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Momentum signatures of site percolation in disordered two-dimensional ferromagnets
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Since real devices necessarily contain defects, understanding wave propagation in disordered systems has
proven a deep and important issue that has led to several important developments in the field of electronic
transport and metal-insulator transitions, in particular Anderson localization. In this work, we consider a
two-dimensional square lattice of pinned magnetic spins with nearest-neighbor interactions and we randomly
replace a fixed proportion of spins with nonmagnetic defects carrying no spin. We focus on the linear spin-wave
regime and address the propagation of a spin-wave excitation with initial momentum k0. We compute the
disorder-averaged momentum distribution obtained at time t and show that the system exhibits two regimes. At
low defect density, typical disorder configurations only involve a single percolating magnetic cluster interspersed
with single defects essentially and the physics is driven by Anderson localization. In this case, the momentum
distribution features the emergence of two known emblematic signatures of coherent transport, namely the
coherent backscattering peak located at −k0 and the coherent forward scattering peak located at k0. At long times,
the momentum distribution becomes stationary. However, when increasing the defect density, site percolation
starts to set in and typical disorder configurations display more and more disconnected clusters of different sizes
and shapes. At the same time, the coherent forward scattering peak starts to oscillate in time with well-defined
frequencies. These oscillation frequencies represent eigenenergy differences in the regular, disorder-immune
part of the Hamiltonian spectrum. This regular spectrum originates from the small-size magnetic clusters and its
weight grows as the system undergoes site percolation and small clusters proliferate. Our system offers a unique
spectroscopic signature of cluster formation in site percolation problems.

DOI: 10.1103/PhysRevB.106.014203

I. INTRODUCTION

It is well known that two-dimensional (2D) ferromag-
nets can exhibit a collective behavior known as spin waves
(magnons) which propagate throughout the entire lattice [1].
As a rule of thumb, real solid-state systems always depart
from a clean idealized situation. As is now well known,
wave transport in such disordered media host many phenom-
ena called weak-localization effects [2,3], though the most
dramatic (and iconic) effect is Anderson localization, the
complete suppression of transport through destructive inter-
ference [4–8], and its many-body version in the presence of
interactions [9]. In this context, it is particularly important to
understand how disorder affects these spin systems [10] and
their wave propagation properties in particular [11,12].

In 2D ferromagnets, disorder appears essentially under the
form of point defects (vacancies, interstitial atoms, and impu-

rities), dislocations, or grain boundaries [13–15]. We will con-
sider here the case of point defects: Starting from a clean 2D
spin square lattice, a certain fraction ρ of magnetic atoms are
replaced by nonmagnetic impurities (site percolation model).
A similar situation has been considered in [16,17] for a disor-
dered Heisenberg antiferromagnet where defects were intro-
duced on a square lattice using a “partially substituted” model.
In marked contrast with our work, however, the breaking of
the lattice into independent clusters does not occur in that
model since the “partially substituted” defects are still coupled
to the rest of the lattice. The problem of spin-wave propaga-
tion in disordered 2D square ferromagnets has been studied in
the limit of relatively low defect densities in [18]. In this case,
the impact of cluster formation is almost negligible and can be
ignored: The usual predictions of Anderson localization the-
ory apply. In particular, when analyzed in momentum space,
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coherent transport, localization, and critical effects are re-
vealed by the now emblematic coherent backscattering (CBS)
[19–21] and coherent forward scattering (CFS) interference
peaks [22–28]. In this paper, we expand on the discussion
in [18] in two important, and different, ways. First, we con-
sider the limit of small fluctuations around the ground state,
setting any magnetic anisotropy to zero. This allows us to
study localization properties of linear magnon waves instead
of having to deal with the more involved nonlinear Landau-
Lifshitz-Gilbert equation. We are thus able to derive some
analytical results for microscopic transport parameters such
as the scattering mean free path in the low-density regime.
Second, we also consider the regime of higher defect densities
where cluster formation has a significant impact on transport
properties. In particular, we show that cluster formation gives
rise to periodic time oscillations of the CFS peak height.

The paper is organized as follows. First, we describe the ef-
fective disordered linear spin-wave Hamiltonian under study,
discuss its main features, and give the expression of the
disorder-averaged momentum distribution. For the rest of the
paper, we consider the case of uniform hopping amplitudes
and highlight some important properties of the Hamiltonian
inferred by its Laplacian matrix form. We next present nu-
merical studies of the momentum distribution at low defect
densities for a spin wave with some initial momentum k0. In
this case, cluster formation is negligible and we recover the
expected known properties of wave propagation in momen-
tum space: A CBS peak develops at the scattering mean free
timescale on top of an isotropic diffusive background reached
at the Boltzmann timescale and a CFS peak develops later
at the Heisenberg timescale, signaling Anderson localization
in the bulk. In particular, we show that the time behavior of
the CFS contrast is given, as expected, by the spectral form
factor. We also recover the (ka)4 dependence of the scattering
mean free rate at low momenta (k is the wave number and
a the lattice constant). We then proceed to the higher defect
density regime. In this case, cluster formation is no longer
negligible, which dramatically impacts the time behavior of
the CFS peak. We numerically show that the CFS peak height
exhibits time oscillations. These oscillations originate from
disorder-immune frequency differences associated with the
small-cluster eigenspectra, thus allowing for a spectroscopic
study of clusters. We conclude by giving some perspectives
on the interplay between percolation and localization. Details
of the calculations can be found in the appendices.

II. EFFECTIVE DISORDERED HAMILTONIAN FOR
SPIN-WAVE SYSTEMS

A. Clean Hamiltonian

We consider here a 2D ferromagnetic spin-S lattice system
L with nearest-neighbor interactions described by the quan-
tum Heisenberg Hamiltonian

HS = −
∑

(i j)∈L
Ji j Si · S j, (1)

where (i j) ≡ ( ji) denotes the link that connects the unordered
pair of nearest-neighbor sites i and j and where the coupling
constants are all symmetric and positive Ji j = Jji > 0. At zero

temperature, such a system exhibits a spontaneous magnetiza-
tion where all spins are aligned along the same direction. We
conveniently choose this (spontaneous symmetry-breaking)
direction as the quantization axis Oz of the system that
we assume, for convenience, is perpendicular to the lattice
plane (this can be always achieved by adding an infinitesimal
magnetic field along Oz to help fix the direction of the spon-
taneous magnetization).

We are interested in the linear dynamics of the long-
wavelength excitations of the system (magnons) when disor-
der is present. Starting from the spin Heisenberg equations of
motion, we derive in Appendix A the effective tight-binding
clean Hamiltonian H0 describing the linear spin-wave regime
of the spin system. Introducing the position states |ri〉 (i ∈ L),
satisfying 〈ri|r j〉 = δi j and the closure relation

∑
i∈L |ri〉〈ri| =

1L, H0 reads

H0 = −
∑

(i j)∈L
SJi j (|ri〉〈r j | + |r j〉〈ri|) +

∑
i∈L

Ui |ri〉〈ri|,

Ui =
∑

j∈N (i)

SJi j, (2)

where N (i) denotes the set of all nearest-neighbor sites to
site i. H0 describes the dynamics of a spinless particle with
nearest-neighbor hopping rates ti j = SJi j and on-site energies
Ui. A crucial aspect of the effective model is that the prop-
erties of the on-site energy at a given site i cannot be simply
described by an independent (random) local variable. Indeed,
Ui being given by the sum of the hopping rates along all the
links connected to site i, its (random) properties depend on the
neighboring sites, attaining thereby a nonlocal character.

B. Model of disorder and disordered Hamiltonian

We now introduce disorder in the system through a “site
percolation” model: Starting from the clean system described
by Eq. (2), we replace at random a certain number ND of the N
magnetic sites by defects (nonmagnetic sites), leaving Nm =
N − ND = (1 − ρ) N magnetic sites alive where ρ = ND/N is
the defect density [29].

This random arrangement of defects within the lattice of
magnetic sites drastically modifies the effective Hamiltonian
of the whole system. Indeed, the physical effect of these
defects on the system is threefold: First, all coupling terms
connecting a pair of nearest-neighbor sites where at least
one of the two sites is defective are set to 0: Ji j = 0 when
i or j or both are defective. This means that nonmagnetic
defects decouple from magnetic sites and that the effective
disorder Hamiltonian H only involves sums over magnetic
sites. Second, the on-site energy of a magnetic site i depends
now on the number of its nearest-neighbor defects. Third, the
on-site energy of nonmagnetic sites is set to zero. Defining the
subset M ⊆ L of magnetic sites, the disordered Hamiltonian
H is readily obtained from H0 by the replacement L → M
and Ui → Vi:

H = −
∑

(i j)∈M
SJi j (|ri〉〈r j | + |r j〉〈ri|) +

∑
i∈M

Vi |ri〉〈ri|,

Vi =
∑

j∈N (i)∩M
SJi j . (3)
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C. Scattering approach and defect Hamiltonian

Since H is acting on the Nm sites of the random subspace
M alone, diagrammatic expansions and related analyses
of the disordered spin-wave system based on H are not
straightforward as we would have to deal with the random
boundaries of M. For this, a better suited approach is to
extend H to a disorder Hamiltonian H acting on the full
regular lattice L.

The Hamiltonian H is readily obtained from the clean
Hamiltonian H0 through the replacement Ji j → Ji jmimj ,
where the random variable mi takes value mi = 0 if site i is
a defect (probability p = ρ) and takes value mi = 1 otherwise
(probability q = 1 − ρ) [18]. A disorder configuration is then
fully characterized by the set of values {mi, i ∈ L} and there
are ( N

ND
) = N!

