
second type eigenstates usually locate at the boundary of the
energy bands, i.e., the red curves in Fig. 1. Class III: The third
class is the eigenstate that undergoes a real-complex transition
at λ = λc accompanying with the localization transition. We

FIG. 1. (a) Real and (b) imaginary parts of energy spectra of the
model Eq. (1). The black curve is the ground state belonging to Class
I. The red curves denote the eigenstates belonging to Class II with the
localization transition and real-complex transition being separated.
The blue curves denote the third type of eigenstates belonging to
Class III with localization transition and real-complex transition hap-
pening at the same critical point. Here, we choose g = 0.5, φ = 0,
and L = 987 in the calculation. The green dashed lines in (a) and
(b) label the location of the localization transition critical point.

find that most of the excited eigenstates belong to the this
class.

B. Static scaling properties for localization transition

Here we systematically explore the scaling properties of
the localization transition for three kinds of spectra. For the
ground state in Class I, three quantities can be used to charac-
terize the localization transition. One is the localization length
ξ defined in the localization phase as [37]

ξ =
√√√√

L∑
n>nc

[(n − nc)2]Pi, (2)

in which Pi is the probability of the wave function at site i,
nc ≡ ∑

nPi is the localization center. Near the localization-
delocalization transition, for ε ≡ λ − λc, it is expected that ξ

satisfies the scaling relation,

ξ ∝ ε−ν, (3)

when ξ � L.
The second quantity is the inverse participation ratio (IPR)

for the nth eigenstate, which is defined as [61,95,96]

IPRn =
∑L

j=1

∥∥	R
n ( j)

〉∣∣4

∑L
j=1

∥∥	R
n ( j)

〉∣∣2 , (4)

where |	R
n ( j)〉 is the nth right eigenvector. For the extended

state with λ < λc, the wave function is homogeneously dis-
tributed through all sites, and IPRn scales as IPRn ∝ L−1,
whereas for the localization state with λ > λc IPRn ∝ L0. At
the localization transition point λc, it is expected that IPRn
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satisfies a scaling relation,

IPRn ∝ L−s/ν, (5)

with s being its exponent. When L → ∞, s can also be deter-
mined by

IPRn ∝ εs. (6)

The third quantity is the energy gap between the first ex-
cited state and the ground state. According to the finite-size
scaling, this energy gap 
s should scale as


s ∝ L−z, (7)

when λ = λc.
For Classes II and III, the energy gap that is relevant to

the localization transition cannot be well defined. But the
scaling relations of the localization length Eq. (3) and the IPRn

Eqs. (5) and (6) can also be used to characterize the localiza-
tion transition in the excited states. A peculiar situation for
Class III is that the real-complex spectra phase transitions hap-
pens at the same point as the localization transition. However,
the real-complex spectra transition and the localization tran-
sition are described by different universality classes. For the
former, as λ decreases, a pair of real energy levels converge
as 
r ∝ ε1/2

r in which εr = λ − λr is the distance from the
real-complex transition point λr , and 
r is the energy differ-
ence between these two energy levels for εr > 0, whereas for
εr < 0 a pair of complex energy levels generate with the same
real part of energy and their imaginary parts of the energies
satisfy 
i ∝ |εr |1/2 in which 
i denotes the imaginary parts
of the energy difference. Thus, for this transition, the critical
exponent νrzr = 1/2. This behavior is characterized by the
(0 + 1)D Yang-Lee edge singularity [97–99]. In contrast, in
the following, we will show that for the localization transition,
νz = 2.

In the following, we will numerically examine Eqs. (3)–(7)
and determine ν, s, and z. The numerical results of ξ of
the ground state for different g’s are shown in Fig. 2(a). For
Class I, Fig. 2(a) confirms the scaling relation of Eq. (3) and
demonstrates that ν = 1. Moreover, the results for different
g’s displayed in Fig. 2(a) demonstrate that ν is a universal
exponent independent of g. In addition, Fig. 2(b) shows that
IPRn in the localization transition in the ground state satisfies
Eq. (5) and the averaged critical exponent s = 0.1197, which
is consistent with the result in a non-Hermitian interpolat-
ing Aubry-André-Fibonacci model [65]. Moreover, Fig. 2(c)
shows that the energy gap at the critical point satisfies 
s ∝
Lz with z = 2. Note that this value is different from the
one obtained for the localization transition in the Hermitian
Hamiltonian, where z = 2.37 [25,37,100].

For Classes II and III, we calculate the localization length
and show the results in Figs. 3(a) and 3(c). These results
demonstrate that the localization length in the excited state
also satisfy Eq. (3) with ν = 1. In addition, we calculate the
IPRn for the localization transition in the states belonging to
Classes II and III. Figs. 3(b) and 3(d) show that IPRn at the
localization transition for both cases satisfy IPRn ∝ ε0.1294

and IPRn ∝ ε0.1201, similar to the case of Class I. These results
indicate that the localization transitions for all three classes
of states belong to the same universality class. In the next
section, we will show that the dynamic exponent for both

FIG. 2. Static scaling properties in the ground state. (a) Curves
of localization length ξ versus ε for L = 987, (b) IPRn at λ = λc

versus L, and (c) Energy gap 
s at λ = λc versus L for different
g. Here, the results are averaged for 100 choices of φ. The power-
law fitting yields ν = 0.9557, 0.9631, 0.9719, and 0.9803, and s =
0.1196, 0.1197, 0.1198, and 0.1198 and z = 1.995, 1.998, 1.997, and
1.997 for g = 0.2, 0.3, 0.4, and 0.5, respectively.