ND!(N−ND )! possible such disorder configurations.
The next step is to break H = H0 + Hd into the sum of

the clean Hamiltonian H0 and a defect Hamiltonian Hd acting
on the full regular lattice L. We introduce the link random
variable mi j = 1 − mimj with property mi j = 0 if both end
points of the link (i j) are magnetic and mi j = 1 otherwise.
Then, we have

Hd =
∑
(i j)

mi jSJi j (|ri〉〈r j | + |r j〉〈ri|) +
∑
i∈L

Wi|ri〉〈ri|, (4)

where Wi = −∑
j∈N (i) mi jSJi j . As easily checked, we do

have Hd = 0 and H = H0 if all sites are magnetic and Hd =
−H0 and H = 0 if all sites are defective. It can also be seen
that the presence of defects reduces the on-site energy of their
nearest-neighbor sites since Wi � 0.

At this stage, it is advantageous to further break the defect
Hamiltonian Hd = Hd + δHd into a disorder-averaged part Hd

and a fluctuating part δHd with zero mean δHd = 0. We next
write H = H̃0 + δHd and introduce the disorder-renormalized
clean Hamiltonian H̃0 ≡ H = H0 + Hd .

The scattering approach, based on Hd , and the diagram-
matic expansion of the Green’s function associated with H =
H̃0 + δHd , will be detailed in Sec. V C and Appendices C, D,
and E.

D. M or L as Hilbert spaces

We begin by partitioning the full lattice L = M
⊕

D into
its (disjoint) magnetic M and defective D subspaces and we
define the corresponding projectors on these subspaces:

P =
∑
i∈M

|ri〉〈ri|, Q =
∑
i∈D

|ri〉〈ri|, (5)

with P + Q = 1L.
From a physical point of view, the relevant Hilbert space

and Hamiltonian are the magnetic subspace M and H, Eq. (3),
since the defects do not carry any spin. However, as seen in
the previous paragraph, it is also useful to embed M in L and
work with Hamiltonian H = H0 + Hd and L as the Hilbert
space.

From the identity H = (P + Q)H (P + Q), we infer H =
PHP + QHQ since H does not couple the subspaces M
and D. We readily have H = PHP and thus H = H + HD.
By construction, HD = QHQ = 0. It is important however
to keep track of HD in Green’s function calculations; see
Sec. V C.

III. MOMENTUM DISTRIBUTION

A. Plane-wave states

We first define the plane-wave states through

|k〉 = 1√
N

∑
i∈L

eik·ri |ri〉. (6)

They are normalized to 〈k′|k〉 = δkk′ and resolve the iden-
tity on L, namely

∑
k∈� |k〉〈k| = 1L, where � is the first

Brillouin zone of L. The two following identities prove par-
ticularly useful:∑

i∈L
ei(k−k′ )·ri = Nδkk′ ,

∑
k∈�

eik·(ri−r j ) = Nδi j . (7)

B. Truncated plane-wave states and on-shell energy

We define a normalized truncated plane-wave state by

|�k〉 = P|k〉√
1 − ρ

. (8)

It represents an initial plane-wave state |k〉 projected onto
M. The denominator

√
1 − ρ is introduced to normalise the

state to 〈�k|�k〉 = 1 for each disorder configuration. Indeed,
it is easy to check that 〈k|P|k〉 = 1 − ρ for each disorder
configuration. We further have 〈k′|P|k〉 = (1 − ρ)δkk′ , where
(· · ·) denotes the disorder average.

We next define the on-shell energy Eos associated to |�k〉
by

Eos = 〈�k|H|�k〉 = 〈k|H|k〉
1 − ρ

. (9)

It represents the average energy of a plane-wave state pro-
jected onto M. The dispersion of energies δE around Eos is
further defined by δE2 = 〈�k|(H − Eos)2|�k〉.

C. Momentum distribution

In the rest of this paper, we are interested in the disorder-
averaged momentum distribution n(k, t ) obtained from the
time evolution of an initial plane-wave state |k0〉 under H,
namely |�(t )〉 = e−iHt/h̄|�k0〉.

The disorder-averaged momentum distribution then reads

n(k, t ) = |〈k|�(t )〉|2 = |〈k|e−iHt/h̄|�k0〉|2

≡ |〈k|Pe−iHt/h̄P|k0〉|2
1 − ρ

. (10)

It is easy to check that
∑

k n(k, t ) = 1 and that this equality in
fact holds at the level of each single disorder configuration as
it should. In the following, we will numerically compute and
analyze n(k, t ) for different defect densities ρ.

At this point, we introduce the (N − ND) eigenstates
|ϕn〉 and eigenenergies εn of the Hamiltonian H seen as a
(N − ND) × (N − ND) square matrix acting on M, namely
H|ϕn〉 = εn|ϕn〉 with 〈ϕn|ϕm〉 = δnm. This means that we per-
form a change of basis in the M subspace and write P =∑

n |ϕn〉〈ϕn| (n = 1, . . . , N − ND) so that

1L =
∑

n

|ϕn〉〈ϕn| +
∑
i∈D

|ri〉〈ri| (11)

014203-3



TAY, GRÉMAUD, AND MINIATURA PHYSICAL REVIEW B 106, 014203 (2022)

with the normalization∑
i∈L

|ϕn(ri )|2 ≡
∑
i∈M

|ϕn(ri )|2 = 1 (12)

since ϕn(ri ) = 0 if i ∈ D. The momentum distribution,
Eq. (10), then reads

n(k, t ) =
∑

n,m e−iωnmtϕn(k)ϕ∗
m(k)ϕm(k0)ϕ∗

n (k0)

1 − ρ
, (13)

where ωnm = ωn − ωm, ωn = εn/h̄ and where ϕn(k) ≡ 〈k|ϕn〉
is given by

ϕn(k) = 1√
N

∑
i∈M

e−ik·riϕn(ri ). (14)

It is easy to see that∑
k∈�

ϕ∗
m(k)ϕn(k) = δnm,

∑
n

|ϕn(k)|2 = 1 − ρ. (15)

At this stage, it is important to note that, because the on-site
energies depend on the neighboring site properties, H is not
the restriction of PH0P to M. If it were the case, the eigenen-
ergies of H would not be random and its eigenfunctions would
be simply related to the plane-waves states. Indeed, since
PH0P = ∑

k ε0
k P|k〉〈k|P , the eigenenergies would be the

nonrandom clean ones ε0
k while the eigenstates P|k〉 would

be random but with rather simple statistical properties.

IV. HAMILTONIAN WITH UNIFORM HOPPING RATES

In the rest of our paper, we consider the case of uniform
hopping rates Ji j = J . Then, the clean on-site energies are
uniform Ui ≡ U = ZJS (Z is the lattice coordination number)
whereas the on-site disorder energies Vi = ZiJS depend on the
local environment of defects (Zi � Z is the total number of
magnetic nearest neighbors of site i). In this case, we have

H = JS

⎡⎣−
∑

(i j)∈M
(|ri〉〈r j | + |r j〉〈ri|) +

∑
i∈M

Zi |ri〉〈ri|
⎤⎦
(16)

and

Hd = JS

[∑
(i j)

mi j (|ri〉〈r j | + |r j〉〈ri|) +
∑
i∈L

wi|ri〉〈ri|
]
, (17)

with wi = (miZi − Z ) and Zi = ∑
j∈N (i) mj � Z .

For concreteness, we further consider the case of a two-
dimensional square lattice (Z = 4) made of S = 1/2 spins
(lattice constant a = 1 set to unity) containing N = 50 ×
50 = 2500 sites and we use periodic boundary conditions. In
all our numerical simulations, we have used J and tJ = h̄/J as
the energy and time units of the system.

A. Free dispersion relation

Under the previous assumptions, the clean Hamiltonian
reads

H0 = JS
[

−
∑
(i j)

(|ri〉〈r j | + |r j〉〈ri|) + Z
∑
i∈L

|ri〉〈ri|
]

(18)

and is readily diagonalized in the plane-wave state basis

H0 =
∑

k

ε0
k |k〉〈k|, (19)

featuring the well-known free dispersion relation given by

ε0
k = 2JS[2 − cos(kxa) − cos(kya)]

≈ JS(ka)2 (ka  1) (20)

in dimension two.

B. Renormalized clean dispersion relation

Since the disorder average restores the original translation
invariance properties of the system, it is obvious that Hd , and
in turn H̃0, are diagonal in k.

As shown in Appendix B, it is easy to compute Hd from the
statistical properties of the link random variable mi j and we
find Hd = −ρ(2 − ρ)H0. As a consequence, H̃0 is diagonal
in the plane-wave basis with a renormalized clean dispersion
relation εk:

H̃0 =
∑

k

εk|k〉〈k|,

εk = (1 − ρ)2 ε0
k . (21)

Note that, in this case, the on-shell energy, Eq. (9), simply
reads

Eos =
∑

n εn |ϕn(k)|2
1 − ρ

= εk

1 − ρ
= (1 − ρ)ε0

k . (22)

C. Laplacian matrix

From Eq. (16), we can write H = JS R. In the position
basis, the operator R takes the form of a Laplacian matrix
[30]:

Ri j =
⎧⎨⎩ deg(i), i = j,

−1, i �= j, i and j adjacent,
0, otherwise,

(23)

and where deg(i) represents the degree of site i, the number
of edges emanating from it. In our case, the simple graph,
characterized by its vertices and edges, associated with R
identifies with the magnetic lattice M and deg(i) is simply
the number of magnetic sites coupled to site i.

The properties of Laplacian matrices on graphs are well
studied [31,32]. Of particular relevance to us are the following
ones:

(1) R is positive semidefinite (all its eigenvalues are posi-
tive).

(2) The sum of entries in every column and row being
zero, the lowest eigenvalue of R is thus zero.

(3) Its multiplicity is the number of connected components
of M, i.e., the number of isolated magnetic clusters in our
context.
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V. MOMENTUM DISTRIBUTION AT SMALL DEFECT
DENSITIES ρ � 1

A. Timescales and expected general behavior of the momentum
distribution

Several physical timescales characterize the propagation
of waves in random media [3,33–35]. The first one is the
scattering mean free time τs which gives the average time
interval separating two successive scattering events suffered
by an initial plane wave |k0〉. Over time, the wave momenta
are being randomized by scattering events and the system
reaches isotropization after the transport (or Boltzmann) mean
free time τB. At low momenta k0a  1 where geometrical
lattice effects can be discarded, the disorder-averaged momen-
tum distribution achieves a ring-shaped structure of radius k0,
width given by τ−1

s , and constant ridge height nB(k0). During
the isotropization process, and in the absence of any dephas-
ing phenomena that could break phase-coherent effects, a
narrow coherent backscattering (CBS) peak emerges around
the direction −k0, signaling that disorder-immune construc-
tive interference effects are at play. After τB, the CBS peak
has fully developed on top of the diffusive background with
a stationary peak value 2nB(k0). Wave transport, apart from
the CBS peak, has entered the ergodic regime and the system
explores all of its accessible energy shell through a diffusion
process. If the conditions are right, then the system enters
a localization regime after some localization time τloc: The
diffusion process slows down and stops. This is the celebrated
Anderson localization phenomenon. Finally, for times much
longer than the Heisenberg time τH , the quantum limit where
energy levels are resolved is reached and the system no longer
evolves [23]. During this process, a narrow coherent forward-
scattering (CFS) peak develops at k0, twinning the CBS peak
in the long run. As it turns out, CFS is a smoking gun of
bounded motion and, thus, of Anderson localization in the
bulk. Both the CBS and CFS angular sizes �θ ∼ ξ−1 are
given, in this regime, by the inverse of the localization length
ξ of the system [21,23,24].

All in all, for time-reversal-symmetric systems like the
one we consider here, the following picture emerges for the
disorder-averaged momentum distribution n(k, t ): At small
times (t � τB), the initial momentum distribution n(k, t = 0),
peaked at k0, is depleted by scattering events and a diffusive
shell forms with mean radius |k0| while the CBS peak emerges
at −k0. After isotropization is reached, this distribution does
not evolve significantly until the localization threshold is
crossed (τB < t < τloc). In turn, a CFS peak starts to develop
at k0 (t > tloc) and twins the CBS peak over a timescale given
by τH . In the long-time limit (t � τH ), the momentum distri-
bution does not evolve anymore (quantum limit) and is given
by a perfectly contrasted twin peak interference structure on
top of an otherwise isotropic diffusive-like background.

B. Actual behavior of the linear spin-wave system at ρ � 1

In Fig. 1, we plot the disorder-averaged momentum dis-
tribution n(k, t ) and its temporal behavior for the linear
spin-wave system described by Eq. (16) on a 2D square
lattice at low defect density ρ = 0.1 and an initial plane-
wave momentum k0 = k0êx with k0a = 0.6π (a is the lattice

constant). The total number of lattice sites is N = 50 × 50
and the total number of magnetic sites is Nm = (1 − ρ)N =
2250. The numerical results are averaged over 1000 disorder
configurations in panels (a) and (b) and over 10 000 disorder
configurations in panels (c), (d), and (e). In panels (c), (d),
and (e), we have arbitrarily fixed the background rim value
to unity. As seen from the data obtained in Fig. 1 at defect
density ρ = 0.1, the linear spin-wave system does exhibit the
expected signatures of localization theory in momentum space
at low defect densities ρ  1. As predicted, at intermediate
times τB � t � τloc, only the CBS peak is seen on top of an
isotropic ring-shaped background [Fig. 1(a)] whereas the CFS
peak starts to grow at t � tloc, after the localization onset has
been reached [Fig. 1(b)]. Note that the bell-shaped features
visible at the edges of the contour plot of the momentum
distribution were also observed in [18]. They can be attributed
to lattice effects (Brillouin zone boundaries).

From Fig. 1(c), we see that τs ∼ τB, both being in the range
of a few tJ , whereas, from Fig. 1(e), we see that the CFS
peak grows with a much larger timescale in the range of a few
thousand tJ . Note that the CBS peak value is also reached after
a timescale of the order of τB. Also note that the background
value (measured at a momentum k⊥ ⊥ k0) and the CBS peak
value do not change over time after isotropization has been
fully reached: The only visible dynamics happen for the CFS
peak height. As the two peaks become mirror images of each
other in the long-time limit, the wings of the two peaks also
change over time (not shown here) [21]. Last but not least,
we observe that, in the long-time limit, the CFS peak height
reaches the same height as the CBS peak, twice the height of
the diffusive background as predicted by theory [23]. We will
see later that this expected temporal picture changes dramati-
cally when the defect density ρ is increased.

Figure 2 shows the CBS and CFS peaks on top of the diffu-
sive background at times t � τH . In this long-time limit, the
CBS and CFS structures become twin peaks and their equal
widths �k relate to the size of the localization length through
�k = 2π/ξ . For the parameters of the numerical computa-
tion, we find �k a � 0.145 and thus ξ � 43.33a, which is
comparable to the linear size of the system L = √

Na = 50a.
This does not come as a complete surprise here. As is well
known from the scaling theory of localization [5–7], two-
dimensional systems are always localized in the infinite-size
limit in the absence of spin-orbit coupling, which is the case
here. Furthermore, as shown in [23], a proper analysis of the
localization dynamics in momentum space requires energy
filtering. Indeed, the localization length actually depends on
both the energy E at which the dynamics is analyzed and on
the disorder strength. As a consequence, the size L of the
system provides a natural cutoff: At energies and disorder
strengths such that ξ < L, the system is genuinely Anderson
localized and develops a CFS peak at long times. However,
at energies and disorder strengths such that ξ > L, the sys-
tem appears extended but still develops a CFS peak at long
times, the boundaries of the system playing the role of a
classical localization box. As is also the rule, the weaker the
disorder strength, the larger ξ . However, the catch is that,
for two-dimensional systems, ξ increases exponentially when
the disorder strength decreases. With the parameters chosen
in our numerical simulations (S = 1/2, ρ = 0.1, k0a = 0.6π ,
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FIG. 1. Disorder-averaged momentum distribution n(k, t ) at ρ = 0.1. (a) Momentum distribution at time t1 = 100tJ . An isotropic (diffu-
sive) ring-shaped structure has fully developed with a fully contrasted CBS peak on top of it and located at −k0. The CBS peak signals that
disorder-immune constructive interference effects are at play in the system. We have n(−k0, t1) = 2n(k⊥

0 , t1) where k⊥
0 = k0êy. (b) Momentum

distribution at time t2 = 1000tJ . The CFS peak starts to emerge, signaling the onset of Anderson localization. At longer timescales, the CFS
and CBS peaks achieve equal peak values twice that of the diffusive background. (c) Small-time evolution of n(k, t ) at the CBS point k = −k0,
at the CFS point k = k0, and at k = k⊥

0 (background). The initial momentum distribution n(k0, t = 0) decays over a timescale given by the
scattering mean free time τs. Meanwhile the diffusive background grows and the two curves achieve the same stationary value nB(k0 ), at a
timescale given by the Boltzmann time τB. Concomitantly, the CBS peak grows to reach its stationary value. We note that the CFS peak has
not emerged yet and that both τs and τB are of the same order of magnitude (several tJ ). (d) Same as (c) but at intermediate times. The CFS
peak at k0 emerges around t ∼ 150tJ , signaling the onset of Anderson localization. (e) Same as (c) but over much larger times. The CBS peak
and background no longer evolve at t � τB. Conversely, the CFS peak evolves at a timescale given by the Heisenberg time τH (in the range of
a few thousand tJ here). At t � τH , the CFS peak achieves the same height as the CBS peak, twice that of the background.

εk0 = 1.31J), we have Eos = 1.178J and δE = 0.003J , where
δE is the dispersion of eigenvalues.

It seems that, in the energy range (Eos ± δE/2) accessible
to the system, we have not reached the regime where genuine
Anderson localization dominates the dynamics for the system
size explored. As a consequence, the emergence of the CFS
peak here is mainly due to finite-size effects. On the other
hand, we would like to stress that this does not affect the
momentum signature of the percolation, which, as explained
below, appears in the temporal behavior of the CFS peak after
it has emerged.

C. Self-energy and scattering mean free time

The retarded Green’s function associated with our Hamil-
tonian H (see Appendix C for general definitions) can be
expanded over the P and Q subspaces and we find G(E ) =
PG(E )P + QG(E )Q since H does not couple these two
subspaces. Since QHQ = 0, we have QG(E )Q = Q/(E +
i0+). As a consequence, QG(E )Q = ρ/(E + i0+)1L and
Im[QG(E )Q] = −πρδ(E )1L. This shows that, for E �= 0,
ImG(E ) = Im[PG(E )P]: Both H and H give rise to the same
scattering mean free time as long as E �= 0.

To numerically compute the scattering mean free time,
we use two methods. In the first one, we expand
GP (E ) ≡ PG(E )P = [E − H + i0+]−1 over the eigenstates
and eigenenergies of H,

GP (E , k) =
∑

n

|ϕn(k)|2 (E − εn − iη)

(E − εn)2 + η2
(24)

with η = 10−3, and we get GP (E , k) by averaging over 2000
disorder configurations. We next obtain

Im�(E , k) = ImGP (E , k)

|GP (E , k)|2 , (25)

compute it for the on-shell energy E = Eos, Eqs. (9) and (22),
and finally get the on-shell scattering mean free rate �s.