Classes II and III is z = 2, although it cannot be determined
via the gap scaling.

III. KIBBLE-ZUREK SCALING IN THE NON-HERMITIAN
AA MODEL

A. General theory of the KZS

In usual phase transitions, when the tuning parameter ε is
changed linearly as

ε = −Rt, (8)

to drive a system cross its critical point, the KZS states that for
|ε| > R1/νr with r = z + 1/ν the system can evolve adiabati-
cally since the state has enough time to adjust to the change in
the Hamiltonian; whereas for |ε| < R1/νr the system enters the
impulse region and ceases to evolve as a result of the critical
slowing down. However, investigations showed that the as-
sumption that the system stop evolving in the impulse region
is quite excessive. For instance, a finite-time scaling theory
demonstrates that in the impulse region the system evolves
according to a timescale ζ ∼ R−z/r [101–103]. Accordingly,
for a quantity Y , its full scaling form reads

Y (ε, R) = Ry/r fY (tRz/r ), (9)
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FIG. 3. Static scaling properties in different kinds of excited
states. ξ versus ε for (a) the 609th eigenstate (Class II) and (c) the
third eigenstate (Class III). IPRn versus ε for (b) the 609th excited
eigenstate (Class II) and (d) the third excited eigenstate (Class III).
Here, we use L = 2584 and g = 0.5. The results are averaged for 100
choices of φ.

in which y is the critical exponent of Y and is defined ac-
cording to the static scaling Y ∝ εy when L → ∞, and fY
is the scaling function. At the critical point, t = 0, Eq. (9)
demonstrates that Y can be scaled with R as Y ∝ Ry/νr for
L → ∞. Equation (9) was first established in classical phase
transitions [104–106]. In quantum phase transitions, similar

FIG. 4. (a) ξ and (b) IPRn at t = 0 and (c) 
n at tRz/r = 0.5 as
a function of R for the initial ground state. Here, we use g = 0.5 and
L = 987. The results are averaged for ten choices of φ.

FIG. 5. Driven dynamics with the initial ground state. The curves
of ξ versus t before (a1) and after (a2) rescaling for different R’s.
The curves of IPRn versus t before (b1) and after (b2) rescaling for
different R’s. The curves of 
n versus t before (c1) and after (c2)
rescaling for different R’s. Here, we use g = 0.5 and L = 987, the
results are averaged for ten choices of φ. The arrows in (a1), (b1),
and (c1) point to the quench direction.

scaling forms were also proposed from different perspec-
tives in various systems [107–109]. Recently, the KZS and
the full scaling form Eq. (9) have been generalized into the
non-Hermitian Yang-Lee edge singularity [97,110] and the
localization transition in the ground state of the Hermitian sys-
tem [37,111]. In the following, we will generalize this scaling
form into the localization transition in the non-Hermitian AA
model (1).

B. KZS in states of Class I

We at first explore the driven dynamics in the states in Class
I. We focus on the driven dynamics in the ground state. In
addition, we set the lattice size L very large and the finite-size
effects can be ignored. For the localization length ξ , Eq. (9)
converts to

ξ (t, R) = R−1/r fξ (tRz/r ), (10)

in which r = 3. Besides, according to Eq. (9), the dynamic
scaling form of IPRn is

IPRn(t, R) = Rs/rν fI(tRz/r ). (11)

In addition, we define an energy difference 
n(t ) between the
time-dependent state and the nth eigenstate as


n(t ) ≡ Re
[〈
	L

n (t )
∣∣H (t )

∣∣	R
n (t )

〉 − En
]
, (12)
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FIG. 6. Driven dynamics with the initial state belonging to Class
II. The curves of ξ versus t before (a1) and after (a2) rescaling for
different R’s. The curves of IPRn versus t before (b1) and after (b2)
rescaling for different R’s. The curves of 
n versus t before (c1)
and after (c2) rescaling for different R’s. Here, we use g = 0.5 and
L = 987. We choose the 609th excited state as the initial state in the
figure. The results are averaged for ten choices of φ. The arrows in
(a1), (b1), and (c1) point to the quench direction.