In the second method, we compute

|〈k|�(t )〉|2 ∝
∣∣∣∣∣∑

n

|ϕn(k)|2 exp(−iωnt )

∣∣∣∣∣
2

∼ e−�t (26)

for t � 50tJ (averaged over 20 disorder configurations) and
perform an exponential fit to extract the decay rate �. We
then compare � to the numerically computed on-shell weak-
disorder prediction �s.
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FIG. 2. Cuts of the momentum distribution n(k, t ) at time t =
10 000tJ � τH . The parameters are ρ = 0.1 and k0 = k0êx with
k0a = 0.6π . Red color: Cut along kx = 0. This profile, obtained
along a direction orthogonal to k0, represents a good approxima-
tion of what a cut of the actual isotropic background would be.
We arbitrarily set the rim value of this background at unity. Blue
color: Cut along ky = 0 showing the CBS and CFS peaks. In this
long-time limit, both the CBS and CFS peaks have become twin
peaks and thus have the same heights and widths. Their equal width
�k = 2π/ξ defines the localization length. We find �k ≈ 0.145/a
and thus ξ ≈ 43.33a, to be compared to the linear size of the system
L = √

Na = 50a. Since L/ξ ∼ 1, the emergence of the CFS peak
here is in fact dominated by finite-size effects and not by genuine
Anderson localization (see text).

Our results at small defect density ρ = 0.1 are given in
Fig. 3 and Fig. 4. It is observed that both dimensionless quan-
tities �stJ and �tJ display approximately the same functional
shape, except near the edges of the Brillouin zone, and differ
by less than 10%. This discrepancy is not surprising since
�s is calculated on-shell whereas � represents the resulting
“average” exponential decay rate obtained after integration

over all possible energies. As such, Fig. 3(b) is somewhat a
“smoothed” version of Fig. 3(a).

As seen in Fig. 4, when ka → 0, both quantities agree well
with the theoretically predicted (ka)4 dependence. This sharp
drop when ka → 0 means that the scattering mean free time τs

diverges like ε−2
k and that the disorder is less and less effective

in the long-wavelength limit.

D. CFS contrast, spectral form factor, and Heisenberg time

As seen in Fig. 1, the CFS peak appears at times much
larger than the isotropization timescale τB and thus grows on
top of a stationary ring-shaped diffusive background of rim
height nB(k0). To quantify the time dynamics of the CFS peak
height, it is convenient to introduce the CFS contrast �(k0, t ).
It is defined as the ratio between the CFS peak height above
the stationary diffusive background and this same background
for t � τB:

�(k0, t ) = n(k0, t ) − nB(k0)

nB(k0)
. (27)

Saliently, the CFS contrast embeds the critical properties of
the Anderson transition in momentum space [24].

At this point, we introduce the spectral form factor [36]
associated with Hamiltonian H = PHP and its Nm eigenen-
ergies εn = h̄ωn:

KN (t ) = 1

Nm

∣∣∣∣∣∑
n

e−iωnt

∣∣∣∣∣
2

. (28)

It satisfies KN (t = 0) = Nm and limt→∞ KN (t ) = 1. In the
continuum limit N → ∞ at fixed ρ, we have KN (t ) → δ(τ ) +
Kreg(τ ) where Kreg is the regular part of the form factor and
τ = t/τH .

The Heisenberg time τH that sets the temporal variations
of the form factor is defined by τH = 2π h̄/�, where � is
the mean level spacing for a system of linear size

√
Nma.

At this stage, it is important to recall that eigenvalues of
Laplacian matrices are always positive with the lowest one
being always 0. This means that one can operationally define

FIG. 3. (a) On-shell scattering mean free rate �stJ = −2Im�(Eos, k)/J obtained numerically from Eqs. (24) and (25) and plotted as a
function of k in the Brillouin zone. The on-shell energy Eos is given by Eq. (22). (b) Scattering mean free rate �tJ numerically extracted from
the exponential fit of Eq. (26) and plotted as a function of k in the Brillouin zone. For both plots, the defect density has been set to ρ = 0.1 and
the data have been averaged over 2000 disorder configurations.
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FIG. 4. Inverse scattering time and comparison to theoretical
predictions. Red solid curve: Cut of �stJ in Fig. 3(a) along the line
ky = 0. Blue solid curve: Cut of �tJ in Fig. 3(b) along the line
ky = 0. Black solid curve: Independent scattering Born approxima-
tion (ISBA) prediction, Eq. (E4). Black dotted curve: ka → 0 limit
of the ISBA prediction, Eq. (E5). The ISBA prediction reproduces
the expected (ka)4 dependence at very low ka but fails to reproduce
the scattering rates �stJ and �tJ at larger ka. However, a fit using
the function α(ρ )ρS(ka)4 with α(ρ ) = 4 at ρ = 0.1 shows that both
�stJ and �tJ are well reproduced by the (ka)4 dependence for a larger
range of ka values.

� = 8JSW/Nm, where 8W is the disorder-averaged value of
the largest eigenvalue R = 8w of the Laplacian matrix R; see
Eq. (23) (we have introduced the factor 8 for convenience).
We thus have

τH

tJ
= 2π

8SW
Nm = π (1 − ρ)

4SW
N. (29)

From Appendix A, we see that W = 1 when ρ = 0 and Fig. 5
shows W (ρ) when ρ is varied for different N . For ρ → 0,
we expect W to decrease linearly with the defect density,
W ∼ 1 − c0ρ (c being some constant), a result consistent with
a perturbation argument starting from the clean Hamiltonian
and removing magnetic sites as the defect density increases.
On the other hand, for ρ → 1, we also expect a linear be-
havior, W ∼ c1(1 − ρ), again consistent with a perturbation
argument starting from the null Hamiltonian (all sites defec-
tive) and increasing the number of magnetic sites. We have
not developed these perturbative arguments and have rather
resorted to numerical calculations. The question of the limit-
ing behaviors of the constants c0 and c1 in the thermodynamic
limit is left open.

For N = 2500, S = 1/2, and ρ = 0.1, we find τH ≈
3606tJ , a value consistent with the CFS evolution timescale in
Fig. 1(e). Note that the 2π in the definition of τH is somewhat
arbitrary, so this calculated numerical value carries over this
arbitrariness. More important physically is in fact the scaling
of τH with Nm (or with N).

In Appendix F, we show the important (scaling) result:

�(k0, t ) ≈ Kreg(t/τH ) (t � τH ); (30)
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FIG. 5. Typical dimensionless range W as a function of the
defect density ρ for different system sizes. Here, 8W is the disorder-
averaged value of the largest eigenvalue of the Laplacian matrix
R associated with the disorder Hamiltonian H; see Eq. (23). The
respective limiting behaviors are well fitted by W (ρ ) ≈ (1 − ρ/5)
when ρ → 0 and by W (ρ ) ≈ 10(1 − ρ ) when ρ → 1.

see also [22,23,28]. Figure 6 shows the numerically computed
regular form factor Kreg and its comparison to the time evo-
lution of the CFS contrast � when plotted against t/τH for 2
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FIG. 6. Plots of the CFS contrast �(k0, t ), Eq. (27), and of the
regular form factor Kreg(t ) as a function of time t/τH for N = 50 ×
50 and N ′ = 40 × 40 (ρ = 0.1). The Heisenberg times τH , computed
with Eq. (29) and Fig. 5, are τH ≈ 3606tJ for N and τH ≈ 2308tJ

for N ′. The parameters are ρ = 0.1 and k0 = k0êx with k0a = 0.6π .
�(k0, t ) is extracted from the time dynamics of the disorder-averaged
momentum distribution, see Fig. 1(e), and averaged over 104 disorder
configurations. Kreg(t ) is obtained from KN (t ), Eq. (28), at t > 0 by
numerically computing the eigenvalues of the disordered Hamilto-
nian H and averaging the results over 105 disorder configurations.
As expected, all quantities collapse onto each other, at least when
t/τH � 1.
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FIG. 7. Disordered magnetic configurations obtained at defect
density ρ by randomly removing sites (in white) from a 2D clean
lattice. The percolation threshold is ρ∗ = 0.41. Sites within a given
connected magnetic n-polyominoes have the same color (note that
different clusters may have the same color when one can easily
distinguish one from the other). Left panel: ρ = 0.1. For the con-
figuration obtained, we have a single percolating (macroscopic)
magnetic n-polyomino with n ∼ (1 − ρ )L2, L being the linear lattice
size, and one isolated cluster consisting of only one site (in green).
Note that the defect configuration is dominated by single defective
sites, corroborating our theoretical model at ρ  1. Right panel:
ρ = 0.5 > ρ∗. For the configuration obtained, the system breaks into
a collection of magnetic n-polyominoes of many different sizes. By
the same token, the defect configuration is made of defective clusters
of many different sizes.

different sizes N = 50 × 50 and N ′ = 40 × 40. As expected,
the agreement is very good for t � τH , at least in the small-ρ
limit considered up to now.

To summarize the results of the previous sections and re-
lated appendices, the linear spin-wave system subjected to site
percolation disorder in the low defect density regime ρ  1
satisfies perfectly well the usual predictions of quantum trans-
port theory.

VI. MOMENTUM DISTRIBUTION AT LARGER DEFECT
DENSITIES ρ

A. Formation of polyomino clusters

A disorder configuration is obtained from the clean lattice
by punching holes: One randomly removes sites and all their
attached links. The net effect of this procedure is to replace
the initial uniform and connected 2D magnetic lattice grid
with a collection of separated, independent, connected mag-
netic clusters; see Fig. 7. In the literature connected clusters
comprising n sites are often referred to as n-polyominoes. The
statistics of n-polyominoes is given in Appendix H.

In the dilute regime ρ  1, the probability of aggre-
gated defects (defective islands) is very small and drops very
quickly with their size. We thus expect that the typical ran-
dom configuration is essentially made of sparse and isolated
defects, the magnetic sites forming a single macroscopic n-
polyomino with n = (1 − ρ)L2. This was the basis of our
theoretical analysis at ρ  1.

The situation changes dramatically as ρ increases: Bigger
and bigger defective islands become more and more proba-
ble and these aggregated defects can break the system into
more and more isolated magnetic n-polyominoes with smaller

and smaller n. In other words, we face a percolation prob-
lem. For our 2D system, the percolation threshold where the
systems breaks into isolated magnetic n-polyominoes of any
size (in the thermodynamic limit) is ρ∗ ≈ 0.41 [37]. When ρ

increases further beyond ρ∗, defective sites take over and we
get macroscopic defective islands interspersed with magnetic
n-polyominoes where n is small.

B. Temporal oscillations of the CFS peak

In Fig. 8, we show how the disorder-averaged momentum
distribution changes when we increase ρ. First, we remark
that the behaviors of the isotropic background and CBS peak
in the high and low defect density regimes are quite similar;
see the black and green curves in Fig. 1(c) and Fig. 8(a).
However, the behavior of the CFS peak is markedly different;
see red curves in Fig. 1(c) and Fig. 8(a). There is no visible
Heisenberg time τH at which a CFS peak forms. Instead, we
observe an oscillatory behavior taking place already at short
timescales. For the defect density ρ = 0.34 considered in
Fig. 8(a), the period of oscillations is T = 4π tJ . Furthermore,
the CFS signal oscillates in time around a mean height of
about 3, i.e., almost 50% more than the peak height of 2 found
at low ρ.

To better quantify this behavior, we perform a spectral
analysis by expanding of the CFS signal into Fourier ampli-
tudes

n(k0, t ) =
∫

dω

2π
P(k0, ω) eiωt , (31)

and by computing the visibility V of the CFS signal

V = Max[n(k0, t )] − Min[n(k0, t )]

Max[n(k0, t )] + Min[n(k0, t )]
. (32)

The ω dependence of P(k0, ω) is shown in Fig. 8(c) for
ρ = 0.2 and in Fig. 8(d) for ρ = 0.5. We see that the CFS
time oscillations have not appeared at ρ = 0.2, where the
P(k0, ω = 0) component, giving the mean value of the CFS
signal, completely dominates the spectrum. On the contrary,
the oscillations show up clearly at ρ = 0.5 > ρ∗ with very
visible discrete peak components in the spectrum at angular
frequencies ωtJ = 0.5, 1, and 1.5.

The ρ dependence of both P(k0, ω = 0) and V on ρ can be
seen in Fig. 8(e) and Fig. 8(f), respectively: They both increase
with the defect density. Since the CFS signal cannot become
negative, the visibility is bounded by V � 1. We see that V
increases with ρ and reaches its maximum value around the
percolation threshold ρ∗ ≈ 0.41, where the system breaks into
cluster components smaller than the full lattice size. For ρ >

ρ∗, V decreases again. Note that we find that the maximum is
obtained for ρ ≈ 0.44 instead of ρ∗ because of finite lattice
size effects.

C. Origin of the CFS temporal oscillations

The preceding discussion shows that, very generally, each
disorder configuration is a collection of different independent
polyominoes, the probability of getting a polyomino of size
n increasing with the defect density ρ. As such, the Hamil-
tonian on the magnetic lattice H = ∑

C H(C) breaks into a
sum of independent Hamiltonians H (C) on each independent

014203-9



TAY, GRÉMAUD, AND MINIATURA PHYSICAL REVIEW B 106, 014203 (2022)

FIG. 8. Behavior of the momentum distribution at higher defect densities ρ. (a) Background n(k⊥
0 , t ) (black curve), CBS n(−k0, t ) (green

curve), and CFS n(k0, t ) (red curve) signals at short timescales t � 100tJ and ρ = 0.34. (b) Same as (a) but at long timescales t � 1000tJ .
(c) CFS Fourier spectrum P(k0, ω) at defect density ρ = 0.2 obtained at t � 1000tJ ; see Eq. (31). The spectrum is completely dominated
by the static component at ω = 0: The CFS displays the same behavior as at small ρ and CFS time oscillations are too small to be visible.
(d) Same as (c) but at ρ = 0.5. This time, clear visible discrete peaks, present at ωtJ = 0.5, 1, and 1.5 in the spectrum, flag a CFS signal
oscillating with time. The main oscillation period comes from ωtJ = 0.5 and is thus T = 4πtJ . (e) Fourier amplitude P(k0, ω) as a function of
ρ at ωtJ = 0 (black solid curve and symbols), ωtJ = 0.5 (red solid curve and symbols), and ωtJ = 1 (green solid curve and symbols). (f) CFS
time oscillation visibility V as a function of ρ; see Eq. (32). It increases until it reaches the percolation threshold ρ∗ ≈ 0.41 before decreasing.

polyomino C and one has

|�(t )〉 =
∑

C

|�C (t )〉,
(33)

|�C (t )〉 =
∑

a

e−iωa (C)t ϕ∗
a (C, k0)|ϕa(C)〉,

where |ϕa(C)〉 and h̄ωa(C) are the eigenvectors and eigen-
values of Hamiltonian H(C). We note that the normalization

conditions for these eigenvectors are given as

|〈∗|�(t )|∗〉�(t )|2 =
∑

C

|〈∗|�C (t )|∗〉�C (t )|2 = 1

1 − ρ
,

|〈∗|ϕa(C)|∗〉ϕa(C)|2 = 1,∑
a

|ϕa(C, k0)|2 = 1

1 − ρ
. (34)
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Note that a disorder configuration can host several poly-
ominoes, located at different places in the magnetic lattice,
which can be superposed by an appropriate translation fol-
lowed or not by a rotation or a reflection. The Hamiltonians
associated with these polyominoes in the decomposition H =∑

C H(C) have obviously the same energy eigenvalues and
eigenfunctions related by the relevant previous transforma-
tions. For example, for two polyominoes C and D having
the same shape and simply related by translation vector d,
we would have |ϕa(D)〉 = e−ip·d/h̄|ϕa(C)〉. Actually, one can
associate a graph with each polyomino by mapping the sites to
vertices and by connecting vertices by an edge when the sites
are connected by hopping. It is easy to see that two different
polyominoes that are graph-equivalent have exactly the same
eigenvalue spectrum.

More precisely, one can partition each cluster configuration
into distinct equivalence classes {C0} grouping all polyomi-
noes C = C0 + d which can be obtained from polyomino C0,
positioned at some RC0 in the lattice, by a translation vector d
(note that d is a random vector that changes with the disorder
configuration and that the possible choices are subject to C0-
dependent “excluded volume” constraints). Then, Eq. (33) can
be rewritten as |�(t )〉 = ∑

C0
|�{C0}(t )〉 where |�{C0}(t )〉 =∑

d |�C0+d (t )〉. Since all polyominoes in {C0} have the same
energy spectra and since the corresponding eigenfunctions are
simply obtained by translation, we further have

�{C0}(k, t ) = SC0 (k − k0)�C0 (k, t ), (35)

where

�C0 (k, t ) =
∑

a

e−iωa (C0 )tϕ∗
a (C0, k0)ϕa(C0, k) (36)

and where

SC0 (q) =
∑

d

e−iq·d (37)

plays the role of a C0-dependent structure factor (remember
that the origin of the translation vectors depend on C0 as well
as its possible values).

Finally, the disorder-averaged momentum density reads

n(k, t ) =
∣∣∣∣∣∑

C0

SC0 (k − k0)�C0 (k, t )

∣∣∣∣∣
2

. (38)

One obtains quite different results whether k is equal to
k0 (CFS peak height value), or far away from it. Indeed, for
k = k0, the phase factors in the structure factor cancel out
and we have SC0 (q = 0) = N (C0), where N (C0) is the number
of polyominoes with the same shape (and orientation) as C0

(cardinal of the set {C0}). We have

n(k0, t ) =
∣∣∣∣∣∑

C0

N (C0)�C0 (k0, t )

∣∣∣∣∣
2

. (39)

Since the statistical properties of eigenenergies and eigen-
functions smoothly go from regular to fully random as the size
of C0 grows, one can “artificially” partition the polyominoes
C0 into small ones (S) and large ones (L). For C0 ∈ S, we
assume that the eigenenergies and eigenfunctions are fully

regular, while for C0 ∈ L, we assume that they are fully ran-
dom. In this case, we have

n(k0, t ) =
∣∣∣∣∣∑
C0∈S

(· · ·) +
∑

C0∈L
(· · ·)

∣∣∣∣∣
2

=
∣∣∣∣∣∑
C0∈S

(· · ·)
∣∣∣∣∣
2

+
∣∣∣∣∣∑
C0∈L

(· · ·)
∣∣∣∣∣
2

. (40)

Owing to the statistical independence of small and large poly-
ominoes, the cross product terms

∑
C0∈S,D0∈L(· · ·) cancel and

the momentum distribution splits into 2 independent compo-
nents, n(k0, t ) = nS (k0, t ) + nL(k0, t ), one related to S and
the other one to L. For C0 ∈ L, the average over disorder leads
to the usual diagonal approximation in the long-time limit and
we get

nL(k0, t ) ≈
∑
C0,a

N2(C0)|ϕa(C0, k0)|4. (41)

On the other hand, for C0 ∈ S, we expect

nS (k0, t ) =
∑
C0∈S

N2(C0) |�C0 (k0, t )|2

+
∑

C0 �=D0∈S
N (C0) N (D0)�∗

D0
(k0, t )�C0 (k0, t ).

(42)

The first term on the right-hand side involves |�C0 (k0, t )|2
terms which correspond to the CFS signal associated with
each polyomino C0: It features intracluster terms oscillating
in time with nonzero intraspectrum frequency differences
�ab(C0) = ωa(C0) − ωb(C0) (a �= b); see Eq. (36). The sec-
ond term however involves intercluster interference terms and
interspectra frequency differences ωa(C0) − ωb(D0)(a �= b).