where 〈	L
n (t )| ≡ 〈	L

n (0)|eiH (t )t and |	R
n (t )〉 ≡

e−iH (t )t |	R
n (0)〉, |	R

n (0)〉 and 〈	L
n (0)| are the right and left

eigenstates at the initial time, and En is the nth eigenenergy
for the instantaneous Hamiltonian H (t ). The driven dynamics
of 
n satisfy


n(t, R) = Rz/r f
(tRz/r ), (13)

according to Eq. (9).
Then, we numerically examine Eqs. (10), (11), and (13)

for the states of Class I. First, we show in Fig. 4(a) that
at the localization transition point ξ satisfies ξ ∝ R−0.3367

in the ground state. The critical exponent is close to −1/r.
Furthermore, by rescaling ξ and t as tRz/r , one finds that
the rescaled curves collapse onto each other for the ground
state as shown in Figs. 5(a1) and 5(a2), confirming Eq. (10).
Second, Fig. 4(b) shows that at the critical point IPRn obeys
IPRn ∝ R0.04213 for the ground state. Then, by rescaling IPRn

and t as IPRnR−s/rν and tRz/r , respectively, one finds that the
rescaled curves collapse onto each other for the ground state
as shown in Figs. 5(b1) and 5(b2), confirming Eq. (11). Third,
Fig 4(c) shows that 
n obeys 
n ∝ R0.6593 at tRz/r = 0.5 for
the ground state. Then, by rescaling 
n and t as 
R−z/r and
tRz/r , respectively, one finds that the rescaled curves collapse
onto each other for the ground state as shown in Figs. 5(c1)
and 5(c2), confirming Eq. (13).

FIG. 7. Driven dynamics with the initial state belonging to Class
III. The curves of ξ versus t before (a1) and after (a2) rescaling for
different R’s. The curves of IPRn versus t before (b1) and after (b2)
rescaling for different R’s. The curves of 
n versus t before (c1)
and after (c2) rescaling for different R’s. Here, we use g = 0.5 and
L = 987. The third excited state is taken as the initial state in the
figure. The results are averaged for ten choices of φ. The arrows in
(a1), (b1), and (c1) point to the quench direction.

C. KZS in states of Classes II and III

In this section, we will show that Eqs. (10), (11), and (13)
are also applicable for localization phase transitions in the
states beloging to Classes II and III. For the Class II state,
the real-complex transition happens at smaller value of ε,
comparing with the localization transition point. Accordingly,
the localization transition happens at the the real-spectra re-
gion. Figures 6(a1), 6(b1), and 6(c1) show the evolution of
ξ , IPRn and 
n, respectively, for the 609th excited state.
After rescaling according to Eqs. (10), (11), and (13) with
the same set of the critical exponents, we find the rescaled
curves collapse onto each other as shown in Figs. 6(a2), 6(b2),
and 6(c2). These results confirm that the rescaling functions
Eqs. (10), (11), and (13) are applicable for Class II eigenstates.
In particular, for 
n, we find that it decreases as t increases,
different from the case of the initial ground state as shown
in Fig. 5(c1). The reason is that when the initial state is the
ground state, the energy can only increase under external
driving. In contrast, when the initial state is in the excited
state, the energy can spread to both higher and lower states.
In the present 609th excited state, the lower-energy excitation
dominates as shown in Figs. 6(c1) and 6(c2).

For the Class III state, we choose the third excited state as
an example. We calculate the evolution of ξ , IPRn, and 
n and
show the results in Fig. 7. We find that the rescaled curves,
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according to Eqs. (10), (11), and (13) with the same set of
the critical exponents, collapse onto each other. These results
confirm that the scaling functions Eqs. (10), (11), and (13) are
applicable for Class III eigenstates.

For the Class III state, the real-complex transition happens
at the same point as the localization transition. Since these
two kinds of phase transitions belong to different universality
classes, a nature question is whether the real-complex tran-
sition affects the universal scaling behavior. To answer this
question, we compare the relevant exponents for these two
transitions. For the scaling of the correlation length ξ ∼ R−1/r ,
the exponent −1/r is always −1/3 for both the localiza-
tion transition and the real-complex transition. So the scaling
of the correlation length satisfies the same scaling form for
the real-complex transition and the localization transition.
Accordingly, from the scaling of the correlation length, one
cannot distinguish the contribution of the real-complex tran-
sition from that of the localization transition. For the energy
scaling 
n ∼ Rz/r , the exponent z/r is 2/3 for the localization
transition but is 1/3 for the real-complex transition. For the
small driving rate, it seems that the contribution from the real-
complex transition can dominate. However, there are only two
relevant states for the real-complex transition. For instance,
for the third state, only the fourth state is relevant. The energy
gap of these two states vanishes at the transition point and
becomes complex valued in the other side of the transition
point. However, for the localization transition, there are lots of

states that can be occupied under the external driving. Thus,
the contribution from the localization transition will dominate.
This argument is supported by the scaling of ξ shown in
Fig. 7(c).

IV. SUMMARY

To summarize, we have studied the driven dynamics of
the non-Hermitian AA model. We have first determined the
static exponent ν, s, and z by investigating the static behavior
of ξ , IPRn, and 
s, respectively. Then we have studied the
driven dynamics of the localization-delocalization transitions
for three classes of states. We have found that the driven
dynamics in all of these states can be described by the KZS
with the same set of critical exponents. Our paper generalizes
the KZS to the localization transition in both the ground state
and the excited states in non-Hermitian systems.
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