Even if it is clear that the random nature of the energy
spectrum depends on the size and shape of C0, addressing
the regular-to-random transition of the spectrum of H when
the size and shape of C0 changes is beyond the scope of this
work and we leave it to future studies. We can nevertheless
very generally argue that the Fourier power spectrum breaks
into a discrete component Pd and a smooth continuous one Ps,
P(k0, ω) = Pd (k0, ω) + Ps(k0, ω), where

Pd (k0, ω) =
∑

s

Ps(k0)δ(ω − �s). (43)

Here �s represents the frequency differences that are immune
to disorder average and stem from small-size polyominoes
having a regular spectrum which are thus responsible for
the CFS temporal oscillations. These CFS temporal oscilla-
tions become sizable only when the probability of small-size
polyominoes becomes sizable. They arise at sufficiently
large defect densities when the sample splits into multiple
connected magnetic clusters. Hence, the temporal CFS oscil-
lations are a direct consequence of a percolation process at
work. Finally, as mentioned previously, the temporal (oscil-
lating) behavior of the CFS peak is actually independent of
the physical mechanism triggering the appearance of the CFS
peak (box confinement due to finite system size or genuine
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bulk Anderson localization). The point is that, because of the
existence of a sizable number of polyominoes, scaling like the
system size, the discrete spectrum Pd will remain essentially
independent of the system size, leading to an almost size-
independent oscillatory temporal behavior of the CFS.

In the case of the CBS peak height (k = −k0), the situ-
ation is dramatically different. Invoking again the statistical
independence of small and large polyominoes, the momentum
distribution at −k0 also breaks into the sum of the small
and large cluster contributions, n(−k0, t ) = nS (−k0, t ) +
nL(−k0, t ). Since our system is time-reversal invariant, one
has nL(−k0, t ) = nL(k0, t ); i.e., the time-independent terms
have the same value for both CBS and CFS peaks. We have

nS (−k0, t ) =
∣∣∣∣∣∑
C0∈S

SC0 (−k0)�C0 (−k0, t )

∣∣∣∣∣
2

=
∑
C0∈S

[|SC0 (−k0)|2 − 1]|�C0 (−k0, t )|2

+
∣∣∣∣∣∑
C0∈S

�C0 (−k0, t )

∣∣∣∣∣
2

, (44)

where we have used, when C0 �= D0, S∗
D0

(−k0)SC0 (−k0) =
S∗

D0
(−k0) SC0 (−k0) = 1 since SC0 (−k0) = 1. Furthermore,

|SC0 (−k0)|2 =
∑
dd ′

e2ik0·(d−d ′ ) =
∑

d

1 = N (C0). (45)

As a consequence, the dominant contribution to nS (−k0, t )
writes

nS (−k0, t ) ∼
∑
C0∈S

N (C0) |�C0 (−k0, t )|2. (46)

As one can see, the CBS peak height also displays temporal
oscillations at intracluster frequency differences �ab(C0) only
but with a much reduced amplitude compared to the CFS
oscillations. Indeed, the oscillation terms are weighted by
N (C0) for the CBS sum and N2(C0) for the CFS sum. In the
limit of large system size, we expect the relative size of the
CBS to CFS oscillations to go to zero.

For example, from Fig. 9, one can see that, at size L = 50
and defect density ρ = 0.34, the number of small clusters
is about 40, such that the ratio NC0/N2

C0
≈ 1/NC0, is of the

order of 1/40. The amplitude of the CFS oscillations being
about 2, this means that the amplitude of the CBS oscillations
should be about 2/40 = 0.05, in qualitative agreement with
Fig. 8(b).

D. CFS oscillation frequencies

Figure 9 shows that, in terms of number, the n-polyominoes
with sizes n � 4 dominate the disorder configurations; see
Appendix H for more details. Obviously, such small-size
polyominoes have regular eigenspectra. From Fig. 8(d),
we see that the disorder-resisting frequency differences are
�stJ = 0.5, 1, and 1.5. We now check how these �s can be
easily inferred from the spectra of small-size polyominoes.

Using Eq. (17), it is easy to see that the spectrum of domi-
noes is {0, 0.5} and that of trominoes is {0, 0.5, 1.5} (in units
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FIG. 9. Number of n-polyominoes as a function of defect density
ρ for our lattice system comprising N = L2 = 2500 sites.

of h̄/tJ ). Figure 10 gives the 6 possible trominoes. From this,
we immediately see that the nonzero frequency differences are
�stJ = 0.5, 1, and 1.5, as witnessed in Fig. 8(d). At this point,
we remind the reader that the 0 eigenvalue always belongs to
the spectrum of any Hamiltonian HC . This is because each of
these Hamiltonians is represented by a Laplacian matrix; see
Sec. IV C.

Actually, one can see that E = 0.5 and E = 1 (in units of
h̄/tJ ) are two special graph-invariant eigenvalues; see Fig. 11.
Indeed, the eigenvalue E = 0.5 always arises for polyominoes
associated with graphs consisting of an arbitrary subgraph
attached to the middle vertex of a 3-vertex subgraph. The
corresponding eigenvector for such a case has opposite com-
ponents on the end vertices of the 3-vertex subgraph and
0 components elsewhere. The proof is simple: The hopping
terms induce a destructive interference at the middle vertex
which blocks spreading to the rest of the graph. By the same
token, the eigenvalue E = 1 always arises when the associated
graph is built by connecting 2-vertex subgraphs; see Fig. 11.

To conclude, the disorder-averaged CFS power spectrum
P(k0, ω) indeed exhibits discrete peaks growing with ρ and
mostly located at �stJ = 0 (static component), �stJ = 0.5
(temporal oscillation with period T = 4π tJ ), and �stJ = 1
(temporal oscillation with period T = 2π tJ ).

FIG. 10. The 6 possible trominoes. Being all graph-equivalent,
their associated Hamiltonians all have the same eigenvalues.
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FIG. 11. Graph-equivalent polyominoes that give rise to eigen-
values E = 0.5 and E = 1 (in units of h̄/tJ ). Left panel: Graph
structure. The vertex is colored in red when the corresponding (un-
normalized) eigenvector has site entry 1, in black when it has site
entry 0, and in green when it has site entry −1. The dashed lines
correspond to optional possible edges not changing the occurrence
of the eigenvalues 0 or 1. Right panel: Some concrete examples of
polyominoes giving rise to eigenvalue E = 0 and E = 1.

In Appendix G, we show the emergence of these discrete
peaks signaling percolation in the disorder-averaged spectral
function.

VII. CONCLUSION

In this paper, we have considered a 2D ferromagnetic
square lattice hosting randomly placed nonmagnetic defects
and we have studied the time propagation of an initial plane
wave k0 in the linear spin-wave limit. We have shown how the
momentum distribution of the system changes when the defect
density ρ increases and site percolation sets in. We have docu-
mented the existence of two regimes. In the low defect density
regime ρ  1, typical disorder configurations are typically
made of a macroscopic connected component essentially in-
terspersed with single defects. In this case, the dynamics of the
system falls into the usual category of wave propagation in
random media and exhibits Anderson localization. Coherent
transport effects in momentum space are revealed by the emer-
gence of the emblematic CBS and CFS interference peaks,
located at −k0 and k0, respectively, on top of an isotropic
diffusive background. On the other hand, in the high defect
density regime when ρ is no longer much smaller than 1,
disorder configurations typically break up into many isolated
clusters C of different sizes and shapes called polyominoes.
In this case, the CFS peak starts to oscillate in time. The
total Hamiltonian of the system admits a cluster-component
expansion H = ∑

C HC and a Fourier analysis reveals that
the frequency spectrum of these CFS oscillations is given
by energy differences between eigenenergies residing in the
regular part of the spectrum of H. These disorder-immune
eigenenergies are associated with Hamiltonians HC associated
with small-size magnetic clusters C. Possible extensions of
this work include (i) the regular-to-random transition of the
eigenenergy spectrum of this system as ρ increases, (ii) signa-
tures of the percolation transition and of its critical properties

in the CFS signal, and (iii) the impact of interactions between
magnons on the temporal evolution of the CFS peak and its
nonlinear features.
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APPENDIX A: CLEAN LINEAR SPIN-WAVE
HAMILTONIAN

We start from the ferromagnetic Heisenberg Hamiltonian
on a lattice L with periodic boundary conditions:

HS = −
∑
(i j)

Ji j Si · S j, (A1)

where (i j) ≡ ( ji) denotes the link that connects the unordered
pair of nearest-neighbor sites i and j and where Ji j = Jji > 0.
For a 1D spin chain, we would have

HS = (· · ·) − J12 S1 · S2 − J23 S2 · S3 − J34 S3 · S4 + (· · ·).
(A2)

Note that HS can be rewritten as

HS = −1

2

∑
i∈L

∑
j∈N (i)

Ji j Si · S j, (A3)

where N (i) is the set of all nearest-neighbor sites to site i.
The factor 1/2 in front takes care of double counting the
interaction terms.

Writing Eq. (A1) as HS = −Si · Bi + H′
S , where Bi =∑

j∈N (i) Ji jS j and where H′
S does not involve spin Si, the

Heisenberg equation of motion for spin Si reads

dSi

dt
= i[HS, Si] = Si × Bi =

∑
j∈N (i)

Ji j Si × S j, (A4)

where we have used the commutation relations for spin com-
ponents [Sa, Sb] = i

∑
c εabcSc (εabc is the fully antisymmetric

Levi-Civita tensor) [38,39].
Note that these Heisenberg equations of motion are non-

linear in the spin operators. To extract the Hamiltonian
describing the linear spin-wave excitations of the system
around its ferromagnetic ground state where all spins are
aligned along Oz, we resort to the Holstein-Primakov trans-
formation [40]

Sz
i = S − a†

i ai,

S+
i = Sx

i + iSy
i =

√
2S − a†

i ai ai, (A5)

S−
i = Sx

i − iSy
i = a†

i

√
2S − a†

i ai,

featuring the on-site bosonic creation and annihilation op-
erators ai and a†

i satisfying [ai, a†
i ] = 1. To lowest order in

a†
i ai, we have Sz

i = S, S+
i = √

2S ai, and S−
i = √

2S a†
i , so that
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FIG. 12. Plot of the ratio R(k, �k, ρ ) = 〈k + �k|H|k〉/ε0
k ob-

tained for one disorder configuration and its disorder-averaged value
R(k, �k, ρ ) as a function of ρ at ka = 0.4π êy and for �k = 0 and
�k = 0.1k. As one can see, the diagonal element R(k, �k = 0, ρ )
fluctuates around (1 − ρ )2 while the off-diagonal one R(k, �k �=
0, ρ ) fluctuates around 0. The fluctuations themselves do average to
zero after disorder average. This shows that H̃0 = H = ∑

k εk|k〉〈k|
features the renormalized clean dispersion relation εk = (1 − ρ )2 ε0

k .
We have further checked that the two types of disorder (fixed defect
density ρ or randomly flipping each lattice site with probability ρ)
give the same results.

Eq. (A4) reads

dai

dt
= i

∑
j∈N (i)

SJi j (a j − ai ) = i[H0, ai] (A6)

with

H0 = −
∑
(i j)

SJi j (a
†
i a j + a†

j ai ) +
∑
i∈L

Ui a†
i ai (A7)

and Ui = ∑
j∈N (i) SJi j . In first quantization language, we re-

cover Eq. (2) and Eq. (18) for the uniform case Ji j = J .

APPENDIX B: RENORMALIZED CLEAN DISPERSION
RELATION

To compute Hd , we face the disorder average of the
link random variable mi j = 1 − mimj for j �= i. The random
variable mimj can only take two values, namely 1 (with prob-
ability p1) and 0 (with probability p0 = 1 − p1). Trivially,
mimj = p1. Since mimj = 1 ( j �= i) is obtained for mi = 1
and mj = 1, we have p1 = (N − ND)(N − ND − 1)/[N (N −
1)] → (1 − ρ)2 in the thermodynamic limit (N, ND) → ∞
at fixed ρ = ND/N . We then conclude that mi j = ρ(2 − ρ)
and thus Hd = −ρ(2 − ρ)H0. As a consequence H̃0 = H =
H0 + Hd = (1 − ρ)2H0, leading to the disorder-renormalized
clean dispersion relation Eq. (21). We show in Fig. 12 that this
predicted (1 − ρ)2 dependency is indeed satisfied.

APPENDIX C: GREEN’S FUNCTION, SELF-ENERGY,
AND TRANSITION OPERATOR

1. General definitions

We recapitulate here the general results about the retarded
Green’s function associated with some disorder Hamiltonian
H = H0 + V , where H0 is the clean Hamiltonian and V the
disorder potential, assumed here to have a vanishing disorder
average V = 0. It is defined by

G(E ) = [E − H + i0+]−1 = [E − H0 − V + i0+]−1 (C1)

such that the time evolution operator reads

U (t ) = e−iHt/h̄ = i
∫ +∞

−∞

dE

2π
e−iEt/h̄ G(E ) (C2)

for t � 0.
The Green’s function satisfies the recursive relation

G(E ) = G0(E ) + G0(E )V G(E ), where G0(E ) is the Green’s
function associated to the clean Hamiltonian H0.

A first quantity of interest is the disorder-averaged Green’s
function G(E ). It satisfies the Dyson equation G(E ) =
G0(E ) + G0(E )�(E )G(E ) [33,41] and reads

G(E ) = [E − H0 − �(E )]−1. (C3)

The Dyson equation in fact defines the self-energy operator
�(E ). Since disorder average restores translation invariance
of the system, G(E ) and �(E ) are both diagonal in k:

〈k|G(E )|k′〉 = G(E , k)δkk′ ,
(C4)

〈k|�(E )|k′〉 = �(E , k)δkk′ ,

and we have

G(E , k) = [E − ε0
k − �(E , k)]−1

=
[

E − ε0
k − Re�(E , k) + i

h̄�s(E , k)

2

]−1

, (C5)

where ε0
k is the clean dispersion relation and �s(E , k) =

−2Im�(E , k)/h̄ > 0 is the scattering mean free rate at energy
E and wave number k. The scattering mean free time is simply
τs(E , k) = �−1

s (E , k).
The so-called coherent amplitude is given by the

disorder-average state |�(t )〉. Starting from the initial plane
wave |�(t = 0)〉 = |k〉, it is easy to see that 〈k′|�(t )〉 =
〈k|�(t )〉 δkk′ . Introducing the dispersion relation Ek of the dis-
ordered system, obtained by solving E − ε0

k − Re�(E , k) =
0, we see that

〈k|�(t )〉 ≈ i
∫ +∞

−∞

dE

2π

e−iEt/h̄

E − Ek + i h̄
2τs

= e− t
2τs , (C6)

provided that |Re�(E , k) − Re�k|  |E − Ek| and
|Im�(E , k) − Im�k|  |Im�k|, with �k = �(Ek, k), hold
over the whole energy range. When this is the case, we
find that the initial coherent population peak decreases
exponentially over the timescale τs ≡ τs(Ek, k). At weak
enough disorder, we expect Ek ≈ ε0

k (on-shell scattering).
The transition operator T (E ) is defined by G(E ) =

G0(E ) + G0(E )T (E )G0(E ) and we have

G(E ) = G0(E ) + G0(E )�(E )G(E )

= G0(E ) + G0(E )T (E )G0(E ). (C7)
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The disorder-averaged transition operator T (E ) satisfies the
iterative equation T (E ) = V G(E )V and is linked to the self-
energy operator by

�(E ) = T (E ) [1 + G0(E )T (E )]−1. (C8)

The self-energy is given by the sum of 1-particle irreducible
diagrams [33,41]. At lowest order in a perturbative expansion,
one has

�(E ) = V G0(E )V + (. . .),
(C9)

T (E ) = V G0(E )V + (. . .),

and thus �(E ) ≈ T (E ) ≈ V G0(E )V .

2. Application to our system

To match with the previous definitions, we need to write
our system Hamiltonian H = H0 + Hd as H = H̃0 + δHd

with H̃0 = H0 + Hd , see Sec. II C, and use the previous def-
initions through the change H0 → H̃0, V → δHd , G0(E ) →
G̃0(E ), and ε0

k → εk, the renormalized clean dispersion
relation.

To compute the self-energy and the scattering mean free
time, we break Hd into its defect cluster components

Hd =
ND∑

m=1

H (m)
d (C10)

and define δH (m)
d = H (m)

d − H (m)
d as the disorder Hamiltonian

associated with m-defects, which are clusters made of m con-
nected defects (1-defects are just single isolated defects). Note
that, for a given configuration of ND defects, some of the H (m)

d
may simply be zero.

At this point, it is difficult to proceed without approxi-
mations. In the dilute regime ρ  1, the probability to get
m-defects with sizes m � 2 should be extremely low so that
one can discard them. Within this approximation, one has
δHd ≈ δH (1)

d = ∑
i0

δH (1)
d (i0), with the sum running over iso-

lated defective sites only, and �(E ) ≈ T (1)(E ). Since the
average separation between defects is ρ−1/2a � a, another
approximation can be further made in this dilute regime by
neglecting recurrent scattering events. This means one only
keeps scattering paths where a given defective site is only vis-
ited once. Within this independent scattering approximation,
we have �(E ) ≈ T (1)(E ) ≈ NDT (1)(E , i0), where T (1)(E , i0)
is the transition operator associated with a single defect i0 [3].

APPENDIX D: SCATTERING BY A SINGLE DEFECT

The disorder Hamiltonian H (1)
d (i0) associated with a

single isolated defect located at some lattice site i0 la-
beled by r0 is obtained from Eq. (17) by setting mi = 1 −
δii0 and thus mi j = δii0 + δ ji0 − δii0δ ji0 . Writing H (1)

d (i0) =
JS

∑
j∈N (i0 ) H (1)

d (i0, j), we get

H (1)
d (i0)(i0, j) = |r0〉〈r j | + |r j〉〈r0|

− |r j〉〈r j | − |r0〉〈r0|. (D1)

After simple algebra, we find

〈k′|H (1)
d (i0)|k〉 = −2JS

N
ei(k−k′ )·r0 F (k, k′), (D2)

where F (k, k′) = ∑
α=x,y f (kα, k′

α ) with

f (u, v) = 1 + cos [a(u − v)] − cos (au) − cos (av). (D3)

From Eq. (20), one may want to note that ε0
k = JS F (k, k). It

is easy to see that in the limits (ka, k′a)  1, we have

F (k, k′) = a2 k · k′. (D4)

Since r0 can be anywhere in the lattice with equal probability,

ei(k−k′ )·r0 = δkk′ , and we have

〈k′|H (1)
d (i0)|k〉 = −2JS

N
F (k, k) δkk′ . (D5)

Defining δH (1)
d (i0) = H (1)

d (i0) − H (1)
d (i0), we thus find

〈k′|δH (1)
d (i0)|k〉 = −2JS

N
ei(k−k′ )·r0 F (k, k′)(1 − δkk′ ). (D6)

APPENDIX E: SCATTERING MEAN FREE TIME

Within the independent scattering approximation at the
level of single isolated defects only, we have

�(E ) ≈ ND δH (1)
d (i0) G̃0(E ) δH (1)

d (i0). (E1)

Simple algebra then shows that 〈k′|�(E )|k〉 = �(E , k) δkk′ ,
where

�(E , k) = 4ρJ2S2

N

∑
q

F 2(k, q) G̃0(E , q)(1 − δkq). (E2)

With tJ = h̄/J and ImG̃0(E , q) = −π δ(E − εq), we have

tJ
τs(E , k)

= −2Im�(E , k)

J

= 8πρJS2

N

∑
q

F 2(k, q) δ(E − εq)(1 − δkq)

= 2ρJS2a2

π

∫
dq F 2(k, q) δ(E − εq), (E3)

where the last line is obtained in the continuum limit N → ∞
with

∑
q (. . .) → Na2

∫
dq/(2π )2 (. . .). Note that the contri-

bution of the δkq term reduces to [−8πρJS2F 2(k, k)δ(E −
εk)]/N which vanishes in the limit N → ∞.

For on-shell scattering E = Eos = εk/(1 − ρ), see Eq. (9),
we find

tJ
τs(Eos, k)

= 2ρSa2

π (1 − ρ)2

∫
dq F 2(k, q) δ

×
[

F (k, k)

1 − ρ
− F (q, q)

]
. (E4)

In the limit ka  √
1 − ρ, we get

tJ
τs(Eos, k)

≈ ρS

(1 − ρ)3
(ka)4 ∼ ρS(ka)4 (ρ  1). (E5)

Since εk ∝ (ka)2 for ka  1, we recover the well-known fact
that τs ∝ ε−2

k when ka → 0 [18]. A plot of this independent
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scattering Born approximation (ISBA) prediction, Eq. (E4), is
shown in Fig. 4 as a function of kxa for kya = 0 and compared
to numerical data obtained for the scattering mean free rate.
This ISBA prediction could be further improved by resorting
to the self-consistent Born approximation [42–44].

APPENDIX F: FORM FACTOR AT ρ � 1

At very small defect densities, we can assume that a typical
disorder configuration consists of a macroscopic connected
magnetic cluster of size Nm = (1 − ρ)N randomly filled with
ND = ρN isolated single defects. Then, from Eq. (13), we see
that

n(k0, t ) =
∑
nm

e−iωnmt |ϕn(k0)|2|ϕm(k0)|2. (F1)

Writing n(k0, t ) = n∞(k0) + δn(k0, t ) with n∞(k0) ≡
n(k0, t = ∞) = ∑

n |ϕn(k0)|4, we have

δn(k0, t ) =
∑
n �=m

e−iωnmt |ϕn(k0)|2|ϕm(k0)|2. (F2)

We now use the usual random matrix type assumption that
eigenvalue fluctuations and eigenfunction fluctuations are in-
dependent. This implies that for large enough times, the
complex phase factors reach complete randomization and we
get the decoupling:

δn(k0, t ) ≈
∑
n �=m

e−iωnmt |ϕn(k0)|2|ϕm(k0)|2. (F3)

The timescale set by this decoupling mechanism is
the Heisenberg time τH . The correlator R̃N (k0, ωnm) =
|ϕn(k0)|2|ϕm(k0)|2, computed above for n �= m, depends only
on the eigenenergy difference ωnm because of the disorder
average. Going to Fourier space, we see that

δn(k0, t ) ≈
∫

dω R̃N (k0, ω)FN (ω)e−iωt ,

FN (ω) =
∑
n �=m

δ(ω − ωnm). (F4)

From Eq. (28), we see that FN (ω) is nothing else than the
Fourier transform of Nm[KN (t ) − 1]. From Eq. (27), and not-
ing that n∞(k0) = 2nB(k0), we find

�(k0, t ) ≈ 1 + Nm[(KN − 1) ⊗ RN ](t )

nB(k0)
, (F5)

where RN (k0, t ) is the Fourier transform of R̃N (k0, ω).
Finally, in the large-time limit, or equivalently in the

small-ω limit, the term R̃N (k0, 0) can be factored out of the
integrals and we get �(k0, t ) = 1 + γ [KN (t ) − 1] with γ =
NmR̃N (k0, 0)/nB(k0). At this point, it is crucial to realize that
R̃N (k0, 0) in Eq. (F5) is computed for n �= m in the limit
ω → 0; see Eq. (F3). We thus get

R̃N (k0, 0) = lim
ω→0

|ϕn(k0)|2|ϕm(k0)|2
∣∣∣
n �=m

= (|ϕn(k0|2)2 = nB(k0)/Nm, (F6)

since different eigenstates are statistically independent (note
that the same limit ω → 0 for n = m would have given n∞/Nm

instead). In turn, γ = 1 and we finally arrive at

�(k0, t ) ≈ Kreg(t ), t � τH . (F7)

APPENDIX G: SPECTRAL FUNCTION

The disorder-averaged spectral function is defined by

2π〈∗|k′δ(E − H )|∗〉k = (2π )dδ(k − k′)A(k, E ), (G1)

where we define the plane-wave states projected onto the
magnetic lattice M,

|∗〉k = 1√
N (1 − ρ)

∑
i∈M

eik·ri |∗〉ri, (G2)

with N = L2 the number of clean lattice sites. These plane-
wave states are normalized to 〈∗|k|∗〉k = 1. Using the
n-polyomino expansion H = ∑

C HC , we see that

A(k, E ) =
∑

C

AC (k, E ), (G3)

where

AC (k, E ) =
∑

a

δ[E − Ea(C)]|ϕa(C, k)|2,

HC |ϕa(C)〉 = Ea(C)|ϕa(C)〉. (G4)

In performing the disorder average, we face the question
of the statistical properties of eigenvalues and eigenfunc-
tions of HC when the polyomino C changes. Here again,
we argue that, under the disorder average, the total spectral
function Eq. (G3) naturally breaks into a regular discrete com-
ponent Ad (k, E ) (originating from the regular Hamiltonians
possessing eigenenergies immune to disorder) and a smooth
component As(k, E ) (originating from the random Hamiltoni-
ans):

Ad (k, E ) =
∑

s

As(k) δ(E − Es). (G5)

Figure 13 shows how the spectral function changes when the
defect density ρ is varied.

We clearly see that the regular discrete component
Ad (k, E ), completely negligible and invisible at ρ  1,
emerges gradually when ρ is further increased while the
smooth component is gradually depleted. When the perco-
lation transition takes place, only small-size n-polyominoes
survive and the smooth component goes extinct.

Using the identity

U (t ) = e−iHt =
∫

dE δ(E − H) e−iEt , (G6)

it is easy to see that n(k0, t ) = ∫
dω e−iωt P(k0, t ) with

P(k0, ω) =
∫

dE

(2π )2
A(E , k0)A(E − h̄ω, k0). (G7)

We can use now the same argument developed above, to infer
that the CFS power spectrum P(k0, ω) also breaks into a reg-
ular discrete component Pd (k0, ω), Eq. (43), originating from
regular Hamiltonians, and a smooth one Ps(k0, ω) originating
from random Hamiltonians.
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FIG. 13. Spectral function at CFS point A(E , k0 ) as a function of E for different defect densities ρ and k0 = k0êx with k0a = 0.6π . (a) Low-
defect regime (ρ = 0 to 0.15). (b) Intermediate-defect regime (ρ = 0.2 to 0.5). (c) High-defect regime (ρ = 0.6 to 0.9). (d) A(E = 0, k0) as a
function of ρ.

APPENDIX H: DISTRIBUTION OF N-POLYOMINOES

The occurrence probability of an n-polyomino at defect
density ρ writes

P(n)(ρ) =
∑

t

gn,t (1 − ρ)nρt , (H1)

where gn,t denotes the number of distinct polyominoes with
boundary t and size n. Unfortunately, if one can compute gn,t

for small-size polyominoes, there is no known analytic for-
mula for this degeneracy factor. It is known that gn,t increases
exponentially fast. Table I gives the total number of possible
n-polyomino arrangements as the size n increases.

One can nevertheless efficiently estimate P(n) numerically
by generating a large number of random configurations (106

configurations are used in our numerics) and computing the
total fraction of n-polyominoes found; see Fig. 14(a) [46].

Starting from a lattice grid with N = 2500 sites, the per-
colation transition is easily seen in Fig. 14(c), where P(n),
peaked at high cluster sizes for low ρ, disappears completely
around ρ ≈ 0.45. Due to finite-size effects, we find a perco-
lation threshold at about 0.44 instead of the predicted value
ρ∗ ≈ 0.41 [37]. We also observe that the polyomino distri-

bution in Fig. 14(b) can be fitted by a power law P(n) =
n0n−τ + Cn−� with critical exponents τ = −187/91 and � =
−0.702 as found in the literature [47]. Hence, despite working
with a relatively small system size, finite-size effects do not
significantly alter the polyomino distributions in our system.

TABLE I. Number of spatial arrangements of n-polyominoes [45].

n Name Number of arrangements

1 monomino 1
2 domino 2
3 tromino 6
4 tetromino 19
5 pentomino 63
6 hexomino 216
7 heptomino 760
8 octomino 2725
9 nonomino 9910
10 decomino 36 446
11 undecomino 135 268
12 dodecomino 505 861
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FIG. 14. (a) Occurrence probability P(n) for defect densities 0.1 � ρ � 0.5 (n = 1, 2, 3). (b) P(n) behavior for small polyomino sizes
n � 20. The solid line is a power law (see text). (c) P(n) behavior for large polyomino sizes n � 200. (d) Number of n-polyominoes in our
system with N = L2 = 2500 sites as a function of ρ. (e) Percolation transition. The number of percolating clusters falls from 1 to 0 at the
threshold ρ∗. Due to finite-size effects, our numerical value 0.44 overestimates the actual accepted theoretical value ρ∗ ≈ 0.41 for this system.
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